
E�cient Power and Thermal

Management using Fine-grain

Architectural Approaches in Multicores

A dissertation submitted in ful�llment of the

requirements for the degree of Doctor of Philosophy

Juan Manuel Cebrián

Advisors

Juan Luis Aragón

Stefanos Kaxiras

Departamento de Ingeniería y Tecnología de Computadores

Facultad de Informática

Universidad de Murcia

June 2011

Diseño de Mecanismos de Grano

Fino para la Gestión E�ciente

de Consumo y Temperatura

en Procesadores Multinúcleo

Memoria que presenta para optar al título de Doctor en Informática

Juan Manuel Cebrián González

Dirigida por los Doctores

Juan Luis Aragón Alcaraz

Stefanos Kaxiras

Departamento de Ingeniería y Tecnología de Computadores

Facultad de Informática

Universidad de Murcia

Junio de 2011

To my family and friends.

To the memory of my grandparents.

To my dear María.

U N I V E R S I D A D
D E M U R C I A

DEPARTAMENTO DE INGENIERÍA Y TECNOLOGÍA DE COMPUTADORES

D. Juan Luis Aragón Alcaraz, Profesor Titular de Universidad del Área de Arquitec-
tura y Tecnología de Computadores en el Departamento de Ingeniería y Tecnología de
Computadores de la Universidad de Murcia (España)

y

D. Stefanos Kaxiras, Profesor Titular de Universidad del Área de Arquitectura y Tecno-
logía de Computadores en el Departamento de Ingeniería y Tecnología de Computadores
de la Universidad de Uppsala (Suecia)

AUTORIZAN:

La presentación de la Tesis Doctoral titulada �Diseño de Mecanismos de Grano Fino para
la Gestión E�ciente de Consumo y Temperatura en Procesadores Multinúcleo�, realizada
por D. Juan Manuel Cebrián González, bajo su inmediata dirección y supervisión, y que
presenta para la obtención del grado de Doctor por la Universidad de Murcia.

En Murcia, a 8 de Abril de 2011.

Fdo: Dr. Juan Luis Aragón Alcaraz

Fdo: Dr. Stefanos Kaxiras

D. Antonio Fernando Gómez Skarmeta, Catedrático de Universidad del Área de Inge-
niería Telemática y presidente de la Comisión Académica del Programa de Postgrado
de Tecnologías de la Información y Telemática Avanzadas de la Universidad de Murcia,
INFORMA:

Que la Tesis Doctoral titulada �Diseño de Mecanismos de Grano Fino para la Gestión
E�ciente de Consumo y Temperatura en Procesadores Multinúcleo�, ha sido realizada por
D. Juan Manuel Cebrián González, bajo la inmediata dirección y supervisión de D. Juan
Luis Aragón Alcaraz y de D. Stefanos Kaxiras, y que la Comisión Académica ha dado
su conformidad para que sea presentada ante la Comisión de Doctorado.

En Murcia, a 8 de Abril de 2011.

Fdo: Dr. Antonio Fernando Gómez Skarmeta

Abstract

Thermal and power related issues are common in most modern microprocessors. We

are not only talking about servers, but also mobile devices, desktop computers, laptop,

GPUs, APUs, etc. For many years microprocessor design has been (and is) limited by

power dissipation and temperature. Many studies refer to these key factors as the �Power

Wall�. Moreover, after 10 years of focusing on increasing the operating frequency of the

transistors, engineers switched to increasing the number of processing cores on the same

die promoting throughput and leaving individual core performance aside. Even today,

this �power wall� is still limiting the number of cores that can be placed on the same die.

We can distinguish two main components in power dissipation: dynamic power, which

is proportional to usage (every time we access a structure) and static power (or leaka-

ge), that is derived from gate leakage and subthreshold leakage currents that �ow even

when the transistor is not in use. Dynamic Voltage and Frequency Scaling (DVFS) and

Clock Gating have been the most common and e�ective techniques to contain energy

consumption. Unluckily, DVFS becomes less e�ective with every new generation of tran-

sistors, because it mainly relies on decreasing supply voltage and, in order to maintain

the transistor's switching speed, threshold voltage must be reduced at the same rate.

This reduction increases leakage power exponentially and when the building technology

process drops below 65nm, leakage power becomes an important part of the total power

dissipated by the processor.

Thermal and power related problems are usually detected by a Dynamic Thermal Mana-

gement (DTM) mechanism and solved by limiting the amount of power the processor /

core can consume (by establishing a power budget). However, most modern microproces-

sors do not have the means to accurately measure power in real time. Power is estimated

based on performance counters over periods of thousands of cycles. In this Thesis we

introduce the concept of Power Tokens. With Power Tokens we can measure energy at

a higher resolution by adding to the base energy consumption of the instruction (i.e.,

all regular accesses to structures done by that instruction) a dynamic component that

depends on the time it spends on the pipeline. Total energy can be estimated as the

addition of the individual energy of all the instructions inside the processor's pipeline.

We analyze the performance, power, energy and accuracy impact of di�erent power saving

mechanisms to discover that individual mechanisms are not suitable to accurately match

the established power budget with a reasonable performance penalty. In order to deal

xi

xii Abstract

with this problem we propose several microarchitecture-level techniques that dynamically

combine individual techniques to obtain a more accurate power budget matching with

a reasonable performance penalty. Our techniques for the single-core scenario include:

power token throttling (PTT) a token-based approach that keeps track of the current

power being dissipated by the processor and stalls fetch if the next instruction to be

executed will make the processor go over the power budget; a basic block-level mechanism

(BBLM), that keeps track of the energy consumed the last time the processor executed a

basic block and uses that energy translated into tokens to select between di�erent power-

saving microarchitectural techniques; and �nally a two-level approach where DVFS acts

as a coarse-grain technique to lower the average power dissipation towards the power

budget, while microarchitectural techniques focus on removing power spikes.

However, when evaluating these mechanisms in the CMP �eld we discovered that legacy

techniques work properly for thread-independent and multi-programmed workloads, but

not for parallel workloads. In the latter we noticed that synchronization points alter the

optimal execution of the code, so it is no longer dictated by each individual core, but by

the whole CMP. To enhance power saving mechanisms in the CMP �eld we introduce

Power Token Balancing (PTB). This mechanism balances the power dissipated among the

di�erent cores using a power token-based approach while optimizing the energy e�ciency.

We can use power (seen as tokens) from non-critical threads for the bene�t of critical

threads.

Finally, and also in the multi-core scenario, we analyze the use of microarchitectural

power budget techniques to reduce peak temperature in 3D die-stacked architectures. In

particular, we introduce Token3D, a power balancing technique that takes into account

temperature and layout information to balance the available per-core power along with

other power optimizations for 3D designs. We also analyze a wide range of �oorplans

looking for the optimal temperature con�guration. In addition, we also develop some

optimizations for vertical 3D designs and a custom �oorplan design that places hotspot

structures in upper layers of the 3D stack and cooler structures in inner layers.

Agradecimientos

Para empezar me gustaría agradecer a mis directores de Tesis, Juan Luis Aragón, José

Manuel García Carrasco y Stefanos Kaxiras por su apoyo y dedicación durante el desa-

rrollo de la misma. Gracias a ellos he podido madurar (un poco) y aprender nuevas cosas

que no estaban a mi alcance durante la carrera.

También me gustaría agradecer el apoyo y ayuda de todos los miembros del departamento

de Arquitectura y Tecnología de Computadores y en especial a mis compañeros más

cercanos, Alberto, Ana, Antonio, Chema, Dani, Epi, Ginés, Kenneth, José Luis, Ricardo,

Rubén y Varadan. Sin su ayuda y compañía hace mucho que hubiera abandonado mis

estudios de doctorado.

Quisiera además agradecer a las personas que me acogieron durante mis estancias en

Grecia y Suecia, en especial a Pavlos Petoumenos, Nikos Nikoleris y Vasileios Spiliopoulos

por hacerme sentir como en casa.

Gracias a mis padres, Juan y Lola, a mi hermana Beatriz, y a mis amigos más cercanos

por mostrar tanta paciencia conmigo en esos días donde el estrés podía con la razón y

no les trataba como se merecen. Para �nalizar, agradecer a la última persona que se ha

incorporado a mi vida, y que en poco tiempo se ha convertido en la más importante, mi

querida María. Espero que podamos recuperar parte del tiempo que he invertido en este

trabajo para estar juntos.

xiii

Índice

Abstract IX

Agradecimientos XI

Lista de Figuras XIX

Lista de Tablas XXIII

Resumen XXV

1. Introducción 1

2. De�nición del Problema y Metodología de Simulación 7

3. Mecanismos de Control de Consumo 35

4. Adaptando el Consumo en Procesadores Mononúcleo 67

5. Adaptando el Consumo en Procesadores Multinúcleo 85

6. Adaptando el Consumo en Procesadores Multinúcleo Multicapa 111

7. Conclusiones y Trabajo Futuro 129

Bibliografía 135

xv

Contents

Abstract xi

Agradecimientos xiii

Resumen xxvii

0.1. Introducción . xxvii

0.2. Contribuciones . xxx

0.3. Control de Consumo en Procesadores Mononúcleo xxxii

0.4. Control de Consumo en Procesadores Multinúcleo xxxv

0.5. Control de Consumo en Procesadores Multinúcleo 3D xxxvii

0.6. Conclusiones . xxxix

1. Introduction 1

1.1. Motivation . 1

1.2. Contributions . 3

1.3. Organization . 4

2. Problem Statement and Simulation Methodology 7

2.1. Introduction . 7

2.2. Power Tokens . 10

2.3. Importance of Accuracy . 11

2.4. Simulators . 12

2.5. Power Models . 15

2.5.1. Dynamic Power Models . 15

2.5.2. Leakage Power Models . 18

2.6. Temperature Models . 21

2.7. Benchmarks . 23

2.8. Benchmark Thermal Pro�les and Per-Structure Power Distribution 29

2.9. Performance vs Power-E�ciency in a Multi-Core Scenario 33

3. Power Saving Mechanisms 35

3.1. Dynamic Power Control Mechanisms . 35

xvii

xviii Índice

3.1.1. Dynamic Voltage and Frequency Scaling 36

3.1.2. Pipeline Throttling . 39

3.1.3. Critical Path . 40

3.1.4. Hybrid Approaches . 42

3.1.5. Timeline Analysis of Power Dissipation 44

3.2. Leakage Control Mechanisms . 44

3.2.1. Value Predictors: A Case Study for Leakage Reduction 46

3.2.2. Problem Overview: Generational Behaviour in Value Prediction

Structures . 47

3.2.3. Techniques for Reducing Leakage in Value Predictors 49

3.2.4. Experimental Results . 55

3.3. Conclusions . 63

4. Single-Core Power Budget Matching 67

4.1. Introduction . 67

4.2. Power-Saving Microarchitectural Techniques 70

4.2.1. Reactive Techniques . 70

4.2.2. Predictive Techniques . 70

4.3. Experimental Results . 75

4.3.1. Simulation Methodology . 75

4.3.2. A Power Budget of What? (100% Usage 6= 100% Power) 76

4.3.3. Cycles Over PB and Area Distribution 77

4.3.4. E�ciency on Matching a Power Budget 77

4.3.5. Preventive Switch-O� and Predictive Switch-on 80

4.3.6. Sensitivity Study . 81

4.4. Conclusions . 81

5. Multi-Core Power Budget Matching 85

5.1. Introduction . 85

5.2. Background and Related Work . 88

5.2.1. CMP-speci�c Power Control Mechanisms 88

5.3. Enforcing a Power Budget in CMPs . 90

5.3.1. Simulation Environment . 91

5.3.2. Matching a Power Budget in a CMP Running Parallel Workloads . 91

5.3.3. Analysis on the Power Dissipated in Spinning 93

5.3.4. Power Token Balancing (PTB) . 94

5.3.5. Reusing Wasted Power to Reduce Energy: Nitro 97

5.4. Experimental Results . 99

5.4.1. E�ciency of Power Token Balancing (PTB) 99

5.4.2. Dynamic Policy Selector . 102

Índice xix

5.4.3. Relaxing PTB to be More Energy-E�cient 103

5.4.4. The Importance of Accuracy . 104

5.4.5. Temperature Analysis . 105

5.4.6. Nitro Energy and Performance Analysis 107

5.5. Conclusions . 108

6. 3D Die-Stacked Power Budget Matching - Token3D 111

6.1. Introduction . 111

6.2. Background and Related Work . 114

6.2.1. Power and Thermal Control in Microprocessors 114

6.2.2. Towards the Third Dimension . 115

6.3. Thermal Control in 3D Die-Stacked Processors 120

6.3.1. Token3D: Balancing Temperature on 3D Die-Staked Designs 120

6.3.2. Token3D Implementation Details 120

6.4. Experimental Results . 121

6.4.1. Simulation Environment . 121

6.4.2. E�ects of Token3D on Peak Temperature 123

6.4.3. Further Temperature Optimizations 125

6.5. Conclusions . 127

7. Conclusions and Future Ways 129

7.1. Conclusions . 129

7.2. Future Work . 133

Bibliography 135

List of Figures

1. Ejemplo de la métrica AoPB. xxix

2. Disipación de potencia por ciclo para un límite de consumo de 50%. . . . xxxiii

3. AoPB relativa para distintos límites de consumo. xxxiv

4. Energía normalizada. xxxiv

5. Energía Normalizada (arriba) y AoPB (abajo) para un CMP de 16 núcleos

con un límite de consumo de 50%. xxxvi

6. Posibles distribuciones de los núcleos en capas. xxxviii

7. Temperatura pico para PTB, Token3D y caso base para diferentes orga-

nizaciones y con�guraciones de núcleos. xxxix

2.1. Evolution of the thermal design power for AMD microprocessors. 8

2.2. Evolution of the thermal design power for Intel microprocessors. 9

2.3. Example of the Area over Power Budget (AoPB) metric. Shadowed areas

represent the energy consumed over the target power budget. 12

2.4. High-level CMOS Inverter Diagram. 18

2.5. High-k vs regular transistor. 20

2.6. Packing components (left) and 3x3 grid thermal model (right) as described

in HotSpot [88]. 22

2.7. Core Con�guration . 30

2.8. Power breakdown (%) of the simulated core respect to a total dynamic

power of 7.6W . 30

2.9. Thermal pro�les for the SPLASH-2 benchmark suite. 31

2.10. Thermal pro�les for the PARSEC 2.1 benchmark suite. 31

2.11. Thermal pro�les for the SPECINT2000 benchmark suite. 32

2.12. Performance speedup (left) and energy (right) for the studied parallel

benchmarks. 33

2.13. Energy delay product for the studied parallel benchmarks. 34

3.1. Cycles over PB and slowdown for DCR-based throttling (power budget =

50%). 40

3.2. Cycles over PB and slowdown for JRS-based throttling (power budget =

50%). 40

xxi

xxii Índice de figuras

3.3. DVFS and critical path e�ects on power dissipation at a cycle level. 41

3.4. Instruction criticality analysis approach for a power budget of 50%. 42

3.5. Per-cycle power dissipation for a power budget of 50%. 43

3.6. Standard deviation e�ect for one window (500µsecs). 45

3.7. Value Predictor Analysis. 48

3.8. Temporal behavior of a value predictor entry. 49

3.9. Fraction of time VP entries spend in dead state (SpecInt2000). 49

3.10. AVPD mechanism work�ow. 52

3.11. Average speedup for the static decay and drowsy schemes for 10 KB VPs. 56

3.12. STP performance degradation (top) and leakage energy savings (bottom). 57

3.13. FCM performance degradation (top) and leakage energy savings (bottom). 57

3.14. DFCM performance degradation (top) and leakage energy savings (bottom). 59

3.15. Static drowsy scheme for the DFCM (top), STP (middle) and FCM (bot-

tom) value predictors. 60

3.16. Static decay scheme for a 10 KB DFCM value predictor. 62

3.17. STP (top), FCM (middle) and DFCM (bottom) value predictor leakage

energy savings. 63

4.1. Base vs DVFS exploration window power dissipation for the �go� benchmark. 71

4.2. Detailed per-cycle power dissipation for the �go� benchmark. 72

4.3. Overview of the preventive switch-o� and predictive switch-on mechanisms. 75

4.4. Area and Cycles over PB distributions . 77

4.5. Relative cycles over PB for di�erent power budgets. 78

4.6. Relative area over PB for di�erent power budgets. 79

4.7. Normalized energy consumption. 79

4.8. Relative cycles over PB for di�erent power budgets. 80

4.9. Relative area over PB for di�erent power budgets.. 80

4.10. Normalized energy for all the evaluated approaches along with preventive

switch-o� and predictive switch-on. 81

4.11. Sensitivity analysis. 82

5.1. Normalized Energy (top) and AoPB (bottom) for a 16-core CMP with a

power budget of 50%. 92

5.2. Execution time breakdown for a varying number of cores. 94

5.3. Normalized spinlock power for a varying number of cores. 94

5.4. Power Token Balancing motivation (not real numbers). 95

5.5. Per-cycle power behavior of a spinning core. 95

5.6. Power Token Balancing example in the case of a barrier (using the ToAll

policy). 96

5.7. PTB implementation diagram for a 4-core CMP. 98

Índice de figuras xxiii

5.8. Normalized energy (top) and area over the power budget (bottom) for a

varying number of cores and PTB policies. 100

5.9. Detailed energy (top) and AoPB (bottom) for a 16-core CMP with the

ToAll PTB policy. 100

5.10. Detailed energy (top) and AoPB (bottom) for a 16-core CMP with the

ToOne PTB policy. 101

5.11. Detailed energy (top) and AoPB (bottom) for a 16-core CMP using the

dynamic policy selector. 102

5.12. Detailed Performance for a 16-core CMP using the dynamic policy selector.103

5.13. Normalized energy (top) and area over the power budget (bottom) for a

varying number of cores and PTB policies. 104

5.14. Core �oorplan. 106

5.15. Average and peak temp. of a 16-core CMP. 106

5.16. Minimum base vs peak PTB temperature of a 16-core CMP. 106

5.17. Normalized per-structure peak (left) and average (right) temperature anal-

ysis. 107

5.18. Normalized per-benchmark peak (left) and average (right) temperature

analysis. 107

5.19. Performance improvement and energy reduction for a 16-core CMP using

Nitro. 108

6.1. Range of a wire in a single clock cycle (Source: Real World Technologies). 116

6.2. 130nm process generation with 6 layers of copper interconnect (Source:

Intel). 116

6.3. Yield impact of wafer to wafer bonding. 119

6.4. Core distribution along the layers. 120

6.5. Core Con�guration . 122

6.6. Peak temperature for PTB, Token3D and the base case for di�erent �oor-

plans and core con�gurations. 123

6.7. Per structure peak temperature (top) and performance (bottom) of a 4-

layer 16-core CMP using the mirror �oorplan. 125

6.8. Peak temperature of the instruction window (top) and ALUs (bottom) for

a varying number of cores. 126

List of Tables

2.1. Equations for Wattch power models. CdiffCgateCmetal represent di�usion,

transistor gate and metal wire capacitances. 16

2.2. Kdesign parameters for typical circuits. 18

2.3. Leakage power models for di�erent processor structures. 19

2.4. Normalized power distribution for SPLASH-2 32

2.5. Normalized power distribution for PARSEC 33

2.6. Normalized power distribution for SPECINT2000 33

3.1. Core con�guration. 36

4.1. Core con�guration. 76

5.1. Core con�guration. 90

5.2. Evaluated benchmarks and input working sets. 90

6.1. Evaluated benchmarks and input working sets. 121

xxv

Resumen

0.1. Introducción

En la última década los ingenieros informáticos se han enfrentado a profundos cambios

en el modo en que se diseñan y fabrican los microprocesadores. Los nuevos procesadores

no solo deben ser más rápidos que los anteriores, también deben ser factibles en términos

de energía y disipación térmica, sobre todo en dispositivos que trabajan con baterías.

Los problemas relacionados con consumo y temperatura son muy comunes en estos pro-

cesadores. No solo estamos hablando de servidores, sino también de dispositivos móviles,

ordenadores de sobremesa, portátiles, tarjetas grá�cas, etc. Durante años el diseño de

microprocesadores ha estado (y está) limitado por la disipación de potencia y la tem-

peratura. Muchos de los trabajos relacionados se re�eren a estos factores clave con el

término de �Power Wall�. También cabe destacar que después de diez años en los que

el diseño de procesadores se centraba en aumentar la frecuencia de funcionamiento de

los transistores, los ingenieros han decidido cambiar de estrategia y pasar a aumentar

el número de núcleos dentro del mismo procesador, favoreciendo la productividad total

del procesador sobre el aumento de rendimiento local de cada núcleo. A pesar de esto,

el denominado �power wall� sigue presente, limitando el número máximo de núcleos que

podemos colocar dentro del procesador.

Como cualquier otro dispositivo electrónico, los procesadores tienen dos componentes

principales de disipación de potencia, la disipación de potencia dinámica, que es di-

rectamente proporcional al uso (cada vez que accedemos a una estructura dentro del

procesador) y la potencia estática (o potencia de fuga), que proviene de las corrientes

de fuga que �uyen por el circuito incluso cuando los transistores no están siendo utiliza-

dos. �Dynamic Voltage and Frequency Scaling� (DVFS), �Dynamic Frequency Scaling�

(DFS) y �Clock Gating� son tres de los mecanismos más comunes para controlar el con-

sumo energético. Desafortunadamente, DVFS se hace cada vez menos efectivo con cada

nueva escala de integración de transistores. DVFS depende de la reducción del voltaje

que alimenta al circuito para reducir el consumo Pd ≈ V 2
DD · f , pero, para mantener

la velocidad de transición entre estados de un transistor debemos modi�car el voltaje

umbral de igual forma. La pega es que esta reducción del voltaje umbral produce un

incremento exponencial del consumo estático, el cual supone una importante porción del

consumo total para tecnologías por debajo de los 65nm, incluso con la introducción de

xxvii

xxviii Abstract

los transistores tipo high-k [47]. DFS es similar a DVFS, pero solo escala la frecuencia del

transistor. Finalmente, �Clock Gating� bloquea la señal de reloj que alimenta el circuito

para prevenir que este se active y disipe potencia.

Los problemas de temperatura y consumo mencionados anteriormente son habitualmente

detectados y tratados por un mecanismo de gestión dinámica de temperatura o �Dynamic

Thermal Management� (DTM). La política más común suele ser limitar la cantidad de

energía que el procesador o núcleos del procesador pueden consumir (estableciendo un

límite de consumo). En cualquier caso, la mayoría de los procesadores actuales no dispo-

nen de los medios para medir el consumo actual en tiempo real. En realidad el consumo

se estima basándose en información proporcionada por los contadores de rendimiento a

lo largo de miles de ciclos. En esta Tesis presentamos los denominados �Power Tokens�.

Utilizando los �Power Tokens� podemos estimar la energía con mayor precisión, sumando

al consumo base de cada instrucción (que depende de las estructuras del procesador a

las que accede) una componente dinámica que depende del tiempo que dicha instrucción

permanece en el �pipeline�. El consumo total del procesador se puede estimar suman-

do los consumos individuales de cada una de las instrucciones que son ejecutadas en el

procesador.

Además, hay ocasiones en las que los requisitos de consumo del procesador exceden las

características del dispositivo donde se quiere utilizar. En la mayoría de los casos no nos

podemos permitir diseñar un nuevo procesador para adaptarse a dichas características

ya que resulta muy caro. El problema es aún peor si las restricciones de consumo son

temporales, y tras un periodo de bajo consumo queremos restablecer el comportamiento

original del procesador (p. ej. sobrecalentamiento). Imaginemos, por ejemplo, un �cluster�

de computación conectado a uno o más dispositivos de alimentación auxiliares. Si se

produce un corte en el suministro eléctrico, los procesadores continuarán trabajando a

máxima potencia consumiendo rápidamente la batería de los dispositivos de alimentación

auxiliares, apagando los ordenadores cuando esté apunto de acabarse para mantener la

consistencia del sistema, perdiendo todo el trabajo realizado. Si los procesadores no están

realizando un trabajo crítico podríamos limitar el consumo de los mismos, aumentando

así la autonomía de los dispositivos aguantando, con suerte, hasta que se restablezca

el suministro eléctrico. Otra situación en la que la capacidad de limitar el consumo de

los procesadores podría resultar útil sería un centro de computación que comparte el

suministro eléctrico entre nodos de computación y sistema de refrigeración. En el peor

de los casos (verano a medio día) se podría limitar el consumo de los procesadores

para enfriar la sala, disponiendo a su vez los dispositivos de refrigeración de una mayor

porción de energía para realizar su trabajo. Surge por lo tanto una nueva necesidad, la de

ser capaces de adaptar el consumo de un microprocesador ante una limitación externa,

aunque ello conlleve una degradación del rendimiento.

Es importante destacar la importancia de la precisión a la hora de adaptarse a un límite

de consumo impuesto. Para garantizar una desviación mínima del límite de consumo

preestablecido introduciremos una nueva métrica, el área sobre el límite de consumo

Abstract xxix

Límite Consumo

tiempo

Po
te

nc
ia

 (V
at

io
s)

tiempo

Po
te

nc
ia

 (V
at

io
s)

 después

T1 T2

antes

T1 T2+retraso

Límite Consumo

Figura 1: Ejemplo de la métrica AoPB.

o �Area over Power Budget� (AoPB), que corresponde al consumo (en julios) entre el

límite de consumo preestablecido y la curva de consumo dinámica de cada núcleo (zona

sombreada en la Figura 1). Cuanto menor sea esta área, mayor será la precisión del

mecanismo.

En esta Tesis analizamos el rendimiento, disipación de potencia, consumo energético y

precisión de diferentes mecanismos de reducción de consumo extraídos de la literatura.

Tras este análisis descubrimos que dichos mecanismos no son su�cientemente buenos pa-

ra adaptarse a un límite de consumo preestablecido con una penalización de rendimiento

razonable. Para solucionar este problema proponemos diversas técnicas a nivel de mi-

croarquitectura que combinan de manera dinámica varios mecanismos de reducción de

consumo para obtener una aproximación al límite de consumo mucho más precisa con

una penalización de rendimiento mínima. Nuestros mecanismos para procesadores mo-

nonúcleo son los siguientes: �Power Token Throttling� (PTT), un mecanismo basado en

�tokens� que monitoriza el consumo en tiempo real del procesador y deja de introducir

instrucciones en el �pipeline� si la siguiente instrucción a ser ejecutada hace que el pro-

cesador exceda el límite de consumo; �Basic Block Level Mechanism� (BBLM), el cual

monitoriza el consumo del procesador a nivel de bloque básico y selecciona de manera

predictiva el mecanismo de reducción de consumo que mejor se adapte al consumo medio

durante la ejecución de dicho bloque básico; y, �nalmente, un mecanismo de dos niveles

que utiliza DVFS como un mecanismo de grano grueso para reducir el consumo medio

del procesador y dejarlo lo más próximo al límite de consumo para a continuación utilizar

mecanismos de microarquitectura con el �n de eliminar los numerosos picos de consumo

del procesador.

Cuando evaluamos los mecanismos mencionados en el párrafo anterior en un entorno

multinúcleo o �Chip Multiprocessor� (CMP) descubrimos que dichos mecanismos solo

funcionan correctamente para aplicaciones con hilos independientes o cargas multipro-

gramadas, pero no para cargas paralelas. Los puntos de sincronización característicos de

xxx Abstract

dichas cargas alteran la ejecución óptima del código, de tal forma que el tiempo de eje-

cución de una aplicación no viene dictado por el rendimiento individual de cada núcleo,

sino de la combinación de los distintos núcleos del procesador. Sacri�car rendimiento pa-

ra reducir el consumo de un núcleo (hilo) de manera individual puede suponer un retraso

en todos los núcleos (hilos) del procesador debido a un futuro punto de sincronización

(cerrojo/barrera), degradando el rendimiento global de la aplicación. Para mejorar los

mecanismos de control de consumo en el área de los procesadores multinúcleo presenta-

mos �Power Token Balancing� (PTB). Este mecanismo balancea de manera e�ciente la

potencia disipada entre los distintos núcleos utilizando un sistema basado en �tokens�.

Podemos utilizar la potencia sobrante (vista como �tokens�) de los hilos no críticos para

bene�ciar a los hilos críticos.

El uso de los procesadores multinúcleo permite un incremento del rendimiento de la apli-

cación explotando el paralelismo de la misma, pero tiene dos importantes limitaciones:

el ancho de banda de las comunicaciones externas al procesador y la latencia de co-

municación entre los núcleos. Los procesadores multinúcleo 3D suponen un gran avance

para solventar estas limitaciones apilando varias capas de procesadores unas sobre otras.

El principal problema de este diseño es que al aumentar la densidad del empaquetado

también se aumenta la densidad de potencia, lo que se traduce en mayores problemas

térmicos. Para �nalizar, y también en el área de los procesadores multinúcleo, hemos

analizado cómo los mecanismos de control de consumo afectan a la temperatura de los

nuevos procesadores multinúcleo 3D. En concreto presentamos Token3D, un mecanismo

de balanceo de consumo que tiene en cuenta información acerca de la temperatura de

las distintas estructuras del procesador así como de su organización dentro del circuito

electrónico para balancear la potencia disponible entre los distintos núcleos del proce-

sador. También se realiza un amplio análisis de distintas organizaciones de estructuras

con el �n de optimizar la temperatura total del procesador, a la vez que se presenta

una organización de estructuras personalizada que optimiza la temperatura del núcleo

situando estructuras calientes en capas externas de la pila 3D y estructuras frías en las

capas más internas del procesador 3D.

0.2. Contribuciones

Las principales contribuciones de esta Tesis han sido publicadas en [23, 24, 25, 26, 27] y

se resumen a continuación:

Introducimos el concepto de �Power Tokens�. En la mayoría de los microprocesa-

dores modernos no existe ninguna forma de medir el consumo en tiempo real. Las

mediciones de consumo no son más que meras aproximaciones basadas en los con-

tadores de rendimiento internos del procesador que se realizan cada miles de ciclos.

Cuando nos disponemos a utilizar una técnica de microarquitectura que trabaja a

nivel de ciclo surge la necesidad de disponer de un sistema de medición que trabaje

a dicho nivel, por eso proponemos los �Power Tokens�. Su funcionamiento se basa

Abstract xxxi

en aproximar el consumo de una instrucción como la suma de su consumo base

(debido a los accesos a las distintas estructuras usadas por la instrucción) más

una componente variable que depende del tiempo que la instrucción permanezca

en el �pipeline� del procesador. La línea de procesadores Sandy Bridge de Intel

incluye una serie de registros internos donde se almacena información acerca del

consumo de diversas estructuras del procesador, lo que en cierta forma consolida

las decisiones que tomamos hace tres años a la hora de diseñar los �Power Tokens�.

Realizamos un análisis en términos de rendimiento, disipación de potencia y consu-

mo energético de diferentes mecanismos de reducción de consumo en procesadores

mononúcleo. Con el �n de gestionar la disipación de potencia dinámica analizamos:

DVFS, que modi�ca tanto el voltaje como la frecuencia de funcionamiento del pro-

cesador para reducir el consumo; �Pipeline Throttling�, que reduce la cantidad

de instrucciones emitidas por el procesador para reducir el consumo; �Instruction

Criticality�, que retrasa la ejecución de instrucciones de ciclos sobre el límite de

consumo a ciclos por debajo del límite de consumo; y �Con�dence Estimation�, que

permite reducir el nivel de especulación del procesador en los caminos de ejecución

de baja con�anza (aquellos que corresponden a saltos que no pueden ser predichos

de manera precisa). Para gestionar la disipación de potencia estática (�leakage�)

analizaremos dos tipos de técnicas: técnicas basadas en �decay�, que desconectan

entradas de las estructuras tipo �array� del procesador reduciendo su consumo es-

tático a cero pero perdiendo su contenido (técnicas sin conservación del estado);

y técnicas basadas en �drowsy�, que reducen el voltaje de determinadas entradas

de una estructura, y, aunque no reducen tanto el consumo como las técnicas de

�decay�, son capaces de recuperar el estado de las entradas de la estructura (técni-

cas con conservación del estado). Ambos tipos de técnicas son evaluadas utilizando

predictores de valor como un ejemplo típico de estructura regular.

También en el ámbito de los procesadores mononúcleo analizamos los efectos de

distintas técnicas de reducción de consumo publicadas en la literatura intentando

adaptar el consumo del procesador a un límite externo. Tras este análisis descu-

brimos que estos mecanismos no son su�cientemente buenos para adaptarse a un

límite de consumo preestablecido con una penalización de rendimiento razonable.

Para solucionar este problema proponemos diversas técnicas híbridas a nivel de

microarquitectura que combinan de manera dinámica varios mecanismos de reduc-

ción de consumo para obtener una aproximación al límite de consumo mucho más

precisa con una penalización de rendimiento mínima. Nuestros mecanismos para

procesadores mononúcleo son los siguientes: �Power Token Throttling� (PTT), un

mecanismo basado en �tokens� que monitoriza el consumo en tiempo real del pro-

cesador y deja de introducir instrucciones en el �pipeline� si la siguiente instrucción

a ser ejecutada hace que el procesador exceda el límite de consumo; �Basic Block

Level Mechanism� (BBLM), el cual monitoriza el consumo del procesador a nivel

de bloque básico y selecciona de manera predictiva el mecanismo de reducción de

xxxii Abstract

consumo que mejor se adapte al consumo medio durante la ejecución de dicho blo-

que básico; y �nalmente un mecanismo de dos niveles que utiliza DVFS como un

mecanismo de grano grueso para reducir el consumo medio del procesador lo más

próximo al límite de consumo para a continuación utilizar mecanismos de microar-

quitectura con el �n de eliminar los numerosos picos de consumo del procesador.

En el ámbito de los microprocesadores multinúcleo presentamos �Power Token Ba-

lancing� (PTB), un mecanismo que tiene como objetivo el adaptarse a un límite de

consumo de manera e�ciente, balanceando la potencia disipada entre los distintos

núcleos utilizando un sistema basado en �tokens�. Podemos utilizar la potencia so-

brante (vista como �tokens�) de los hilos no críticos de ejecución para bene�ciar a

los hilos críticos. PTB no afecta al rendimiento ni al consumo de las cargas multi-

programadas ni de las aplicaciones secuenciales y puede ser utilizado además como

un mecanismo de detección de esperas activas.

También en el ámbito de los procesadores multinúcleo analizamos cómo los meca-

nismos de control de consumo afectan a la temperatura de los nuevos procesadores

multinúcleo 3D. En concreto presentamos Token3D, un mecanismo de balanceo de

consumo que tiene en cuenta información acerca de la temperatura de las distintas

estructuras del procesador así como de su organización dentro del circuito electróni-

co para balancear la potencia disponible entre los distintos núcleos del procesador.

También se realiza un amplio análisis de distintas organizaciones de estructuras con

el �n de optimizar la temperatura total del procesador, a la vez que se presenta una

organización de estructuras personalizada que optimiza la temperatura del núcleo,

situando estructuras calientes en capas externas de la pila 3D y estructuras frías

en las capas más internas del procesador 3D.

0.3. Control de Consumo en Procesadores Mononúcleo

Los procesadores actuales se enfrentan constantemente a problemas relacionados con

consumo y temperatura, los cuales suelen solventarse aplicando un límite de consumo

al procesador. El escalado dinámico de voltaje y frecuencia o �Dynamic Voltage and

Frequency Scaling� (DVFS) ha supuesto un gran avance que permite a los procesadores

adaptarse a un límite de consumo impuesto. A pesar de esto, DVFS está empezado a

resultar cada día menos efectivo, debido a la creciente importancia del consumo estático

sobre el dinámico.

En esta sección proponemos el uso de técnicas de microarquitectura para adaptar de

manera precisa el consumo del procesador ante un límite externo de manera e�ciente.

Tras un análisis individual de las técnicas más comúnmente utilizadas en la literatura

para controlar el consumo en microprocesadores (Figura 2) concluimos que ninguna de

ellas es capaz de adaptarse al límite de consumo impuesto con una precisión y degradación

de rendimiento razonables.

Abstract xxxiii

30

35

40

45

50

55

60

1 10 19 28 37 46 55 64 73 82 91 100

Tiempo (x500 us)

Po
te

nc
ia

 N
or

m
al

iz
ad

a
(%

)

 .

BZIP CRAFTY VORTEX

Caso Base

30

35

40

45

50

55

60

1 10 19 28 37 46 55 64 73 82 91 100

Tiempo (x500 us)

Po
te

nc
ia

 N
or

m
al

iz
ad

a
(%

)

 .

BZIP CRAFTY VORTEX

Decode Throttling

30

35

40

45

50

55

60

1 10 19 28 37 46 55 64 73 82 91 100

Tiempo (x500 us)

Po
te

nc
ia

 N
or

m
al

iz
ad

a
(%

)

 .

BZIP CRAFTY VORTEX

Fetch Throttling

30

35

40

45

50

55

60

1 10 19 28 37 46 55 64 73 82 91 100

Tiempo (x500 us)

Po
te

nc
ia

 N
or

m
al

iz
ad

a
(%

)
 .

BZIP CRAFTY VORTEX

Critpath

30

35

40

45

50

55

60

1 10 19 28 37 46 55 64 73 82 91 100

Tiempo (x500 us)

Po
te

nc
ia

 N
or

m
al

iz
ad

a
(%

)

.

BZIP CRAFTY VORTEX

DVFS

30

35

40

45

50

55

60

1 10 19 28 37 46 55 64 73 82 91 100

Tiempo (x500 us)

Po
te

nc
ia

 N
or

m
al

iz
ad

a
(%

)

 .

BZIP CRAFTY VORTEX

Decode Throttling

30

35

40

45

50

55

60

1 10 19 28 37 46 55 64 73 82 91 100

Tiempo (x500 us)

Po
te

nc
ia

 N
or

m
al

iz
ad

a
(%

)

 .

BZIP CRAFTY VORTEX

Fetch Throttling

30

35

40

45

50

55

60

1 10 19 28 37 46 55 64 73 82 91 100

Tiempo (x500 us)
Po

te
nc

ia
 N

or
m

al
iz

ad
a

(%
)

 .

BZIP CRAFTY VORTEX

Decode Throttling

30

35

40

45

50

55

60

1 10 19 28 37 46 55 64 73 82 91 100

Tiempo (x500 us)

Po
te

nc
ia

 N
or

m
al

iz
ad

a
(%

)

 .

BZIP CRAFTY VORTEX

JRS

30

35

40

45

50

55

60

1 10 19 28 37 46 55 64 73 82 91 100

Tiempo (x500 us)

Po
te

nc
ia

 N
or

m
al

iz
ad

a
(%

)

 .

BZIP CRAFTY VORTEX

Decode Throttling

30

35

40

45

50

55

60

1 10 19 28 37 46 55 64 73 82 91 100

Tiempo (x500 us)

Po
te

nc
ia

 N
or

m
al

iz
ad

a
(%

)

 .

BZIP CRAFTY VORTEX

Fetch Throttling

30

35

40

45

50

55

60

1 10 19 28 37 46 55 64 73 82 91 100

Tiempo (x500 us)

Po
te

nc
ia

 N
or

m
al

iz
ad

a
(%

)
 .

BZIP CRAFTY VORTEX

Critpath

Figura 2: Disipación de potencia por ciclo para un límite de consumo de 50%.

Para mejorar estas características proponemos tres mecanismos: �Power Token Throttling�

(PTT), �Basic Block Level Manager� (BBLM) y un mecanismo adaptativo de dos niveles

(DVFS+BBLM). PTT es un mecanismo basado en información de consumo en forma

de �Power Tokens� que monitoriza constantemente el consumo actual del procesador y

previene la inserción de nuevas instrucciones en el procesador si la siguiente instrucción a

ejecutarse hace que el procesador supere su límite de consumo. BBLM es un mecanismo

predictivo de control de consumo que almacena información acerca de la energía consu-

mida por un determinado bloque básico (o cadena de bloques básicos). BBLM selecciona,

entre diferentes mecanismos de control de consumo, el más apropiado para adaptarse al

límite de consumo basándose en un histórico de consumo del bloque básico a ejecutar por

el procesador. Para �nalizar proponemos un mecanismo de dos niveles que utiliza DVFS

como un mecanismo de grano grueso para aproximar el consumo medio del procesador

al límite de consumo para a continuación utilizar técnicas de microarquitectura con el

�n de eliminar los numerosos picos de consumo restantes.

xxxiv Abstract

-20

-10

0

10

20

30

90 80 70 60 50 40

Límite de Consumo (%)

E
ne

rg
ía

 (%
)

BBLM
BBLM+PTT (CP)
PTT
PTT (CP)
DVFS
DFS
DVFS+BBLM

0

20

40

60

80

100

90 80 70 60 50 40

Límite de Consumo (%)

A
oP

B
 (%

)

Figura 3: AoPB relativa para distintos límites de consumo.

-20

-10

0

10

20

30

90 80 70 60 50 40

Límite de Consumo (%)

E
ne

rg
ía

 (%
)

BBLM
BBLM+PTT (CP)
PTT
PTT (CP)
DVFS
DFS
DVFS+BBLM

Figura 4: Energía normalizada.

Las técnicas utilizadas por BBLM intentarán:

1. Localizar instrucciones que no sean críticas en ciclos en los que el procesador está

sobre el límite de consumo y retrasarlas a ciclos en los que el procesador esté

bajo el límite de consumo. Hay que tener en cuenta que instrucciones no críticas

inicialmente pueden volverse críticas si se retrasan demasiado.

2. Se ha demostrado que aproximadamente el 30% del consumo de un procesador

viene dado por la ejecución de instrucciones que pertenecen a caminos incorrectos

[4, 66]. Por lo tanto, podemos reducir el número de instrucciones ejecutadas especu-

lativamente por el procesador cuando nos encontramos sobre el límite de consumo

basándonos en información acerca de la con�anza que tiene un estimador sobre el

resultado de la predicción del salto.

3. Por último, cuando las dos políticas anteriores no son capaces de reducir el consumo

por debajo del límite impuesto, podemos reducir el número de instrucciones que

ejecuta el procesador cada ciclo.

La Figura 4 muestra la energía normalizada para los distintos mecanismos propuestos

(y diversas combinaciones de los mismos) y varios límites de consumo. Los límites de

consumo están expresados como un porcentaje referente al consumo pico del procesador

medido en tiempo de ejecución. Podemos observar que el mecanismo de dos niveles

Abstract xxxv

(DVFS+BBLM) es el más e�ciente en términos de energía para todos los límites de

consumo estudiados, y especialmente para los límites más restrictivos. El resto de técnicas

microarquitecturales (salvo PTT) muestran un aumento de la energía total consumida

entre un 4% y un 10%. BBLM muestra unos números de energía similares a DFS hasta

un límite de consumo del 50% siendo cuatro veces más preciso (reduce cuatro veces más

el AoPB). Además, dado que estamos trabajando bajo un límite de consumo, la Figura

3 muestra cómo de precisos son los distintos mecanismos estudiados, ya que muestra

el AoPB de los mismos cuando intentan adaptarse a un límite de consumo. Se puede

observar que todas las técnicas de microarquitectura son mucho más precisas que DVFS

y DFS cuando intentan adaptarse al límite de consumo. PTT sufre un aumento de la

energía total consumida ya que enlentece tanto el procesador que provoca que la energía

adicional consumida por mantener el procesador activo supere los ahorros obtenidos por

los mecanismos de reducción de consumo.

Cuando trabajamos con límites de consumo restrictivos (<60%), nuestro mecanismo de

dos niveles (DVFS+BBLM) es un 4% más e�ciente en términos de energía que DVFS y

también tres veces más preciso. Para un límite de consumo extremo de 40% del consumo

pico original del procesador, nuestro mecanismo de dos niveles mejora tanto en términos

de área (solo un 10% del área permanece sobre el límite de consumo) como en energía,

siendo un 11% más e�ciente energéticamente que DVFS. En términos generales DVFS

y DFS son mecanismos de grano grueso incapaces de eliminar los numerosos picos de

consumo, lo que reduce considerablemente su precisión.

0.4. Control de Consumo en Procesadores Multinúcleo

El mercado actual está dominado por procesadores que emplean arquitecturas multi-

núcleo (CMPs), las cuales muestran un comportamiento diferente dependiendo de la

aplicación que se ejecuta sobre ellas (paralela, multiprogramada, secuencial). Es posible

utilizar mecanismos de control de consumo heredados de procesadores mononúcleo en

CMPs que ejecutan o bien aplicaciones secuenciales o bien cargas con hilos de ejecución

independientes. El problema aparece cuando intentamos ejecutar aplicaciones paralelas

de memoria compartida, donde al penalizar el rendimiento de un único núcleo (hilo) para

ahorrar energía podemos penalizar de manera inintencionada el rendimiento del resto de

núcleos, debido a puntos de sincronización (cerrojos/barreras), ralentizando la ejecución

global del programa.

El aumento signi�cativo del número de núcleos de los CMPs está causando graves proble-

mas de temperatura y consumo, los cuales suelen controlarse mediante el uso de límites

de consumo sobre el procesador o sobre un subconjunto de núcleos del mismo. En es-

ta Tesis realizamos un análisis de cómo se comportan diferentes técnicas propuestas en

la literatura a la hora de adaptarse a un límite de consumo en un CMP. La Figura 5

nos muestra cómo las técnicas heredadas de procesadores mononúcleo no son capaces de

adaptarse correctamente al límite de consumo cuando ejecutan cargas paralelas (>45%

xxxvi Abstract

barnes
cholesky

fft
ocean

radix
raytrace

tomcatv
unstruct.

waternsq
watersp

blacksc.
fluidani.

swaptions
x264

Avg.

0

10

20

30

40

50

60

70

80

90

100

A
o

P
B

 N
o

rm
a

li z
a

d
a

 (
%

)

barnes
cholesky

fft
ocean

radix
raytrace

tomcatv
unstruct.

waternsq
watersp

blacksc.
fluidani.

swaptions
x264

Avg.

-20

-10

0

10

20

30

40
DVFS
DFS
2Level
PTB+2Level

E
n

e
rg

ía
 N

o
rm

a
liz

a
d

a
 (

%
)

Figura 5: Energía Normalizada (arriba) y AoPB (abajo) para un CMP de 16 núcleos con un límite de
consumo de 50%.

AoPB cuando debería estar por debajo del 10), pero sí para cargas multiprogramadas

o con hilos de ejecución independientes. Esto se debe a que los mecanismos tratan de

adaptar el consumo individual de cada núcleo de manera independiente en un entorno

donde existen dependencias entre los hilos de ejecución. Para solucionar este proble-

ma proponemos �Power Token Balancing� (PTB), que tiene como objetivo adaptar el

consumo de un CMP a un límite impuesto de manera e�ciente balanceando la energía

consumida por los distintos núcleos del procesador mediante una serie de políticas basa-

das en �Power Tokens�. PTB utiliza el consumo de los núcleos por debajo del límite de

consumo (visto como �tokens� o cupones) para gestionar la energía de los núcleos sobre

el límite de consumo. PTB se ejecuta de manera transparente para las aplicaciones de

hilos independientes y cargas multiprogramadas. Los resultados experimentales (Figura

5) muestran cómo PTB se adapta de manera mucho más precisa al límite de consumo

(la energía total consumida sobre el límite de consumo, AoPB, se reduce a un 8% para

un procesador de 16 núcleos) que DVFS con un incremento del consumo energético de

un 3% para un límite de consumo de un 50% del consumo pico dinámico del procesador.

Además, si relajamos las condiciones de precisión de PTB, podemos conseguir reduccio-

nes en la energía total consumida similares a las obtenidas por DVFS con una precisión

tres veces superior (<20% AoPB).

Decidimos analizar también los efectos en la temperatura del procesador usando números

realistas de consumo y con�guraciones de disipador/ventilador. Los resultados obtenidos

Abstract xxxvii

muestran cómo PTB no solo balancea la temperatura entre los distintos núcleos, sino

que también permite reducir la temperatura media del procesador entre un 28 y un 30%.

Finalmente comentar que en este área hemos diseñado un mecanismo denominado �Ni-

tro�, inspirado en la idea del KERS de la Fórmula Uno, con el �n de recuperar energía

cuando estás malgastándola y reutilizarla para acelerar en otro lugar. �Nitro� aumenta

de manera dinámica la frecuencia de funcionamiento del núcleo que accede a una sección

crítica (delimitada por cerrojos) para liberar dichos cerrojos lo más rápidamente posible,

con el �n de permitir a otro núcleo (hilo) acceder a dicha sección crítica. El mecanismo

asegura que este aumento de la frecuencia se puede realizar de manera segura ya que solo

se aplica mientras exista energía disponible (no utilizada) por núcleos ociosos (�idle�) o en

estado de espera activa (�spinning�). �Nitro� es capaz de reducir el tiempo de ejecución

de las aplicaciones con gran contención de cerrojos en más de un 5% aumentando la

frecuencia en menos de un 1% del tiempo de ejecución.

0.5. Control de Consumo en Procesadores Multinúcleo 3D

El uso de los procesadores multinúcleo supone un incremento del rendimiento de una

aplicación explotando el paralelismo de la misma, pero tiene dos importantes limitacio-

nes: el ancho de banda de las comunicaciones externas al procesador y la latencia de

comunicación entre los núcleos. Las arquitecturas 3D, presentadas por Souri en [89], api-

lan varias capas circuitos (p. ej., núcleos, memoria) estableciendo conexiones verticales

entre ellas. Una consecuencia directa de este diseño es que se reduce la latencia y los

costes energéticos de comunicación entre núcleos, a la vez que se aumenta la densidad

del empaquetamiento del procesador en función del número de capas disponibles. A pe-

sar de las numerosas ventajas de los diseños tridimensionales, también existen diversos

retos que los diseñadores deben superar. Para empezar, el aumento de la densidad del

empaquetamiento lleva asociado un aumento de la densidad de disipación de potencia del

procesador, lo que se transforma en problemas de temperatura. También debemos tener

en cuenta que el número de posibles diseños del circuito aumenta conforme aumenta el

número de capas, a la vez que el coste de analizar las distintas posibilidades para opti-

mizar los diseños tridimensionales. Finalmente debemos tener en cuenta que los costes

y la complejidad de veri�cación de los procesadores también aumenta con el número de

capas.

Así pues, y con el �n de controlar la temperatura del procesador, lo cual resulta de especial

interés en los procesadores tridimensionales ya que este tipo de tecnologías ponen al límite

las posibilidades térmicas de los materiales, necesitamos mecanismos mucho más precisos

a la hora de controlar la disipación de potencia y la energía consumida por los distintos

núcleos.

En este área realizamos tres contribuciones importantes. Primero, analizamos los efectos

de los distintos mecanismos de control de consumo comentados en secciones previas

para controlar la temperatura del procesador 3D. Basándonos en este análisis diseñamos

xxxviii Abstract

	

L2
C1

C2

C1

C2
L2

C 1

C2

C3

C 4

C1
C2

C3
C4

C5
C6

C7
C8

L2
L2

L2

L2
 L2

L2

L2

L2

 a) Direct packing b) Mirror packing c) L2 packing d) Vertical packing

Figura 6: Posibles distribuciones de los núcleos en capas.

�Token3D�, un mecanismo de balanceo de consumo basado en PTB que tiene en cuenta

información de organización de estructuras y temperatura para balancear la potencia

disponible entre los distintos núcleos y capas.

Segundo, realizamos un análisis de un amplio rango de organizaciones de los elementos

de procesamiento y cachés de segundo nivel intentando optimizar nuestro diseño para

una temperatura mínima teniendo en cuenta tanto el consumo estático como el dinámico.

Existen numerosas formas de organizar los núcleos dentro de las capas del procesador

3D, las más importantes se muestran en la Figura 6. Se pueden identi�car dos tendencias

bien de�nidas; construir los núcleos de manera horizontal o de manera vertical. Los

diseños horizontales (a-c) son los más comunes en la literatura, ya que son los más

fáciles de implementar y validar. �Direct packing� es el diseño más sencillo, ya que capas

con distribuciones de núcleos idénticas se apilan unas encima de otras para formar el

procesador 3D. �Mirror packing� es una modi�cación muy simple de �direct packing� en

el cual la mitad de las capas giradas 180 grados. Esta modi�cación supone una reducción

considerable de la temperatura del procesador ya que las cachés de segundo nivel de

las capas pares hacen de disipador de las impares y viceversa. Finalmente, �L2 packing�

intercala capas que contienen núcleos con capas que solo contienen memoria (cachés

de segundo o tercer nivel), lo cual reduce aún más la temperatura pero aumenta la

complejidad de producción y de testeo. Por otro lado, los diseños verticales (Figura 6-d),

presentados por Puttaswamy et al. en [79], ofrecen una reducción considerable de latencia

y consumo sobre los diseños horizontales al proporcionar acceso paralelo a una misma

estructura.

Y tercero, hemos desarrollado diversos mecanismos especí�cos de control de consumo

para diseños de núcleos 3D así como organizaciones híbridas que mezclan diseños hori-

zontales y verticales.

La Figura 7 muestra la temperatura pico de las diferentes con�guraciones de procesado-

res 3D variando el número de núcleos (de 4 a 16). La temperatura �idle� corresponde a la

temperatura media de los núcleos procesador en estado �idle�1. La barra correspondiente

a �Token3D� muestra el aumento de temperatura desde la temperatura �idle� hasta la

temperatura alcanzada por el procesador mientras se ejecutaban distintas aplicaciones

1Cuando el procesador está ocioso (solo está ejecutando el sistema operativo).

Abstract xxxix

60

70

80

90

100

110

120

130

H
or

iz
.

M
irr

or L2
Ve

rti
ca

l

C
us

to
m

H
or

iz
.

M
irr

or L2

Ve
rti

ca
l

C
us

to
m

H
or

iz
.

M
irr

or L2

Ve
rti

ca
l

C
us

to
m

H
or

iz
.

M
irr

or L2
Ve

rti
ca

l
C

us
to

m

H
or

iz
.

M
irr

or L2
Ve

rti
ca

l

C
us

to
m

H
or

iz
.

M
irr

or L2
Ve

rti
ca

l

C
us

to
m

2 Layer 4 Core 2 Layer 8 Core 2 Layer 16 Core 4 Layer 4 Core 4 Layer 8 Core 4 Layer 16 Core

Pe
ak

 T
em

pe
ra

tu
re

 (º
C

)

 . Idle Token3D PTB Base

Figura 7: Temperatura pico para PTB, Token3D y caso base para diferentes organizaciones y con�gu-
raciones de núcleos.

(ver Sección 2.7) con �Token3D� activo. La barra �PTB� es similar a �Token3D� pero

utilizando el mecanismo original de �Power Token Balancing� presentado en la sección

anterior. Las organizaciones de núcleos estudiadas son: �Horizontal� (Figura 6.a), �Mi-

rror� (Figura 6.b), �L2� (Figura 6.c), �Vertical� (Figura 6.d) y �Custom�. Esta última se

corresponde a una nueva con�guración híbrida que hemos diseñado la cual sitúa las es-

tructuras más calientes en capas externas del procesador 3D, facilitando su enfriamiento,

y las estructuras más frías en las capas más internas. La Figura 7 muestra claramente

que las con�guraciones �L2� y �Custom� son las más apropiadas para reducir la tem-

peratura del procesador. Esto se debe a que ambos diseños sitúan la caché de segundo

nivel en las capas más internas, y dicha estructura es una de las más frías del procesa-

dor, incluso teniendo en cuenta el consumo estático de la misma. Esta organización deja

a las estructuras más calientes en capas cercanas al disipador y pueden enfriarse más

fácilmente.

En términos generales, tanto �PTB� como �Token3D� son capaces de reducir la tempe-

ratura del procesador entre 2oC y 26oC dependiendo de la organización de estructuras

que estemos utilizando. �Token3D� es siempre entre 1 y 3 grados mejor que �PTB�. Hay

que tener siempre en cuenta que cuanto más nos aproximamos a la temperatura �idle�,

más difícil resulta reducir la temperatura del procesador sin penalizar el rendimiento.

0.6. Conclusiones

La disipación de potencia, la energía y la temperatura han sido, durante los últimos años,

los factores determinantes del diseño de microprocesadores. Con la brusca parada en el

aumento de la frecuencia de funcionamiento de los procesadores, los ingenieros se han

centrado en aumentar el número de núcleos dentro del procesador, en vez de aumentar

el rendimiento individual de cada uno de ellos. Hoy en día, los procesadores multinú-

cleo (CMPs) son el diseño más elegido en un amplio rango de dispositivos: dispositivos

móviles, ordenadores de sobremesa, portátiles, servidores, tarjetas grá�cas, etc.

Podemos identi�car dos componentes principales en la disipación de potencia, la dinámi-

ca y la estática. La disipación de potencia dinámica de una estructura es directamente

xl Abstract

proporcional al uso que se hace de la misma (debido a la carga y descarga de los transis-

tores). Por otro lado, la disipación de potencia estática viene dada por las corrientes de

fuga que �uyen por el transistor aunque éste no esté siendo utilizado. La disipación de

potencia estática aumenta con cada nueva escala de transistores, siendo especialmente

grande en estructuras de tipo matricial de gran tamaño (cachés o tablas de predicción).

Para tecnologías actuales (32nm), incluso con las corrientes de fuga de la puerta del

transistor bajo control mediante el uso de dieléctricos high-k, la potencia estática supone

una parte importante de la disipación de potencia total del procesador.

Quizá lo primero que debemos preguntarnos es: ¾Cómo medimos el consumo?. Hasta

hace muy poco (la familia de procesadores �Sandy Bridge� de Intel), las estimaciones de

consumo se realizaban basándose en los contadores de rendimiento del procesador, y se

hacían cada miles de ciclos. En esta Tesis queremos utilizar mecanismos de grano �no que

trabajan a nivel de ciclo para controlar el consumo del procesador, así que necesitamos

un sistema de medición con mayor resolución. La primera contribución importante de

esta Tesis es la introducción de los �Power Tokens�. Mediante el uso de �Power Tokens�

podemos aproximar de manera simple y precisa la potencia disipada por una instrucción

en la etapa de con�rmación sumando a su consumo base (acceso a estructuras que siempre

utiliza) una componente variable que depende del tiempo que la instrucción permanece

en el �pipeline� del procesador. La disipación de potencia total del procesador se puede

estimar sumando los �power tokens� de todas las instrucciones que están actualmente en

el �pipeline�.

Mediante el uso de los �power tokens� hemos estudiado diferentes mecanismos de control

de temperatura en microprocesadores, tanto a nivel de circuito como a nivel de micro-

arquitectura. DVFS es un mecanismo a nivel de circuito que aprovecha la relación entre

el consumo dinámico y el voltaje y frecuencia del transistor (Pd ≈ V 2
DD · f) para ahorrar

energía. El impacto en el rendimiento de DVFS sobre aplicaciones secuenciales o con car-

gas multiprogramadas viene dado únicamente por la reducción en la frecuencia. Además,

la penalización en el rendimiento puede ser incluso menor si se trata de aplicaciones que

hacen un uso intensivo de la memoria, ya que solo estamos escalando la frecuencia de

funcionamiento del procesador, el tiempo de acceso a memoria se ve reducido. También

hemos evaluado diversas técnicas de microarquitectura para reducir el consumo tales co-

mo �Critical Path Prediction�, �Branch Con�dence Estimation� o �Pipeline Throttling�.

Mientras que DVFS es bastante inestable a la hora de intentar adaptarse a un límite de

consumo, todas las técnicas de microarquitectura son capaces de reducir el consumo de

manera uniforme (sin muchos picos de consumo). Lamentablemente, la degradación de

rendimiento de estas técnicas es bastante alta.

Durante toda la Tesis nos hemos centrado principalmente en la componente dinámica

de la disipación de potencia, ya que a día de hoy es la principal fuente de disipación

de potencia del procesador. En cualquier caso y, como se ha mencionado anteriormente,

la componente estática está ganando importancia con cada nueva escala de integración

de transistores. En nuestro caso, para el procesador que hemos modelado la componen-

Abstract xli

te estática supone un 30% de la disipación total del procesador. Por lo cual es muy

importante tenerla en cuenta en las estimaciones de consumo y temperatura.

No se puede discutir la importancia que tiene el consumo energético en los nuevos dise-

ños de procesadores, aún así en esta Tesis queríamos ir un paso más allá. Es bien sabido

que los procesadores de propósito general se pueden utilizar en todo tipo de dispositivos

los cuales suelen tener diferentes requisitos energéticos. En algunos casos sería intere-

sante ser capaz de de�nir un límite en el consumo del procesador el cual nos permitiera

adaptar el consumo del procesador a los requisitos del dispositivo. Además, no parece

razonable diseñar el sistema de refrigeración de un procesador para el peor caso, ya que

es muy improbable que el procesador alcance semejante temperatura. Por el contrario si

somos capaces de crear un sistema de limitación de consumo en el procesador podríamos

permitirle enfriarse si supera una determinada temperatura.

Durante nuestro análisis de distintas técnicas de reducción de consumo hemos descubier-

to que ninguna de ellas era capaz de adaptarse de manera precisa a un límite de consumo.

Además, estos mecanismos funcionan de una manera reactiva, una vez se supera el lími-

te de consumo, por lo que resulta imposible adaptarse a dicho límite de forma precisa.

Por el contrario, podemos utilizar información histórica sobre el consumo del procesador

para activar los mecanismos de manera predictiva, y aproximarnos mejor al límite de

consumo. En este sentido proponemos dos técnicas, �Power Token Throttling� (PTT) y

�Basic Block Level Manager� (BBLM). PTT es un mecanismo basado en �tokens� que

monitoriza el consumo actual del procesador y bloquea la ejecución de nuevas instruc-

ciones si superamos el límite de consumo. Este mecanismo es bastante agresivo (alta

degradación del rendimiento), pero es extremadamente preciso a la hora de adaptarse

al límite de consumo. Por otro lado, BBLM utiliza información histórica de consumo

a nivel de bloque básico (expresada como �power tokens�) para determinar qué tipo de

mecanismo debe utilizar en función de cómo de lejos está el procesador del límite de

consumo. Para mejorar aún más la precisión y el ahorro energético de estos mecanismos

proponemos un mecanismo híbrido de dos niveles que combina las técnicas de microar-

quitectura con DVFS para sacar partido de sus principales cualidades. DVFS actúa como

un mecanismo de grano grueso aproximando la media de consumo del procesador hacia

el límite de consumo, mientras las técnicas de microarquitectura se centran en eliminar

los numerosos picos de consumo que DVFS es incapaz de ver. Este mecanismo híbrido

es capaz de superar a DVFS tanto en energía (11% menos de energía) como en precisión

(6 veces más preciso).

El siguiente paso lógico era migrar todos estos mecanismos a un entorno multinúcleo

(CMP). Cuando analizamos dichos mecanismos en un CMP ejecutando cargas paralelas

descubrimos que no eran capaces de adaptarse de manera precisa al límite de consumo,

debido a las dependencias entre hilos de ejecución y a los puntos de sincronización. La

degradación de rendimiento de DVFS sobre cargas paralelas varía dependiendo de cómo lo

apliquemos. Si lo aplicamos a nivel de núcleo y retrasamos a un hilo crítico observaremos

una degradación de rendimiento global debido a los puntos de sincronización. Si somos

xlii Abstract

capaces de balancear la frecuencia de ejecución de tal forma que ahorremos energía en

hilos no críticos podemos reducir el consumo sin afectar al rendimiento. Por otro lado,

si aplicamos DVFS a todos los núcleos del procesador simultáneamente estaremos en un

caso similar al de los procesadores mononúcleo, con menor degradación de rendimiento

para aplicaciones con uso intensivo de memoria. Necesitamos un mecanismo de control

global que sea capaz de adaptarse a estas características.

Por ello presentamos �Power Token Balancing� (PTB). PTB balancea de manera dinámi-

ca el consumo de los distintos núcleos para asegurarse que el consumo total del procesador

permanece por debajo del límite impuesto. Nuestro mecanismo monitoriza el consumo

de los núcleos por debajo del límite de consumo y trans�ere su excedente energético a los

núcleos que están por encima del límite de consumo, por lo que dichos núcleos no tienen

por qué restringir su funcionamiento para adaptarse a su límite de consumo local. Por lo

tanto, PTB constituye un mecanismo de grano �no que garantiza una gran precisión con

una mínima desviación del límite de consumo impuesto, lo que resulta crucial si estamos

intentando optimizar los costes del empaquetamiento o aumentar el número de núcleos

de nuestro procesador manteniendo un mismo TDP2. De todos modos se puede sacri�car

parte de esa precisión para aumentar la e�ciencia energética del mecanismo.

Como efecto colateral de la alta precisión a la hora de adaptarse al límite de consumo,

PTB tiene otro bene�cio añadido: una temperatura mucho más estable durante la eje-

cución del programa. Para las aplicaciones analizadas en esta Tesis, PTB es capaz de

reducir las temperaturas pico y media del procesador en torno al 27-30%. PTB también

permite balancear la temperatura entre los distintos núcleos, reduciendo la temperatura

del núcleo más caliente e igualándola a la del núcleo más frío del CMP. Esta reducción

de temperatura no solo reduce la disipación de potencia estática, también reduce la tasa

de fallos del procesador.

En el proceso de escalado de las tecnologías de fabricación la redes de interconexión no

han seguido la misma tendencia que los transistores, convirtiéndose en un factor que limi-

ta tanto el rendimiento como el consumo. Una solución intuitiva para reducir la longitud

de las líneas de datos de la red de interconexión consiste en apilar capas de procesadores

unas sobre otras, en lugar de usar una distribución bidimensional. Este tipo de procesado-

res 3D prometen solventar los problemas de ancho de banda y latencia de comunicaciones

de los procesadores. La principal desventaja es que al aumentar la densidad de núcleos

por super�cie también estamos aumentando la densidad de potencia y, en consecuencia,

la temperatura del procesador. Existen mecanismos para controlar la temperatura del

procesador y prevenir el sobrecalentamiento, reduciendo el consumo. Lamentablemente

ni DVFS ni la migración de procesos (las técnicas más comunes para reducir el consumo

y temperatura) ofrecen soluciones precisas para adaptarse a estos límites de consumo,

por eso decidimos evaluar nuestros mecanismos de control de consumo en procesadores

multinúcleo 3D.

En este escenario PTB es capaz de reducir la temperatura media entre 2oC y 20oC de-

2Thermal Design Power.

Abstract xliii

pendiendo de cómo estén organizadas las estructuras del procesador. Para las estructuras

más calientes, PTB es capaz de reducir su temperatura en un 40% para un procesador

de 16 núcleos y 4 capas. También proponemos �Token3D�, una nueva política de distri-

bución de energía para PTB que tiene en cuenta información de temperatura y mapeado

de estructuras a la hora de balancear la energía del procesador, dando prioridad a los

procesadores más fríos sobre los calientes. Esta nueva política mejora a PTB, reducien-

do la temperatura del procesador un 3% adicional. Para �nalizar, hemos diseñado una

organización híbrida que mezcla diseños horizontales y verticales de procesadores 3D,

tratando de minimizar la temperatura. En este diseño las estructuras más calientes del

núcleo se sitúan en las capas más externas del procesador, dejando las estructuras frías

en las capas más internas del procesador. Dicha organización es capaz de reducir la tem-

peratura del núcleo un 10% sobre el mejor diseño horizontal y un 85% sobre los diseños

verticales.

Chapter 1

Introduction

Summary: In Chapter 1 we present a brief introduction to this Thesis. We

will disclose two of the key design limitations in modern microprocessors, power

dissipation, and the direct problem related to it, overheating. Both power and

thermal related issues will be the primary objective that motivates this Thesis.

This chapter also summarizes the main contributions of this Thesis and presents

the overall organization of the document.

1.1. Motivation

In the last decade computer engineers have faced changes in the way microprocessors

are designed. New microprocessors do not only need to be faster than the previous

generation, but also be feasible in terms of energy consumption and thermal dissipa-

tion, especially in battery operated devices. With the megahertz race over, engineers

have focused on increasing the number of processing cores available on the same die.

Nowadays, chip multiprocessors (CMPs) are the new standard design for a wide range

of microprocessors: mobile devices (in the near future almost every smartphone will be

governed by a multicore CPU), desktop computers, laptop, servers, GPUs, APUs, etc.

These microprocessors face constant thermal and power related problems during their

everyday use.

Like any other transistor-based electronic device, microprocessors have two sources of

power dissipation, dynamic power dissipation and static power dissipation (or leakage).

Dynamic power dissipation is proportional to usage (every time we access a structure),

due to the constant charge and discharge of transistors. On the other hand, static power

dissipation is derived from gate leakage and subthreshold leakage currents that �ow even

when the transistor is not in use. As process technology advances toward deep submicron,

the static power component becomes a serious problem, especially for large on-chip array

structures such as caches or prediction tables. The leakage component is something that

many studies do not take into consideration when dealing with temperature, but it cannot

1

2 Chapter 1. Introduction

be ignored. For current technologies (under 32nm), even with gate leakage under control

by using high-k dielectrics, subthreshold leakage has a great impact in the total power

dissipated by processors [47]. Moreover, leakage depends on temperature as well, so it is

crucial to add a leakage-temperature loop to update leakage measurements in real time

depending on the core/structure's temperature.

Thermal and power related issues are usually solved by applying a power budget to the

processor/core, usually triggered by a Dynamic Thermal Management (DTM) mecha-

nism. Dynamic Voltage and Frequency Scaling (DVFS) has been an e�ective technique

that allowed microprocessors to match a prede�ned power budget. However, the contin-

uous shrinking in the building process technology will eventually make leakage power the

main source of power dissipation. In that scenario DVFS becomes less e�ective. DVFS

mainly relies on decreasing supply voltage, however, if we want to maintain the transis-

tor's switching speed, threshold voltage must be also lowered. Nevertheless, decreasing

the threshold voltage increases leakage power dissipation exponentially. In a CMP sce-

nario it is possible to use legacy (i.e., single-core) power saving techniques if the CMP

runs either sequential applications or independent multithreaded workloads. However,

new challenges arise when running parallel shared-memory applications. In the later

case, sacri�cing some performance in a single core (thread) in order to be more energy-

e�cient might unintentionally delay the rest of cores (threads) due to synchronization

points (locks/barriers), therefore, degrading the performance of the whole application.

The use of CMPs to increase performance by exploiting parallelism has two additional

drawbacks: o�-chip bandwidth and communication latency between cores. 3D die-

stacked processors are a recent design trend aimed at overcoming these drawbacks by

stacking multiple device layers. However, the increase in packing density of these designs

leads to an increase in power density, which translates into more thermal problems.

Moreover, there are times when power requirements of a microprocessor exceed the avail-

able power of the target device. In most cases it is not possible to design a new processor

to match up whatever power requirements, because it would be too expensive. The prob-

lem gets even worse if the power restrictions are temporary (i.e. overheating), and after

that period of power restrictions we want to reestablish the regular working mode of the

processor. Imagine a computation cluster connected to one or more UPS units to protect

from power failures. If there is a power cut, all processors will continue working at full

speed consuming all of the UPS batteries quickly, and then switching the computers o�

when the battery is about to run out and, consequently, losing all the work on �y. During

the power failure (many times they are of limited duration), if the processors are not

doing critical work, it might be better to extend the UPS battery duration at the expense

of degrading the performance, than to lose all the work done. Another situation where

setting a power budget could be useful is a computing centre that shares a power supply

among all kind of electric devices (i.e., computers, lights, air conditioning, etc.). In a

worst case scenario (e.g., in summer at mid-day with all the computers working at full

speed), if we integrate some kind of power budget management into the processors, we

1.2. Contributions 3

could decrease the power of all processors, lowering the ambient temperature and having

more power for the air conditioning. In this way, we could design the power capacity

of the computing centre for the average case, reducing its cost. A new need arises in

microprocessor designs, to include a mechanism that allows the processor to match a

temporal power constraint, even at the cost of performance degradation.

1.2. Contributions

The main contributions of this Thesis have been published in [23, 24, 25, 26, 27] and are

listed below:

We introduce the concept of Power Tokens. In most modern microprocessors there

is no way to accurately measure power in real time. Power measurements are just

approximations based on performance counters done over periods of thousands of

cycles. When using microarchitectural techniques that work at a cycle level we need

some way to estimate power at a more �ne-grain level, that is why we propose the

Power-Token approach. The rationale behind is to calculate the energy consumed

by an instruction at commit stage by adding the base energy consumption of the

instruction (i.e., all regular accesses to structures done by that instruction) plus

a dynamic component that depends on the time it spends on the pipeline. The

new Sandy Bridge processor from Intel has some machine speci�c registers (MSRs)

that provide per structure power information. This new feature validates that the

decisions we made three years ago when we introduced the Power Tokens where in

the right direction.

We analyze performance, power and energy impact of di�erent power saving mech-

anisms, initially, in a single-core scenario. In order to manage dynamic power

dissipation we will evaluate: DVFS, that modi�es both voltage and frequency in

order to save power; Pipeline Throttling, that reduces the amount of instructions

fetched by the processor in order to save power; Instruction Criticality, that delays

the execution of non-critical instructions from cycles over the power budget to cy-

cles under the power budget; and Con�dence Estimation, that reduces the amount

of speculation in low-con�dence paths (the ones that correspond to branches that

cannot be accurately predicted). For managing static power dissipation (leak-

age) we will analyze the e�ects of two techniques: decay-based techniques, that

switch-o� entries of an structure, reducing it's leakage to zero but losing its con-

tents (non-state preserving techniques); and drowsy-based techniques, that lower a

structure's voltage, obtaining less power savings but being able to restore the state

of the structure in a reasonable time (state preserving techniques). Both state and

non-state preserving techniques will be evaluated in the context of value predictors,

as a case study of a regular array-based structure.

Also in the single-core scenario we analyze the e�ects of di�erent legacy power

4 Chapter 1. Introduction

saving techniques when trying to match a prede�ned power budget and discov-

ered that these techniques are not suitable to perform that task with reasonable

accuracy and performance penalties. To deal with this problem this Thesis pro-

poses the use of new hybrid microarchitectural techniques to accurately match a

power constraint while maximizing the energy-e�ciency of the processor. In this

context we introduce Power Token Throttling (PTT), a token-based approach that

keeps track of the current power being dissipated by the processor, measured as

tokens, and stalls the fetch stage if the next instruction to be fetched and exe-

cuted will make the processor go over the power budget. We also introduce and

evaluate a basic block-level mechanism, that keeps track of the power dissipated

the last time the processor executed a basic block and uses that power translated

into tokens to select between di�erent power-saving microarchitectural techniques.

These techniques are orthogonal to DVFS so they can be simultaneously applied.

We will also introduce a two-level approach where DVFS acts as a coarse-grain

technique to lower the average power dissipation towards the power budget, while

microarchitectural techniques focus on removing the numerous power spikes.

In the multi-core scenario we introduce Power Token Balancing (PTB), a mech-

anism aimed at accurately matching an external power constraint by balancing

the power dissipated among the di�erent cores using a Power Token-based ap-

proach while optimizing the energy e�ciency. We can use power (seen as tokens

or coupons) from non-critical threads for the bene�t of critical threads. PTB runs

transparent for thread independent / multiprogrammed workloads and can also be

used as a spinlock detector based on power patterns.

Also in the multi-core scenario we analyze the use of microarchitectural power

budget techniques to reduce peak temperature in 3D die-stacked architectures.

In particular, we introduce Token3D, a power balancing technique that takes into

account temperature and layout information to balance the available per-core power

along with other power optimizations for 3D designs. We also analyze a wide range

of �oorplans looking for the optimal temperature con�guration. Finally, we present

some optimizations for vertical 3D designs and a custom �oorplan design that places

high temperature structures in upper layers of the 3D stack and cool structures in

inner layers to reduce overall peak temperature.

1.3. Organization

This Thesis is organized as follows:

Chapter 2: Problem statement and simulation methodology. In this chap-

ter we explain the importance of power dissipation and temperature in micropro-

cessor designs. We propose a mechanism to estimate power in real-time (Power

1.3. Organization 5

Tokens), that will be used to control power and study the e�ects on both perfor-

mance and temperature of power saving mechanisms. This chapter also analyzes

the simulators, the benchmarks and the di�erent power and temperature models

we have evaluated.

Chapter 3: Power saving mechanisms. In this chapter we will analyze the

e�ects on power (static and dynamic), energy and performance of di�erent previ-

ously proposed power saving mechanisms for the single-core scenario. The stud-

ied dynamic power saving mechanisms are based on DVFS, instruction criticality,

branch con�dence estimation and fetch throttling. As a case study we will analyze

some speci�c mechanisms to control leakage power in cache-like structures, more

speci�cally in Value Predictors.

Chapter 4: Single-core power budget matching. In this chapter we recall

the concept of power budget, why it is important and how to properly enforce

it. In the previous chapter we analyzed the e�ects of power control mechanisms

on performance and total cycles and energy over the power budget. This analysis

showed that most of these mechanisms have problems when matching the target

power constraint on their own, so it is not well respected. In order to solve this

problem we propose three mechanisms: Power Token Throttling (PTT), Basic

Block Level Manager (BBLM) and a two-level approach (DVFS+BBLM). PTT is a

token-based approach that keeps track of the current power being dissipated by the

processor, measured as tokens, and stalls fetch if the next instruction to be executed

will make the processor go over the power budget. BBLM is a predictive power-

control mechanism that stores information about the energy consumption of a basic

block (or chain of basic blocks). BBLM will select from di�erent architecture-level

power saving mechanisms (more or less aggressive) based on the energy this basic

block consumed the last time it was executed. Finally, the two-level approach

will use DVFS as a coarse-grain approach to lower the average power dissipation

towards the power budget along with BBLM to remove the remaining power spikes.

Chapter 5: CMP power budget matching. In this chapter we adapt and

analyze the proposed mechanisms from Chapter 4 in a CMP scenario. After an

initial analysis we discovered that the proposed mechanisms work properly for both

multiprogrammed and multiple instances of sequential applications, but are unable

to match the target power budget when running parallel applications because of

dependencies between threads. We believe that a global mechanism is required to

properly adapt energy consumption of each core of the CMP to accurately match

the target power budget with minimal performance impact, and thus, we propose

PTB. PTB is based on a centralized structure, the power token balancer, that

receives power information from all the cores under the power budget, measured as

tokens, and gives those tokens to cores over the power budget, so they can continue

execution without applying any power control mechanism, ensuring that the global

6 Chapter 1. Introduction

power constraint is satis�ed.

Chapter 6: 3D die-stacked power budget matching - Token3D. In this

chapter we introduce and study a new design �eld, 3D die-stacked cores. Although

3D die-stacked designs reduce the latency and power gap between the intercon-

nection network and the CMP cores, it has some important drawbacks. First, the

increase in packing density also leads to an increase in power density that eventu-

ally translates into thermal problems. Second, a deeper design space exploration of

di�erent �oorplan con�gurations is essential to take advantage of these emerging

3D technologies. Third, chip veri�cation complexity increases with the number

of layers. In order to minimize thermal related problems we port all the previ-

ously proposed mechanisms from chapters 4 and 5 to a 3D die-stacked scenario

and study the e�ects they have on performance, energy and temperature. In ad-

dition we study new �oorplan designs and other speci�c optimizations based on

instruction window resizing and ALU selection.

Chapter 7: Conclusions and future ways. In this chapter we discuss the

conclusions to our work and some future lines that can be followed in the energy-

e�cient processor design �eld.

Chapter 2

Problem Statement and Simulation

Methodology

Summary:

In this chapter we discuss the importance of energy consumption and tempera-

ture in microprocessor designs. At �rst we propose a mechanism to estimate power

in real-time (Power Tokens), that will be used to control power and study the ef-

fects on both performance and temperature of power saving mechanisms. We reason

about the importance of accuracy when matching the power budget, and propose

the use of a new metric, Area Over Power Budget (AoPB), that will help us es-

timate the accuracy of the studied power saving mechanisms. We also introduce

the di�erent power and temperature models, the simulators used and the studied

benchmarks during this Thesis.

2.1. Introduction

As device size shrinks and operating frequencies rise, power dissipation and thermal out-

put have become the main limiting factors in microprocessor design. From 1986 to 2002,

performance increased at a rate of 52% per year. This trend slowed down in 2002 and

performance only increased by around 6% each year, until now [74]. This rapid increase

of performance was known as the �Megahertz Race�, due to the continuous increase in

the clock rates of microprocessors. As we will see later, there is a direct relation between

clock rate and power dissipation/temperature, and processors rapidly hit what is known

as the �Power Wall�. Between 2002 and 2005 microprocessor designers spent many re-

sources (transistors) to build complex structures that only achieved minimal performance

increments. The amount of available transistors on the die due to feature shrinking was

much higher than the performance architects could get from them. Moreover, if they

tried to simply increase the clock rate of so many transistors, the heat dissipated by the

core was so high that it will immediately burn out. This slow intra-core ILP and long

communication latencies in wiredelays in large wide-issue superscalar processors lead de-

signers to use those transistors to build more cores inside the same die rather than to

7

8 Chapter 2. Problem Statement and Simulation Methodology

0 500 1000 1500 2000 2500 3000 3500
0

20

40

60

80

100

120

140

160
K5 (350nm)
Athlon (Argon – 250nm)
Athlon (Pluto-Orion – 180nm)
Athlon (Thunderbird – 180nm)
Athlon XP (Palomino –
180nm)
Athlon XP (Thoroughbred –
130nm)
Athlon XP (Barton – 130nm)
Athlon X2 (Kuma – 65nm)

Phenom X3 (Toliman – 65nm)

Phenom X4 (Agena – 65nm)
Athlon II (X2) (Regor – 45nm)
Athlon II (X3) (Rana – 45nm)
Athlon II (X4) (Propus – 45nm)
Phenom II X2 (Calisto – 45nm)

Phenom II X3 (Heka – 45nm)

Phenom II X4 (Deneb – 45nm)
Phenom II X4 (Deneb-Black –
45nm)
Phenom II X6 (Thuban –
45nm)

Frequency (MHz)

T
D

P
 (

W
at

ts
)

Figure 2.1: Evolution of the thermal design power for AMD microprocessors.

�increase� the per-core performance. To prevent the cores from overheating, frequencies

got stalled in the range of the 2-3Ghz. Nowadays, even if the supply voltage is lowered

with each new generation of transistors to reduce dynamic power, the continuous increase

of leakage power and the additional power dissipation from complex interconnection net-

works in chip multiprocessors (CMPs) plus the increasing on-die memory size leads to a

global increase on the total power and energy consumed by the processor. Therefore, we

can state that the power wall is also limiting the amount of cores per processor.

The thermal design power (TDP), sometimes called thermal design point, represents the

maximum amount of power the cooling system in a computer is required to dissipate.

It can be achieved by using an active cooling method such as a fan or any of the three

passive cooling methods: convection, thermal radiation or conduction. Typically, a

combination of methods is used. The TDP is typically not the higher (peak) power the

chip could ever draw, but rather the maximum power that it would draw when running

real applications. This ensures that the computer will be able to handle, essentially, all

applications without exceeding its thermal envelope or requiring a cooling system for

the maximum theoretical power, which would cost more. Figures 2.1 and 2.2 show the

TDP evolution for di�erent families of AMD and Intel microprocessors, respectively. We

can clearly see a dependence on the cooling requirements as the frequency is increased,

due to the direct dependency between power dissipation and the processor's voltage and

frequency (P = CV 2
DDAf). Although the per core TDP is lowered after the P4 and

the Athlon XP for each generation of microprocessors (currently around 10W per core),

the increasing amount on the number of cores inside the CMP leads to a total TDP

that sometimes goes over 125W, for those processors with high overclocking capabilities

(Extreme Edition from Intel or Black Edition from AMD).

In some designs the TDP is under-estimated and in some real applications (typically

2.1. Introduction 9

0 500 1000 1500 2000 2500 3000 3500 4000
0

20

40

60

80

100

120

140

160
Pentium (600nm)
Pentium (350nm)
P-II (Klamath – 350nm)
P-II (Deschutes 250nm)

P-III (Katmai – 250nm)
P-III (Coppermine – 180nm)

P-III (Tualatin – 130nm)
P-4 (Willamette – 180nm)
P-4 (Northwood – 130nm)

P-4 (Northwood HT – 130nm)
P-4 (Prescott HT – 90nm)
Core 2 Duo (Conroe – 65nm)
Core 2 Quad (Kentsfield –
65nm)
Core 2 Duo (Wolfdale – 45nm)
Core 2 Quad (Yorkfield –
45nm)
i7 Quad (Lynnfield – 45nm)
i7 Quad (Bloomflield – 45nm)
i7 Six (Gulftown – 32nm)

Frequency (MHz)

T
D

P
 (

W
at

ts
)

Figure 2.2: Evolution of the thermal design power for Intel microprocessors.

strenuous, such as video encoding or games) the CPU exceeds the TDP. In this case, the

CPU will either cause a system failure (a �therm-trip�) or will throttle its speed down

using a DTM policy. Most modern CPUs will only cause a therm-trip on a catastrophic

cooling failure such as a stuck fan or a loose heatsink. Moreover, in most modern proces-

sors TDPs are often speci�ed for families of processors, with the low-end models usually

using signi�cantly less power than those at the high end of the family.

As mentioned in the previous chapter, one possible way to continue increasing the num-

ber of cores inside a CMP avoiding the interconnection latency and o�chip bandwidth

problems is the use of 3D die-stacked designs. Temperature management gets even more

di�cult in this scenario. It is not feasible to stack several processor dies on top of each

other with a large number of cores per layer using current process technologies (32nm)

due to thermal problems [13][28][79]. However, some companies like Toshiba are putting

lots of e�orts to build 3D DRAM, as memory chips are far cooler than regular processor

chips. There is also the possibility that in the near future microprocessors will include

some internal memory layers to act as an additional memory hierarchy level.

Dynamic Thermal Management (DTM) is a mechanism that reduces the processor energy

consumption (and therefore performance) during critical time intervals so it can cool

down. One way to achieve this goal is to set a power budget to the processor. This

processor's power budget is not only useful to control power and temperature but also to

adapt to external power constraints. There are situations where device power constraints

are more restrictive than the power needs of a processor at full speed. In most of the cases

we cannot a�ord to design a new processor to meet whatever power constraint because

is too expensive. Therefore, being able to set a power budget to the processor could help

designers to reuse existent hardware in new devices. The problem grows when, as usual,

power constraints are transitory and after some period of low power dissipation we want

10 Chapter 2. Problem Statement and Simulation Methodology

to restore the processor's regular behavior.

The main goal of this Thesis is to provide architecture-level mechanisms that allow the

microprocessor to adapt to a prede�ned power constraint in an energy e�cient way,

while being as accurate as possible. This minimal deviation from the target power

budget will translate in minimal variations of the processor temperature during runtime.

Minimizing the spatial gradient (di�erence between temperatures within the die) will

ensure a more reliable microprocessor and reduce the fault ratio. However, there are

several requirements to achieve this goal:

Provide the chip infrastructure to account power in real time.

Design a metric that measures accuracy when matching a prede�ned power budget.

Reduce speculation to save power from wrong path instructions when exceeding

the power budget.

Prioritize critical instructions, i.e., delay non-critical instructions from cycles over

the power budget to cycles under the power budget.

In a CMP scenario, e�ciently balance the available power between the di�erent

cores to bene�t critical threads.

If the processor is still over the power budget, use a more aggressive power sav-

ing mechanism, like pipeline throttling or dynamic voltage and frequency scaling

(DVFS).

We will address all these points in this Thesis, along with some �oorplan organization/op-

timizations to reduce temperature in di�erent scenarios.

2.2. Power Tokens

Up until recently (Intel Sandy Bridge processors) there was no way to accurately measure

power dissipation in real time. Power measurements are just approximations based on

performance counters done over periods of thousands of cycles. When using microarchi-

tectural techniques that work at a very �ne granularity (from several to a few tens of

cycles) we need some way to estimate power at this �ne granularity. That is why we

propose the Power-Token approach, which calculates the power dissipated by an instruc-

tion at commit stage by adding the base power dissipation of the instruction (i.e., all

regular accesses to structures done by that instruction) plus a dynamic component that

depends on the time it spends on the pipeline. The dynamic component corresponds to

the combined RUU1 wakeup-matching logic power that we divide between all the active

instructions in the RUU. Therefore, in order to work with power-token units in a simple

way, we de�ne a power-token unit as the joules dissipated by one instruction staying in

the RUU for one cycle.

1Register Update Unit.

2.3. Importance of Accuracy 11

We calculated the base power-tokens of every instruction type using the SPECINT2000

benchmark suite. Once we had the base power for all the possible instructions, we

used a K-mean algorithm to group instructions with similar base power dissipation. We

analyzed independent instructions and several grouping, that ranged from 32 groups to

4 groups. Simulated results showed that having just 8 groups of instructions is accurate

enough for the Power-Token approach to properly work with a deviation lower than 1%

(compared to accounting for the actual energy consumption as provided by the evaluated

simulator, HotLeakage).

In this way, the number of power-tokens dissipated by an instruction will be calculated

as the addition of its base power-tokens plus the amount of cycles it spends in the RUU.

The implementation of the Power-Token approach is done by means of an 8K-entry

history table2 (Power-Token History Table - PTHT), accessed by PC, which stores the

power cost (in power-token units) of each instruction's previous execution. This table

introduces a measured power overhead of around 0.5% which is accounted for in our

results. We also need �ve 16 bit adders for accounting the power tokens in our modeled

processor (four wide processor plus one for adding the total power) and a register to

store the current power dissipated in the processor (0,025% power overhead). When an

instruction commits, the PTHT is updated with the number of power-tokens dissipated.

Finally, the overall processor power dissipation (in power-token units) can be easily esti-

mated in a given cycle based on the instructions that are traversing the pipeline without

using performance counters by simply accumulating the power-tokens (as provided by the

PTHT) of each instruction being fetched. Our evaluated cores implement a three-stage

fetch unit (Figure 2.7) so there is enough time to estimate this power.

2.3. Importance of Accuracy

This Thesis is focused on adapting the processor's power dissipation to a target power

constraint, with minimal deviation from the target power budget while minimizing energy

increase and performance slowdown.

If we want to ensure minimal deviation from the target power budget we need to introduce

a metric that enables us to measure how close we are from the power constraint. We

de�ne the metric Area over the Power Budget (AoPB) as the amount of energy (joules)

between the power budget and each core dynamic power curve, represented by shadowed

areas in Figure 2.3. The lower the area (energy) the more accurate the analyzed technique

is (note that the ideal AoPB is zero).

Lets us provide an example that tries to illustrate the importance of the accuracy on

matching a prede�ned power budget. Imagine that we want to increase the number of

cores in a CMP while maintaining the same TDP (this is a common practice done by

microprocessor manufacturers in the past 5 years, as depicted in Figures 2.1 and 2.2).

For a 16-core CMP with a 100W TDP, each core would use 6.25W (for simplicity let us

28 bits per entry.

12 Chapter 2. Problem Statement and Simulation Methodology

	

Power	
 budget	

Power	
 budget	

time	

Po
w
er
	
 (W

at
ts
)	

time	

Po
w
er
	
 (W

at
ts
)	
 after	

T1	
 T2	

before	

T1	
 T2+delay	

Figure 2.3: Example of the Area over Power Budget (AoPB) metric. Shadowed areas represent the
energy consumed over the target power budget.

ignore the interconnection network). If we set a power budget of 50% we could ideally

duplicate the number of cores in that CMP with the same TDP (up to 32 cores, each one

consuming an average of 3.125W). But for this ideal case a perfect accuracy on matching

the power budget is needed.

As we will see later on this Thesis, standard DVFS incurs in a energy deviation of 65%

over the power budget (the AoPB metric). Therefore, with a 65% deviation each core

dissipation raises to 3.125*1.65=5.15W, and, for a 100W TDP, we can put a maximum of

100/5.15=19 cores inside the CMP. Using a two-level approach (without PTB - Chapter

4) the deviation is reduced to 40%. This gives us a potential average power dissipation

of 3.125*1.40=4.375W per core, so we can put 100/4.375=22 cores in the CMP with

the same TDP. Finally, when using the non-relaxed PTB (Chapter 5) approach the

deviation is reduced below 10%, that gives us a potential average power dissipation

of 3.125*1.1=3.4375W per core, so we can put 100/3.4375=29 cores inside our CMP.

Therefore, thanks to the extra cores (we could go from 16 cores in the original CMP

design to 29 cores) we can perfectly overcome the 3% performance degradation that

results from using our proposed PTB mechanism if the application is parallel enough to

use these extra cores.

2.4. Simulators

During the past �ve years we have been researching on di�erent proposals that involved

working in various environments, from single-core microprocessors to 3D die-stacked

multiprocessors. This section summarizes all the simulators used in the development of

this Thesis.

SimpleScalar. SimpleScalar [5] is an open source computer architecture simula-

tor developed by Todd Austin while he was a PhD student at the University of

2.4. Simulators 13

Wisconsin-Madison. This system software infrastructure is used to build modeling

applications for program performance analysis, detailed microarchitectural mod-

eling, and hardware-software co-veri�cation. Using the SimpleScalar tools, users

can build modeling applications that simulate real programs running on a range

of modern processors and systems. The tool set includes sample simulators rang-

ing from a fast functional simulator to a detailed, dynamically scheduled processor

model that supports non-blocking caches, speculative execution, and state-of-the-

art branch prediction. The SimpleScalar tools are used widely for research and

instruction, for example, in 2000 more than one third of all papers published in

top computer architecture conferences used the SimpleScalar tools to evaluate their

designs. In addition to simulators, the SimpleScalar tool set includes performance

visualization tools, statistical analysis resources, and debug and veri�cation infras-

tructure.

Wattch. Wattch [18] is a framework for analyzing and optimizing microprocessor

power dissipation at the architecture-level. Wattch is 1000X or more faster than

existing layout-level power tools, and yet maintains accuracy within 10% of their

estimates as veri�ed using industry tools on leading-edge designs. Wattch can be

seen as a complement to existing lower-level tools; it allows architects to explore

and cull the design space early on, using faster, higher-level tools. It also opens up

the �eld of power-e�cient computing to a wider range of researchers by providing

a power evaluation methodology within the portable and familiar SimpleScalar

framework.

HotLeakage. HotLeakage [100] is a software model of leakage based on BSIM3

technology data that is publicly available on the web. It is computationally very

simple and can easily be integrated into popular power-performance simulators like

Wattch. It can also be easily extended to accommodate other technology models

and can be used to model leakage in a variety of structures (not just caches, which

have been the focus of a lot of prior work). HotLeakage extends the Butts-Sohi

model [19] and corrects several important sources of inaccuracy. This model is

called HotLeakage, because it includes the exponential e�ects of temperature on

leakage. Temperature e�ects are important, because leakage current depends expo-

nentially on temperature. In fact, HotLeakage also includes the heretofore unmod-

eled e�ects of supply voltage, gate leakage, and parameter variations. HotLeakage

has circuit-level accuracy because the parameters are derived from transistor-level

simulation (Cadence tools). Yet like the Butts and Sohi model, simplicity is main-

tained by deriving the necessary circuit-level model for individual cells, like memory

cells or decoder circuits, and then taking advantage of the regularity of major struc-

tures to develop abstract models that can be expressed in simple formulas similar

to the Butts-Sohi model.

CACTI. CACTI [90] is an integrated cache and memory access time, cycle time,

14 Chapter 2. Problem Statement and Simulation Methodology

area, leakage, and dynamic power model. By integrating all these models together,

users can have con�dence that tradeo�s between time, power, and area are all based

on the same assumptions and, hence, are mutually consistent. CACTI is intended

for use by computer architects to better understand the performance tradeo�s

inherent in memory system organizations.

Simics. Simics [65] is a full-system simulator used to run unchanged production

binaries of the target hardware at high-performance speeds. Simics was originally

developed by the Swedish Institute of Computer Science (SICS), and then spun

o� to Virtutech for commercial development in 1998. Simics can simulate systems

such as Alpha, x86-64, IA-64, ARM, MIPS (32- and 64-bit), MSP430, PowerPC

(32- and 64-bit), POWER, SPARC-V8 and V9, and x86 CPUs. Many operating

systems have been run on various varieties of the simulated hardware, including

MS-DOS, Windows, VxWorks, OSE, Solaris, FreeBSD, Linux, QNX, and RTEMS.

The NetBSD AMD64 port was initially developed using Simics before the public

release of the chip. The purpose of simulation in Simics is often to develop software

for a particular type of embedded hardware, using Simics as a virtual platform.

GEMS (Opal + Ruby). The Wisconsin Multifacet Project [67] presented the

open-source General Execution-driven Multiprocessor Simulator (GEMS). GEMS

is a set of modules for Virtutech Simics that enables detailed simulation of mul-

tiprocessor systems, including CMPs. GEMS leverages the potential of Virtutech

Simics to simulate a Sparc multiprocessor system. This enables the simulation of

commercial software such as database systems running on the Solaris operating

system. By o�-loading the correctness requirement to Simics, GEMS �timing-�rst�

simulation can focus on accurate performance modeling rather than correctness

details.

• The Opal module provides a detailed out-of-order processor model. Opal is

�exible and highly con�gurable to model di�erent branch predictors, issue-

widths, execution resources, etc.

• The Ruby module provides a detailed memory system simulator. It can simu-

late a wide variety of memory hierarchies and systems ranging from broadcast-

based SMP to a hierarchical directory-based Multiple-CMP system.

McPAT. McPAT (Multicore Power, Area, and Timing) [56] is an integrated power,

area, and timing modeling framework for multithreaded, multicore, and manycore

architectures. It supports comprehensive early stage design space exploration for

multicore and manycore processor con�gurations ranging from 90nm to 22nm and

beyond. McPAT includes models for the components of a complete chip multi-

processor, including in-order and out-of-order processor cores, networks-on-chip,

shared caches, and integrated memory controllers. McPAT models timing, area,

2.5. Power Models 15

and dynamic, short-circuit, and leakage power for each of the device types fore-

cast in the ITRS roadmap including bulk CMOS, SOI, and double-gate transistors.

McPAT has a �exible XML interface to facilitate its use with di�erent performance

simulators.

HotSpot. HotSpot [88] is an accurate and fast thermal model suitable for use in

architectural studies. It is based on an equivalent circuit of thermal resistances and

capacitances that correspond to microarchitecture blocks and essential aspects of

the thermal package. The model has been validated using �nite element simulation.

HotSpot has a simple set of interfaces and hence can be integrated with most power-

performance simulators like Wattch or Hotleakage. The foremost advantage of

HotSpot is that it is compatible with the kinds of power/performance models used

in the computer-architecture community, requiring no detailed design or synthesis

description. HotSpot makes it possible to study thermal evolution over long periods

of real, full-length applications.

2.5. Power Models

The previously described simulators implement di�erent power models to account both

dynamic and static power dissipation of the microprocessor. In this section we want to

discuss the basics of these power models.

2.5.1. Dynamic Power Models

Dynamic power has been the dominant component in total power dissipation for many

years. Dynamic power can be approximated by the following formula:

P = CV 2
DDAf (2.1)

Where C is the load capacitance, VDD is the supply voltage, A is the activity factor and

f is the operating frequency [47]. Each of these components is described in more detail

below.

Capacitance (C). Load capacitance largely depends on the wire lengths of on-chip

structures. There are several ways designers can in�uence this metric. The introduc-

tion of 3D die-stacked architectures is likely to reduce average wire length both inter-

structure/core if we adopt a vertical design (where structures are split across layers) or

inter-core if we adopt a typical horizontal design.

Supply Voltage (VDD). Supply voltage is the power input of the transistor. It drops

with every new generation of transistor, and is one of the key components in power-aware

designs because of its quadratic in�uence on dynamic power.

Activity Factor (A). The activity factor is a number between 0 and 1 that refers to

how often wires actually transition from 0 to 1 or 1 to 0. While the clock signal obviously

switches at its full frequency, most other wires in the design have activity factors below

16 Chapter 2. Problem Statement and Simulation Methodology

1. Strategies such as clock gating are used to save power by reducing activity factors

during idle periods. Clock gating adds an AND gate to the clock signal that powers an

speci�c unit or structure with a control signal. If the control signal is on, the unit will

be clocked as expected. If the unit is unneeded for a cycle or more, the control signal

can be set to 0, in which case the unit will not be clocked.

Frequency (f). The clock frequency has a fundamental and far-reaching impact on

power dissipation. Not only does clock frequency directly in�uence power dissipation,

but it also indirectly shapes power by its e�ect on supply voltage. Typically, maintaining

higher clock frequencies may require maintaining a higher supply voltage. Thus, the

combined V 2
DDf portion of the dynamic power equation has a cubic impact on power

dissipation. Strategies such as DVFS can be applied on periods of low performance (i.e.

memory-bound or latency-tolerant regions of code) and reduce voltage and frequency

accordingly.

At a high level, dynamic power models can be divided into analytical and empirical

techniques. Analytical techniques seek to express power behavior in terms of equations

parametrized by model size or other characteristics. Empirical techniques, in contrast,

have focused on predicting the behavior of one possible chip design by appropriately

scaling per-module power behaviors observed for some other measured chip design.

Both capacitance and activity factor are expressions where the architect has some high-

level understanding and control, even though the ultimate details are dependent on

the particulars of the circuit design chosen. The activity factor is related both to the

application program being executed (both its data patterns and control) and to some

circuit design choices. For example, for circuits that pre-charge and discharge on every

cycle (i.e., double-ended array bitlines) an activity factor of 1 is used. For wires that

represent data buses, the activity factor can be chosen based on knowledge of the I/O

statistics in the data set being studied. Capacitance, like activity factor, depends in

part on circuit design choices. Even in relatively regular array structures, the aspect

ratio, number of wire routing layers, or other layout choices can in�uence capacitance.

Dynamic power models extracted from [18] are summarized in Table 2.1.

Table 2.1: Equations for Wattch power models. CdiffCgateCmetal represent di�usion, transistor gate
and metal wire capacitances.

Reg�le Wordline Capacitance
Cdiff (WordLineDriver) + Cgate(CellAccess)
·NumBitLines+ Cmetal ·WordLineLength

Reg�le Bitline Capacitance
Cdiff (PreCharge) + Cdiff (CellAccess)
·NumWordLines+ Cmetal ·BitLineLength

CAM Tagline Capacitance
Cgate(CompareEn) ·NumberTags
+Cdiff (CompareDriver) + Cmetal · TagLineLength

CAM Matchline Capacitance
2 · Cdiff (CompareEn) · TagSize
+Cdiff (MatchPrecharge)
+Cdiff (MatchOR) + Cmetal ·MatchLineLength

ResultBus Capacitance
0.5 · Cmetal · (NumALU ·AluHeight)
+Cmetal ·RegfileHeight

2.5. Power Models 17

Now we will give a description of how Wattch approximates the power dissipation of the

di�erent structures.

Array Structures. Array structures power models are parameterized based on the

number of rows (entries), columns (width of each entry), and the number of read/write

ports. These parameters a�ect the size and number of decoders, the number of wordlines

and the number of bitlines. In addition, these models also use the speci�ed parameters to

estimate the length of the pre-decode wires as well as the lengths of the array's wordlines

and bitlines. For array structures the power model is divided in the following stages:

decoder, wordline drive, bitline discharge and output drive (or sense ampli�er). Wordline

drive and bitline discharge are the bulk of the power dissipation in array structures.

Equations for wordline and bitline capacitances are shown in Table 2.1.

Modeling the power dissipation of wordlines and bitlines requires estimating the total

capacitance on both of these lines. The capacitance of the wordlines include three main

components, di�usion capacitance of the wordline driver, the gate capacitance of the cell

access transistor times the number of bitlines and the capacitance of the wordline's metal

wire.

The bitline capacitance is computed similarly. The total capacitance is equal to the

di�usion capacitance of the pre-charge transistor, the di�usion capacitance of the cell

access transistor multiplied by the number of word lines, and the metal capacitance of

the bitline. These models allow the use of both single-ended or double-ended bitlines.

Wattch assumes that register �le array structures use single-ended bitlines while cache

array structures use double-ended bitlines.

Multiple ports on the array structure will increase the power dissipation in three ways.

First, there will be more capacitance on the wordlines because each additional port

requires an additional transistor connection. Second, each additional port requires up

to two additional bitlines, which must precharge/evaluate on every cycle. Finally, each

core cell becomes larger which leads to longer word and bitlines, incurring additional

wire capacitance.

Transistor sizing plays an important role in the amount of capacitance within the various

structures. Generally, transistors in array structures are kept relatively small to reduce

the area. In their model, certain critical transistors are automatically sized based on

the model parameters to achieve reasonable delays. Moreover, they rely on CACTI

tool to determine delay-optimal cache hardware con�gurations and squarify array-based

structures.

Content-addressable memory (CAM) structures. CAM power models are very

similar to the ones proposed for array structures. However, in the CAM structures

taglines and matchlines are modeled instead of bitlines and wordlines. Equations for

tagline and matchline capacitances are also shown in Table 2.1. Parameters of the CAM

structures include: number of rows (tags) that depends on the instruction window size,

18 Chapter 2. Problem Statement and Simulation Methodology

Figure 2.4: High-level CMOS Inverter Diagram.

columns (bits per tag to match) that is dependent on both the issue/commit width of

the machine and the physical register tag size and �nally the ports on the CAM.

Table 2.2: Kdesign parameters for typical circuits.

Circuit N Kdesign Notes

D �ip �ops 22/bit 1.4 Edge-triggered FF
D latch 10/bit 2.0 Transparent latch
2-input Mux 2/bit/input 1.9 +1.2/input over 2
6T RAM cell 6/bit 1.2 1 RW port
CAM cell 13/bit 1.7 1 RW + 1 CAM ports
Static logic 2/gate input 11 Depends on speed and load

2.5.2. Leakage Power Models

While dynamic power dissipation represented the predominant factor in CMOS power

dissipation for many years, leakage power has been increasingly prominent in recent

technologies (Figure 2.4). Representing roughly 20-36% or more of the power dissipation

in current designs, its proportion is expected to increase in the future. Leakage power

can come from several sources including gate leakage and sub-threshold leakage.

Butts and Sohi [19] created a leakage power model based on BSIM3v3.2 MOSFET tran-

sistor model:

IDsub = Is0 ·
W

L
·
(
1− e

−VDS
vt

)
· e

VGS−VT−Voff
n·vt (2.2)

2.5. Power Models 19

In this equation IDsub is the sub-threshold drain current, VDS is the voltage across the

drain and the source, VGS , the voltage across the gate and the source terminal. Voff is

an empirically determined model parameter and vt is a physical parameter proportional

to temperature (exponential). The term n encapsulates various device parameters. The

term Is0 depends on transistor geometry width W and length L. They simpli�ed this

formula for a single device in o� state (VGS = 0), where

(
1− e

−VDS
vt

)
is approximately

1, since VDS = VDD >> VT , leaving the equation in:

IDsub = Is0 ·
W

L
· e

−VT−Voff
n·vt (2.3)

and abstracted the terms Is0 · e
−VT−Voff

n·vt as I ′leak, or leakage current, that depends on the

transistor speed.

From this formula, Pleak can be expressed as:

Pleak = VDD ·N · kdesign · I ′leak (2.4)

Where VDD represents the supply voltage, N represents the number of transistors, Ileak
the leakage current and the kdesign parameter represents the degree of �stacking� seen by

transistors in di�erent types of circuit designs (i.e., array structures, static logic, etc).

The key insight here is that many detailed aspects of the circuit design choices can be

abstracted into kdesign factor seen in these equations. The HotLeakage simulator [100]

stands on Butts/Sohi analytics to provide a simulation package for leakage power. Some

examples of kdesign parameters can be seen in table 2.2, whereas table 2.3 summarizes

how the leakage power from di�erent processor structures is modeled.

Gate Leakage

Gate leakage (also known as gate oxide leakage) grew 100-fold from the 130nm technology

Table 2.3: Leakage power models for di�erent processor structures.

Hardware Structure Model Type

Instruction Cache Cache Array (2x bitlines)
Wakeup Logic CAM
Issue Selection Logic Complex combinational
Instruction Window Array/CAM
Branch Predictor Cache Array (2x bitlines)
Register File Array (1x bitline)
Translation Lookaside Bu�er Array / CAM
Load/Store Queue Array / CAM
Data Cache Cache Array (2x bitlines)
Integer Functional Units Complex Combinational
FP Funcional Units Complex Combinational
Global Clock Clock

20 Chapter 2. Problem Statement and Simulation Methodology

Figure 2.5: High-k vs regular transistor.

(2001) to the 90nm technology (2003) [15]. Major semiconductor companies are switching

to �high-k� (Figure 2.5) dielectrics in their building process technologies to alleviate this

problem [15]. The reason for gate leakage is the direct tunneling of electrons through the

gate insulator (commonly silicon dioxide, SiO2) that separates the gate terminal from

the transistor channel. The thickness, Tox, of the gate SiO2 insulator must also be scaled

along with other dimensions of the transistor to allow the gate's electric �eld to e�ectively

control the conductance of the channel. The problem is that, when the gate insulator

becomes very thin, quantum mechanics allow electrons to tunnel across it and appear

at the other side. When the insulation layer is thick the probability of tunneling across

is virtually non-existent. As the insulation layer becomes thinner, tunneling becomes

stronger. It is amazing to realize that gate oxide thickness has scaled from 100nm to

just 1.2nm in 90 nm -and 65nm- technologies. This corresponds to a thickness of just

4-5 atoms [15]. The result is an uncontrollable, exponential, increase in gate leakage.

Gate leakage is weakly dependent on temperature but strongly dependent on insulator

thickness and on the gate-to-source (VGS) or gate-to-drain (VGD) biases seen by the

device. Without the VGS or VGD biases the necessary electric �eld to cause the electrons

to tunnel across the gate is absent. Since the supply voltage (VDD) determines the

magnitude of VGS and VGD, scaling VDD reduces gate leakage. There is also a weaker

dependence of gate leakage on VDS , the voltage across the drain and source that ties gate

leakage to the state of a circuit [80]. The most promising remedy for gate leakage, and the

one that is currently in use is the latest generation 32nm technologies, they insulate the

gate using high-k dielectric materials instead of the more common SiO2 oxide material3.

The increased thickness signi�cantly reduces the tunneling e�ect but at the same time

does not compromise the ability of the gate to control the channel. In other words,

performance is not compromised. Architecturally, gate leakage has not been given the

same attention as sub-threshold leakage. The trade-o�, as with sub-threshold leakage, is

one of speed vs. power. In sub-micron technologies, sub-threshold and gate leakage are

the cost we have to pay for the increased speed a�orded by scaling. Scaling the supply

3A thicker insulating layer of a high-k material can be as good as a thin layer of a low-k material.

2.6. Temperature Models 21

voltage attempts to curb an increase in dynamic power while at the same time in�ates

to enormous scales sub-threshold and gate leakage. This explains why static power share

increases over the dynamic power component with every new process generation.

For the most part gate leakage is considered as an additional leakage component and the

hope is that process-level solutions will address the problem. The HotLeakage simulator,

mentioned in section 2.4, takes gate leakage into account, thus giving a more accurate

picture for the bene�ts of various techniques that target sub-threshold leakage.

Sub-threshold Leakage

Sub-threshold leakage power represents the power dissipated by a transistor whose gate

is intended to be o�. While our idealized view of transistors is that they operate as

switches, the reality is that the relationship between current and voltage is analog and

shows a non-zero amount of current even for supply voltages lower than the threshold

voltage (VT) at which the transistor is viewed as switched �on�. This modest current

for VDD less than VT is referred to as the sub-threshold current. The power dissipation

resulting from this current is referred to as the sub-threshold leakage power, because the

transistor appears to leak charge to ground. Sub-threshold leakage power is given by the

following simpli�ed equation.

P = VDD(ke
−qVT /(akaT)) (2.5)

In this equation, VDD refers to the supply voltage, while VT refers to the threshold

voltage. The exponential link between leakage power and threshold voltage is immedi-

ately obvious. Lowering the threshold voltage brings a tremendous increase in leakage

power. Unfortunately, lowering the threshold voltage is what we have to do to main-

tain the switching speed in the face of lower supply voltages. Temperature, T , is also

an important factor in the equation: leakage power depends exponentially on tempera-

ture. The remaining parameters, (q, a and ka) summarize logic design and fabrication

characteristics.

2.6. Temperature Models

For temperature models we decided to integrate HotSpot [88] (version 5.0) in our simu-

lation environment. In this section, we will explain how this tool performs an approxi-

mation of temperature based on power and time.

Figure 2.6-left shows a typical modern single-chip package [73]. Heat generated from

the active silicon device layer is conducted through the silicon bulk to the thermal inter-

face material, heat spreader and heat sink, then convectively removed to the ambient.

In addition to this primary heat transfer path, a secondary heat �ow path uses con-

duction through the interconnect layer, I/O pads, ceramic substrate, leads/balls to the

printed circuit board. HotSpot method can model all these layers and both heat �ow

22 Chapter 2. Problem Statement and Simulation Methodology

Figure 2.6: Packing components (left) and 3x3 grid thermal model (right) as described in HotSpot
[88].

paths. It also considers lateral heat �ow within each layer to achieve greater accuracy of

temperature estimation.

In HotSpot modeling method each layer is �rst divided into a number of blocks. For

example, the silicon bulk layer can be divided into an irregular set of blocks, according

to architecture-level functional units, or into a regular set of grid cells at lower or �ner

granularity, depending on what the design requires. An example of regular grid primary

heat transfer path with 3x3 grid cells on the silicon layer is showed in Figure 2.6-right.

In order to improve accuracy, the thermal interface material and the center part of the

heat spreader that is right under the interface material are also divided into the same

number of grid cells as the silicon die. The remaining outside part of the heat spreader

is divided into four trapezoidal blocks. The heat sink is divided into �ve blocks: one

corresponding to the area right under the heat spreader and four trapezoids for the

periphery. Each block or grid cell maps to a node in the thermal circuit. In addition

to that, each cell in each layer has one vertical thermal resistance and several lateral

resistances, which model vertical heat transfer to the layers above and below, and lateral

heat spreading/constriction within the layer itself to the neighboring blocks, respectively.

The vertical resistance values are calculated directly based on the 3 shape and material

properties using:

Rvertical =
t

k ·A
(2.6)

Where t is the thickness of that layer, k is the thermal conductivity of the material of

that layer, and A is the cross-sectional area of the block. Calculating the lateral thermal

resistances is slightly more complicated because heat spreading and constriction must

be accounted for. Basically, the lateral thermal resistance on one side of a cell can

be considered as the spreading/constriction thermal resistance of the neighboring part

within a layer to that speci�c block. Details of lateral thermal resistance derivation and

formulae can be found in [54] and [88].

For layers that have surfaces interfacing with the ambient (i.e. the boundaries) their

model assumes that each surface (or part of a surface) has a constant heat transfer

2.7. Benchmarks 23

coe�cient h. The corresponding thermal resistance is then calculated as:

Rconvection =
1

h ·A
(2.7)

Where A is the surface area. Strictly speaking, these convection thermal resistances

are not part of the compact thermal model, because they include information about the

environment. If the environment changes (i.e., the boundary conditions change) these

convection resistances also change. On the other hand, for a particular design, the values

of all the other internal thermal resistances will not change if the compact thermal model

is BCI4.

From the above description, it is worth noting that more package layers can be easily

included in the models, due to the structured assembly nature of our method. Therefore,

this approach can also accommodate emerging packaging schemes such as stacked chip-

scale packaging (SCP) [2] and 3D integration [7].

2.7. Benchmarks

In order to analyze performance, power and temperature of the di�erent proposals of

this Thesis we decided to use di�erent benchmark suites, as we perform analysis in both

the single-core and multi-core �elds. For evaluation purposes in the single-core scenario

we use the integer version of the SPEC (Standard Performance Evaluation Corporation)

2000 benchmark suite [38]. For the multi-core scenario we use the Splash-2 [94] and

Parsec 2.1 [12] benchmark suites plus some other commonly used benchmarks. In this

section describe the individual benchmarks and the next section performs a power/tem-

perature analysis for those benchmarks that could be ported and compiled in our second

simulation environment (GEMS - Opal+Ruby running Solaris 10).

SPECINT2000 Suite

256.bzip2. Bzip2 compresses �les using the Burrows-Wheeler block-sorting text

compression algorithm, and Hu�man coding. Compression is generally consider-

ably better than that achieved by more conventional LZ77/LZ78-based compres-

sors, and approaches the performance of the PPM family of statistical compressors.

Bzip2 is built on top of libbzip2, a �exible library for handling compressed data

in the bzip2 format. The implemented version is based on Julian Seward's bzip2

version 0.1. The only di�erence between bzip2 0.1 and SPECINT2000 bzip2 is

that SPEC's version of bzip2 performs no �le I/O other than reading the input.

All compression and decompression happens entirely in memory. This is to help

isolate the work done to only the CPU and memory subsystem.

186.crafty. Crafty is a high-performance computer chess program that is designed

around a 64-bit word. It runs on 32 bit machines using the �long long� (or similar, as
4Boundary Condition Independent

24 Chapter 2. Problem Statement and Simulation Methodology

_int64 in Microsoft C) data type. It is primarily an integer code, with a signi�cant

number of logical operations such as and, or, exclusive or and shift. It can be

con�gured to run a reproducible set of searches to evaluate the integer/branch

prediction/pipelining facilities of a processor.

252.eon. Eon is a probabilistic ray tracer based on Kajiya's 1986 ACM SIGGRAPH

conference paper. It sends a number of 3D lines (rays) into a 3D polygonal model.

Intersections between the lines and the polygons are computed, and new lines are

generated to compute light incident at these intersection points. The �nal result

of the computation is an image as seen by camera. The computational demands

of the program are much like a traditional deterministic ray tracer as described

in basic computer graphics texts, but it has less memory coherence because many

of the random rays generated in the same part of the code traverse very di�erent

parts of 3D space.

254.gap. Gap is a system for computational discrete algebra, with particular em-

phasis on computational group theory. It provides a programming language, a

library of thousands of functions implementing algebraic algorithms written in the

gap language as well as large data libraries of algebraic objects. See also the

overview and the description of the mathematical capabilities. Gap is used in re-

search and teaching for studying groups and their representations, rings, vector

spaces, algebras, combinatorial structures, and more.

176.gcc. Based on gcc Version 2.7.2.2. This benchmark generates code for a Mo-

torola 88100 processor. It runs as a compiler with many of its optimization �ags

enabled. 176.gcc has had its inlining heuristics altered slightly, so as to inline more

code than would be typical on a Unix system in 1997. It is expected that this ef-

fect will be more typical of compiler usage in 2002. This was done so that 176.gcc

would spend more time analyzing it's source code inputs, and use more memory.

Without this e�ect, 176.gcc would have done less analysis, and needed more input

workloads to achieve the run times required for SPECINT2000.

164.gzip. gzip (GNU zip) is a popular data compression program written by Jean-

Loup Gailly for the GNU project. It uses Lempel-Ziv coding (LZ77) as its com-

pression algorithm. SPEC's version of gzip performs no �le I/O other than reading

the input. All compression and decompression happens entirely in memory. This

is to help isolate the work done to just the CPU and the memory subsystem.

181.mcf. A benchmark derived from a program used for single-depot vehicle

scheduling in public mass transportation. The program is written in C, the bench-

mark version uses almost exclusively integer arithmetic.

The program is designed for the solution of single-depot vehicle scheduling sub-

problems occurring in the planning process of public transportation companies. It

considers one single depot and a homogeneous vehicle �eet. Based on a line plan

2.7. Benchmarks 25

and service frequencies, so-called timetabled trips with �xed departure/arrival lo-

cations and times are derived. Each of this timetabled trip has to be serviced by

exactly one vehicle. The links between these trips are so-called dead-head trips. In

addition, there are pull-out and pull-in trips for leaving and entering the depot.

197.parser. The link grammar parser is a syntactic parser of English, based on

link grammar, an original theory of English syntax. Given a sentence, the system

assigns to it a syntactic structure, which consists of set of labeled links connecting

pairs of words. The parser has a dictionary of about 60000 word forms. It has

coverage of a wide variety of syntactic constructions, including many rare and

idiomatic ones. The parser is robust; it is able to skip over portions of the sentence

that it cannot understand, and assign some structure to the rest of the sentence. It

is able to handle unknown vocabulary, and make intelligent guesses from context

about the syntactic categories of unknown words.

300.twolf. The TimberWolfSC placement and global routing package is used in the

process of creating the lithography artwork needed for the production of microchips.

Speci�cally, it determines the placement and global connections for groups of tran-

sistors (known as standard cells) which constitute the microchip. The placement

problem is a permutation. Therefore, a simple or brute force exploration of the

state space would take an execution time proportional to the factorial of the input

size. For problems as small as 70 cells, a brute force algorithm would take longer

than the age of the universe on the world's fastest computer. Instead, the Timber-

WolfSC program uses simulated annealing as a heuristic to �nd very good solutions

for the row-based standard cell design style. In this design style, transistors are

grouped together to form standard cells. These standard cells are placed in rows

so that all cells of a row may share power and ground connections by abutment.

The simulated annealing algorithm has found the best known solutions to a large

group of placement problems. The global router which follows the placement step

interconnects the microchip design. It utilizes a constructive algorithm followed by

iterative improvement.

255.vortex. Vortex is a single-user object-oriented database transaction bench-

mark which exercises a system kernel coded in integer C. The Vortex benchmark

is a derivative of a full OODBMS that has been customized to conform to SPEC-

CINT2000 guidelines. The benchmark 255.vortex is a subset of a full object ori-

ented database program called Vortex. (Vortex stands for �Virtual Object Runtime

EXpository.�)

Transactions to and from the database are translated though a schema. (A schema

provides the necessary information to generate the mapping of the internally stored

data block to a model viewable in the context of the application.)

175.vpr. Vpr is a placement and routing program; it automatically implements a

26 Chapter 2. Problem Statement and Simulation Methodology

technology-mapped circuit (i.e. a netlist, or hypergraph, composed of FPGA logic

blocks and I/O pads and their required connections) in a Field-Programmable Gate

Array (FPGA) chip. Vpr is an example of an integrated circuit computer-aided

design program, and algorithmically it belongs to the combinatorial optimization

class of programs.

Placement consists of determining which logic block and which I/O pad within

the FPGA should implement each of the functions required by the circuit. The

goal is to place pieces of logic which are connected (i.e. must communicate) close

together in order to minimize the amount of wiring required and to maximize the

circuit speed. This is basically a slot assignment problem � assign every logic block

function required by the circuit and every I/O function required by the circuit to a

logic block or I/O pad in the FPGA, such that speed and wire-minimization goals

are met. Vpr uses simulated annealing to place the circuit. An initial random

placement is repeatedly modi�ed through local perturbations in order to increase

the quality of the placement, in a method similar to the way metals are slowly

cooled to produce strong objects.

Vpr uses a variation of Dijkstra's algorithm in its innermost routing loop in order to

connect the terminals of a net (signal) together. Congestion detection and avoid-

ance features run �on top� of this innermost algorithm to resolve contention between

di�erent circuit signals over the limited interconnect resources in the FPGA.

Splash-2 suite

Barnes. The barnes application simulates the interaction of a system of bodies

(galaxies or particles, for example) in three dimensions over a number of time

steps, using the Barnes-Hut hierarchical N-body method. Each body is modeled

as a point mass and exerts forces on all other bodies in the system. To speed up

the interbody force calculations, groups of bodies that are su�ciently far away are

abstracted as point masses. In order to facilitate this clustering, physical space is

divided recursively, forming an octree. The tree representation of space has to be

traversed once for each body and rebuilt after each time step to account for the

movement of bodies.

The main data structure in barnes is the tree itself, which is implemented as an

array of bodies and an array of space cells that are linked together. Bodies are

assigned to processors at the beginning of each time step in a partitioning phase.

Each processor calculates the forces exerted on its own subset of bodies. The bodies

are then moved under the in�uence of those forces. Finally, the tree is regenerated

for the next time step. There are several barriers for separating di�erent phases of

the computation and successive time steps. Some phases require exclusive access to

tree cells and a set of distributed locks is used for this purpose. The communication

patterns are dependent on the particle distribution and are quite irregular. No

2.7. Benchmarks 27

attempt is made at intelligent distribution of body data in main memory, since

this is di�cult at page granularity and not very important to performance.

Cholesky. The blocked sparse cholesky factorization kernel factors a sparse ma-

trix into the product of a lower triangular matrix and its transpose. It is similar

in structure and partitioning to the LU factorization kernel, but has two major

di�erences: (i) it operates on sparse matrices, which have a larger communica-

tion to computation ratio for comparable problem sizes, and (ii) it is not globally

synchronized between steps.

FFT. The �t kernel is a complex one-dimensional version of the radix
√
x six-

step �t algorithm, which is optimized to minimize interprocessor communication.

The dataset consists of the n complex data points to be transformed, and another

n complex data points referred to as the roots of unity. Both sets of data are

organized as
√
x x
√
x matrices partitioned so that every processor is assigned a

contiguous set of rows which are allocated in its local memory.

Ocean. The ocean application studies large-scale ocean movements based on eddy

and boundary currents. The algorithm simulates a cuboidal basin using discretized

circulation model that takes into account wind stress from atmospheric e�ects and

the friction with ocean �oor and walls. The algorithm performs the simulation for

many time steps until the eddies and mean ocean �ow attain a mutual balance.

The work performed every time step essentially involves setting up and solving a set

of spatial partial di�erential equations. For this purpose, the algorithm discretizes

the continuous functions by second-order �nite-di�erencing. After that it sets up

the resulting di�erence equations on two-dimensional �xed-size grids representing

horizontal cross-sections of the ocean basin. Finally it solves these equations using

a red-back Gauss-Seidel multigrid equation solver. Each task performs the com-

putational steps on the section of the grids that it owns, regularly communicating

with other processes.

Radix. The radix program sorts a series of integers, called keys, using the popular

radix sorting method. The algorithm is iterative, performing one iteration for each

radix digit of the keys. In each iteration, a processor passes over its assigned keys

and generates a local histogram. The local histograms are then accumulated into

a global histogram. Finally, each processor uses the global histogram to permute

its keys into a new array for the next iteration. This permutation step requires

all-to-all communication. The permutation is inherently a sender determined one,

so keys are communicated through writes rather than reads.

Raytrace. This application renders a three-dimensional scene using ray tracing. A

hierarchical uniform grid is used to represent the scene, and early ray termination

is implemented. A ray is traced through each pixel in the image plane and it

produces other rays as it strikes the objects of the scene, resulting in a tree of rays

28 Chapter 2. Problem Statement and Simulation Methodology

per pixel. The image is partitioned among processors in contiguous blocks of pixel

groups, and distributed task queues are used with task stealing. The data accesses

are highly unpredictable in this application. Synchronization in raytrace is done by

using locks. This benchmark is characterized for having very short critical sections

and very high contention.

Water-nsq. The water-nsq application performs an N-body molecular dynamics

simulation of the forces and potentials in a system of water molecules. It is used to

predict some of the physical properties of water in the liquid state. Molecules are

statically split among the processors and the main data structure in water-nsq is a

large array of records that is used to store the state of each molecule. At each time

step, the processors calculate the interaction of the atoms within each molecule and

the interaction of the molecules with one another. For each molecule, the owning

processor calculates the interactions with only half of the molecules ahead of it in

the array. Since the forces between the molecules are symmetric, each pair-wise

interaction between molecules is thus considered only once. The state associated

with the molecules is then updated. Although some portions of the molecule state

are modi�ed at each interaction, others are only changed between time steps.

Water-sp. This application solves the same problem as water-nsq, but uses a more

e�cient algorithm. It imposes a uniform 3-D grid of cells on the problem domain,

and uses an O(n) algorithm which is more e�cient than water-nsq for large numbers

of molecules. The advantage of the grid of cells is that processors which own a cell

need only to look at neighboring cells to �nd molecules that might be within the

cuto� radius of molecules in the box it owns. The movement of molecules into and

out of the cells causes cell lists to be updated, resulting in communication.

Parsec 2.1 suite

Blackscholes. This application is an Intel RMS benchmark. It calculates the prices

for a portfolio of European options analytically with the Black-Scholes partial dif-

ferential equation (PDE). There is no closed-form expression for the Black-Scholes

equation and as such it must be computed numerically.

Fluidanimate. This Intel RMS application uses an extension of the Smoothed

Particle Hydrodynamics (SPH) method to simulate an incompressible �uid for

interactive animation purposes. It was included in the PARSEC benchmark suite

because of the increasing signi�cance of physics simulations for animations.

Swaptions. The application is an Intel RMS workload which uses the Heath-Jarrow-

Morton (HJM) framework to price a portfolio of swaptions. Swaptions employs

Monte Carlo (MC) simulation to compute the prices.

x264. This application is an H.264/AVC (Advanced Video Coding) video encoder.

H.264 describes the lossy compression of a video stream and is also part of ISO/IEC

2.8. Benchmark Thermal Pro�les and Per-Structure Power Distribution 29

MPEG-4. The �exibility and wide range of application of the H.264 standard and

its ubiquity in next-generation video systems are the reasons for the inclusion of

x264 in the PARSEC benchmark suite.

Other benchmarks

Unstructured. Unstructured is a computational �uid dynamics application that

uses an unstructured mesh to model a physical structure, such as an airplane wing

or body. The mesh is represented by nodes, edges that connect two nodes, and

faces that connect three or four nodes. The mesh is static, so its connectivity does

not change. The mesh is partitioned spatially among di�erent processors using a

recursive coordinate bisection partitioner. The computation contains a series of

loops that iterate over nodes, edges and faces. Most communication occurs along

the edges and faces of the mesh.

Tomcatv. Parallel version of the SPECCFP95 - 101.tomcatv benchmark. Tomcatv

is a vectorized mesh generation program part of Prof. W. Gentzsch's benchmark

suite.

2.8. Benchmark Thermal Pro�les and Per-Structure Power

Distribution

In this section we analyze the thermal pro�les for all the benchmark suites used in

this Thesis running on a single core. In addition we will also show power usage of the

di�erent structures normalized to the total power usage of each benchmark, as well as a

comparison with the processor peak power dissipation as measured by McPAT.

We simulate a 14-stage, out-of-order core. Figure 2.7 shows the core con�guration and

�oorplan used to obtain temperature and power numbers in this section. For a N-core

CMP the core �oorplan will be replicated N times. Power and area numbers for this

core con�guration were obtained through the McPAT framework. Figure 2.8 depicts the

power distribution of the di�erent core structures provided by McPAT and normalized

to the total (peak) power of the core (7.6W). We then input these power numbers

into GEMS-Opal to obtain preliminary average power numbers of each structure using a

modi�ed version of the Wattch implementation included in GEMS-Opal (minor bug�xes).

Using these average power numbers we build the input �les for HotSpot - Hot�oorplanner

that will generate the core �oorplan. In addition to the power numbers, HotSpot also

needs per-structure area information (provided by McPAT) and structure communication

needs (we used Alpha 21264 structure dependences as our input for Hot�oorplanner). To

estimate temperatures we integrated HotSpot, that uses as inputs the generated �oorplan

and the dynamic and leakage power provided by McPAT, into GEMS-Opal. We also

implemented a temperature/leakage power loop inside the GEMS-Opal simulator, as

there is a direct relationship between both terms.

30 Chapter 2. Problem Statement and Simulation Methodology

	

L2

Dcache

Ic
ac

he

B
pr

ed

T
L

B

A
lu

m
ap

LsQ

FPAlu

FPRegs

ROB

IntRegs In
tE

xe
c

(a) Core Floorplan

Processor Core

Process Technology: 32 nanometers
Frequency: 3000 Mhz
VDD: 0.9 V
Instruction Window 128 RUU + 64 IW
Load Store Queue 64 Entries
Decode Width: 4 inst/cycle
Issue Width: 4 inst/cycle
Functional Units: 6 Int Alu; 2 Int Mult

4 FP Alu; 4 FP Mult
Branch Predictor: 16bit Gshare

Memory Hierarchy

Coherence Prot.: MOESI
Memory Latency: 300
L1 I-cache: 64KB, 2-way, 1 cycle lat.
L1 D-cache: 64KB, 2-way, 1 cycle lat.
L2 cache: 1MB/core, 4-way, uni�ed

12 cycle latency
TLB: 256 entries

Network Parameters

Topology: 2D mesh
Link Latency: 4 cycles
Flit size: 4 bytes
Link Bandwidth: 1 �it / cycle

(b) Core Structures

Figure 2.7: Core Con�guration

15,9%

1,0%

6,9%

0,8%

6,5%

4,2%

9,1%

9,5%

8,2%

28,2%

9,6% Rename
Bpred
ROB
LdStQ
Regfile
TLB
Icache
Dcache
L2
Alu
Resultbus

Figure 2.8: Power breakdown (%) of the simulated core respect to a total dynamic power of 7.6W .

2.8. Benchmark Thermal Pro�les and Per-Structure Power Distribution 31

Icache

Dcache
Bpred

TLB
FPAlu

FPReg

AluMap
ROB

IntReg

IntExec

LdStQ L2

44

45

46

47

48

49

50

51

52

ocean
tomcatv
cholesky
fft
radix
barnes
watersp
unstruct
waternsq
raytrace

Structure

T
e

m
p

e
ra

tu
re

s
(º

C
)

Benchmark

Figure 2.9: Thermal pro�les for the SPLASH-2 benchmark suite.

Icache

Dcache
Bpred

TLB

FPAlu

FPReg

AluMap
ROB

IntReg

IntExec

LdStQ L2

44

46

48

50

52

54

56

58

60

62

fluidanimate
blackscholes
swaptions
x264

Structure

T
e

m
p

e
ra

tu
re

s
(º

C
)

Benchmark

Figure 2.10: Thermal pro�les for the PARSEC 2.1 benchmark suite.

Figure 2.9 shows per-structure temperatures for the SPLASH 2 suite whereas Figure

2.10 depicts the same information for the benchmarks from the PARSEC 2.1 suite and,

�nally, Figure 2.11 shows the analogous information for the SPECINT2000 suite. We

can clearly identify the major core hotspots: TLB (Translation Lookaside Bu�er), Icache

(Instruction Cache), Alumap (Rename logic), ALUs (Arithmetic Logic Unit), ROB (Re-

order bu�er) and LdStQ (Load Store Queue). Power utilization (and thus temperature)

has a high variability between benchmarks. For example, we can see temperature varia-

tions of 12oC between Ocean (47oC) and x264 (59oC). These temperature variations are

due to the fact that some of the benchmarks do not use all of the processors resources,

even though they have good scalability as we increase the number of cores of the CMP

(as we will see in Section 2.9).

If we want to gain some insight of how each benchmark uses the core resources we need

32 Chapter 2. Problem Statement and Simulation Methodology

Icache

Dcache

Bpred
TLB

FPAlu

FPReg

AluMap
ROB

IntReg

IntExec

LdStQ L2

44

46

48

50

52

54

56

58

gap
bzip
mcf
twolf
gzip
parsec
vpr

Structure

T
e

m
p

e
ra

tu
re

s
(º

C
)

Benchmark

Figure 2.11: Thermal pro�les for the SPECINT2000 benchmark suite.

to take a look to the power numbers. Tables 2.4, 2.5 and 2.6 show per-structure power

usage for the three benchmark suites, respectively. Structure power is normalized to the

total power dissipated by each benchmark. We also include the total per-cycle power

usage of the benchmark and the fraction of power this represents from the peak dynamic

power provided by McPAT. According to these numbers, most of the power dissipated

by the core is done by the Icache, ROB, Rename Logic, ALUs and TLB, that match

the temperature hotspots of the chip seen in Figures 2.9 to 2.11. There is also another

hotspot, the TLB, that does not consume a big part of the total power. The TLB has a

really small area (as it can be seen in Figure 6.5b), so it is di�cult for this structure to

transfer heat to the heatsink.

Table 2.4: Normalized power distribution for SPLASH-2

Structure barnes cholesky �t ocean radix raytrace tomcatv unstruc waternsq watersp

Rename 18.9% 16.1% 17.6% 16.1% 17.8% 19.4% 15.6% 18.8% 20.3% 19.7%
Bpred 0.4% 0.7% 0.5% 0.8% 0.6% 0.7% 0.7% 0.3% 0.7% 0.8%
ROB 12.3% 11.7% 12.9% 10.4% 10.1% 11.4% 10.9% 15% 11.7% 12%
LdStQ 0.4% 0.7% 0.5% 0.8% 0.6% 0.7% 0.7% 0.7% 0.3% 0.4%
Reg�le 6.1% 5.1% 5.8% 5.6% 5.3% 6.1% 5.4% 6.3% 6.2% 6%
TLB 11.3% 8.8% 10% 8% 10.7% 12.2% 8.5% 11.2% 12.9% 12%
Icache 23.7% 16.9% 20.5% 15.3% 22.6% 25.9% 15.6% 22.5% 25.1% 24%
Dcache 5.6% 8% 5.8% 8% 5.9% 6.1% 8.5% 7.1% 5.1% 6%
L2 2.8% 4.4% 3.5% 4.8% 3.5% 2.2% 4.6% 2.2% 2.3% 2.5%
Alu 17.5% 26.4% 21.7% 29% 22% 14.5% 28.1% 15% 14.5% 15.8%

Resultbus 0.4% 0.7% 0.5% 0.8% 0.6% 0.3% 0.7% 0.3% 0.3% 0.4%
Total (Watts) 2.1 1.35 1.69 1.23 1.67 2.61 1.27 2.65 2.54 2.32
% of peak 27.7% 17.8% 22.3% 16.3% 22.1% 34.4% 16.8% 34.9% 33.5% 30.6%

2.9. Performance vs Power-E�ciency in a Multi-Core Scenario 33

Table 2.5: Normalized power distribution for PARSEC

Structure blackscholes �uidanimate swaptions x264

Rename 19.9% 19% 18.8% 19.8%
Bpred 0.4% 0.4% 0.4% 1%
ROB 9.7% 11.7% 12.3% 17%
LdStQ 0.4% 0.8% 0.4% 0.5%
Reg�le 6% 6% 5.9% 6.3%
TLB 11.5% 12.1% 11.4% 12.7%
Icache 25.4% 24.7% 23.3% 27.1%
Dcache 5.5% 6.4% 6.4% 6%
L2 2.7% 2.4% 2.7% 1%
Alu 17.5% 15.7% 17.4% 7.8%

Resultbus 0.4% 0.4% 0.4% 0.3%
Total (Watts) 2.1 2.4 2.1 5.6
% of peak 28.4% 32.4% 28.6% 74.1%

Table 2.6: Normalized power distribution for SPECINT2000

Structure bzip gap gzip mcf parsec twolf vpr

Rename 20.2% 19% 20.4% 19.1% 19.6% 19.7% 20.3%
Bpred 0.7% 0.6% 0.7% 0.7% 0.7% 0.7% 0.6%
ROB 13.4% 12.3% 13.3% 11.1% 11.2% 12.1% 12%
LdStQ 0.4% 0.6% 0.4% 0.5% 0.4% 0.5% 0.6%
Reg�le 6.3% 6% 6.1% 5.6% 5.8% 6% 6.1%
TLB 13.2% 12.9% 13.3% 13.9% 14.4% 13.4% 13.9%
Icache 28.1% 29% 29% 31.2% 32% 29.8% 29.6%
Dcache 5.1% 5.4% 4.5% 5.4% 4.4% 5.5% 6.5%
L2 1.4% 1.8% 1.4% 1.5% 1.4% 1.5% 1.2%
Alu 10.5% 11.7% 10.2% 10.3% 9.5% 10.1% 8.4%

Resultbus 0.2% 0.3% 0.2% 0.2% 0.2% 0.2% 0.2%
Total (Watts) 4 3.3 4.1 3.8 4.2 3.9 4.7
% of peak 53.8% 43.5% 55.2% 50.9% 56.3% 51.9% 62%

2.9. Performance vs Power-E�ciency in a Multi-Core Sce-

nario

In this section we show a brief study of the scalability of the di�erent applications from

SPLASH-2 and PARSEC 2.1 in terms of both performance and energy consumption.

Figure 2.12-left shows the performance speedup for di�erent applications as we increase

the number of cores from 2 to 16. We can clearly see that FFT benchmark does not

properly scale after 2 cores and saturates at 8 cores. Something similar happens with

x264 at 4 cores. The rest of the studied benchmarks have a sustained speedup progres-

barnes
cholesky

fft
ocean

radix
raytrace

tomcatv
unstruct

waternsq
watersp

blackscholes
fluidanimate

swaptions
x264

0

2

4

6

8

10

12

14

16

18
2p 4p 8p 16p

Benchmark

S
pe
ed
up

Barnes
Cholesky

fft
ocean

radix
raytrace

tomcatv
unstruct

waternsq
watersp

blackscholes
fluidanimate

swaptions
x264

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1p 2p 4p 8p 16p

Benchmark

N
or

m
al

iz
ed

 p
er

-C
or

e
E

ne
rg

y

Figure 2.12: Performance speedup (left) and energy (right) for the studied parallel benchmarks.

34 Chapter 2. Problem Statement and Simulation Methodology

barnes
cholesky

fft
ocean

radix
raytrace

tomcatv
unstruct

waternsq
watersp

blackscholes
fluidanimate

swaptions
x264

0

0,5

1

1,5

2

2,5
2p 4p 8p 16p

Benchmark

N
or

m
al

iz
ed

 E
ne

rg
y

D
el

ay

Figure 2.13: Energy delay product for the studied parallel benchmarks.

sion as we increase the number of cores in the CMP. However, if we multiply the speedup

obtained by the energy consumed5 to run the benchmark (2.13) things change a little

bit. For x264 benchmark, even if the benchmark does not scale properly in terms of

performance, the energy consumed by the cores is reduced. This means that individual

cores have less work to do, and regular clock gating is enough to prevent useless power

utilization. On the other hand, cholesky benchmark, although it shows a good speedup

progression, individual cores are wasting more power resources than the speedup they

provide, probably because they are executing useless instructions (wrong path instruc-

tions). The same thing happens to tomcatv benchmark, that has an increase of power

dissipation in useless instructions of almost 20% for 16 cores. For the rest of benchmarks

there is almost no power overhead when scaling the number of cores.

5This is known as Energy Delay product.

Chapter 3

Power Saving Mechanisms

Summary:

Nowadays, when we think about the design of embedded microprocessors we

always think in energy consumption and power dissipation, especially in the case of

battery-operated devices. Now the trend has moved to the high performance domain

where operating costs and thermal constraints are becoming a serious problem.

There are two sources of power dissipation: dynamic and static power. For several

generations, static power (or leakage) has been just a small fraction of the overall

energy consumption in microprocessors, and it was not considered a major concern

[48, 50]. As cited in the previous chapter, the continued CMOS scaling allows a

lower supply voltage which has the positive e�ect of reducing the dynamic power

component. However, using smaller geometries leads to use lower threshold voltages

which has the additional e�ect of increasing leakage power exponentially. This

results in static power beginning to gain importance in the overall power dissipation

as process technology drops below 65 nm [16, 34, 50].

In this chapter we introduce some of the most common power control mecha-

nisms that include: Dynamic Voltage and Frequency Scaling, Branch Con�dence Es-

timation, Pipeline Throttling enabled through Decode Commit Ratio (DCR), Crit-

ical Path Prediction for dynamic power reduction and, �nally, Decay and Drowsy

mechanisms for static power reduction with examples of usage in caches and value

predictors.

3.1. Dynamic Power Control Mechanisms

Dynamic power has been the main source of power dissipation in microprocessors until

very recently. This power dissipation comes from the equation Pd ≈ V 2
DD · f . A straight-

forward approach to control dynamic power is to lower the supply voltage VDD. This has

been done on every downscaling of the transistor technology, going down from around

1.8V at 180nm to 1.2V at 32nm.

However, another dependence exists between a transistor's maximum switching speed and

the supply voltage: δ ≈ 1/(VDD−VT)α, with α > 1. This means that, to keep a constant

35

36 Chapter 3. Power Saving Mechanisms

switching speed while lowering the supply voltage the threshold voltage (VT) must be

lowered accordingly. However, lowering VT a�ects reliability and increases leakage power

dissipation.

In this section we study di�erent power saving mechanisms to control dynamic power.

These mechanisms include both circuit-level mechanisms (like DVFS) and some microar-

chitectural techniques. Note that, for circuit-level mechanisms the performance impact

is much lower than for microarchitectural mechanisms, because part of the power reduc-

tion comes from voltage variations while for microarchitectural mechanisms every power

reduction has a direct impact on performance (unless they only a�ect instructions from

the wrong path of execution that have no impact on performance). Techniques will be

applied to a single-core processor in this analysis (the processor con�guration can be

seen in Table 3.1). Some of these power saving mechanisms are usually triggered by a

DTM mechanism instead of being active all the time. For our experimental analysis in

next sections we assume a power-based triggering mechanism that enables power saving

mechanisms when the processor exceeds an speci�c target power budget. We will use a

restrictive power budget of 50% of the peak dynamic power of the processor to force a

high usage of the di�erent power saving mechanisms.

Table 3.1: Core con�guration.

Processor Core

Process Technology: 65 nanometers
Frequency: 3000 Mhz
Instruction Window 128 RUU, 64 LSQ
Decode Width: 4 inst/cycle
Issue Width: 4 inst/cycle
Functional Units: 8 Int Alu; 2 Int Mult

8 FP Alu; 2 FP Mult
Memory Hierarchy

L1 I-cache: 64KB, 2-way
L1 D-cache: 64KB, 2-way
L2 cache: 2MB, 4-way, uni�ed
Memory: 300 cycle latency

2 memports
TLB: 256 entries

Other Information

Branch Predictor: 16bit Gshare
Branch and Value Pred.: 2 ports

3.1.1. Dynamic Voltage and Frequency Scaling

This technique has been widely used since the early 90's [62] o�ering a great promise to

reduce energy consumption in microprocessors. DVFS relies on the fact that dynamic

power dissipation depends on both voltage and frequency PD ≈ V 2
DD · f , and it dynami-

cally scales these terms to save dynamic power [85, 87, 96]. Kaxiras et al. [47] describe

the key design issues for DVFS.

3.1. Dynamic Power Control Mechanisms 37

1. Operation level: There are three di�erent levels where decisions can be made,

exploiting slack.

System-level: Detect idle periods (low system load) and scale voltage/fre-

quency for the whole processor.

Program/phase-level: Decisions are taken according to the program/phase

behavior, exploiting instruction slack at this level.

Hardware-level: This level tries to exploit the slack hidden in hardware oper-

ation (similar to idle time at system level).

2. DVFS settings: Some designs allow software to adjust a register that encodes

the desired voltage and frequency settings while in other cases choices are made

dynamically by hardware mechanisms.

3. Hardware granularity to control DVFS: Most work on DVFS focuses on cases where

the entire processor operates at the same voltage and frequency but is asynchronous

with the outside world (memory). In cases where the processor is stalled due to

memory dependencies DVFS can be applied without signi�cant impact on perfor-

mance.

4. Implementation characteristics of DVFS: Delay on switching between (voltage/fre-

quency) modes. Can the processor continue working when switching?

5. DVFS on multiple-core processors: In a multicore scenario executing parallel appli-

cations, reducing clock frequency to one core may impact other dependent threads

that are waiting for a result to be produced by the delayed thread.

Finally, one of the major drawbacks of DVFS has been the slow o�-chip voltage regulators

that lack the ability to adjust to di�erent voltages at small time scales (0.016mV/ns

according to [95]).

In the recent years, researchers and designers have moved to CMP architectures as a

way of maintaining performance scaling while staying within tight power constraints

[32, 40]. This trend, coupled with diverse workloads found in modern systems, motivates

the need for fast per-core DVFS control. Kim et al. [51] recently proposed the use of

on-chip regulators to achieve fast transition speeds of 30-50mV/ns. This solves one of the

major problems of DVFS but still has some limitations. As the building process goes into

deep submicron, the margin between VDD (supply voltage) and VT (threshold voltage)

is reduced, and as this margin decreases, the processor's reliability is reduced (among

other undesirable e�ects). Moreover, as cited before, the transistor's delay (switching

speed) depends on: δ ≈ 1/(VDD − VT)α, with α > 1. This means that we can lower

VDD for DVFS as long as we keep the margin between VDD and VT (i.e., VT must be

lowered accordingly) so we can obtain the desired speed increase derived from technology

scaling. However, the counterpart of reducing VT is twofold: a) leakage power increases

as it exponentially depends on VT (equation 2.5), which makes leakage an important

38 Chapter 3. Power Saving Mechanisms

source of power dissipation as the process technology scales below 65nm [34, 48, 50]; and

b) processor reliability is further reduced.

DVFS - MCD (multiple clock domains)

DVFS-MCD is an improved version of DVFS that divides the processor into di�erent

clock domains, typically four, and applies di�erent pairs of voltage-frequencies according

to the program needs. The most common domains are:

Front end + L1 Icache

Integer Units

FP Units

Load-Store Units + L1 Dcache + L2 cache

The processor's front-end frequency is set statically because it is too complex to adjust

dynamically [85]. All the other domains modify their voltage and frequency at runtime

according to the program needs. Bu�ers are placed between domains for synchronization

purposes. The analysis of the program needs can be done either o�ine using pro�ling

[64, 85] or online. By taking into account information about the bu�ers occupancy

we can determine at runtime each domain needs and modify frequencies accordingly

[43, 95]. If the bu�er is empty (the consumer is too fast or the producer is too slow) we

can modify their frequencies depending on what we pursue: performance or lower energy

consumption. We can do the opposite if the bu�er �lls up.

DVFS - CMP (Chip multiprocessors)

If we apply DVFS in a CMP at a processor level we are reducing the frequency and

voltage for all the cores in the CMP, and that leads to a high performance degradation.

It is more useful to have independent voltage regulators for each core and reduce the

frequency of the cores that do less useful work [32].

Juang et al. [43] proposed the use of distributed DVFS that dynamically identi�es execu-

tion threads in the critical path (threads that take more time to reach a synchronization

point). Once these �critical� threads are identi�ed they move them to a core that works

at full speed while the rest of the cores run at a lower speed executing non-critical

threads. This way all the threads in the processor reach the synchronization point at the

same time. They assume full parallel programs with synchronization points that behave

uniformly during program execution and critical threads that will always be critical.

Isci et al. [40] introduce a mechanism that uses DVFS in a CMP to match a prede�ned

power budget, assuming that we have mechanisms to measure power and performance

in real-time. Their MaxBIPs approach calculates the best combination of core speeds to

maximize throughput at runtime depending on the di�erent program needs and behavior.

However, this mechanism does not work properly for memory-intensive benchmarks.

3.1. Dynamic Power Control Mechanisms 39

3.1.2. Pipeline Throttling

Pipeline Throttling is a technique that reduces the amount of in-�ight instructions in

the pipeline to reduce power dissipation [4, 8, 66]. Pipeline Throttling can be applied at

di�erent stages, producing di�erent e�ects on both power and performance.

Instruction �ow control: These techniques try to estimate the amount of ILP in

the processor by tracking the instructions traversing the pipeline. Authors in [8]

propose the decode/commit ratio (DCR) heuristic for estimating the processor's

current ILP. We can take advantage of this information and either stop or slow

down the front-end for a small number of cycles to reduce power dissipation.

Con�dence estimation: Con�dence estimators try to add some additional informa-

tion to branch predictors so that the processor can check how good a prediction is

and act accordingly. JRS [41] is one of the most cost-e�ective con�dence estima-

tors. It uses a direct-mapped table accessed by the program counter where it stores

how many consecutive hits there are for a branch. When the counter exceeds a

threshold, the branch is considered con�dent.

For this thesis we are interested in the determining the capabilities of the di�erent tech-

niques to adapt to power constraints (that can be measured either by the number of

cycles over the power budget or by the area over the power budget). In addition we want

to know how much power we can save and what performance penalty these techniques

have on the processor.

Pipeline throttling techniques rely on reducing the instruction �ow inside the pipeline

to reduce power dissipation. In this section we experimentally analyze how the Pipeline

Throttling technique behaves individually in terms of both the number of cycles over

the power budget and performance degradation for the JRS and DCR approaches. For

the DCR approach (Figure 3.1) we show the throttling e�ect when: a) the technique

is always enabled (DCR); b) throttling is done only when both the power budget is

exceeded and the DCR criteria is matched (DCR + >PB); and c) throttling is done only

when the power budget is exceeded (>PB). While pipeline throttling is active, we divide

both the fetch and decode bandwidth by X (note that we are evaluating a 4-wide issue

processor, so X can vary from 0 to 4). As mentioned before, in order to have a better

understanding of each technique capabilities (accuracy, total dynamic power reduction

and performance degradation) we will use a restrictive power budget of 50% of the peak

dynamic power of the processor.

Figures 3.1-left and 3.2-left show the amount of throttling in the x axis as follows: the

base case corresponds to bar 1; bars 2 and 4 correspond to a throttling of 1/2 and 1/4

of its original capacity, respectively; �nally, bar 0 means a �full-stop� of the fetch unit.

All the techniques are applied as long as the trigger condition lasts (e.g., JRS labels a

branch as non-con�dent; or the DCR condition is met1 and the power budget is exceeded)

1There are three times more committed than decoded instructions.

40 Chapter 3. Power Saving Mechanisms

	

0

10

20

30

40

50
1 2 4 0 1 2 4 0 1 2 4 0

Throttling (1/x) Throttling (1/x) Throttling (1/x)

DCR DCR + >PB >PB

C
yc

le
s

ov
er

 P
B

(%
)

Wrong Path Correct Path

	

0

20

40

60

80

1 2 4 0 1 2 4 0 1 2 4 0

Throttling (1/x) Throttling (1/x) Throttling (1/x)

DCR DCR + >PB >PB

Sl
ow

do
w

n
(%

)

Figure 3.1: Cycles over PB and slowdown for DCR-based throttling (power budget = 50%).

	

0

10

20

30

40

50

1 2 4 0

Throttling (1/x)

C
yc

le
s

ov
er

 P
B

(%
)

Wrong Path Correct Path

	

0

10

20

30

40

1 2 4 0

Throttling (1/x)

Sl
ow

do
w

n
(%

)

Figure 3.2: Cycles over PB and slowdown for JRS-based throttling (power budget = 50%).

plus 3 cycles. The evaluated con�dence estimator is a modi�ed version of JRS (Figure

3.2) with a 64K-entry table where each entry contains a 2-bit saturating counter. The

con�dence estimator, thus, has a size of 16KB with a power overhead of around 0.3%,

also accounted in our results. When a branch is labeled as non-con�dent, we either stop

or slow down the front-end of the processor.

One of the most interesting things we can observe in Figures 3.1 and 3.2 is that the

major reduction in the cycles over power budget comes from cycles that belong to a

mispredicted path, as intended (microarchitectural techniques can only save power from

instructions from the wrong path of execution, not from �real� instructions). However,

none of these techniques alone is good enough to match the required power budget of

50% unless performance is highly degraded (e.g., bars 4 and 0 in Figure 3.1). There-

fore, under high power restrictions, the performance degradation of Pipeline Throttling

mechanisms makes them worsen than DVFS. However, under less restrictive power con-

straints, Pipeline Throttling mechanisms are able to match the target power budget

with minimal performance degradation, saving power from instructions than belong to

a mispredicted path of execution.

3.1.3. Critical Path

Data dependencies are one of the main bottlenecks in high performance processors: de-

pendency chains limit the performance of the machine leaving most of the processor

structures and logic idle [92]. These chains of dependent instructions are known as the

3.1. Dynamic Power Control Mechanisms 41

	

	

	

	
 	
 	
 	
 C1	
 	
 	
 	
 	
 C2	
 	
 	
 	
 	
 	
 	
 C3	
 	
 	
 	
 	
 	
 	
 C4	
 	
 	
 	
 	
 	
 	
 C5	

	

	
 C1	
 	
 	
 C2	
 	
 	
 C3	
 	
 	
 C4	
 	
 C5	

	
 (b)	
 DVFS	
 (c)	
 Critical	
 Path	

Power	
 budget	

	

	
 	
 	
 C1	
 	
 C2	
 	
 	
 C3	
 	
 	
 C4	
 	
 C5	

	
 (a)	
 Original	

Figure 3.3: DVFS and critical path e�ects on power dissipation at a cycle level.

critical path of the code. A processor's performance is determined by how fast it can

execute the critical path, not by how fast it can execute all of the code.

If we were able to distinguish between instructions that belong to the critical path of

the program, we could either accelerate their execution to improve the machine's perfor-

mance, or slow down non-critical instructions to reduce power and temperature. Authors

in [92] proposed a critical path predictor that is able to predict critical instructions. How-

ever, the amount of cycles a non-critical instruction can be delayed without becoming

critical is really small [22].

When working in a power-constrained scenario where a power budget is de�ned, a critical

path predictor can be used to locate non-critical instructions in cycles over the power

budget in order to move them to cycles under the power budget [26, 27]. As mentioned

previously, the more cycles an instruction is delayed, the more chances that it becomes

part of the critical path, so instructions are only delayed up to 8 cycles from their original

execution cycle. As in [92], we use an 8K-entry table indexed by PC. Each entry has a

6-bit saturating counter that is incremented by 8 if the instruction belongs to the critical

path and is decremented by 1 otherwise. This 6KB table (340 times smaller than the

L2 cache) introduces a power overhead of around 0.5% which is also accounted in our

results. From the proposed policies in [92], we have chosen the �QOld� policy for our

implementation because of its simplicity and cost-e�ectiveness. Each cycle, QOld policy

marks as critical the oldest instruction in the instruction queue, unless it is ready. When

the instruction becomes ready it is marked as non-critical.

In order to gain some insight of the di�erences between circuit-level and microarchitec-

tural techniques, Figure 3.3 illustrates how instructions behave inside the pipeline for the

original instruction �ow, DVFS and critical path for several cycles (Ci represents cycle

i). Solid boxes correspond to critical instructions while the rest represent non-critical

instructions. If we set a power budget like the one in Figure 3.3, DVFS will slow down

all the instructions (actually, DVFS increases cycle length) to match the required budget

at the expense of increasing the execution time. On the other hand, by using instruction

criticality information, as shown in Figure 3.3-(c), we locate non-critical instructions, so

they can be e�ciently delayed to cycles under the budget.

For a simple implementation we only add a single bit in the critical path predictor table,

42 Chapter 3. Power Saving Mechanisms

	

0

10

20

30

40

50

Ba
se 1 2 4 6 8

Delay Cycles (Critical Path)

C
yc

le
s

ov
er

 P
B

(%
)

Wrong Path Correct Path

	

0

5

10

15

1 2 4 6 8

Delay Cycles (Critical Path)

Sl
ow

do
w

n
(%

)

Figure 3.4: Instruction criticality analysis approach for a power budget of 50%.

along with the information about the criticality of an instruction, to mark if the last time

it was executed the power budget was exceeded. Therefore, if the predictor detects a

non-critical instruction previously executed in a cycle over the budget, then our proposed

mechanism will try to delay its execution to a cycle under the power budget. The longer

it is delayed, the more chances for the instruction to become critical. Once a delayed

instruction becomes critical we will experience a signi�cant performance degradation.

Again, we will use a restrictive power budget of 50% to see how much we can bene�t

from instruction reordering. Results for the instruction criticality analysis can be seen

in Figure 3.4. The �delay cycles� (x axis) represent the maximum number of cycles

a non-critical instruction can be delayed. Results are far worsen than the ones from

pipeline throttling. First of all we must note that, for the base case, almost half of

the execution cycles are over the power budget (45%). Note also that our critical path

predictor relies on �nding holes where it can delay instructions from cycles over the

budget. Therefore, the more cycles a program is over the power budget, the harder it

is to balance the instructions so they can all execute under the budget. Second, in our

implementation, the critical path predictor has no information about the power cost of

each instruction neither how much power over the budget was dissipated in each cycle.

Even if the mechanism had that information it would still need some inter-instruction

communication in order to know if enough instructions have been delayed to be under

the power budget. To keep it simple, this �rst approach delays as many non-critical

instructions as found when the power budget is exceeded. In the next chapters we will

enhance these simple mechanisms in order to increase their accuracy and their associated

energy penalty when matching the power budget.

3.1.4. Hybrid Approaches

There are several proposals that try to merge both DVFS and microarchitectural tech-

niques in a two-level mechanism to bene�t from both coarse and �ne-grain mechanisms.

Sasanka et al. propose the use of DVS and some microarchitectural techniques to specif-

ically reduce the energy consumption in real time video applications [83]. Their selected

microarchitectural techniques try to reduce the power of functional units and the instruc-

tion window. Moreover, they don't use clock gating in their proposal, and the studied

3.1. Dynamic Power Control Mechanisms 43

	

30

35

40

45

50

55

60

1 10 19 28 37 46 55 64 73 82 91 100

Time (x500 us)

N
or

m
al

iz
ed

 P
ow

er
 (%

)

 .

BZIP CRAFTY VORTEX

Base Case

	

30

35

40

45

50

55

60

1 10 19 28 37 46 55 64 73 82 91 100

Time (x500 us)

N
or

m
al

iz
ed

 P
ow

er
 (%

)

.

BZIP CRAFTY VORTEX

DVFS

	

30

35

40

45

50

55

60

1 10 19 28 37 46 55 64 73 82 91 100

Time (x500 us)

N
or

m
al

iz
ed

 P
ow

er
 (%

)

 .

BZIP CRAFTY VORTEX

Fetch Throttling

	

30

35

40

45

50

55

60

1 10 19 28 37 46 55 64 73 82 91 100

Time (x500 us)
N

or
m

al
iz

ed
 P

ow
er

 (%
)

 .

BZIP CRAFTY VORTEX

Decode Throttling

	

30

35

40

45

50

55

60

1 10 19 28 37 46 55 64 73 82 91 100

Time (x500 us)

N
or

m
al

iz
ed

 P
ow

er
 (%

)

 .

BZIP CRAFTY VORTEX

JRS

c

	

30

35

40

45

50

55

60

1 10 19 28 37 46 55 64 73 82 91 100

Time (x500 us)

N
or

m
al

iz
ed

 P
ow

er
 (%

)
 .

BZIP CRAFTY VORTEX

Critpath

Figure 3.5: Per-cycle power dissipation for a power budget of 50%.

benchmarks have special properties that their selected microarchitectural techniques can

take advantage of. In [26] we propose a more generic and adaptive hybrid mechanism,

as it does not depend on pro�ling. This proposal is described in more detail in Chap-

ter 4, but in essence what it proposes is the use of power-token information to select

between di�erent power saving mechanism depending on how far we are over the power

budget. Although we do not implement any speci�c microarchitectural technique to re-

duce the consumption of the instruction window and functional units, the use of clock

gating prevents these structures to consume when they are underused. Winter et al.

[93] propose the use of a two-level approach that merges DVFS and thread migration to

reduce temperature in SMT processors. More recently, Siddiqua et al. [86] propose the

combination of DVFS with microarchitectural techniques to reduce temperature in the

context of improving processor reliability.

44 Chapter 3. Power Saving Mechanisms

3.1.5. Timeline Analysis of Power Dissipation

In the previous sections we have introduced some of the most common dynamic power

saving mechanisms. Our primary goal in this Thesis is to accurately match a prede�ned

power budget while minimizing the energy penalty. We don't know a priori if this power

constraint will be far or close to the peak power dissipation of the processor, so we need

to know how much these techniques can lower the power towards the budget, and how

can we merge them to obtain further power reductions. As in previous sections we will

use an aggressive power budget of 50% of the peak power dissipation as a challenging

scenario for the power saving mechanisms to reduce power down to the budget.

This section shows a timeline analysis of the studied techniques for a given power budget

of 50% (Figure 3.5) (we only show three benchmarks for the sake of visibility). The power

dissipation of each technique is represented relative to the maximum power dissipation,

so 50 means 50% of the peak power of the processor using clock gating. As not all

benchmarks last the same, we only show the �rst 100 windows of 500 microseconds

each. The critpath con�guration shown is for a delay of 8 cycles. All fetch, decode

and JRS con�gurations shown are enabled when the processor is over the power budget

(red line in the �gure) and produce a full stop of the front-end. In addition, we show a

non-blocking DVFS mechanism (it can continue execution during power mode changes)

that can work in two modes: the �rst one produces a 15% power reduction with 5%

performance degradation and the second mode reduces power by 35% and performance

by 10%.

With the information provided by Figure 3.5 we can classify the di�erent mechanisms

depending on how close they are to the power budget. Critical Path is the power saving

mechanism that reduces the least power of all the studied mechanisms, followed by

JRS. These two mechanisms are the ones with the least power reduction but also the

ones with minimal performance impact on the processor. Meanwhile, DVFS constantly

changes between power modes trying to get as close as possible to the power budget,

showing low accuracy because of the long exploration and activation windows.

Note that both Fetch and Decode throttling (the most restrictive approaches) also have

a prede�ned power budget of 50% but are stuck at 40%. This is not a coding mistake.

Note that the graphs plot the average power dissipation on intervals of 500µs , that is, for

our processor con�guration (3 Ghz), 1500000 instructions. Both mechanisms are applied

at cycle level, and only during cycles that are over the PB. That makes the standard

deviation from the average power quite high in these windows. When we reduce the

power dissipation in the cycles that are over the power budget, the new average for the

window is reduced. Figure 3.6 shows this e�ect graphically.

3.2. Leakage Control Mechanisms

As it was previously stated, leakage power is becoming an important source of power

dissipation in modern microprocessor designs. Fighting to reduce leakage has been an

3.2. Leakage Control Mechanisms 45

	

Power	
 Budget	

Old	
 Average	

New	
 Average	
 after	
 eliminating	
 the	
 exceeded	
 power	

+	
 Standard	
 Deviation	

-­‐	
 Standard	
 Deviation	

Removed	
 by	
 one	
 of	
 the	
 techniques	
 (e.g.	

throttling)	

Figure 3.6: Standard deviation e�ect for one window (500µsecs).

important topic in microprocessor development in the last few years. The techniques to

deal with leakage have been categorized into non-state preserving and state-preserving

[19, 58, 99, 10].

In the non-state preserving scenario, Powell et al. [76] proposed gated − VDD as a

procedure to restrain leakage power by gating o� the supply voltage of cells. This non-

state preserving technique, known as decay, reduces the leakage power drastically at the

expense of losing the cell's contents. Decay techniques must be applied very carefully

since the information loss can result in an increase of the dynamic power. Kaxiras et

al. [46] successfully applied decay techniques to individual cache lines in order to reduce

leakage in cache structures (67% of static energy consumption can be saved with minimal

performance loss). This technique has also been applied to conditional branch predictors

and BTB structures [39, 42].

Conversely, the state preserving scenario is lead by drowsy techniques which try to reduce

leakage without losing the cell's contents. Drowsy caches [33] use di�erent supply voltages

according to the state of each cache line. The lines in drowsy mode use a low-voltage level

that allows a leakage reduction while retaining the data, but requiring a high voltage

level to access it again. Waking up from the drowsy state is similar to a pseudo-cache

miss incurring in some penalty cycles (about 7 cycles) according to [58]. Of course, the

leakage power savings of this mechanism are lower than the decay ones, but the additional

dynamic energy consumption due to the information loss is also decreased. Flautner et al.

[33] showed that a drowsy cache, which is putting to sleep all cache blocks periodically,

achieves 54% leakage power savings with negligible performance degradation (about 1%).

The authors in [58] confronted the state and non-state preserving techniques for caches

and showed that, for a fast L2 cache (5-8 latency cycles), decay techniques are superior

in terms of both performance degradation and energy savings compared to drowsy ones.

As an example of an adaptive decay mechanism suited for caches, Zhou et al. [101]

proposed an adaptive time based mechanism that dynamically disables cache lines in

order to reduce leakage power dissipation. The mechanism takes advantage of the cache

tag array, which is never switched o�, to track if there are many induced cache misses in

46 Chapter 3. Power Saving Mechanisms

order to adapt the length of the decay interval accordingly.

Finally, quasi-static four-transistor (4T) memory cells are an alternative to traditional

decay techniques. These cells are approximately as fast as 6T SRAM cells, but do not

have connections to the supply voltage (VDD). Conversely, the 4T cells are charged upon

each access whether read or write, and slowly leak the charge over time until, eventually,

the values stored are lost. Authors in [42] applied decay techniques to branch predictors

by using 4T cells, removing some of the drawbacks of gated−VDD transistors, since any

access to a 4T cell automatically reactivates it, whereas reactivating a 6T cell from the

�sleep� mode is somehow more complex, requiring extra hardware involved in gating the

supply voltage.

In the next sections we will evaluate both state and non-state preserving techniques for

an speci�c case of study, �Reducing leakage power in value predictors�. We will propose

several mechanisms to maximize leakage energy reduction with minimal performance

penalty including Static Value Prediction Decay (SVPD) [23], Adaptive Value Prediction

Decay (AVPD) [24] and a power-performance drowsy approach for Value Predictors (VP)

[25]. These mechanisms are able to dramatically reduce the leakage energy of traditional

value predictors with negligible impact on neither prediction accuracy nor processor

performance. The proposed decay-based techniques dynamically locate VP entries that

have not been accessed for a noticeable amount of time and switch them o� to prevent

leakage. On the other hand, the drowsy-based approach will locate these entries and

lower the supply voltage, retaining the data but requiring �ve additional cycles to access

it again.

3.2.1. Value Predictors: A Case Study for Leakage Reduction

Data dependences are one of the key factors that limit performance in current high-

performance superscalar microprocessors. Previous works suggested that value prediction

can overcome the limits imposed by data dependencies [35, 36, 60, 76]. Value prediction

is a technique that predicts the output of an instruction as soon as it is fetched allowing

subsequent instructions that depend on that result to execute using the predicted value.

These instructions must be validated once the actual values are computed. VP has also

been successfully used to perform early load retirements in high performance processors

[52]. However, the use of value prediction techniques has not been widespread, despite

the speedup provided (15% on average as reported in [21]), mainly due to complexity-

delay issues. Note that unlike other prediction structures, such as branch predictors, the

access time in VPs is not crucial. First of all, the predicted value is not needed until the

instruction has reached its issue stage, and second, current high performance processors

typically implement deeper pipelines (14 stages or more) which e�ectively hide the VP

latency.

However, the use of VP structures incurs in additional dynamic and static power dissi-

pation. The continuous access to the prediction tables in almost each clock cycle may

result in a thermal hot spot, increasing the leakage power of the structure, as it also

3.2. Leakage Control Mechanisms 47

happens in caches and branch predictors. In modern high performance processors, due

to high operating temperatures, it is crucial to reduce leakage in every possible structure.

Although the VP is a small structure compared to a L2 cache, if we let it overheat (likely,

as it is accessed frequently and resides quite close to the core) without any precaution to

regulate its leakage, the negative e�ects can be quite serious. Small hot structures can

leak more than larger but cooler ones and we cannot a�ord to allow leakage even in the

smallest structures.

We will now introduce the most common value predictors and their particularities. The

last value predictor (Figure 3.7a) was introduced by Lipasti et al. [60]. This is the most

basic prediction mechanism and, basically, it assumes that the next value produced by

an instruction will be the same as the previous one. A generalization of the last value

predictor leads to the stride value predictor (STP). Introduced by Gabbay et al. [35],

STP (Figure 3.7b) uses the last value produced by an instruction plus a stride pattern.

In a stride pattern, the di�erence between two consecutive values is a constant. The next

predicted value is computed by adding the last value to the stride.

The �nite context method value predictor (FCM - Figure 3.7c), introduced by Sazeides

et al. [84], uses the history of recent values, called the context, to determine the next

value. This is implemented by using two-level prediction tables. The �rst level stores

the recent history of the instructions outputs (VHT). The second level stores, for each

possible context, the value which is most likely to follow that pattern (VPT). The value

is predicted by using the program counter to access the VHT table and, according to the

context hash function, the VPT table is accessed to get the predicted value.

Finally, the di�erential �nite context method value predictor (DFCM - Figure 3.7d)

introduced by Goeman et al. [36], joins the two previous predictors in one structure.

DFCM works like FCM (two-level prediction tables), but it stores as context the di�er-

ences between the outputs instead of the outputs themselves plus the last output of the

instruction. In this way, DFCM can predict stride patterns using less storage space than

FCM by adding the last value to the stride associated to the context. For non-stride

patterns, DFCM works just like the FCM predictor.

3.2.2. Problem Overview: Generational Behaviour in Value Prediction

Structures

As commented before, there are two sources of power dissipation in all processor struc-

tures, dynamic and static power. In value prediction, the dynamic component is pro-

duced by the repeated capacitance charge and discharge on the transistor gate outputs

and strongly depends on the utilization of the VP tables: the more use the more con-

sumption. The output values of instructions can be predicted at di�erent demanding

levels: the most aggressive utilization predicts the output for all instructions traversing

the pipeline (this is the worst case scenario for power reduction techniques, and it will

be the one used in the rest of this study). Other approaches restrict the use of the value

predictor to just a fraction of instructions such as long-latency instructions, load instruc-

48 Chapter 3. Power Saving Mechanisms

Last ValuePC

Prediction

(a) Last Value Predictor.

Last ValuePC

Prediction

Stride

+

(b) STP Value Predictor.

Value

Prediction

ContextPC

(c) FCM Value Predictor.

Last ValuePC

Prediction

Context

+

Stride

(d) DFCM Value Predictor.

Figure 3.7: Value Predictor Analysis.

tions that miss in the data caches, instructions that belong to the critical path, or just

to predict the e�ective address for memory disambiguation. Therefore, restricting the

VP utilization to just a fraction of selected instructions e�ectively reduces the dynamic

power component of this structure. However, the static power component is still there:

the VP structure leaks regardless of activity, especially through subthreshold leakage

currents and gate leakage currents that �ow even when transistors are nominally o�,

with increasing leakage loss for �ner process technologies. For this reason, this proposal

focuses on reducing the VP structure's static power component. Value predictors share

many similarities with caches as they are both array structures. As happened in [46],

looking at the value predictor entries behavior we can divide the stream of accesses into

generations. A generation is de�ned as the period of time an entry is accessed by the

same instruction. Entries have an initial usage time (known as live time) followed by

a period of no utilization (known as dead time) before they are accessed by a di�erent

instruction, as shown in Figure 3.8. An entry's live time will be the period of time the

entry is accessed by the same PC and its dead time will be the period of time between

the last access with a speci�c PC and the �rst access with a new one. In order to eval-

uate the generational behavior and the utilization of the VP entries, Figure 3.9 shows

the fraction of time each entry remains in the dead state2 for the whole SPECint2000

benchmark suite as a function of VP size. This way we can determine if disabling all the

entries during the dead times will produce enough savings to justify the mechanism. We

can observe that the three evaluated value predictors -Stride, FCM and DFCM- present

2This fraction of time can be measured as the ratio: total dead time / (total live time + total dead

time).

3.2. Leakage Control Mechanisms 49

	

Live Time Dead Time

Last Access New Generation B

PC1 PC1 PC1
PC1 PC1 PC2

time

New Generation A

Figure 3.8: Temporal behavior of a value predictor entry.

	

0,40

0,45

0,50

0,55

0,60

0,65

0,70

10 20 40 80 160

Predictor Size (KB)

de
ad

_t
im

e
/ (

liv
e_

tim
e+

de
ad

_t
im

e)

…
…

...
...

STP DFCM FCM

Figure 3.9: Fraction of time VP entries spend in dead state (SpecInt2000).

a similar utilization regardless of their size. For sizes around 20 KB, the average fraction

of dead time is 43%, and for predictor sizes around 40 KB, the average fraction of time

the entries spend in their dead state is 47%. Hence, if we were able to take advantage

of these dead times by detecting them and shutting the entries o�, we could reduce the

leakage energy of the value predictor structure by one half on average. However, it is

important to note that this is not an upper bound on the leakage energy savings that

could be achieved by decaying VP entries. Long periods of inactive live time could also

be detected to early shut the entry o� in order to obtain further leakage savings, at the

expense of slightly reducing the VP accuracy and processor performance, as we will show

in the following sections.

3.2.3. Techniques for Reducing Leakage in Value Predictors

3.2.3.1. Non-State Preserving Scheme: Static Decay

We will begin introducing the non-state preserving techniques. Static decay is a technique

that tries to locate unused VP entries in order to switch them o� [23]. To detect if an entry

is unused a decay interval is established, i.e. the number of cycles we should wait before

shutting an entry o� if there are no instructions accessing it. If we choose short decay

intervals we will increase the energy savings, but we can degrade processor performance,

50 Chapter 3. Power Saving Mechanisms

as we can disable entries during their live time, losing their contents. On the other hand,

choosing long decay intervals will decrease the chances of disabling entries during live

time, but we will lose some potential energy savings from dead times. Therefore, we

need to track the accesses to each VP entry in order to detect if a particular entry is

accessed very frequently or, conversely, the entry has been unused for a long period of

time, probably entering into a dead state. For the static decay scheme it is crucial to

explore a wide range of decay intervals to precisely detect the dead states while, at the

same time, not degrading the VP accuracy. Ideally, the best static decay interval is the

one that minimizes the performance impact of prematurely disabling a VP entry.

The static decay mechanism will be implemented by means of a hierarchical counter

composed of a global decay counter and a two-bit saturated gray-code counter on each

value predictor entry3. The local counters will only be incremented when the global

counter reaches zero. Any access to an entry will reset its local counter. When a local

counter reaches its upper limit it means that the entry has been unused for a decay

interval, and can be shut o�, reducing its leakage power dissipation to almost zero. As

mentioned previously, the access time to the VP structure is not crucial but, in our study,

we will use a moderate access time of 5 cycles.

To prevent VP entries from leaking we will use gated − VDD transistors [76]. These

�sleep� transistors are inserted between the ground (or supply) and the cells of each VP

entry, which reduces their leakage in several orders of magnitude and can be considered

negligible. An alternative to using gated− VDD transistors consists of using quasi-static

4T transistors in the VP array, although similar leakage savings would be expected [42].

The length of the decay interval is controlled by the global decay counter. If we set the

global decay counter to a low value then the VP entries may be disabled prematurely and

leakage will be reduced drastically, at the cost of reducing the hit rate of the predictor.

On the other hand, if we increase the global counter too much (a long decay interval),

the leakage energy savings will not be as high as their potential.

Regarding the utilization of VPs, throughout the chapter we are predicting the output

values for all instructions traversing the pipeline. However, it is important to note that

this aggressive prediction scheme does not bene�t a decay mechanism (either static or

adaptive) since they are based on locating unused predictor entries. The more we use the

VP structures, the less chances to detect unused VP entries and the less leakage energy

savings obtained from a decaying mechanism.

There are several overheads that must be considered when performing the leakage en-

ergy savings evaluation. The �rst overhead component takes into account the extra

dynamic and static power that results from the additional hardware (a global decay

interval counter as well as the two-bit local counters4 per VP entry [24]). The second

3Using a hierarchical counter is more power-e�cient since it allows accessing the local counters at a
much coarser level. Accessing the local counters each cycle would be prohibitive because of the power
overhead.

4The dynamic and static power overhead of all 2-bit local counters has been measured to be less than
2% of the total VP structure.

3.2. Leakage Control Mechanisms 51

overhead component comes from the induced VP misses (when a VP entry is prema-

turely disabled) that increases the execution time. These extra cycles that the program

is running will also lead to additional static and dynamic power dissipation. Note that

this second overhead is highly destructive since each extra cycle accounts for the overall

processor dynamic and static power and can easily cancel the VP leakage energy savings

provided by the decay scheme.

3.2.3.2. Non-State Preserving Scheme: Adaptive Value Prediction Decay

Adaptive Value Prediction Decay (AVPD) is, like Static Decay, a time-based mechanism

that analyzes the VP tables to detect unused entries. If an entry is unused for a long

period of time, it probably means that it has entered in a dead state, and we should turn

it o�. As we will see in the results section, the decay interval depends on the application

running in the processor and even on the code section being executed. During program

execution there are sections of code where the VP usually hits or fails its predictions

(correct and wrong predictions appear clustered depending on the program phase). We

can also �nd program sections where the number of VP entries being accessed is abnor-

mally low, and even identify instructions whose optimal decay interval is di�erent from

others. Therefore, higher leakage energy savings could be obtained (compared to stati-

cally setting the decay interval) if we are able to dynamically adapt the decay interval to

the program needs. The AVPD mechanism will use, basically, the same implementation

as the static approach. The mechanism uses a hierarchical counter composed of a global

counter and a two-bit saturated gray-code counter for each individual value predictor

entry (local counters) to implement the decay interval. The AVPD mechanism considers

that each VP entry can be in one of the following three states, as shown in Figure 3.10:

enabled (both data and the local counter are enabled), partially disabled (data is shut

o� but the local counter is enabled) or disabled (both data and the local counter are

shut o�).

AVPD uses two additional global counters that account for: a) the number of partially

disabled entries (entries that change from the enable state to the partially disabled state)

within the previous decay interval; and b) the number of re-enabled entries (entries that

change from the partially disabled state to the enabled state) within the current decay

interval. After a number of cycles equal to the average live time5, a re-activation ratio is

calculated as the number re-enabled entries over the number of partially disabled entries.

As we cannot identify the instruction accessing the value predictor (because it is imple-

mented as a non-tagged table), it is not possible to determine if there is a real generational

change or if we disabled the entry during its live time. Therefore, we will use a time-

based approach. We will add an intermediate state between the enabled and disabled

states and account, during a short period of time, if there are many entries that are

re-enabled (come back from the intermediate state to enable state). If that happens,

5The static decay experiments showed that the average live time is around 400 cycles for the three
evaluated VPs.

52 Chapter 3. Power Saving Mechanisms

Figure 3.10: AVPD mechanism work�ow.

the decay interval is too short. If there aren't many re-enabled entries we can try to

lower the decay interval to increase savings. A positive e�ect of AVPD compared to

the original cache decay mechanism is that prematurely disabling a VP entry is not as

harmful as disabling a cache line: losing the contents of the cache line always leads to

an extra access to L2 cache or memory to retrieve the lost information incurring in extra

execution cycles. However, losing the contents of a VP entry might result -or not- in a

value missprediction on the next access to that entry but this is exactly what would hap-

pen if we had a real generation change (which is a very common situation and one of the

major limitations in traditional non-tagged VPs, where the huge number of destructive

interferences dramatically shortens the generational replacement).

In addition, AVPD uses two pre-de�ned threshold values (increasing threshold and de-

creasing threshold) in order to determine whether the length of the current decay in-

terval is correct: i.e., if the current decay interval makes VP entries to decay during

their live time (prematurely) or during their dead time (as expected). Therefore, if the

re-activation ratio is higher than the increasing threshold then the current decay window

is too short and it is doubled since there are many entries being disabled prematurely.

On the other hand, if the re-activation ratio is lower than the decreasing threshold, the

current decay window is too long and it is halved since we are shutting entries o� too late,

losing opportunities to reduce the VP leakage. In order to make the AVPD mechanism

easier to implement we will use power-of-two decay intervals. VP entries are shut o�,

preventing them from leaking, by using gated− VDD transistors [76].

The AVPD mechanism works as follows (see Figure 3.10): each cycle the global decay

3.2. Leakage Control Mechanisms 53

counter is incremented by one and, when it over�ows, the local counters of all VP entries

in either enabled or partially disabled states are incremented. However, an access to a

VP entry will result on an immediate reset of its local counter. In addition:

For those entries in the enabled state (both VP data and the local counter are en-

abled): If the entry remains unused for a long time, its local counter will eventually

over�ow and the entry will change to the partially disabled state. The number of

partially disabled entries is incremented.

For those entries in the partially disabled state (VP data is shut o� whereas the

local counter is enabled): If the entry is not accessed within the average live time

then it will be changed to the disabled state and the local counter will also be shut

o�. However, an access to a partially disabled entry will change it to the enabled

state, increasing the number of re-enabled entries.

For those entries in the disabled state (both VP data and the local counter are

shut o�): Any access to the entry will change it to the enabled state.

Regarding the pre-de�ned values used for the increasing and decreasing thresholds, it is

important to note that setting the decreasing threshold to low values will reassure AVPD

that there are few re-enabled entries before lowering the decay interval, resulting in a

more conservative policy. On the other hand, setting the decreasing threshold to high

values will make AVPD to reduce the decay interval more frequently, resulting in a more

aggressive policy. Analogously, setting the increasing threshold to low values means that

AVPD will increase the decay interval even if there are few re-enabled entries; whereas

setting the increasing threshold to high values will make AVPD to wait until it has a

great fraction of re-activations before increasing the decay interval. In Section 3.2.4.5

we evaluate the leakage-e�ciency of the AVPD mechanism for di�erent increasing and

decreasing thresholds.

As for this static approach, we can split the power overhead of the AVPD mechanism

into three main components. The �rst component is associated to the dynamic and static

power derived from the two-bit local counters inserted into every predictor entry (same

overhead as for the static decay scheme). The second component comes from the three

global counters: one is part of the hierarchical decay interval counter (also appears in

the static decay scheme) and the other two counters are speci�c of the adaptive decay

scheme. The third component is derived from the induced VP misses (when a VP entry

is prematurely disabled) that increase program execution time. These extra cycles that

the program is running will also lead to additional static and dynamic power dissipation.

It is important to note that AVPD is virtually neither introducing additional power

overhead nor complexity when compared to the static decay scheme (just the additional

two global counters whose power overhead has been conveniently modeled into the AVPD

power model).

54 Chapter 3. Power Saving Mechanisms

3.2.3.3. State Preserving Scheme: Drowsy

The drowsy technique aims to reduce leakage power dissipation while preserving the

contents of a cell by switching between two working modes, low-power and high-power.

While the cell is in low-power mode, the information is preserved, but it cannot be

accessed. In order to access the cell again it must be reinstated into the high-power

mode. A drowsy scheme can be con�gured according to the following parameters [33]:

Update window size: Speci�es if the amount of cycles to wait before turning entries

into drowsy mode can be varied.

Simple or Noaccess policy: �Simple� means that all entries are turned into drowsy

mode after a number of cycles. �Noaccess� puts to drowsy mode only the entries

that have not been accessed in a number of cycles.

Awake or drowsy tags: put tags into drowsy mode or not (a�ects latency).

According to [33], the simple policy with a window size of 8000 cycles comes very close

to the behavior of the no-access policy with a window size of 2000. They choose a

simple policy with a window size of 4000 cycles for their tests, as it reaches a reasonable

compromise between simplicity of implementation, power savings and performance. In

our case, it is not fair to compare the decay and drowsy approaches using the simple

policy since the decay approach will delete all the information of the structure every

decay interval (data loss will mean an access to L2 or memory in decay, but only a few

cycles for drowsy to re-enable the entry). Instead, we will then use an update window-

noaccess policy6. In our case, drowsy will be used exactly as decay, at an entry level.

The leakage power dissipation of a transistor in drowsy mode is measured to be 15%

of the original leakage (as estimated in [33]), something signi�cant compared with the

almost 0% of the decay scheme.

There are several ways of implementing this two power-level technique (ABC-MTCMOS,

DVS, etc). The Dynamic Voltage Scaling (DVS) [33] mechanism allows structures to

dynamically change their speed and voltage while operating, increasing their energy

e�ciency. If we refer to memory structures, it is possible to reduce their supply voltage

while retaining the data. Scaling the voltage of the cell to 0.5 times the supply voltage

can maintain the cell's state. This reduction of the operating voltage allows us to reduce

the leakage currents, and thus the leakage power of the memory cell. DVS must be

controlled by a voltage scheduler to dynamically adjust the processor speed and voltage

during execution. Voltage schedulers analyze the state and context of the system in order

to predict future workload of the processor, increasing the complexity of scheduling.

Auto-Backgate-Controlled MT-CMOS is a mechanism that dynamically increases the

transistors threshold voltages when going to �sleep� mode by raising the transistors body

voltage. This higher VT reduces the leakage current without losing the cells contents when

going to �sleep� mode but o�sets the total leakage power savings. This technique also

6The awake/drowsy tags policy cannot be evaluated because the evaluated VPs do not have tags.

3.2. Leakage Control Mechanisms 55

requires high energy to switch between states increasing the time needed to transition.

DVS is faster, easier to implement, and obtains more power reduction than ABC (and

will be used in our results) but depends on the process technology and is more sensible

to SEU7 noise.

3.2.4. Experimental Results

3.2.4.1. Simulation Methodology

To evaluate the energy-e�ciency of SVPD, AVPD and drowsy techniques we have used

the SPECint2000 benchmark suite. All benchmarks were compiled with maximum opti-

mizations (-O4 -fast) by the Compaq Alpha compiler and they were run using a modi�ed

version of HotLeakage power-performance simulator [100] that includes the dynamic and

static power model for the evaluated Value Predictors (Stride, FCM and DFCM) as well

as the power overhead associated to SVPD, AVPD and drowsy techniques. All bench-

marks were run to completion using the reduced input data set (test). The VP access

latency has been set to 5 cycles for the three evaluated VPs.

We use the same processor con�guration than for the dynamic power analysis (Table 3.1).

The STP value predictor has 76 bits per entry: Value (64) + stride (8) + con�dence

(2) + decay counter (2). FCM has a variable number of bits per entry on the �rst level

table: First level decay counter (2) + history bits for second level table (variable) and

68 bits per entry on the second level table: Value (64) + con�dence (2) + second level

decay counter (2). DFCM has 68 bits per entry + a variable amount of bits on the �rst

level table: Value (64) + �rst level decay counter (2) + con�dence bits (2) + history

bits for second level table (variable) and 12 bits on the second level table: Con�dence

(2) + decay counter (2) + stride (8). The leakage related parameters have been taken

from the Alpha 21264 processor provided with the HotLeakage simulator suite using a

process technology of 65 nanometers.

3.2.4.2. Leakage-E�ciency of State and Non-State Preserving Mechanisms

As we discussed earlier, predicting the output values for all instructions traversing the

pipeline does not bene�t any of the proposed mechanisms, neither static nor adaptive,

since they are based on locating unused predictor entries. The more demanding use of

the VP structures, the less opportunities to detect unused VP entries. Figure 3.11 shows

the di�erences in speedup for both static decay and drowsy with decay intervals from

256 Kcycles to just 64 cycles in order to better understand the e�ects of prematurely

deactivating a VP entry. We must never forget that traditional value predictors (with

no power-saving techniques) can provide signi�cant speedups (13% for a 10 KB DFCM).

Looking into the performance degradation caused by static decaying, we can notice

that for FCM and DFCM predictors there is no IPC degradation until 256-cycle decay

intervals. For the STP predictor, there is a negligible IPC degradation (less than 1%) for

7Single Event Upset.

56 Chapter 3. Power Saving Mechanisms

	

2

4

6

8

10

12

14

Infinite 256K 32K 4K 1024 512 256 64
Decay Interval (Cycles)

Sp
ee

du
p

(%
) …
..

STP-Decay FCM-Decay DFCM-Decay
STP-Drowsy FCM-Drowsy DFCM-Drowsy

Figure 3.11: Average speedup for the static decay and drowsy schemes for 10 KB VPs.

1024 and 512-cycle decay intervals. For 256-cycle (and smaller) intervals the performance

degradation is not tolerable. We measured the VP entries average live time to be about

400 cycles. Therefore, if the decay interval exceeds that critical point then the speedup

provided will fall apart.

On the other hand, the drowsy technique �normalizes� the optimal decay interval for all

predictors to 256 cycles, behind the average live time, but close enough to it to maintain

the speedups provided by the value predictor. Note that drowsy does not lose the entries

contents, which makes drowsy not to reduce the performance as quickly as decay. But

this does not make drowsy more energy-e�cient, as performance is only an element of

the energy metric, and the power reduction provided by drowsy is lower than that of

decay.

3.2.4.3. Static Decay for VPs

In this section we perform an evaluation on the energy-e�ciency of the static decay

scheme for value predictors with varying sizes (sizes are not power-of-two numbers be-

cause of the extra 2-bit counters per entry) and for several decay interval windows:

64, 256, 512, 1024, 4K, 32K and 256K cycles. For each evaluated VP we report the

IPC degradation as we reduce the decay interval and the corresponding leakage energy8

savings for the VP structure. Overall leakage energy savings are not presented due to

HotLeakage limitations that only provide static power models for regular array structures

such as caches, predictors, and the register �le.

Figure 3.12-top shows the performance degradation of the STP value predictor for dif-

ferent sizes (SpecInt2000 average). Looking into the performance degradation caused

by static decay we can notice that it is degraded as expected, due to the data loss of

prematurely deactivating VP entries that still are in a live state. In particular, there is

a slight IPC degradation (around 1%) for 1024- and 512-cycle decay intervals. However,

8Recall that the performance degradation is also included in the energy metrics (LeakageEnergy =
LeakagePower ·Delay).

3.2. Leakage Control Mechanisms 57

	

2

4

6

8

10

12

14

VP-no
decay

256K 32K 4K 1024 512 256 64

Decay Interval (Cycles)

IP
C

 S
pe

ed
up

 (%
)

…
..

4,6KB 9,25KB 18,5KB 37KB 74KB

	

-40

-20

0

20

40

60

80

256K 32K 4K 1024 512 256

Decay Interval (Cycles)

L
ea

ka
ge

 E
ne

rg
y

Sa
vi

ng
s

(%
)

 …
..…

.

4,6KB 9,25KB 18,5KB 37KB 74KB

Figure 3.12: STP performance degradation (top) and leakage energy savings (bottom).

	

2

4

6

8

10

12

14

VP-no
decay

256K 32K 4K 1024 512 256 64

Decay Interval (Cycles)

IP
C

 S
pe

ed
up

 (%
)

…
..

2.3KB 4.6KB 9.5KB
19.25KB 39KB 78KB

	

-40

-20

0

20

40

60

80

256K 32K 4K 1024 512 256 64

Decay Interval (Cycles)

L
ea

ka
ge

 E
ne

rg
y

Sa
vi

ng
s

(%
)

 …
..…

.

2.3KB 4.6KB 9.5KB 19.25KB 39KB 78KB

Figure 3.13: FCM performance degradation (top) and leakage energy savings (bottom).

58 Chapter 3. Power Saving Mechanisms

due to early deactivation of entries and the induced extra execution cycles for 256-cycle

and smaller decay intervals, the performance loss is intolerable.

Figure 3.12-bottom shows the average leakage energy savings of the STP predictor. As

expected from the IPC degradation, for very small decay intervals (64 and 256 cycles),

the early deactivation of entries results in no leakage energy savings at all due to the

induced extra execution cycles that completely cancel whatever leakage power savings

provided by the decay mechanism. However, for 1024 cycles and, particularly, for a

4K-cycle decay interval, the proposed VP decay approach obtains 52% average leakage

energy savings when considering a medium size (20 KB) predictor.

Figure 3.13 show the performance degradation and the average leakage energy savings

of the FCM value predictor. Since FCM is a two-level predictor (with the relevant

data stored in the second level table) we will disable both levels independently. We can

notice a similar behavior to the STP predictor for the very small decay intervals (64 and

256 cycles), again with negative leakage energy savings due to the early deactivation of

entries and the induced extra execution cycles. On the other hand, for very big decay

intervals (32 K and 256 K-cycles), the overhead is almost zero, but we obtain very small

leakage energy savings (Figure 3.13-bottom) since there are almost no deactivations of

VP entries. However, as we reduce the decay interval length, there is an increase in

leakage savings with a maximum in the 512-cycle interval. For this decay interval, a 20

KB FCM predictor obtains average leakage energy savings of 75%, showing the bene�ts

of Value Prediction Decay.

Figure 3.14 show the performance degradation and the average leakage energy savings of

the DFCM value predictor. We can notice that the DFCM predictor behaves very close

to FCM. However, for big decay intervals, DFCM obtains better energy savings (Figure

3.14-bottom) due to a positive side e�ect when shutting entries o�, that results in a

reduction of destructive interferences, this e�ect is explained as follows. Imagine that

we have entries in the �rst level table with di�erent predictions that point to di�erent

second level table entries. If the instruction that these entries are predicting changes,

there is �trash� on the tables from the previous prediction that will interfere during some

cycles with the new information until the predictor gets stable, whereas if we decay, all

entries will reset, so they will always behave the same. Again, as we reduce the decay

interval length, there is an increase in leakage energy savings with a maximum in the

512-cycle interval. In this case, for a predictor size around 20 KB we obtain average

leakage energy savings of 65%. For both FCM and DFCM predictors, the best energy

savings are obtained for a decay interval within the 512-cycle range, unlike data caches

where the best decay intervals are within the 8-Kcycle range [46].

3.2.4.4. Drowsy for VPs

This section shows the results of the drowsy technique applied to DFCM, STP and

FCM value predictors. In order to access an entry in drowsy state we add 5 additional

latency cycles to the original 5 latency cycles of the VP structure. Figure 3.15-top shows

3.2. Leakage Control Mechanisms 59

	

2

4

6

8

10

12

14

16

VP-no
decay

256K 32K 4K 1024 512 256 64

Decay Interval (Cycles)

IP
C

 S
pe

ed
up

 (%
)

…
..

2.5KB 5.18KB 10,5KB
21,25KB 43KB 87KB

	

-40

-20

0

20

40

60

80

256K 32K 4K 1024 512 256 64

Decay Interval (Cycles)

Le
ak

ag
e

En
er

gy
 S

av
in

gs
 (%

)
 …

..…
.

2.5KB 5.18KB 10,5KB 21,25KB 43KB 87KB

Figure 3.14: DFCM performance degradation (top) and leakage energy savings (bottom).

the average energy savings for a DFCM predictor using the drowsy technique applied

statically. Compared to Figure 3.14b-bottom, the best drowsy con�guration obtains less

leakage energy savings than the best static decay. Despite the fact that drowsy shortens

the best decay interval from 512 to 256 cycles, the performance degradation and the

additional overhead (15% extra consumption) makes drowsy to lose against static decay

for DFCM. For a predictor size around 10 KB, drowsy obtains average leakage energy

savings of 44% while for a size around 20 KB, the average leakage energy savings are

57%.

In the STP predictor case (Figures 3.15-middle and 3.12-bottom), drowsy behaves better

than decay. As we can see in Figure 3.11, the speedup degradation in the static decay for

STP predictor begins in 4K cycles but, for drowsy, it starts at 256 cycles. This reduction

of the decay interval and the low IPC degradation makes energy savings greater in drowsy

than in decay.

As happened previously with the DFCM predictor, the FCM predictor behaves better

for the static decay scheme than for drowsy (Figures 3.13-bottom and 3.15-bottom). As

we can see in Figure 3.15-bottom, the best decay interval depends on the predictor's size.

For small predictor sizes, the best decay interval is 256 cycles, and, for anything greater

than 10 KB, the best decay interval is 512 cycles. This is due to the extra penalty cycles

in the FCM predictor for sizes bigger than 10 KB. For a predictor size around 10 KB,

the drowsy scheme obtains average leakage energy savings of 51% while, for a size about

60 Chapter 3. Power Saving Mechanisms

	

-100

-80

-60
-40

-20

0

20

40
60

80

100

262144 32768 4096 1024 512 256 64

Drowsy Interval (Cycles)

V
P

Le
ak

ag
e

En
er

gy
 S

av
in

gs
 (%

)

 s

l 2.5KB 5.18KB 10.5KB 21.25KB 43KB 87KB

	

-100

-80

-60

-40

-20

0

20

40

60

80

100

262144 32768 4096 1024 512 256 64

Drowsy Interval (Cycles)

V
P

Le
ak

ag
e

En
er

gy
 S

av
in

gs
 (%

)

 s

l

4.6KB 9.25KB 18.5KB 37KB 74KB

	

-100

-80

-60

-40

-20

0
20

40

60

80

100

262144 32768 4096 1024 512 256 64

Drowsy Interval (Cycles)

V
P

Le
ak

ag
e

En
er

gy
 S

av
in

gs
 (%

)

 s

l 2.3KB 4.6KB 9.5KB 19.25KB 39KB 78KB

Figure 3.15: Static drowsy scheme for the DFCM (top), STP (middle) and FCM (bottom) value
predictors.

20 KB, it obtains 64% energy savings.

3.2.4.5. Adaptive Decay for VPs

Using a static decay interval means that we must choose that decay interval carefully in

order to maximize the leakage savings. Figure 3.16 shows the leakage energy savings, per

benchmark, for a 10 KB DFCM value predictor using the static decay technique. In some

cases, the best static decay interval may di�er between applications (as it can be seen in

Figure 3.16, where the best static decay interval is 4 Kcycles for some benchmarks -mcf

and gap- and 512 cycles for the rest). However, even when using pro�ling techniques in

order to determine the best decay interval per application, there is no guarantee that

the best leakage savings are obtained, since the static decay approach cannot capture

variations within an application. This second e�ect is important in the case of value

3.2. Leakage Control Mechanisms 61

prediction structures since right and wrong predictions appear clustered depending on

the program phase. Therefore, an adaptive decay scheme can dynamically choose decay

intervals at run-time to more precisely match the generational behavior of prediction

tables entries.

This section presents the leakage-e�ciency evaluation of the proposed AVPD mechanism

for the Stride, FCM and DFCM predictors, compared to the best con�guration of both

static decay and drowsy schemes. Each sub�gure in Figure 3.17 shows the average VP

leakage energy savings for some representative con�gurations of the adaptive mechanism

as well as the best static decay (512-cycle decay interval according to section 3.2.4.3)

and the best static drowsy con�guration (256-cycle interval according to section 3.2.4.4)

for comparison purposes.

For the evaluation of AVPD we carried out a comprehensive set of experiments for many

con�gurations using di�erent decreasing and increasing threshold values. In this Thesis

we only present the most representative con�gurations:

Con�guration 00/100 (decreasing threshold set to 0% / increasing threshold set to

100%): this is the most conservative policy since AVPD will only try to decrease

the decay interval if none of the entries are re-activated; and it will only try to

increase the decay interval when all the entries are re-activated. It works pretty

well for all the studied predictors as it does not take any risks when changing the

decay interval.

Con�guration 50/50: this is the most aggressive con�guration as it continuously

keeps changing the decay interval, increasing or decreasing the decay interval ac-

cording to the re-activation ratio.

Con�gurations 40/60 and 70/100: these are the best ones we have found for the

di�erent predictors. The 40/60 is also aggressive but works well with the Stride

predictor, as it balances long decay intervals with short ones. The 70/100 con�g-

uration trends to shorten the decay interval whenever is possible, only raising it

when all decayed entries are re-activated.

Figure 3.17-bottom shows the average leakage energy savings for the DFCM predictor and

the cited adaptive con�gurations as well as the best static and drowsy decay intervals

(512 and 256 cycles respectively). As it can be seen, for DFCM the best adaptive

con�guration is 70/100. This con�guration surpasses the best static decay and drowsy

schemes for all evaluated predictor sizes. For an average size of 10.5 KB, AVPD obtains

64% average leakage energy savings versus 55% of the static scheme and 44% of drowsy.

For the smaller size of 5 KB, the di�erence between the adaptive and static schemes is

even more evident: AVPD provides additional average leakage energy savings of 14%

respect to the static scheme (AVPD obtains 55% and the static scheme just 41%) and

26% respect the drowsy scheme (55% versus 29%). It can be observed that, as size grows,

the di�erences between the adaptive and static schemes disappear, both obtaining 80%

62 Chapter 3. Power Saving Mechanisms

	

-40

-20

0

20

40

60

80

100

262144 32768 4096 1024 512 256 64

Decay Interval (Cycles)

V
P

Le
ak

ag
e

En
er

gy
 S

av
in

gs
 (%

)

 s

l BZIP C RAFTY EON GAP GC C GZIP

M C F P ARSER TWOLF VORTEX VP R

Figure 3.16: Static decay scheme for a 10 KB DFCM value predictor.

average leakage energy savings for a size of 87 KB. In such large predictors there is no

need for an adaptive scheme, because there are very low generational changes, and they

can be easily identi�ed by the static scheme. The 70/100 con�guration is the best one

we have found since it tends to reduce the decay interval towards its lower limit (256

cycles). In general, we have seen that whatever con�guration that tends to shorten the

decay interval will perform well with DFCM, but constant changes of the decay interval

will result in a loss of net leakage energy savings.

Figure 3.17-top shows the average leakage energy savings for the STP predictor. As

cited in section 3.2.3.2, the AVPD mechanism tries to decrease the decay interval in

order to reduce the leakage energy. The STP predictor is especially susceptible to these

trials of reducing the decay interval since a big interval reduction degrades the STP

accuracy enough (as shown in Figure 3.11) to make the power overhead due to the

induced extra cycles equal to the power savings provided by AVPD. This makes the

adaptive scheme to behave similarly to the static scheme. The STP predictor works

better with con�gurations that change the decay interval quickly, like 50/50 or 40/60,

because con�gurations that trend to shorten the decay interval (like 70/100) decrease

the predictor's accuracy too much, making the overhead much greater than the provided

energy savings. On the other hand, as said in section 3.2.4.4, drowsy dominates over

decay approaches for the STP due to the reduction of the decay interval from 4K cycles

to 256 (without almost no performance penalty). This reduction increases power savings

more than the drowsy costs, without any major e�ects on performance, making the

energy savings larger for drowsy than decay schemes.

Finally, �gure 3.17-middle shows the average leakage energy savings for the FCM pre-

dictor. This value predictor behaves very similarly to DFCM, with the same best con-

�guration of 70/100, but obtaining even greater leakage energy savings. In addition,

the di�erences compared to the best static decay and the best drowsy schemes are also

higher. For a predictor size of 4.6 KB, the static decay approach obtains 50% leakage

energy savings whereas the adaptive scheme obtains 74% (an additional 24%). Drowsy

only obtains 35% average leakage energy savings for that size. For bigger sizes, the dif-

ference between the static and adaptive schemes keeps lowering until it converges to the

3.3. Conclusions 63

	

15,00

25,00

35,00

45,00

55,00

65,00

75,00

85,00

95,00

4,6KB 9,25KB 18,5KB 37KB 74KB
Predictor Size (KB)

V
P

Le
ak

ag
e

En
er

gy
 S

av
in

gs
 (%

)

 s

l

Best	
 S tatic AVP D	
 70/100 AVP D	
 00/100
AVP D	
 50/50 AVP D	
 40/60 B es t	
 Drowsy

	

15,00

25,00

35,00

45,00

55,00

65,00

75,00

85,00

95,00

2.3KB 4.6KB 9.5KB 19.25KB 39KB 78KB
Predictor Size (KB)

V
P

Le
ak

ag
e

En
er

gy
 S

av
in

gs
 (%

)

 s

l

Best	
 S tatic AVP D	
 70/100 AVP D	
 00/100
AVP D	
 50/50 AVP D	
 40/60 B es t	
 Drowsy

	

15,00

25,00

35,00

45,00

55,00

65,00

75,00

85,00

95,00

2.5KB 5.18KB 10,5KB 21,25KB 43KB 87KB
Predictor Size (KB)

V
P

Le
ak

ag
e

En
er

gy
 S

av
in

gs
 (%

)

 s

l

Best	
 S tatic AVP D	
 70/100 AVP D	
 00/100
AVP D	
 50/50 AVP D	
 40/60 B es t	
 Drowsy

Figure 3.17: STP (top), FCM (middle) and DFCM (bottom) value predictor leakage energy savings.

same leakage energy savings for big predictor sizes (close to 90% savings for a size of 78

KB), but still perform better than the static drowsy. If we focus on moderated FCM

sizes (around 10 KB), the best static decay scheme obtains 64% average leakage energy

savings, while the best drowsy obtains 51%, and the AVPD obtains 77% (13% and 28%

of additional savings). Note that FCM, like DFCM, performs well with any other con-

�guration that tends to decrease the decay interval, due to the negligible impact on its

accuracy.

3.3. Conclusions

Power dissipation, energy consumption and thermal output have been, for the past 8

years, the main limiting factors in microprocessor design. This chapter evaluates sev-

eral mechanisms that are able to reduce both dynamic and static power dissipation in

64 Chapter 3. Power Saving Mechanisms

microprocessors.

Dynamic power is nowadays the main source of power dissipation in microprocessors. The

studied power saving mechanisms allow the reduction of this power dissipation at both

circuit level (DVFS) and microarchitecture level. DVFS is a circuit level mechanism that

uses the relation between dynamic power and both voltage and frequency (Pd ≈ V 2
DD ·f)

to save power. The impact on performance for sequential or multi-programmed appli-

cations comes from the frequency reduction performed by DVFS. Performance impact

can be lower in memory intensive applications because we only modify the processor

frequency and not the memory frequency. Therefore, o�chip memory latency is reduced

as we lower the processor frequency. The performance impact of DVFS in CMPs running

parallel workloads can vary depending on how we apply DVFS. If we apply DVFS at a

core level and delay a critical thread then we will observe a performance degradation on

the overall application because of synchronization points. If we are able to balance the

frequency of the di�erent execution threads we can save power without any performance

impact. On the other hand, if we chose to use DVFS at a chip level instead of at a

core level, the CMP will behave as the sequential case, with lower performance impact

in memory intensive applications. DVFS is best suited for reducing the average energy

consumption towards a target power budget, but it is too coarse-grained to remove all

power spikes. This is due to the fact that DVFS is based on average energy consumption

of exploration windows and is applied during long time intervals to recoup for DVFS

overheads.

In this chapter we also evaluate some microarchitectural techniques in terms of power

and performance. These techniques can be organized from least to most restrictive

as: critical path estimator, branch con�dence estimators (JRS) and pipeline throttling.

While DVFS is quite unstable in terms of power (Figure 3.5), all the microarchitectural

mechanisms reduce power dissipation smoothly (without major power spikes). However,

the performance impact of these mechanisms is quite high. For pipeline throttling we can

reduce the number of cycles over the power budget (CoPB) from 50% to 25-30% with a

performance slowdown of 8-10%. Moreover, there is still a gap between the reduction on

cycles over the power budget and the perfect power budget matching. In order to increase

the accuracy when matching this power budget we could design a hybrid mechanism that

uses DVFS to lower the average power towards the power budget (coarse-grain approach)

and then use microarchitectural techniques to remove power spikes (�ne-grain approach).

In addition, all the studied mechanisms are triggered once the power dissipation goes over

the budget, we could optimize the way we enable the di�erent mechanisms by using some

historic information. We will further analyze these approaches in the next chapter.

Finally, to study static power saving mechanisms we have performed a case study to

reduce the average leakage energy of traditional value predictors with negligible impact

on neither prediction accuracy nor processor performance. This makes Value Prediction

a low-power approach to increase performance in energy-e�cient microprocessor designs.

Note that it is important to reduce leakage in any possible structure, despite its size,

3.3. Conclusions 65

as smaller and hotter structures can leak more than larger but cooler ones. We have

evaluated both state and non-state preserving techniques for reducing leakage power in

value predictors including Static Value Prediction Decay (SVPD) [23], Adaptive Value

Prediction Decay (AVPD) [24] and a drowsy approach. SVPD and AVPD are mecha-

nisms able to dramatically reduce the leakage energy of traditional value predictors with

negligible impact on performance. These techniques dynamically locate VP entries that

have not been accessed for a noticeable amount of time and switch them o� to prevent

leakage. On the other hand, the drowsy approach will locate these entries and lower the

supply voltage, retaining the data but requiring additional cycles to access it again.

This case study shows that the AVPD approach (with just slight modi�cations and

virtually no extra hardware compared to the static decay scheme) is able to beat both

static decay and drowsy for the most precise value predictors (FCM and DFCM) while

the STP predictor behaves better with the drowsy approach. The reason is that the

STP predictor is more sensitive to losing the entries contents than FCM and DFCM,

since the STP has all the information stored in only one table while the other are two-

level predictors. Experimental results show that, for the DFCM value predictor and

considering an average predictor size of 10 KB, the leakage energy savings obtained by

AVPD surpass the static approach by 14% and the drowsy approach by 24%, on average.

We can conclude that, as long as the data contents of the structure are easy to restore,

the decay approach works better than the drowsy approach.

Chapter 4

Single-Core Power Budget Matching

Summary: In this chapter we recall the concept of power budget, why it is im-

portant and how to properly enforce it. In the previous chapter we analyzed the

e�ects of power control mechanisms on performance and total cycles and energy

over the power budget. This analysis showed that most of the studied mechanisms

have problems when matching the target power constraint on their own, so it is

not well respected. In order to solve this problem we propose three mechanisms:

Power Token Throttling (PTT), Basic Block Level Manager (BBLM) and a two-

level approach (DVFS+BBLM). PTT is a token-based approach that keeps track

of the current power being dissipated by the processor, measured as tokens, and

stalls fetch if the next instruction to be executed will make the processor go over

the power budget. BBLM is a predictive power-control mechanism that stores in-

formation about the energy consumption of a basic block (or chain of basic blocks).

BBLM will select from di�erent architecture-level power saving mechanisms (more

or less aggressive) based on the energy this basic block consumed the last time it was

executed. Finally, the two-level approach will use DVFS as a coarse-grain approach

to lower the average power dissipation towards the power budget along with BBLM

to remove the remaining power spikes.

4.1. Introduction

In the past few years computer architects have faced an important design change. In-

dividual core performance is saturating and processor designs are moving to multi-core

approaches looking for throughput in addition to a reduction in application execution

time. In order to reduce packaging costs, processors are generally designed for aver-

age energy consumption and thermal constraints (it is improbable that a processor uses

all of its resources at once) and face special cases with both power saving and thermal

management mechanisms.

As cited in Chapter 2, Dynamic Thermal Management (DTM) is a mechanism that

reduces the processor power dissipation (and therefore performance) during critical time

67

68 Chapter 4. Single-Core Power Budget Matching

intervals so it can cool down. One way to achieve this goal is to set a power budget to

the processor. This processor's power budget is not only useful to control the processor

power and temperature but also to adapt to external (o�-chip) power constraints.

There are situations where device power requirements are much lower than the power

needs of the processor at full speed. In most of the cases we cannot a�ord to design a

new processor to meet whatever power constraint because it is too expensive. Therefore,

being able to set a power budget to the processor could help designers to reuse existent

hardware in new devices. The problem grows when, as usual, power constraints are

transitory and after some period of low performance to save power we want all the

processor's performance back. For example, imagine we have a computation cluster

connected to one or more UPS units to protect it from power failures. If there is a

power cut, all processors will continue working at full speed consuming all of the UPS

batteries quickly. After some time it will switch the computers o� when the batteries are

close to run out and, consequently, losing all the work on �y. During the power failure

(many times they are of limited duration) it might be more interesting to extend the

UPS battery duration at the expense of degrading some performance, than to lose all

the work done.

Another situation where setting a power budget could be useful is the case of a computing

centre that shares a power supply among all kind of electric devices (i.e., computers,

lights, air conditioning, etc.). In a worst case scenario (e.g., in summer at mid-day with

all the computers working at full speed), if we integrate some kind of power budget

management into the processors, we could set a power budget to lower the ambient

temperature also having more power for the air conditioning. In this way, we could

design the power capacity of the computing centre for the average case, reducing its cost.

As seen previously, one way to make the processor's power go under a power budget

is Dynamic Voltage and Frequency Scaling (DVFS) [62, 85, 87, 96]. DVFS relies on

modi�cations in both voltage and frequency to reduce the processor's dynamic power,

as dynamic power depends on both voltage (quadratically) and frequency (linearly).

DVFS has been implemented in many commercial processors and is commonly used by

DTM techniques [32]. The major advantage of DVFS is its precision for estimating the

�nal energy consumption and performance degradation associated with the voltage and

frequency reduction. However, DVFS has important drawbacks:

Long transition times between power modes.

Long exploration and use windows (in order to amortize DVFS overheads), making

it di�cult to adapt precisely to the program behavior.

When activated, DVFS a�ects all instructions regardless of their usefulness in the

program. Therefore, it cannot exploit situations such as instruction slack, instruc-

tion criticality, or low con�dence on the predicted path.

As process technology shrinks, reducing voltage (VDD and VT) to lower dynamic

power becomes impractical since leakage exponentially depends on VT (see section

4.1. Introduction 69

3.1.1) which will turn DVFS into just DFS (Dynamic Frequency Scaling) for deep

submicron designs. However, DFS is not so energy-e�cient since it seriously hurts

performance.

This chapter studies the use of �ne-grain microarchitectural power-saving techniques to

accurately match a prede�ned power budget. The studied mechanisms will capture and

store information about the processor energy consumption, either at a cycle level (Power-

Token Throttling) or at a basic block level (Basic Block Level Manager). We can decide

whether the next instruction/basic block can be executed by checking both the past en-

ergy consumption and how far the processor is from the power budget. In this chapter we

also propose an e�cient two-level approach that �rstly applies DVFS as a coarse-grain

approach to lower the average power and, secondly, uses microarchitectural techniques

to remove the numerous power spikes. One of the bene�ts of using microarchitectural

techniques is that they can be applied at a cycle level, only in those cycles where the pro-

cessor exceeds the power budget. The peculiarities of each microarchitectural technique

were detailed in section 3.1 but, in general terms, these �ne-grain techniques:

1. Locate non-critical instructions in cycles exceeding the power budget and delay

them to cycles under the budget. Note that non-critical instructions can become

critical if they are delayed for a long time.

2. Previous studies have shown that 30% of the overall processor power comes from

wrong path instructions [4, 66]. Therefore, we can reduce the number of low-

con�dent speculative instructions in the pipeline when the processor is exceeding

the power budget by using a con�dence estimator.

3. We can throttle the pipeline at di�erent stages when the two previous policies are

not enough to put the processor under the required power budget.

In addition we also propose and evaluate the use of two additional mechanisms that help

microarchitectural techniques to match the prede�ned power budget by analyzing the

power curve trend: preventive switch-o� and predictive switch-on. Preventive switch-o�

calculates the di�erence in power between the last N cycles and predicts if the processor

will exceed the power budget based in the previous cycle power plus the calculated dif-

ference; whereas predictive switch-on does the opposite: calculates di�erences to disable

techniques before getting under the power budget, hoping that the decreasing power

trend will be enough to lead the processor under the budget. Experimental results show

that the use of power-saving microarchitectural techniques is more energy e�cient as

well as more accurate (i.e., less area over the power budget, see Section 2.3 for details)

than DVFS for driving the processor under the required power budget.

The rest of the chapter is organized as follows. Section 4.2 shows a �rst analysis of

the individual techniques and motivates the need for a hybrid approach to match the

power budget. Section 4.3 describes our simulation methodology and reports the main

experimental results. Finally, Section 4.4 shows our concluding remarks.

70 Chapter 4. Single-Core Power Budget Matching

4.2. Power-Saving Microarchitectural Techniques

When reducing power dissipation under a power budget there is something that should

be kept in mind: there is going to be performance degradation. This is justi�ed by the

fact that there is a strong need to match the imposed power constraint. Our main goal

is to reduce power dissipation to match an imposed power budget in an energy-e�cient

way. To achieve that goal we �rst need to study how the di�erent microarchitectural

techniques behave independently, in order to design an adaptive mechanism that takes

advantage of each of their peculiarities. As evaluation metrics we will measure both the

fraction of cycles exceeding the power budget over the total execution cycles as well as

the induced performance degradation for the whole SPECint2000 (see Section 4.3.1 for

details about the processor con�guration).

4.2.1. Reactive Techniques

Reactive techniques check the processor's power at a cycle-level. If the current power

exceeds the required budget, the processor applies a certain microarchitectural technique

to reduce its power consumption. The major concern about reactive techniques is that

they must be applied during enough cycles in order to achieve its low-power e�ect. If

in a given cycle the processor goes over the power budget, we do not know a priori how

long this situation will last. Furthermore, reactive techniques are not able to remove all

the cycles the processor spends over the power budget since we activate them once the

processor power dissipation is over the budget, unless we use a predictive approach. Ex-

amples of dynamic power reduction reactive techniques are: DVFS, Pipeline Throttling

and Instruction Reordering and were introduced in section 3.1.

4.2.2. Predictive Techniques

As cited previously, reactive techniques are not good enough to accurately match a

prede�ned power budget, basically because they rely on local information about power

dissipation, and have no knowledge about past or future trends in power dissipation.

Predictive techniques, on the other hand, will capture and store information about the

processor power dissipation, either at a cycle level (Power-Token Throttling) or at a

basic block level (Basic Block Level Manager), in order to decide whether the next

instruction/basic block can be executed based on its previous power. For predictive

techniques to work we need a way to measure power dissipation at a cycle level.

4.2.2.1. Power-Tokens

Until recently (Intel's Sandy Bridge power MSRs) there was no way to accurately mea-

sure energy consumption in real time. Energy measurements were just approximations

based on performance counters done over periods of thousands of cycles. When using

microarchitectural techniques that work at a cycle level we need some way to estimate

4.2. Power-Saving Microarchitectural Techniques 71

	

20

30

40

0 200000 400000 600000 800000 1000000 1200000

Po
w

er
 (W

at
ts

)

DV F S 	
 (g o)

Wn-1 Wn

ti tn tk

20

30

40

0 200000 400000 600000 800000 1000000 1200000
Po

w
er

 (W
at

ts
)

B ase	
 (g o)

WnWn-1

ti tn tk

Figure 4.1: Base vs DVFS exploration window power dissipation for the �go� benchmark.

power at a cycle level. Our proposal uses a Power-Token approach to dynamically esti-

mate power dissipation. Power Tokens are described in detail in section 2.2. Essentially,

Power Tokens estimate the processor's dynamic power in a given cycle based on instruc-

tion power dissipation information (measured as token units).

4.2.2.2. Power-Token Throttling (PTT)

This technique follows a simple premise: if there is power left to burn, let the instruction

enter the pipeline, otherwise, stall fetch. Basically, it estimates the dynamic power

of the instructions inside the pipeline in a given cycle by means of accounting for the

power-tokens they consume. When the total power of all the instructions inside the

processor exceeds the power budget, the fetch stage is stalled until instructions commit

and leave the pipeline, releasing their power-tokens. PTT allows the introduction of

new instructions into the pipeline when the current total power goes under the power

budget. This is the most accurate technique but at the same time the least energy-

e�cient since it incurs in serious performance loss. We also evaluate a modi�ed version

of the Power-Token Throttling approach that uses a Critical Path Predictor (labelled as

PTT-CP in Section 4.3) to detect critical instructions. In this way, even if we are over

the power budget, we allow these instructions to continue their execution. This version

is less aggressive than the original PTT.

First of all, in order to gain some insight on the power dissipation behavior DVFS, Figure

4.1 shows the average power dissipation for the �go� benchmark of the base processor

compared to the same processor using DVFS. The dashed horizontal line represents the

required power budget (set to 24W, which corresponds to a 50% power budget over the

peak power of 48W, see Section 4.3.2 for details). The used DVFS implementation (as in

[40]) calculates the average power dissipation over an exploration window of 500Kcycles,

and modi�es the voltage and frequency accordingly (from a set of pairs voltage/frequency

modes) to match the desired power budget. For exploration window Wn−1 DVFS cal-

culates its average power dissipation and changes to the power mode that is closest to

72 Chapter 4. Single-Core Power Budget Matching

	

20

25

30

499600 499800 500000 500200 500400 500600 500800
Time (Cycles x100)

PTT (go)

20

30

40

500000 500200 500400 500600 500800 501000 501200

Base (go)

20

30

40

499600 499800 500000 500200 500400 500600 500800

Po
w

er
 (W

at
ts

)

 .

DVFS (go)

ti	
 tn	
 tk	

Figure 4.2: Detailed per-cycle power dissipation for the �go� benchmark.

the power budget. This power mode will be used during exploration window Wn. In

this example, during Wn the average power dissipation of the base case increases (Figure

4.1-top), which leaves the average power dissipation of the DVFS processor still over the

power budget (even though a lower power mode was selected; Figure 4.1-bottom). This

entails that the amount of power over the budget is indeed lower when using DVFS but

its accuracy for matching the power budget is questionable.

Figure 4.2 is a more detailed representation of the power behavior for the �go� benchmark

(this �gure shows a zoom-in from time ti to tk in Figure 4.1). For the sake of visibility

we only plot now the power information for a reduced time interval of 120Kcycles. As

said before, for the DVFS case (Figure 4.2-middle), after tn the selected power mode is

the one closest to the average power dissipation of the previous window Wn−1 (as seen

in Figure 4.1-bottom). However, because during window Wn−1 the average power was

higher than the actual power after point tn, the DVFS selected power mode is still not

able drive the processor under the power budget.

On the other hand, the Power-Token Throttling approach (Figure 4.2-bottom), accu-

rately follows the power budget at a cycle level, as it knows in advance how much power

(in tokens) the next instruction consumes. If we cannot a�ord to execute it, we wait

until a committed instruction leaves the pipeline and there is enough power left to burn

in the new instruction. Spikes in the PTT plot are due to branches that are left to enter

the pipeline in order to discover eventual mispredictions as soon as possible (otherwise,

performance is seriously hurt).

4.2. Power-Saving Microarchitectural Techniques 73

4.2.2.3. Basic Block Level Manager (BBLM)

This second technique keeps track of historical information about power-tokens consumed

by a basic block1 as well as the power left to exceed the power budget in order to decide

what technique should be applied to reduce power dissipation. The available techniques

are (from less to more aggressive): a) none, b) critical path, c) con�dence estimation

throttling, or d) decode-commit ratio throttling. Every time the processor decodes a

branch it estimates the energy consumed by the previous basic block, measured as the

addition of the power-tokens of every instruction that belongs to that basic block. This

power is stored in the branch predictor entry of the branch that points to the start of that

basic block (not the one that we have just decoded). The overhead of this mechanism

consists in 9 additional bits per branch predictor entry plus a register and a 16-bit adder

to store the current basic block power which corresponds to a negligible 0.3% power

increase in the total processor power, accounted for in our results. Therefore, every

time a branch is predicted we also obtain information about the subsequent basic block

power, length, etc, and we estimate how far from the power budget we will get if we

completely execute that basic block. Depending on how far the estimated power is from

the budget, we select a di�erent power saving technique. In addition, when updating

the branch predictor's saturating counter, we also update the power-tokens consumed by

the subsequent basic block (that corresponds to the next predicted path). Please note

that, although it is very di�cult that a basic block will always consume the same exact

amount of energy, this is not really relevant for our mechanisms, as long as the selected

technique is the same for a speci�c basic block (which is actually the common case).

We de�ne two threshold values, X and Y for BBLM to decide what technique should be

applied. Therefore, for a fraction of power over the budget lower than X, BBLM will

select the �rst technique (i.e., critical path, which is the least aggressive); from X to Y,

BBLM will select the second technique (i.e., con�dence estimation throttling); and for a

power over the budget greater than Y, BBLM will select the third technique (i.e., decode-

commit ratio throttling, which is the most aggressive). Similarly, techniques are disabled

progressively, in reverse order, once we get under the power budget. We performed an

experimental study to determine the best values for these thresholds (best power budget

matching with minimal performance degradation), and discovered that for the current

processor con�guration and used benchmarks the best thresholds are X=15 and Y=65.

4.2.2.4. Two-level Approach

Cycle-level microarchitectural techniques have some disadvantages compared with DVFS.

In DVFS only a third part of the power reduction comes from performance degradation

P ≈ V 2
DD ∗ f whereas for microarchitectural techniques every change has a direct im-

pact in performance. All instructions from the correct path of execution consume a

constant amount of energy, so only removing instructions from wrong path of execution

1Assumed in this Thesis as a stream of instructions between two branches.

74 Chapter 4. Single-Core Power Budget Matching

or reordering instructions will allow the processor to go towards a power budget with

minimal performance impact.

When the current power dissipation is far from the budget microarchitectural techniques

do not work e�ciently, as we will see in Section 4.3, since there are few chances to

reduce power dissipation without degrading performance. On the other hand, DVFS

is extremely inaccurate when there are power spikes, because the in�uence of power

spikes on the average power dissipation from the sampling window is negligible. If we

only use microarchitectural techniques we may not get close to the power budget, or the

performance degradation will be high. Moreover, it has been proved that benchmarks

exhibit di�erent program phases with di�erent average power dissipation. If we are

able to detect these phases we could use only microarchitectural techniques in phases

close to the power budget and a coarse-grain approach (DVFS) in phases far from the

power budget. Therefore, our proposal consists of a two-level approach: �rst we apply

DVFS to take coarse-grain decisions about power dissipation, and secondly we apply

microarchitectural techniques for �ne-grain decisions (mainly for removing the numerous

power spikes). This two-level approach increases the DVFS accuracy for matching a

power budget while at the same time does not need all the DVFS power modes to reach

a power budget. By using this two-level approach only the least aggressive DVFS power

modes are enough to accurately match the prede�ned power budget. It is important to

note that, as discussed in section 3.1.1, when the process technology goes below 65nm

the reduction on VT will be limited by both reliability and leakage power. At this point,

it may not be a matter of not using the extreme power saving modes, but implementing

those power modes will be infeasible.

4.2.2.5. Preventive Switch-O� and Predictive Switch-On

Reactive techniques rely on current information to decide whether or not to apply some

microarchitectural techniques to reduce power dissipation. The base decision mechanism

looks at the current cycle power dissipation to detect if the processor is over the power

budget, and then applies whatever mechanism the processor implements to reduce dy-

namic power. One possible way to improve this could be adding some intelligence to

the process. If the power is continuously increasing from cycle to cycle we may predict

that the next cycle will continue rising. If that is true, we can enable the power saving

mechanisms preventing the processor from exceeding the power budget. The preventive

switch-o� approach calculates and stores the di�erences between per-cycle power dissi-

pation and predicts if power will be over the budget the next cycle by adding the current

cycle power plus the di�erence in power between the last two cycles (Figure 4.3- points

A and B).

Moreover, this mechanism is also useful when we work with predictive techniques (as PTT

and BBLM). In BBLM we have an idea of how far from the power budget the current basic

block is, but have no idea on how power is distributed among cycles. With preventive

switch-o� we can add some additional information about per-cycle power trends and

4.3. Experimental Results 75

	

Po
w
er
	

Time	

Power	
 Budget	

Basic	
 Block	
 N	
 Basic	
 Block	
 N+1	

A	
 B	

C	

Figure 4.3: Overview of the preventive switch-o� and predictive switch-on mechanisms.

help the selected microarchitectural mechanism in its task. However, preventive switch-

o� may lead to false positives if we prematurely enable microarchitectural techniques.

For example in Figure 4.3-A the current cycle power plus the di�erence in power between

the last two cycles will lead the next cycle over the power budget and thus we should

enable power-saving techniques to prevent that. In this speci�c case this decision is

wrong, as power will start to descend in the next few cycles. This may not happen with

predictive techniques as they have additional information about future power behavior

of the basic block. If BBLM is enabled in Figure 4.3-A, the mechanism will choose not

to do anything prematurely as the average power of the basic block is under the power

budget.

Analogously, we have the predictive switch-on approach. When microarchitectural mech-

anisms are enabled power begins to descend until the processor gets under the power

budget, and then power-saving mechanisms are disabled. Usually, microarchitectural

mechanisms have some hysteresis in which power continues going down. If we disable

the power-saving technique in advance, before getting under the power budget, the hys-

teresis period should be enough to lead the processor under the power budget. The

predictive switch-on mechanism works like preventive switch-o� but when power is de-

creasing. The mechanism calculates the power di�erences between cycles and estimates

if the current power minus the delta power is under the budget in order to disable mi-

croarchitectural techniques (as seen in Figure 4.3-C). Note that false positives in this

mechanism are less harmful than for preventive switch-o�, because only �accuracy� is

reduced for matching the power budget, but not performance.

4.3. Experimental Results

4.3.1. Simulation Methodology

To evaluate the energy-e�ciency of both DVFS and microarchitectural techniques we

have used the SPECint2000 benchmark suite (refer to section 2.7 for further details).

All benchmarks were compiled with maximum optimizations (-O4 -fast) by the Compaq

76 Chapter 4. Single-Core Power Budget Matching

Alpha compiler and they were run using a modi�ed version of Simplescalar simulator

using power models provided by Wattch/HotLeakage [100] that includes the dynamic

power models for the evaluated microarchitectural approaches as well as their associated

power overhead. All benchmarks were run to completion using the reduced input data

set (test). Table 4.1 shows the con�guration of the simulated processor.

Table 4.1: Core con�guration.

Processor Core

Process Technology: 32 nanometers
Frequency: 3000 Mhz
VDD: 0.9 V
Instruction Window 128 RUU + 64 IW
Load Store Queue 64 Entries
Decode Width: 4 inst/cycle
Issue Width: 4 inst/cycle
Functional Units: 6 Int Alu; 2 Int Mult

4 FP Alu; 4 FP Mult
Branch Predictor: 16bit Gshare

Memory Hierarchy

Coherence Prot.: MOESI
Memory Latency: 300
L1 I-cache: 64KB, 2-way, 1 cycle lat.
L1 D-cache: 64KB, 2-way, 1 cycle lat.
L2 cache: 1MB/core, 4-way, uni�ed

12 cycle latency
TLB: 256 entries

Network Parameters

Topology: 2D mesh
Link Latency: 4 cycles
Flit size: 4 bytes
Link Bandwidth: 1 �it / cycle

4.3.2. A Power Budget of What? (100% Usage 6= 100% Power)

When we think about the maximum power dissipation of a processor we think about the

processor using all of its resources at once (i.e., the peak dissipation of a processor), and

that barely happens in common applications or even scienti�c applications. Our base

processor has a peak power dissipation of 75 Watts as provided by the Wattch power

simulator. When a circuit-level technique such as clock gating is enabled, the average

power dissipation for the SPECint2000 drops to 25 Watts with a peak power dissipation

of 48 Watts for our simulated processor and benchmark suite. We will use 48 Watts of

peak power2 as our reference power (i.e., 100% power budget), which corresponds to the

power dissipation of the processor before applying any power-saving technique.

Next sections show the simulation results for the SPECint2000 benchmark suite for:

a) fraction of cycles over the power budget (Cycles over PB); b) total power exceeded

over the budget (AoPB - see section 2.3); and c) normalized energy. We use the AoPB

metric instead of the average power since the standard deviation of the per-cycle power

dissipation is quite high. The processor has periods of high power dissipation hidden by

periods of low power dissipation (branch mispredictions, cache misses, etc.), therefore,

the average power is not a good metric for what is really happening inside the processor.

2Using the Wattch's clock-gating style cc3, which scales power linearly with unit usage. Inactive
units still dissipate 10% of its maximum power.

4.3. Experimental Results 77

	

0

20

40

60

80

100

95 90 85 80 75 70 65 60 55 50 45 40

Power Budget (%)

C
yc

le
s

ov
er

 P
B

 (%
)

bzip
crafty
eon
gap
gcc
gzip
mcf
parser
twolf
vortex
vpr

(a) Per Benchmark Cycle over PB.
	

0

0,1

0,2

0,3

0,4

95 90 85 80 75 70 65 60 55 50 45 40

Power Budget (%)

A
re

a
ov

er
 P

B
 (J

ou
le

s)

bzip
crafty
eon
gap
gcc
gzip
mcf
parser
twolf
vortex
vpr

(b) Per Benchmark Area over PB.

	

SPECint2000 Average

0

15

30

45

60

75

95 90 85 80 75 70 65 60 55 50 45 40

Power Budget (%)

C
yc

le
s

ov
er

 P
B

 (%
)

 . correct+mispredicted path

mispredicted path

(c) Average Cycle over PB.
	

SPECint2000 Average

0

0.1

0.2

0.3

95 90 85 80 75 70 65 60 55 50 45 40

Power Budget (%)
A

re
a

ov
er

 P
B

 (J
ou

le
s)

 . correct+mispredicted path

mispredicted path

(d) Average Area over PB.

Figure 4.4: Area and Cycles over PB distributions

4.3.3. Cycles Over PB and Area Distribution

Figure 4.4 shows both the fraction of cycles over power budget and the area over the

power budget for di�erent budgets and benchmarks before applying any power saving

technique. Evaluated PBs range from 95% of the original peak power to 40%. As we can

see in Figures 4.4-top, both the amount of cycles and the area the processor spends over

the power budget is almost negligible for high budgets (95%-70%), due to the e�ects of

clock gating on power dissipation, but being highly noticeable for power budgets under

65%. As explained before, DVFS will be unable to �nd power spikes for low power

budgets, as it works with the average power dissipation of its long exploration windows.

On the other hand, microarchitectural techniques will detect these spikes and remove

them whenever possible. Figures 4.4-bottom show the cycles and area over the power

budget distinguishing between power/cycles from correct path of execution as well as

mispredicted paths. We can see how almost half of the power/cycles over the power

budget come from instructions from the wrong path of execution, those are the ones we

are most interested in, as microarchitectural techniques heavily rely on them to reduce

power towards the budget with low performance degradation.

4.3.4. E�ciency on Matching a Power Budget

The main objective of this chapter is the proposal of accurate energy-e�cient techniques

for matching a power budget, and thus this subsection evaluates the energy-e�ciency

of the proposed microarchitectural techniques as well as their accuracy for matching an

78 Chapter 4. Single-Core Power Budget Matching

	

0

10

20

30

40

50

60

70

90 80 70 60 50 40

Power Budget (%)

C
yc

le
s

ov
er

 P
B

 (
%

)

BBLM

BBLM+PTT (CP)

PTT

PTT (CP)

DVFS+BBLM

DVFS

DFS

Figure 4.5: Relative cycles over PB for di�erent power budgets.

imposed power budget. We report results for the following techniques: DVFS, PTT,

BBLM (with and without using Critical Path information), and the two-level approach

(DVFS+BBLM). Our DVFS approach initially calculates the average power dissipated

during an exploration window. If the mechanism �nds out that the average power dis-

sipation is over the budget, DVFS changes to a pair of voltage and frequency values

from a set of prede�ned working modes in order to reduce the average power dissipation.

DVFS uses a exploration window of 500Kcycles with a very fast transition time between

modes set to 50 mV/ns (as in [51]), so it takes only 3 cycles to switch from one mode

to another3. This implementation is similar to the one proposed in [40] and discussed in

section 3.1.1. The evaluated working modes are the following:

DVFS: Uses �ve power modes (100% VDD, 100% f), (95% VDD, 95% f), (90%

VDD, 90% f), (90% VDD, 75% f), and (90% VDD, 65% f).

DVFS+BBLM: The power modes are reduced to (100% VDD, 100% f), (95% VDD,

95% f), and (90% VDD, 90% f).

DFS: Only scales frequency as needed (VDD remains unchanged).

The studied BBLM uses the con�guration parameters and techniques proposed in Section

4.2.2.3. As explained before, the selected thresholds are X=15 and Y=65. Critical path

(CP) is used as the �rst technique, JRS-throttling as the second technique, and DCR-

throttling as the third one.

Figure 4.7 shows the normalized energy consumption for the di�erent techniques and

power budgets. As we can see, the two-level approach (DVFS+BBLM) is the most

energy-e�cient technique for all the studied power budgets, and especially for very re-

strictive power budgets. The rest of microarchitectural techniques (except PTT) as well

as DFS show a low energy degradation (between 4% and 10%). BBLM shows similar

energy-e�ciency than DFS up to a power budget of 50% while reducing four times more

3For HotLeakage VDD at 65nm is 1V, so each 5% reduction in voltage translates into 50mV. That
means it will take 1ns to switch between modes. As the processor runs at 3Ghz, it will take 3 cycles to
change between power modes.

4.3. Experimental Results 79

	

0

20

40

60

80

100

90 80 70 60 50 40
Power Budget (%)

R
el

at
iv

e
A

re
a

O
ve

r P
B

 (%
)

 .

Figure 4.6: Relative area over PB for di�erent power budgets.

	

-20

-10

0

10

20

30

40

90 80 70 60 50 40

Power Budget (%)

N
or

m
al

iz
ed

 e
ne

rg
y

(%
)

BBLM

BBLM+PTT (CP)

PTT

PTT (CP)

DVFS+BBLM

DVFS

DFS

Figure 4.7: Normalized energy consumption.

the AoPB. Moreover, as we are working under an imposed power budget, Figures 4.5

and 4.6 show how accurate each technique is when trying to match the power constraint,

as we plot both the relative cycles and area over the power budget. It can be observed

that all microarchitectural techniques are far more accurate than DVFS when adapting

to the imposed power budget. For power budgets between 90% and 70%, BBLM+PTT

(CP) is the best approach: 25% of area over PB is left after applying this technique with

a total energy increase of only 6% (Figure 4.7). PTT shows an increasing energy trend

because it throttles the pipeline so much that makes the overall energy increase to o�set

the savings provided by the throttling mechanisms.

When we move to more restrictive power budgets (<60%), our two-level (DVFS+BBLM)

approach is 4% more energy-e�cient than DVFS while the accuracy of the former is three

times better (25% of relative AoPB is left by the two-level approach whereas DVFS barely

reduces the area to a 90% of the original). For an extreme power budget of 40%, our

two-level approach gets even better: only 10% of relative AoPB is left, in contrast with

the 60% reported by DVFS. In addition, the two-level approach for this extreme power

budget is 11% more energy-e�cient than DVFS and 20% than DFS. In general terms,

DVFS and DFS are coarse-grain approaches unable to remove the numerous power spikes

making them far less accurate than microarchitectural techniques.

80 Chapter 4. Single-Core Power Budget Matching

	

0

5

10

15

20

25

30

35

40

45

50

90 80 70 60 50 40
Power Budget (%)

C
yc

le
s

ov
er

 P
B

 (%
)

.

BBLM
BBLM (PrevSw-off + PredSw-on)
BBLM+PTT
BBLM+PTT (PrevSw-off + PredSw-on)
DVFS
DVFS+BBLM
DVFS+BBLM (PrevSw-off + PredSw-on)

Figure 4.8: Relative cycles over PB for di�erent power budgets.

	

0

20

40

60

80

100

90 80 70 60 50 40
Power Budget (%)

R
el

at
iv

e
A

re
a

O
ve

r P
B

 (%
)

 .

Figure 4.9: Relative area over PB for di�erent power budgets..

4.3.5. Preventive Switch-O� and Predictive Switch-on

In this section we show some experimental results for both the preventive switch-o� and

predictive switch-on mechanisms when simultaneously applied with both BBLM and the

proposed two-level approach (DVFS+BBLM).

Figures 4.8 and 4.9 show a comparison between the original techniques and the ones

that include the preventive switch-o� and predictive switch-on mechanisms in terms of

cycles and area over the power budget. For power budgets between 90% and 60% there

is a reduction in both area and cycles over the power budget of 3-4% for all the studied

mechanisms. For power budgets of 50% and 40% there is something curious happening

in the processor. Although there are less cycles over the power budget when preventive

switch-o� is applied, the total AoPB increases. This is due to the fact that preventive

switch-o� and predictive switch-on approaches give more false positives with restrictive

power budgets. In addition, as most of the cycles are over the power budget, preventive

switch-o� has few chances to discover rising power trends.

When preventive switch-o� and predictive switch-on work together with BBLM and the

two-level approach, energy numbers get better (1-2%) as shown in Figure 4.10, especially

for power budgets between 90% and 60%. For a power budget of 50% the di�erence is

minimal, and for 40% techniques are less energy e�cient, again, due to false positives.

4.4. Conclusions 81

	

-20

-10

0

10

20

30

90 80 70 60 50 40
Power Budget (%)

E
ne

rg
y

(%
)

.

BBLM BBLM ((PrevSw-off + PredSw-on)
BBLM+PTT (CP) BBLM+PTT ((PrevSw-off + PredSw-on)
DVFS DVFS+BBLM
DVFS+BBLM ((PrevSw-off + PredSw-on)

Figure 4.10: Normalized energy for all the evaluated approaches along with preventive switch-o� and
predictive switch-on.

Summarizing, preventive switch-o� and predictive switch-on techniques usually help with

both accuracy and energy for power budgets between 90% and 50%, but become less

e�ective with restrictive power budgets.

4.3.6. Sensitivity Study

In this section we explore di�erent processor con�gurations for some of the proposed

techniques (BBLM, DVFS and the two-level approach), varying pipeline length and the

decode/issue width. With this study we want to ensure that, even if the processor com-

plexity is either reduced or increased, the proposed techniques behave regularly. Please

note that the microarchitectural techniques have not been optimized for the new pro-

cessor con�gurations. Figure 4.11 shows the cycles over the power budget (CoPB), area

over the power budget (AoPB) and energy numbers for 5 di�erent processor con�gura-

tions. The three �gures at the left show results for di�erent decoding/issue width sizes

using a 22-stage pipeline. For decoding/issue widths of 2 and 4 with this new pipeline,

results in area and energy are very close to the 14-stage pipeline. On the other hand, a

more complex 8-issue width processor obtains relatively bad results in energy numbers.

Still, the microarchitectural techniques and the two-level approach are more accurate

than DVFS. With a 14-stage pipeline and issue width sizes of 2 and 8, energy numbers

behave reasonably well, but the area numbers are a little bit higher because of the lack

of optimization parameters for the di�erent techniques.

4.4. Conclusions

Current general purpose microprocessors can be used in several kinds of gadgets that

usually have di�erent power requirements. In some scenarios being able to de�ne a

maximum power budget for the processor can help the reuse of previous designs in

new devices. This can be especially useful if our only options are either to switch-o�

the device or to reduce the power dissipation to match the power constraint. Note

that, in many cases, the shut-o� option is not even viable (e.g., for critical systems).

82 Chapter 4. Single-Core Power Budget Matching

	

0

20

40

60

80

100

120

CoPB AoPB Energy

BBLM DVFS Two-Level

Width 2 - Pipeline 22

	

0

20

40

60

80

100

120

CoPB AoPB Energy

BBLM DVFS Two-Level

Width 2 - Pipeline 14

	

0

20

40

60

80

100

120

CoPB AoPB Energy

BBLM DVFS Two-Level

Width 4 - Pipeline 22

	

0

20

40

60

80

100

120

CoPB AoPB Energy

BBLM DVFS Two-Level

Width 4 - Pipeline 14

	

0

20

40

60

80

100

120

CoPB AoPB Energy

BBLM DVFS Two-Level

Width 8 - Pipeline 22

	

0

20

40

60

80

100

120

CoPB AoPB Energy

BBLM DVFS Two-Level

Width 8 - Pipeline 14

Figure 4.11: Sensitivity analysis.

We cannot design the thermal envelopment of a processor for the worst case scenario,

because production price highly increases and the processor barely ever reaches its peak

temperature. However, we can set a power budget to the processor, limiting its power

and temperature.

When microarchitectural techniques are used we obtain a more precise power budget

matching while maximizing the processor's energy e�ciency. We propose two adaptive

techniques: Power Token Throttling (PTT) and Basic Block Level Manager (BBLM).

PTT is a token-based approach that keeps track of the current power being dissipated

by the processor, measured as tokens, and stalls fetch if the next instruction to be

executed will make the processor go over the power budget. This is a very aggressive

mechanism that obtains an accurate power budget matching but has a huge performance

degradation. On the other hand, BBLM uses basic block energy consumption history

(translated into power-tokens) in order to determine the best power saving technique

for the current and near-future processor power dissipation. BBLM optimizes the use of

microarchitectural techniques to minimize performance impact while removing most of

the power spikes. However, these mechanisms by themselves are not enough to match

restrictive power budgets because of their high performance degradation.

We have then proposed a two-level approach that combines both microarchitectural tech-

niques and DVFS to take advantage of their best qualities. DVFS acts as a coarse-grain

technique to lower the average power dissipation while microarchitectural techniques re-

4.4. Conclusions 83

move all the power spikes e�ciently. The two-level approach (BBLM+DVFS) is able to

beat DVFS in both energy e�ciency (up to 11% more energy e�cient) and area exceeded

over the power budget (up to 6 times less area).

The preventive switch-o� and predictive switch-on techniques are orthogonal to both

DVFS and microarchitectural techniques and help them to reduce energy consumption

and increase accuracy for power budgets between 90% and 60%, becoming less e�ective

for restrictive power budgets due to false positives.

In the next chapter, we are moving all these mechanisms to a CMP scenario where

synchronization mechanisms can destroy all the power savings achieved by local power

saving mechanisms and global CMP mechanisms are needed to match the prede�ned

power budget.

Chapter 5

Multi-Core Power Budget Matching

Summary: In this chapter we analyze some common techniques to match a pre-

de�ned power budget ported from the single-core scenario into a CMP scenario.

We discovered that legacy techniques work properly for thread-independent and

multi-programmed workloads, but not for parallel workloads. In order to solve this

problem we propose Power Token Balancing (PTB) aimed at accurately matching

an external power constraint by balancing the power dissipated among the di�erent

cores using a power token-based approach while optimizing the energy e�ciency.

PTB uses power (seen as tokens) from cores under the power budget to match

power constraints on cores over the power budget. Experimental results show that

PTB matches more accurately a prede�ned power budget than DVFS with minimal

energy increase.

We also introduce a mechanism named �Nitro�, inspired by the idea of Formula

One's KERS. Nitro will overclock the core that enters a critical section (delimited

by locks) in order to free the lock as soon as possible and let another core enter the

critical section. The mechanism ensures that the overclocking can be safely done

as long as there is power left to burn from idle or spinning cores. We conclude the

work with an analysis of the thermal e�ects of PTB in di�erent CMP con�gurations

using realistic power numbers and heatsink/fan con�gurations. Results show how

PTB not only balances temperature between the di�erent cores but also allows a

reduction of 28-30% of both average and peak temperatures.

5.1. Introduction

Chip multiprocessors (CMPs) are the new standard in processor design for a wide range

of devices, from small mobile devices to computation clusters. These architectures ex-

hibit some peculiarities in terms of power and performance compared to a single-core

processor. For instance, if we focus on power, when the number of processing cores is

doubled the power dissipation is also approximately doubled. Fortunately, technology

scaling trends help designers to keep the dynamic power increase partially under control

on each new generation. However, the complexity of the interconnection network and

85

86 Chapter 5. Multi-Core Power Budget Matching

caches increases when more cores are incorporated into the die resulting in higher power

dissipation. When a CMP runs a parallel multithreaded program where threads have de-

pendencies (i.e., synchronization), if a traditional power saving mechanism such as DVFS

is independently applied to a single core it can a�ect the rest of the threads in the next

synchronization point. This may slow down the whole program execution and increase

the overall energy consumption. If we want to avoid this situation global information

is required to reduce power in the threads that are not in the critical path of execution

(e.g., threads that arrive earlier to the synchronization points) [40][20][57][55][11].

On the other hand, there are also thermal problems. The continuous increase in the

number of cores on a CMP forces designers to develop more and more complex �oorplans.

At some point hotspots may appear in inner cores, decreasing the reliability of the

processor or even causing major damage to the die. A straightforward way to reduce

temperature is to set a power budget to the processor [40][26]. This processor's power

budget can be used either to satisfy external power constraints (i.e., power cuts or shared

power supply), to increase the number of cores in a CMP maintaining the same TDP

(Thermal Design Power), or to even reuse an existent processor design with a cheaper

thermal package.

As cited in the previous chapters, Dynamic Voltage and Frequency Scaling (DVFS)

[32][62][87] is a well known mechanism to make the processor's power converge to a given

power budget. DVFS is based on fact that dynamic power depends on both voltage

(quadratically) and frequency (linearly), so, if we lower any of these terms, we obtain a

power reduction. However, DVFS exhibits some important drawbacks: a) long transition

times between power modes [87]; b) long exploration windows in order to compensate

DVFS overheads; and c) when activated DVFS a�ects all instructions within a thread/-

core regardless of their usefulness to the forward-progress of a program.

In the CMP �eld we can �nd many speci�c proposals to match a prede�ned power bud-

get such as [40][70][82], but these proposals are only suitable for CMPs running multiple

single-threaded (or multi-programmed) applications, and have not been tested with par-

allel workloads. Moreover, they do not perform any accuracy analysis on the budget

requirements. There are other works aimed at reducing the power wasted when cores

wait at synchronization points, either putting cores to sleep [57] or trying to make all

cores reach the synchronization point simultaneously (e.g., meeting points [20] or thrifty

barriers [55]). However, these mechanisms are not suitable for matching a power bud-

get on their own, the main goal of this Thesis. In order to overcome those limitations

we proposed the use of �ne-grain microarchitectural power-saving techniques to accu-

rately match a prede�ned power budget in a single-core scenario in Chapter 4. However,

when applied in a CMP scenario, these techniques have a great impact on power and

performance due to synchronization points.

To address the shortcomings of previous proposals we propose Power Token Balancing

(PTB), a mechanism that balances the CMP power dissipation by e�ciently distributing

the available power among the cores. When we set a global power budget to a CMP,

5.1. Introduction 87

local power budgets are applied to all running cores. Without any global mechanism the

power would be just equally split between the cores as we will show later. PTB globally

manages power dissipation so cores that are under their local power budget give away

their remaining allotment of power (up to the local budget) to cores over the budget so

they can continue execution without performance degradation while ensuring that the

global power budget is not exceeded. PTB is based on the power imbalance that exists

between cores due to cache misses, ROB stalls, pipeline stalls, etc. In addition, PTB

transparently bene�ts from thread's busy-waiting synchronization in a very �lightweight�

way. When a core is waiting in a barrier it naturally reduces its power dissipation. PTB

allows its spare power tokens to be given to other cores doing useful work (i.e., critical

threads). The same applies to locks: a core that enters a critical section receives extra

power tokens from other cores waiting on spinlocks. Thanks to the extra power tokens

its local power budget is less restrictive and the core can leave the critical section faster.

Furthermore, when several cores enter a spinning state in a lock-delimited critical section

they need to wait until the core currently in the critical section leaves it. If we are working

in a power-constrained scenario using PTB, the core in the critical section will receive

extra power from all spinning cores, and most likely will run at full speed because the

additional power will prevent the core to restrain itself to match the power budget.

However, some times, even at full speed, we still have power left to burn. To reuse this

remaining power we introduce Nitro. Inspired by the same idea as the new Formula

One's KERS system (i.e., save power when breaking and use it to accelerate), Nitro

reuses power to overclock the core that enters the critical section. During this time the

core will run faster than usual, leaving the critical section earlier. This mechanism allows

to obtain speedups with minimal overclocking run-time while ensuring that overclocking

can be safely done since it is achieved by reusing power from cores under their local power

budget. This approach can be used alone in any CMP but, as our major focus is a power-

constrained scenario, we use Nitro as part of our global power balancing mechanism for

matching a power budget (PTB).

At this point we want to summarize the main contributions of this chapter:

Introduction of the Power Token Balancing (PTB) approach.

• Its main goal is to make the per-cycle power dissipation go below a certain

power budget while maximizing accuracy and not to reduce overall energy.

• It is designed (but not limited) to work in a CMP scenario running parallel

workloads.

• It can identify critical threads faster than [20][57][55], (the critical thread can

change during execution) since it relies on cycle-level information increasing

its adaptability to the application behavior.

• It is a �ne-grain approach unlike [20][57][55][82], because it relies on actual

real-time information and not time/power estimations and it can identify crit-

88 Chapter 5. Multi-Core Power Budget Matching

ical threads faster than other approaches due to the use of cycle-level infor-

mation.

• It is able to reduce both the average power dissipation and the average/-

peak chip temperature due to its precision on matching the prede�ned power

budget.

Accuracy and performance analysis of previous proposals which are compared with

PTB.

Temperature analysis of di�erent core and �oorplan con�gurations is performed for

the PTB mechanism.

Introduction of a dynamic overclocking mechanism, Nitro, which selectively over-

clocks cores that enter a critical section (delimited by locks) as long as the rest of

the cores do not exceed the prede�ned power budget.

The rest of the chapter is organized as follows. Section 5.2 provides some background on

power-saving techniques for both single-core processors and CMPs. Section 5.3 describes

our simulation methodology and shows a �rst analysis on the individual techniques and

motivates the need for CMP-speci�c approaches to match the power budget. Section

5.4 reports the main experimental results. Finally, Section 5.5 shows our concluding

remarks.

5.2. Background and Related Work

5.2.1. CMP-speci�c Power Control Mechanisms

CMP architectures exhibit some peculiarities when running parallel workloads, espe-

cially in terms of performance and power. In such workloads threads must periodically

synchronize (e.g., for communication purposes) and any delay introduced in one of the

threads may end up delaying the whole application.

5.2.1.1. Saving Power from Spinning

One of the main sources of power dissipation in CMPs running parallel workloads is

�spinning� or �busy waiting�. When a core is trying to acquire a lock or waiting in a

barrier it enters in a spinning state that may become an important source of useless

power dissipation. In order to detect spinning, initial approaches used source code or

binary instrumentation but that requires recompilation and might be infeasible for certain

situations. Li et al. [57] proposed a real-time hardware mechanism to detect processors

in spinning state. Their mechanism checks the machine's state between instructions that

cause a backward control transfer (BCT), usually a branch or a jump instruction. If the

machine's state remains the same between several BCTs, the processor has entered a

spinning state. They also propose scaling frequency for processors in a spinning state

5.2. Background and Related Work 89

assuming that they can wake up a processor. However, this mechanism does not provide

precise power management and cannot be applied outside locks/barriers.

5.2.1.2. Dynamic Voltage and Frequency Scaling in CMPs

In 2004, Li et al. proposed thrifty barriers [55]. This DVFS-based mechanism reduces

power dissipation in CMPs by estimating the per-core time interval between synchroniza-

tion points and disabling or using DVFS in cores that get to the synchronization point.

They approximate the wakeup time by the time the slowest thread takes to get to the

synchronization point. If the sleep/wakeup takes more time than they can save then the

technique is not used. Later on, in 2006, Isci et al. [40] proposed a chip-level dynamic

power management for CMPs just focusing on single-threaded programs while Sartori et

al. [82] extended this work to reduce peak power in a distributed way. These mechanisms

selectively change between several DVFS power modes for the di�erent cores maximizing

throughput under certain power constraints. Unfortunately, as these proposals rely on

the use of performance counters and/or time estimation, they only work properly for

multi-programmed or single-threaded applications simultaneously running on the di�er-

ent cores of the CMP. This is because for parallel workloads performance counters (and

time-based estimations) are almost useless for relating performance and power (due to

synchronization points). A spinning core may have a high IPC by doing nothing but

spinning. In other words, synchronization points may increase global execution time

although local core performance counters show a performance increase. Moreover, none

of the mentioned techniques provide any accuracy analysis when matching an imposed

power budget.

In 2008, Cai et al. proposed meeting points [20] which locates critical threads in parallel

regions and uses DVFS to reduce energy consumption of non-critical threads. They

propose two approaches: thread delaying, that slows down the fastest thread to ensure

that all the threads get to the synchronization point (meeting point) at the same time;

and thread balancing, that gives priority to the critical thread when accessing resources

in a 2-way SMT processor. They achieve substantial energy reduction as long as the

critical thread can be identi�ed.

In the commercial area, Intel's i7 turbo mode shuts o� idle cores, reducing their voltage

to zero rather than just lowering the power provided to them. Not having as many cores

that produce heat will allow other cores to use more power, increasing the performance of

those cores while still not exceeding the maximum TDP of the processor. This is useful

when running sequential or low-parallel applications. However, for parallel workloads,

overclocking two cores does not necessarily mean a performance improvement due to

memory dependences and synchronization points.

90 Chapter 5. Multi-Core Power Budget Matching

5.3. Enforcing a Power Budget in CMPs

Most of the previous proposals in power control focus on global power or energy reduction.

However, sometimes we require a precise core-level power/energy control during regular

usage of the processor due to temporal power or thermal constraints. This way we can

reuse existent hardware in a di�erent scenario it was originally intended for, increase

the number of computation cores reusing a TDP, etc. In this chapter we introduce a

mechanism to restrain the power dissipation so that the processor can accurately match

an imposed power budget in an energy-e�cient way. To achieve this goal we �rst detect

program points where power can be saved without harming performance (e.g., spin-

locks, wrong execution paths, cache misses, etc.) and reduce it; second, we balance the

power between the cores; and �nally (when nothing else can be done), we reduce the

power locally even at the cost of degrading performance (by means of DVFS and/or

microarchitectural techniques). This section will present our simulation environment,

analyze why legacy power control mechanisms are unable to match a prede�ned power

budget in CMPs and introduce Power Token Balancing, a power-control mechanism that

balances power between cores to control global power usage.

Table 5.1: Core con�guration.

Processor Core

Process Technology: 32 nanometers
Frequency: 3000 Mhz
VDD: 0.9 V
Instruction Window 128 RUU + 64 IW
Load Store Queue 64 Entries
Decode Width: 4 inst/cycle
Issue Width: 4 inst/cycle
Functional Units: 6 Int Alu; 2 Int Mult

4 FP Alu; 4 FP Mult
Branch Predictor: 16bit Gshare

Memory Hierarchy

Coherence Prot.: MOESI
Memory Latency: 300
L1 I-cache: 64KB, 2-way, 1 cycle lat.
L1 D-cache: 64KB, 2-way, 1 cycle lat.
L2 cache: 1MB/core, 4-way, uni�ed

12 cycle latency
TLB: 256 entries

Network Parameters

Topology: 2D mesh
Link Latency: 4 cycles
Flit size: 4 bytes
Link Bandwidth: 1 �it / cycle

Table 5.2: Evaluated benchmarks and input working sets.

Benchmark Size Benchmark Size

SPLASH-2

Barnes 8192 bodies, 4 time steps Raytrace Teapot
Cholesky tk16.0 Water-NSQ 512 molecules, 4 time steps
FFT 256K complex doubles Water-SP 512 molecules, 4 time steps
Ocean 258x258 ocean Tomcatv 256 elements, 5 iterations
Radix 1M keys, 1024 radix Unstructured Mesh.2K, 5 time steps

PARSEC
Blackscholes simsmall Swaptions simsmall
Fluidanimate simsmall x264 simsmall

5.3. Enforcing a Power Budget in CMPs 91

5.3.1. Simulation Environment

For evaluating the proposed approaches we have used the Virtutech Simics platform

[65] extended with Wisconsin GEMS v2.1 [67]. GEMS provides both detailed memory

simulation through a module called Ruby and a cycle-level pipeline simulation through

a module called Opal. We have extended both Opal and Ruby with all the studied

mechanisms that will be explained later. The simulated system is a homogeneous CMP

consisting of a number of replicated cores connected by a switched 2D-mesh direct net-

work. Table 5.1 shows the most relevant parameters of the simulated system. Power

scaling factors for a 32nm technology were obtained from McPAT [56]. To evaluate the

performance and power dissipation of the di�erent mechanisms we used scienti�c appli-

cations from the SPLASH-2 benchmark suite in addition to some PARSEC applications

(the ones that �nished execution in less than 3 days in our cluster). Results have been

extracted from the parallel phase of each benchmark. Benchmark sizes are speci�ed in

Table 5.2.

We will provide overall CMP energy consumption along with the accuracy of each eval-

uated technique on matching a prede�ned global power budget in the simulation results.

To measure each technique's accuracy we use the metric Area over the Power Budget

(AoPB) de�ned in Section 2.3. This metric measures the amount of energy (in joules)

between the power budget and each core dynamic power. The lower the area (energy)

the more accurate the technique (remember that the ideal AoPB is zero). Performance

results are shown for the dynamic approach (see section 5.4.2).

5.3.2. Matching a Power Budget in a CMP Running Parallel Work-

loads

Once we have a mechanism to measure power in a core, the next step is to analyze how

di�erent power saving mechanisms behave under power constraints. Initially, we will

adapt and tune the proposed techniques in Chapter 4 to a CMP scenario. The evaluated

techniques are:

DVFS with �ve power modes (Voltage, Frequency): (100% VDD, 100% f); (95%

VDD, 95% f); (90% VDD, 90% f); (90% VDD, 75% f); and (90% VDD, 65% f).

DFS: Similar to a) but only scaling down frequency. I.e., VDD remains 100% in all

cases.

Two-Level (DVFS+BBLM): As proposed in the previous chapter, this 2-level ap-

proach uses DVFS to lower the average power dissipation towards the power bud-

get and then uses di�erent microarchitectural techniques to remove the remaining

power spikes.

Note that these techniques were designed for the single-core scenario and, hence, they

are applied at the core-level instead of at the CMP-level. Therefore, the �rst step should

92 Chapter 5. Multi-Core Power Budget Matching

	

barnes
cholesky

fft
ocean

radix
raytrace

tomcatv
unstruct.

waternsq
watersp

blacksc.
fluidani.

swaptions
x264

Avg.

-15

-10

-5

0

5

10
DVFS
DFS
2Level

N
or

m
al

iz
ed

 E
ne

rg
y

(%
)

	

barnes
cholesky

fft
ocean

radix
raytrace

tomcatv
unstruct.

waternsq
watersp

blacksc.
fluidani.

swaptions
x264

Avg.

0

10

20

30

40

50

60

70

80

90

100

N
or

m
al

iz
ed

 A
oP

B
 (%

)

Figure 5.1: Normalized Energy (top) and AoPB (bottom) for a 16-core CMP with a power budget of
50%.

be to decide how to split the available power for the whole CMP (as determined by

the global power budget) among the individual cores. An initial and straightforward

implementation is to equally split the available power among all cores. In this case, power

budget techniques will be locally applied to a particular core under two conditions:

1. The whole CMP is over the global power budget:∑
CoreiPower > GlobalPowerBudget

2. A particular core is over its local power budget:

CoreiPower > GlobalPowerBudget/NumberOfCores

To analyze whether the single-core mechanisms work properly in the CMP scenario we

will apply the above power matching techniques (DVFS, DFS, 2level) to a 16-core CMP

(results for 2, 4 and 8 cores have been omitted for the sake of visibility) for the SPLASH-2

benchmark suite and some PARSEC benchmarks with a global power budget set to 50%

of the original processor peak power dissipation using clock gating. It is important to

note that we have selected Kim's implementation [51] as a best case scenario for DVFS

with a fast transition time of 30-50 mV/ns. Using a slower and more realistic DVFS

5.3. Enforcing a Power Budget in CMPs 93

will mean that microarchitecture-level techniques (used in the 2-level experiment) will

become even more accurate and energy-e�cient than DVFS.

In Figure 5.1 we can see the normalized energy and area over the power budget (AoPB)

with respect to a base case where no power-control mechanisms are used to match the

global power budget. If we take a look at the energy numbers we can notice that all the

evaluated techniques behave accordingly with the reported numbers in Chapter 4 for the

single-core scenario. In benchmarks like Cholesky, the 2-level approach is able to reduce

energy by almost 13%. In terms of performance, the average degradation is under 1%

for the studied benchmarks. However, di�erences arise when looking at the accuracy

metric (AoPB). Although there are particular benchmarks that report a reduced AoPB

(depending on the evaluated technique - for example Blackscholes, Swaptions and x264

from PARSEC), the average AoPB is still very high. We obtained an average of 45%

AoPB, which is far from the average 10% AoPB obtained for the single-core scenario

in the previous chapter. Moreover, for benchmarks like Ocean and Radix, the AoPB is

especially high, around 70-80%, which means that the global power budget constraint is

not properly respected.

There is a key di�erence between single-threaded applications and parallel workloads:

synchronization points. In parallel workloads we noticed that synchronization points

alter the optimal execution of the code, so it is no longer dictated by each individual core,

but by the whole CMP. These syncronization points are messing up the AoPB results.

There are some benchmarks with low AoPB in Figure 5.1-bottom, these benchmarks

have no lock/barrier contention as we will see in Figure 5.2 because they do not have

synchronization points, so single-core mechanisms work properly for them. This initial

analysis shows that previous mechanisms for managing power under temporary power

constraints are not suitable for a CMP scenario when using this initial distribution policy

that equally splits the power among cores.

5.3.3. Analysis on the Power Dissipated in Spinning

The primary goal of this chapter is to accurately match an imposed power budget in an

energy-e�cient way while having in mind the peculiarities of CMP processors running

parallel workloads. In this case, it is important to focus on places where power can be

saved without harming performance such as synchronization points.

Figure 5.2 shows an analysis on the time spent by a CMP with a varying number of

cores (from 2 to 16) either spinning or performing useful work. Each bar shows the

fraction of time spent in lock acquisition, lock release, barriers, and useful computation

(busy). As expected, the time each application wastes in spinning grows linearly with

the number of cores. Some applications (Unstructured/Fluidanimate) spend a signi�cant

time in Lock-Acq and Lock-Rel states (contended locks) while others (Cholesky/Blacksc-

holes/Swaptions/x264), in contrast, have no lock/barrier contention. While Cholesly's

behavior is due to a well balanced code, the other three benchmarks only synchronize at

the end of the code.

94 Chapter 5. Multi-Core Power Budget Matching

	

0

20

40

60

80

100

2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16

barnes cholesky fft ocean radix raytrace tomcatv unstructured w aternsq w atersp blackscholesfluidanimate sw aptions x264

Benchmark / Cores

E
xe

cu
tio

n
tim

e
(%

)

. Lock-Acquisition Lock-Release Barrier Busy

Figure 5.2: Execution time breakdown for a varying number of cores.

	

0

20

40

60

80

100

2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16

barnes cholesky fft ocean radix raytrace tomcatv unstructured w aternsq w atersp blackscholes fluidanimate sw aptions x264

Benchmark / Cores

P
ow

er
 (%

)

 .

Spinlock Power (%)

Figure 5.3: Normalized spinlock power for a varying number of cores.

In Figure 5.3 we can see the fraction of power wasted in spinning states, normalized to

the total power dissipated by the original processor. As explained in Section 5.2.1, this

wasted power can be reduced by detecting spinning and slowing down/stalling the cores.

The Power-Token approach can be used to indirectly detect spinning states as we will

describe in the next section. This spinlock power is close to a 10% on average for a

16-core processor running all the studied benchmarks. In any case, this potential power

savings due to spinning are not enough to accurately match a restrictive power budget

(e.g., 50% of the peak power) since a) it is a small amount (10%); and b) spinning is

located in very speci�c points over time while we are aimed at meeting the power budget

constraint as long as it lasts. Therefore, we need a more generic approach that could

bene�t from other wasteful situations such as mispredictions events.

5.3.4. Power Token Balancing (PTB)

5.3.4.1. PTB Motivation and Fundamentals

Imagine a power-constrained scenario with a global power budget that we need to satisfy

and local power budgets that individual cores try to match. Now that we can account

power at a cycle level by using power tokens, we can �nd out situations where power

imbalance exists among the cores of the CMP. Once detected we can balance their power

and minimize performance degradation, and that is what PTB tries to achieve. Figure

5.4 shows an example where the total power dissipated by the CMP is over the global

power budget, but some cores are under their power budget share. In this example we

assume a 4-core CMP and global power budget of 40W, with a simple implementation

that equally splits power between cores, so each core has a local power budget of 10W.

5.3. Enforcing a Power Budget in CMPs 95

6 8
3

12
8

9
12

13
15

15
14

11
13 9

8

11

0

10

20

30

40

50

1 2 3 4
Cycle

C
M

P
 P

o
w

e
r

(w
)

.

Core 1 Core 2 Core 3 Core 4

Global Power Budget

Figure 5.4: Power Token Balancing motivation
(not real numbers).

	

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1 21 41 61 81 101 121 141 161 181

Cycles

Po
w

er
 (W

at
ts

)

 .

Figure 5.5: Per-cycle power behavior of a spin-
ning core.

We can notice that cycles 1, 2 and 4 are over the global power budget (40W), so we enable

the local power-saving mechanisms. In cycle 1 no power-control mechanisms are applied

to cores 1 and 2, since they are under their local power budget (10W). On the other

hand, cores 3 and 4 need to use their local power-saving mechanisms to match their local

power budget. However, if those cores run critical execution threads and we slow them

down, we could potentially harm performance and energy in a future synchronization

point. The same happens in cycle 2 with core 3. In cycle 3, even though there are cores

exceeding their local power budget, no mechanism is applied as the global CMP power

is under the budget. Finally, in cycle 4, all cores exceed their local power budget (so

does the CMP exceeding the global one), and hence local mechanisms are applied to all

cores. However, if we were able to tell cores 3&4 in cycles 1 and 2 that their respective

local power budgets are less restrictive than 10W (since cores 1&2 have some power left,

4+2 W in cycle 1; 2+1 W in cycle 2) then the e�ects on the performance should be less

harmful.

In PTB each individual core will count, at a cycle level, the number of power tokens

it has consumed from the available local power tokens. In a given cycle, if a core still

has available power tokens and the CMP is over the global power budget then the core

o�ers its spare tokens to the PTB load-balancer. Tokens are used as a currency to

account for power, so it is important to note that they are neither sent nor received.

In PTB cores just send the number of spare tokens. Analogously, cores over their local

power budget will receive extra tokens from the PTB load-balancer which will prevent

them to enable a power-saving technique (that can reduce performance) as long as the

global power budget constraint is met. The PTB load-balancer calculates every cycle the

overall available power tokens based on the spare tokens that cores have for each cycle.

Therefore, PTB is not a loan/refund mechanism since a core can reuse power from others

but there is no need to give it back. In PTB we de�ne two power distribution policies that

will be discussed later: a) give tokens to the most power-hungry core (ToOne policy);

or b) equally distribute the extra tokens among all cores over the power budget (ToAll

policy). PTB also exhibits two inherent features that allow �transparent� optimizations

without any speci�c mechanism: 1) indirect spinning detection, and 2) an automatic

96 Chapter 5. Multi-Core Power Budget Matching

18

6
6 6

6 6

6 6

2 2 2

6

Barrier Barrier Barrier

a) b)

c)

10+6

4 4

10+6

C
1

C
2

C
3

C
4

PTB
10+2

4

10+2

10+2

C
1

C
2

C
3

C
4

PTB

4 4 4

10+18

C
1

C
2

C
3

C
4

PTB

Figure 5.6: Power Token Balancing example in the case of a barrier (using the ToAll policy).

priority system for non-spinning threads.

Figures 5.5 help us to illustrate how PTB could be used to detect spinning. When a core

enters a spinning state, the dynamic power follows the behavior shown in Figure 5.5. In

this Figure we can see an initial power peak due to useful computation. If the spinning

state lasts enough, the pipeline empties and power goes down and stabilizes (cycle >35

in Figure 5.5) to an amount that is usually under the budget. We can assume then that

the core is spinning. Note that spinning is just a particular case of power imbalance, so

our mechanism will bene�t from it but that is not the only case. Remember that PTB

knows nothing about locks, barriers, mispredictions, etc, it just balances power.

For illustrating purposes and continuing with the spinning example, Figure 5.6 shows

how PTB works in the case of a barrier (using the ToAll policy). For this example let

us assume there are four cores (C1 to C4) with local power budgets set to 10 tokens

and that when spinning a core consumes 4 tokens. As cited before, a spinning core gives

its spare tokens to the PTB load-balancer. Figure 5.6-a shows that core 2 reaches the

barrier and transfers 6 tokens to the load-balancer. Now the rest of cores have more

available power left to burn until they get to the synchronization point (in our example,

cores 1, 3, 4 receive 2 extra tokens each from the load-balancer, raising their local budget

to 12 tokens). When any other core (e.g., core 3 in Figure 5.6-b) reaches to the barrier

it also gives 6 spare tokens to the PTB load-balancer which allows cores 1&4 to use

the 6+6 extra tokens from cores 2&3, raising their local budget to 16. Finally, Figure

5.6-c shows core 1 spinning in the barrier and giving its 6 spare tokens to the PTB

load-balancer which prevents the last core (C4) to be slowed down as it can use all the

spare tokens. Again, note that PTB does not explicitly distinguish between barrier- or

lock-spinning. PTB basically detects power imbalance among cores and will bene�t from

any misprediction event (e.g., a cache miss or a mispredicted branch), not only from

spinning states.

5.3.4.2. PTB Implementation Details

The implementation of Power Token Balancing is based on a centralized structure called

PTB load-balancer. This structure receives the number of spare power tokens from

5.3. Enforcing a Power Budget in CMPs 97

all cores under their local power budget and splits them among the cores exceeding it

(intending not to trigger any power-saving mechanism for the exceeding cores which

would result in a performance degradation). Balancing is done at a cycle level, so tokens

from previous cycles are not stored in the balancer. To exchange token information we

need to build communication wires between the cores and the PTB load-balancer, as

depicted in Figure 5.7. We will use 4 wires for sending and 4 wires for receiving the

number of tokens per core; this limits the amount of given/received tokens but makes

the mechanism more power-e�cient. Note that these wires are used to send the amount

of spare tokens, not the tokens themselves (tokens are used as a currency to account for

power). All these wires will be placed on a di�erent layer of that of the interconnection

network.

To estimate latency delays of the communication wires we used Xilinx ISE for a processor

running at 3GHz without bu�ers as a reference to calculate the logic delay of the circuit.

We removed the delay caused by both pins and routing, making the logic delay almost

equivalent to the delay of a circuit in an ASIC implementation. For a 4-core CMP delays

are: one cycle for sending the number of spare tokens, one for processing tokens and one

for sending the number of spare tokens back to the cores over the power budget. For

an 8-core processor, wire delay increases to 2 cycles, so it will take a total of 5 cycles to

send and receive the number of spare tokens to/from the PTB load-balancer. For a 16-

core CMP the mechanism needs 4 cycles for receiving the tokens, 2 cycles for processing

and 4 cycles for sending the tokens to the cores over the power budget, according to

Xilinx ISE. When a core gives away tokens it sets a more restrictive power budget to

ensure it won't dissipate power until tokens reach its destination. The power dissipation

of the PTB mechanism plus the communication wires has been estimated using Xilinx

XPower Analyzer with the same con�guration as the delay latency, increasing the average

application power dissipation by just 1%, which is also accounted in the experimental

results presented in the next section.

Problems might arise as we increase the number of processing cores, and thus, the PTB

load-balancer communication and processing latencies. However, for the analyzed num-

ber of cores and latencies, experimental results show signi�cant improvements in terms

of temperature, energy and accuracy on matching the power budget, even with a pes-

simistic 10-cycle delay for sending/receiving the number of spare tokens from other cores.

Nevertheless, one approach to make PTB more scalable (>32 cores) consists of clustering

the PTB load-balancer into groups of 8 or 16 cores and replicate the structure as needed.

Results in next section will show that such a group of cores (8 or 16) is enough for PTB

to e�ciently balance power and accurately match the imposed power budget.

5.3.5. Reusing Wasted Power to Reduce Energy: Nitro

This idea is inspired by the Formula One's KERS (Kinetic Energy Recovery System)

mechanism, also known as regenerative brake. As mentioned before, when running par-

allel workloads on a CMP, speeding up or slowing down a speci�c core may not vary the

98 Chapter 5. Multi-Core Power Budget Matching

	

Core	
 1	
 Core	
 2	

Core	
 3	
 Core	
 4	

PTB	

load-­‐balancer	

Figure 5.7: PTB implementation diagram for a 4-core CMP.

�nal program execution time due to synchronization points. For example, overclocking a

core may not lead to any performance improvement. The key point in a CMP running a

parallel application is that, in general, it is more crucial when you apply the mechanism

than the mechanism itself. The idea behind Nitro is quite simple: save power when

a core does not need it (e.g., while spinning) and reuse it when it becomes really use-

ful (e.g., critical threads/sections). Nitro di�ers from other spinning-based mechanisms

[20][57][55] in two things. First, all these mechanisms are meant to reduce energy con-

sumption before/while spinning, whereas Nitro tries to reuse this energy somewhere else.

Second, all these mechanisms usually try to exploit the barrier synchronization mech-

anism, while Nitro bene�ts from locks and barriers. In general terms, Nitro approach

may resemble the i7 turbo mode but in a �ner-grain. However, Nitro is designed for a

parallel workload scenario, looking for code sections that we know for sure will bene�t

from local overclocking.

As mentioned in Section 5.2.1.1, spinning states can be detected either by hardware or

by static instructions introduced by the programmer. In any case, those sections can be

identi�ed and, by using the power-token approach, we can approximate the amount of

power spent in spinning (depending on how long a core stays spinning). However, a small

structure to account for total power-tokens saved is still needed. Nitro works as follows:

once a lock is detected, the processor that gets access to the lock after the contention

period (lock acquisition) is overclocked, as long as we have power-tokens left to overclock

and for as long as the critical section lasts. We will assume the proposed DVFS by Kim

et al. [51] which is able to quickly switch between power modes at speeds of 30-50mV/ns.

The overclocked core will run at a 15% faster rate than the base frequency. Of course,

sometimes there are not enough cycles in the critical section to take advantage of Nitro,

so we need some kind of mechanism to estimate the duration of the critical section and

only apply Nitro if it lasts for long enough. For this purpose we use the spinning predictor

proposed in [55], based on the PC to predict a critical section duration. The overclocking

will also last for a short period of time, so the processor will still have time to recover

after the overclocking. Nitro can also be applied to speed up the remaining threads while

5.4. Experimental Results 99

others wait in a barrier, but we did not implement this feature.

5.3.5.1. Nitro Outside Locks

Nitro was designed to bene�t from wasted power from spinning cores, saving that power

and reusing it somewhere else. We decided to focus our analysis in lock-delimited code

sections, because there were many previous works that focused on reusing or balancing

power from spinning cores in barriers [20][57][55][82]. However, with minimal modi�ca-

tions on the PTB mechanism, Nitro can be used to speed up execution in both barriers

and locks. If we take a look to the example from Figure 5.6-c, once cores 1 2 and 3

get to the barrier, the PTB load-balancer receives all their spare tokens, and gives them

to core 4. As there is only one core left, it probably won't even use any power saving

mechanism, either because the total power dissipated by the whole CMP will be under

the global budget (one of the requirements from Section 5.3.2) or because the extra spare

tokens from the PTB load-balancer prevent the usage of local power saving mechanisms.

Under these conditions we could overclock core 4, the last one to get to the barrier, in

order to reach the synchronization point faster, and thus reduce global execution time.

The overclocking should only be done as long as we have power tokens left from the PTB

load-balancer.

More speci�cally, if PTB is in ToOne mode, Nitro will overclock the most power hungry

core (note that this core is not necessarily the latest to get to the synchronization point),

speeding it up as long as we have tokens left from spinning cores. On the other hand,

if PTB is in ToAll mode, power tokens will be equally divided between all the cores

over the budget, and, eventually, all these cores will receive enough tokens to overclock

themselves, speeding up more and more as cores reach the synchronization point. We

did not implement Nitro outside locks because of time restrictions, but we are wiling to

evaluate the potential of this mechanism in our future work.

5.4. Experimental Results

5.4.1. E�ciency of Power Token Balancing (PTB)

In this section we perform an analysis of the PTB mechanism with the previously de�ned

power-token distribution policies: ToAll (that shares the power-tokens among all the

cores over their local power budget) and ToOne (that gives all the spare power-tokens

to the core that needs them the most). The selected global power budget will be 50% of

the peak power dissipation1 with clock gating and a varying number of processing cores

in the CMP (2 to 16 cores). Results are normalized to a base case without power-control

mechanisms to match the global power budget.

Figure 5.8-top shows the energy consumption for the evaluated techniques (enumerated

1We only report results for a 50% power budget for the sake of visibility. For less restrictive power
budgets PTB also works properly.

100 Chapter 5. Multi-Core Power Budget Matching

	

2Core_Toall

2Core_Toone
4Core_ToAll

4Core_ToOne
8Core_ToAll

8Core_ToOne
16Core_ToAll

16Core_ToOne
-5

-4

-3

-2

-1

0

1

2

3

4

5
DVFS
DFS
2Level
PTB+2Level

N
or

m
al

iz
ed

 E
ne

rg
y

(%
)

	

2Core_Toall

2Core_Toone
4Core_ToAll

4Core_ToOne
8Core_ToAll

8Core_ToOne
16Core_ToAll

16Core_ToOne
0

10

20

30

40

50

60

70

80

N
or

m
al

iz
ed

 A
oP

B
(%

)

Figure 5.8: Normalized energy (top) and area over the power budget (bottom) for a varying number
of cores and PTB policies.

	

barnes

cholesky
fft

ocean
radix

raytrace
tomcatv

unstruct.
waternsq

watersp
blacksc.

fluidani.
swaptions

x264
Avg.

-20

-10

0

10

20

30

40
DVFS
DFS
2Level
PTB+2Level

N
or

m
al

iz
ed

 E
ne

rg
y

(%
)

	

barnes
cholesky

fft
ocean

radix
raytrace

tomcatv
unstruct.

waternsq
watersp

blacksc.
fluidani.

swaptions
x264

Avg.

0

10

20

30

40

50

60

70

80

90

100

110

N
or

m
al

iz
ed

 A
oP

B
(%

)

Figure 5.9: Detailed energy (top) and AoPB (bottom) for a 16-core CMP with the ToAll PTB policy.

5.4. Experimental Results 101

	

barnes

cholesky
fft

ocean
radix

raytrace
tomcatv

unstruct.
waternsq

watersp
blacksc.

fluidani.
swaptions

x264
Avg.

-20

-10

0

10

20

30

40
DVFS
DFS
2Level
PTB+2Level

N
or

m
al

iz
ed

 E
ne

rg
y

(%
)

	

barnes

cholesky
fft

ocean
radix

raytrace
tomcatv

unstruct.
waternsq

watersp
blacksc.

fluidani.
swaptions

x264
Avg.

0

10

20

30

40

50

60

70

80

90

100

N
or

m
al

iz
ed

 A
oP

B
 (%

)

Figure 5.10: Detailed energy (top) and AoPB (bottom) for a 16-core CMP with the ToOne PTB
policy.

in Section 5.3.2) using di�erent combinations of core number/policy whereas Figure 5.8-

bottom shows the AoPB metric. We can observe that when using the proposed PTB

mechanism, area numbers go back to the reported numbers in the previous chapter for

the single-core scenario: average 10% of AoPB for a 16-core CMP when the PTB+2level

technique is used (although energy numbers are not as good as in the single-core scenario).

In a 16-core CMP, DVFS and DFS are unable to lower the AoPB below 65% while

PTB+2level reduces the average area to just 8%, getting close to the ideal AoPB of

zero, with only 3% more energy consumed. It can also be observed that the accuracy on

matching the power budget increases (i.e., AoPB decreases) with the number of cores,

because we have more chances of receiving tokens from other cores. A more detailed

analysis (Figures 5.9 and 5.10) shows that there are benchmarks, like Unstructured,

where energy increases when using power saving techniques (mainly due to sync points

- see Figures 5.2 and 5.3). Unstructured has many thread dependences and slowing

down a core causes a great impact on performance. On the other hand, benchmarks like

Barnes and Ocean, that reported very high AoPB of 70% for the initial power-distribution

implementation discussed in Section 5.3.2 (Figure 5.1), now o�er an AoPB of just 2%

thanks to the e�cient power distribution among cores performed by PTB. However, in

some benchmarks the extra accuracy on matching the global power budget comes at the

cost of higher energy consumption than that of DVFS alone. DVFS shows an average

energy reduction of 6% whereas PTB increases the energy in 3%. Note, however, that

this energy increase can be turned into energy savings if we relax the accuracy constraint

102 Chapter 5. Multi-Core Power Budget Matching

	

barnes

cholesky
fft

ocean
radix

raytrace
tomcatv

unstruct.
waternsq

watersp
blacksc.

fluidani.
swaptions

x264
Avg.

-20

-10

0

10

20

30

40
DVFS
DFS
2Level
PTB+2Level

N
or

m
al

iz
ed

 E
ne

rg
y

(%
)

	

barnes

cholesky
fft

ocean
radix

raytrace
tomcatv

unstruct.
waternsq

watersp
blacksc.

fluidani.
swaptions

x264
Avg.

0

10

20

30

40

50

60

70

80

90

100

N
or

m
al

iz
ed

 A
oP

B
(%

)

Figure 5.11: Detailed energy (top) and AoPB (bottom) for a 16-core CMP using the dynamic policy
selector.

of PTB, as we will show in section 5.4.3.

If we compare area and energy results for both power-token distribution policies (ToAll

and ToOne) we can see that, on average, the former works better than the later. Bench-

marks like Unstructured and Waternsq work better when the extra power is given to a

single core rather than to all cores. In these benchmarks, threads have an unbalanced

workload and spend a signi�cant fraction of their time spinning on locks; therefore, they

bene�t from giving the extra power (priority) to threads that enter in a critical section

(i.e., the ToOne policy) so it will �nish faster and release the lock.

5.4.2. Dynamic Policy Selector

When working with barriers, the ToAll policy will split power tokens from cores already

waiting in the barrier among the remaining cores, speeding them all in order to get to

the barrier as soon as possible whereas the ToOne policy will only bene�t one core, that

will get faster to the barrier, but we still have to wait for the rest of cores. On the other

hand, when a core is spinning in a lock and gets access to a critical section, giving all

the tokens to this core will bene�t the overall program execution, as the core that enters

the critical section can �nish this section faster and release the lock. Results in the

previous section showed that the ToAll policy is best suited for applications with many

barriers in the code whereas the ToOne policy works better for applications with high

lock contention. Therefore, in order to enhance the PTB power balancing mechanism we

have included a dynamic selector for the power sharing policy (either ToOne or ToAll).

5.4. Experimental Results 103

	

barnes
cholesky

fft
ocean

radix
raytrace

tomcatv
unstruct.

waternsq
watersp

blacksc.
fluidani.

swaptions
x264

Avg.

-10

-5

0

5

10

15

20

P
er

fo
rm

an
ce

 S
lo

w
do

w
n

(%
)

Figure 5.12: Detailed Performance for a 16-core CMP using the dynamic policy selector.

This selector will change the policy depending on the current state of the spinning cores.

If the spinning is taking place to access a lock, the mechanism will use the ToOne policy.

If the spinning is taking place in a barrier (or there is no spinning) the PTB mechanism

will use the ToAll policy.

Figure 5.11 shows how this dynamic policy selection approach obtains the best results for

the evaluated techniques in terms of both area and energy metrics. We can also observe

in Figure 5.12 that PTB is really close to DVFS (around 2%) in terms of performance.

Moreover, PTB has the extra bene�t of being far more accurate on matching the imposed

power budget than DVFS or DFS approaches. Normalized energy goes down to 2%, 1%

less than the static ToAll and 3% less than the static ToOne. Accuracy is improved

in 3% compared with the static ToAll and 5% compared with the static ToOne policy.

In terms of performance, Unstructured is the application that is more a�ected by the

microarchitectural power-control mechanisms.

Note that this dynamic policy selector, for the presented results, is assisted by actual

application-speci�c information although pure indirect dynamic detection of the type

of spinning is possible (and practical) via heuristics: e.g., monitoring the number of

cores that stop spinning simultaneously via their power token consumption, run-time

instruction analysis or other techniques similar to those described in [57]. For the sake of

clarity, we only report on the �rst approach which does not entail any additional energy

cost for the classi�cation of spinning to barrier- or lock-spinning.

5.4.3. Relaxing PTB to be More Energy-E�cient

Up to this point we have focused on a PTB mechanism that optimizes the accuracy

on matching the given power budget. As explained before, this kind of optimization

hurts performance and, therefore, increases overall energy consumption. However, if we

relax the accuracy constraint, PTB can also achieve positive energy savings since power-

saving mechanisms would be applied in a less restrictive way, not a�ecting performance

that much. In order to analyze this new focus, Figure 5.13 shows how PTB behaves

when optimizing for energy-e�ciency instead of just accuracy for several relaxed area

thresholds (+10%, +20%, +30%, etc). These relaxed area thresholds are used to delay

104 Chapter 5. Multi-Core Power Budget Matching

	

2Core_Toall

2Core_Toone
4Core_ToAll

4Core_ToOne
8Core_ToAll

8Core_ToOne
16Core_ToAll

16Core_ToOne
-5

-4

-3

-2

-1

0

1

2

3

4

5
DVFS
DFS
2Level
PTB+2Level
Relaxed
PTB+2Level

N
or

m
al

iz
ed

 E
ne

rg
y

(%
)

	

2Core_Toall

2Core_Toone
4Core_ToAll

4Core_ToOne
8Core_ToAll

8Core_ToOne
16Core_ToAll

16Core_ToOne
0

10

20

30

40

50

60

70

80

N
or

m
al

iz
ed

 A
oP

B
(%

)

Figure 5.13: Normalized energy (top) and area over the power budget (bottom) for a varying number
of cores and PTB policies.

triggering a power-saving mechanism when the global/local power budgets are exceeded.

Note that the original PTB triggers the power-saving mechanisms immediately after

detecting that the current power budget was exceeded.

If we take for example a 16-core CMP and relax the AoPB metric allowing it to be 20%

above the power budget, PTB obtains an average energy reduction of 4% (Figure 5.13-

top) similar to that obtained by DVFS, and still being far more accurate than DVFS

(as seen in Figure 5.13-bottom) on matching the power budget. Of course, better energy

savings could be achieved for the same 16-core CMP if we relax the area constraint even

more. Finally, if we use PTB as a spinlock detector and we disable the spinning cores to

save power we could further increase the energy savings.

5.4.4. The Importance of Accuracy

In this section we will brush up the example introduced in Chapter 2, that illustrates

the importance of the accuracy on matching a prede�ned power budget by increasing

the number of cores of a CMP maintaining the same TDP (Thermal Design Power). Let

us assume that we want to increase the number of cores in a CMP maintaining the same

TDP. For a 16-core CMP with a 100W TDP each core would use 6.25W (for simplicity

let us ignore the interconnection network). If we set a power budget of 50% we could

ideally duplicate the number of cores in that CMP with the same TDP (up to 32 cores,

each one dissipating an average of 3.125W). But for this ideal case a perfect accuracy on

matching the power budget is needed.

5.4. Experimental Results 105

According to the previous results, DVFS incurs in an energy deviation of 65% over

the power budget (the AoPB metric). Therefore, with such 65% deviation each core

dissipation raises to 3.125*1.65=5.15W, meaning that for a 100W TDP we can put a

maximum of 100/5.15=19 cores inside the CMP. Using a regular 2level approach (without

PTB) the deviation is reduced to 40% that gives us an average power dissipation of

3.125*1.40=4.375W per core, so we can put 100/4.375=22 cores in the CMP with the

same TDP. Finally, when using the non-relaxed PTB approach the error is reduced below

10%, that gives us a potential average power dissipation of 3.125*1.1=3.4375W per core,

so we could put 100/3.4375=29 cores inside our CMP. Therefore, thanks to the extra

cores (we could go from 16 cores in the original CMP design without PTB to 29 cores)

we can perfectly overcome the 3% performance degradation that results from using our

proposed PTB mechanism if the application is parallel enough to use these extra cores.

5.4.5. Temperature Analysis

Thermal hotspots increase cooling costs and have a negative impact on reliability and

performance. The signi�cant increase in cooling costs requires designs for temperature

margins lower than the worst-case. When we reduce the per-cycle power dissipation of an

application we can consequently reduce the CMP temperature over time. Moreover, leak-

age power is exponentially dependent on temperature and an incremental feedback loop

exists between temperature and leakage, which may turn small structures into hotspots

and potentially damage the circuit. High temperatures also adversely a�ect performance,

as the e�ective operating speed of transistors decreases as they heat up. In this section

we will analyze the per-structure and per-benchmark temperature for the base case, PTB

and DVFS.

Temperature numbers were obtained by introducing the HotSpot 5.0 [88] thermal models

into Opal and building our tiled CMP by replicating N times our custom �oorplan

(depicted in Figure 5.14), where N is the number of cores. More speci�cally, we have

modeled both leakage (through McPAT [56]) and the leakage/temperature loop in Opal,

so leakage will be updated on every Hotspot exploration window (10K cycles). Leakage

power is translated into power tokens and updated according to the formula Lnew =

LBase · eLeakβ ·(Tcurrent−Tbase) (Chapter 2) where Leakβ depends on technology scaling

factor and is provided by HotSpot 5.0, Lnew is the updated leakage, LBase is the base

leakage (obtained using McPAT thermal models), Tcurrent is the current temperature

and Tbase is the base temperature. Once leakage is updated, it is translated back to

power tokens. Another important parameter is the cooling system. The regular thermal

resistance of a cooling system ranges from 0.25 K/W for the all-copper fan model at

the highest speed setting, to 0.33 K/W for the copper/aluminum variety at the lowest

setting. In this work we model a real-world Zalman CNPS7700-Cu heatsink with 0.25

K/W thermal resistance and an area of 3.268 cm2 (136mm side).

Figure 5.15 shows both average and peak (maximum) temperatures before using PTB

for the studied benchmarks running on a 16-core CMP along with their corresponding

106 Chapter 5. Multi-Core Power Budget Matching

	

L2

Dcache

Ic
ac

he

B
pr

ed

T
L

B

A
lu

m
ap

LsQ

FPAlu

FPRegs

ROB

IntRegs In
tE

xe
c

Figure 5.14: Core �oorplan.

	

barnes
cholesky

fft
ocean

radix
raytrace

tomcatv
unstructured

waternsq
watersp

blackscholes
fluidanimate

swaptions
x264

Average

50

55

60

65

70

75

80

85

90
Avg Base
Temperature

Peak Base
Temperature

Te
m

pe
ra

tu
re

 (º
C

)

Figure 5.15: Average and peak temp. of a 16-core CMP.

	

barnes

cholesky
fft

ocean
radix

raytrace
tomcatv

unstructured
waternsq

watersp
blackscholes

fluidanimate
swaptions

x264
Average

60

65

70

75

80
Min. Base
Temperature

Peak PTB
Temperature

Te
m

pe
ra

tu
re

 (º
C

)

Figure 5.16: Minimum base vs peak PTB temperature
of a 16-core CMP.

standard deviation. We de�ne �idle� temperature as the temperature of the whole CMP

in idle state (i.e., only the operating system is running). Therefore, the maximum tem-

perature reduction any power saving mechanism can achieve will vary between the base

peak/average temperature of the CMP and the idle temperature. For the studied 16-core

CMP the idle temperature reported by McPAT is around 60oC (red line in Figure 5.15).

In Figure 5.15 we also see that the average temperature is 72oC for all the evaluated

benchmarks, therefore, the maximum temperature reduction we could ideally aspire is,

on average, 12oC.

Figure 5.16 shows a comparison between the minimum temperature of the CMP without

PTB (coolest core) against the peak temperature of the CMP when using PTB (hottest

core). This initial study shows how PTB is able to balance temperature between the

cores, lowering the peak temperature of the hottest core of the CMP to almost equal

the temperature of the coolest core in the base CMP (without PTB). This is the bene�t

we expected from the balancing and highly accurate power budget matching our PTB

mechanism provides, that ensures minimal deviation from the target power budget and,

therefore, temperature.

For a more detailed analysis, Figure 5.17 shows the per-structure peak and average

temperatures for a 16-core CMP for the base case, DVFS and PTB mechanisms. Tem-

peratures are normalized against the maximum temperature gain (the di�erence between

the peak/average temperature and the idle temperature we cited before). We can see

how PTB and DVFS are able to reduce the temperature of all the internal structures

of the core. However, PTB almost doubles the temperature reduction of DVFS, due to

the extra accuracy when matching the target power budget. In particular, PTB obtains

5.4. Experimental Results 107

	

Icache

Dcache
Bpred

TLB
FPAlu

FPReg
AluMap

ROB
IntReg

IntExec
LdStQ

L2
Average

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1
Base DVFS PTB

N
or

m
al

iz
ed

 P
ea

k
Te

m
pe

ra
tu

re
 (º

C
)

	

Icache

Dcache
Bpred

TLB
FPAlu

FPReg
AluMap

ROB
IntReg

IntExec
LdStQ

L2
Average

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Base DVFS PTB

N
or

m
al

iz
ed

 A
ve

ra
ge

 T
em

pe
ra

tu
re

 (º
C

)

Figure 5.17: Normalized per-structure peak (left) and average (right) temperature analysis.

	

barnes

cholesky
fft

ocean
radix

raytrace
tomcatv

unstructured
waternsq

watersp
blackscholes

fluidanimate
swaptions

x264
Average

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Base DVFS PTB

N
or

m
al

iz
ed

 P
ea

k
Te

m
pe

ra
tu

re
 (º

C
)

	

barnes

cholesky
fft

ocean
radix

raytrace
tomcatv

unstructured
waternsq

watersp
blackscholes

fluidanimate
swaptions

x264
Average

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Base DVFS PTB

N
or

m
al

iz
ed

 A
ve

ra
ge

 T
em

pe
ra

tu
re

 (º
C

)

Figure 5.18: Normalized per-benchmark peak (left) and average (right) temperature analysis.

an average reduction of the peak temperature of all structures of 35% in addition to an

average reduction of the average temperature of 30% for the evaluated 16-core CMP. On

the other hand, the per-benchmark temperature reduction achieved by PTB follows the

same trend, as it can be observed in Figure 5.18. We can see that, except for �uidan-

imate, there exists a temperature reduction in all of the studied benchmarks, for both

peak and average temperature during the benchmark execution. The peak and average

temperature reductions provided by the use of PTB are again close to 27% on average,

almost doubling the temperature reduction provided by DVFS.

5.4.6. Nitro Energy and Performance Analysis

Finally, we have evaluated Nitro for a varying number of cores (from 2 to 16) running

the SPLASH-2 benchmark suite and some benchmarks from the PARSEC 2.1 suite.

Figure 5.19 shows the performance improvement and the normalized energy reduction

for the di�erent benchmarks. As expected, the benchmark that bene�ts the most from

Nitro is Unstructured, which is the one that has the most lock contention from the set

of studied benchmarks. Note, however, that this mechanism does not cause a heavy

impact on energy in the rest of studied benchmarks. For Unstructured, the number

of overclocked cycles represent just a 0.7% of the total simulation cycles, and that is

enough to reduce the energy consumption of this benchmark by 3%. However, both the

SPLASH-2 benchmark suite and the studied PARSEC benchmarks are quite optimized

and contention periods are kept as low as possible, especially the ones related to locks,

but this is not always the case in parallel applications such as for commercial and server

108 Chapter 5. Multi-Core Power Budget Matching

	

barnes

cholesky
fft

ocean
radix

raytrace
tomcatv

unstructured
waternsq

watersp
blackscholes

fluidanimate
swaptions

x264
-1

0

1

2

3

4

5
2 Processors
4 Processors
8 Processors
16 Processors

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t (

%
)

	

barnes

cholesky
fft

ocean
radix

raytrace
tomcatv

unstructured
waternsq

watersp
blackscholes

fluidanimate
swaptions

x264
-4

-3

-2

-1

0

1

2 Processors
4 Processors
8 Processors
16 Processors

N
or

m
al

iz
ed

 E
ne

rg
y

R
ed

uc
tio

n
(%

)

Figure 5.19: Performance improvement and energy reduction for a 16-core CMP using Nitro.

workloads (or any parallel application not coded by highly experienced programmers).

Nevertheless, results obtained by the Nitro approach are encouraging since they show

that, when contention for lock acquisition and release exists, our proposal can improve

energy and increase performance. We are looking forward to analyze some commer-

cial and server workloads or greater datasets to validate these results. Moreover, the

extension of Nitro to work with both barrier and lock information could achieve even

further energy savings. In section 5.3.3 we saw that many benchmarks spend part of

their execution time waiting in barriers. This fraction of time increases as we increase

the number of cores. If we detect cores in spinning state and use that wasted energy

(approximately 10% according to Figure 5.3) to speed up cores doing useful work we

could achieve greater energy savings. We did not implement this feature because of time

limitations but we are wiling to analyze it's potential energy savings.

5.5. Conclusions

Design complexity and veri�cation of microprocessors is increasingly costly. Some com-

panies cannot a�ord the design of custom processors for their products (especially for

cost-sensitive consumer handheld devices and gadgets) and have to rely on existing pro-

cessors that may not meet their power requirements. In other scenarios it might be useful

to increase the number of cores on a CMP maintaining the same thermal envelopment.

Moreover, thermal envelop designs cannot be done for the worst case, because production

costs are raised. Being able to set a power budget to the processor can be helpful in

5.5. Conclusions 109

these cases.

When analyzing CMPs running parallel workloads, previously proposed power manag-

ing mechanisms fail to accurately adapt to temporary power constraints, due to thread

dependences and synchronization points. Moreover, power saved just from spinlocks is

not enough to match an aggressive power budget because it is too local and too low. A

global control mechanism is needed to match these design peculiarities. In this chap-

ter we have proposed Power Token Balancing (PTB), a mechanism that dynamically

balances power among the di�erent cores to ensure that the whole processor accurately

matches a prede�ned and global power budget. Our proposed mechanism accounts for

unused power from cores that are under the power budget (translated into power-tokens)

and passes that power to cores over the power budget, hence, not having to slow them

down to match their local power budget constraint.

PTB is a �ne-grain mechanism that ensures maximum accuracy with minimal standard

deviation from the power budget, which is crucial if you want to optimize packaging

costs or to increase the number of cores in a CMP with the same TDP. However, the

accuracy constraint can be relaxed in order for PTB to be more energy-e�cient by

means of applying the power-saving mechanisms in a less restrictive way, and therefore,

not a�ecting performance too much.

Experimental results have shown that PTB is able to accurately match the global power

budget with an AoPB of just 8% for a 16-core CMP with a negligible energy increase

(3%) while DVFS fails to match the power budget precisely, resulting in a high AoPB

of around 65%. Furthermore, when considering a relaxed PTB approach that allows

being 20% above the power budget (still far from the 65% AoPB obtained by DVFS),

PTB obtains the same energy reduction as DVFS for the 16-core CMP. Of course, better

energy savings can be achieved if the area constraint is further relaxed.

As a side e�ect of this accurate power budget matching, the use of PTB provides an-

other interesting bene�t: a more stable temperature over execution time. For the studied

benchmarks we can obtain a 27-30% peak and average temperature reduction, that also

applies to the individual structures. PTB is also able to balance temperature between

cores, reducing the peak temperature of the hottest core making it equal to the temper-

ature of the coldest core in the base CMP design. This temperature reduction not only

reduces leakage power but also increases reliability and can result in reduced packing

costs.

Finally, we have proposed Nitro, a mechanism based on the idea of Formula One's KERS.

This technique saves power when not needed (e.g., from threads spinning in locks) and

uses that power to overclock other cores that are executing critical sections of the program

(e.g., code delimited by locks). This mechanism is suited for applications with contended

locks and does not degrade performance for the rest of applications. Unfortunately,

both the SPLASH-2 and the PARSEC 2.1 benchmark suites are optimized to reduce

contention, and only one benchmark exhibit high lock contention periods. However,

other regular programs with more coarse-grain locks will provide higher improvements.

110 Chapter 5. Multi-Core Power Budget Matching

Moreover, we can expect greater energy savings if we extend Nitro to work with barriers,

speeding up the working cores using the energy from the spinning cores.

Chapter 6

3D Die-Stacked Power Budget

Matching - Token3D

Summary: Nowadays, chip multiprocessors (CMPs) are the new standard design

for a wide range of microprocessors: mobile devices (in the near future almost ev-

ery smartphone will be governed by a CMP), desktop computers, laptop, servers,

GPUs, APUs, etc. This new way of increasing performance by exploiting paral-

lelism has two major drawbacks: o�-chip bandwidth and communication latency

between cores. 3D die-stacked processors are a recent design trend aimed at over-

coming these drawbacks by stacking multiple device layers. However, the increase

in packing density also leads to an increase in power density, which translates into

thermal problems. Di�erent proposals can be found in the literature to face these

thermal problems such as dynamic thermal management (DTM), dynamic voltage

and frequency scaling (DVFS), thread migration, etc. In this chapter we propose

the use of microarchitectural power budget techniques to reduce peak temperature.

In particular, we �rst introduce Token3D, a new power balancing policy that takes

into account temperature and layout information to balance the available per core

power along other power optimizations for 3D designs. And second, we analyze a

wide range of �oorplans looking for the optimal temperature con�guration. Exper-

imental results show a reduction of the peak temperature of 2-26oC depending on

the selected �oorplan.

6.1. Introduction

With the global market dominated by chip multiprocessors and the GHz race over, de-

signers look for ways to increase productivity by increasing the number of available

processing cores inside the CMP. The shrinking of transistor's feature size allows the

integration of more cores, as the per-core power dissipation decreases with each new gen-

eration. However, interconnects have not followed the same scaling trend as transistors,

111

112 Chapter 6. 3D Die-Stacked Power Budget Matching - Token3D

becoming a limiting factor in both performance and power dissipation. One intuitive

solution to reduce wirelength of the interconnection network is to stack structures on top

of each other, instead of using a traditional planar distribution.

Introduced by Souri et al. in [89], 3D architectures stack together multiple device layers

(i.e., cores, memory) with direct vertical interconnects through them (inter-wafer vias or

die-to-die vias). A direct consequence of this design is the reduction on the communi-

cation delays and power costs between di�erent cores, as well as an increase in packing

density that depends on the number of available layers. However, despite of the great

bene�ts of 3D integration, there are several challenges that designers have to face. First,

the increase in packing density also leads to an increase in power density that eventually

translates into thermal problems. Second, a deeper design space exploration of di�erent

�oorplan con�gurations is essential to take advantage of these emerging 3D technologies.

Third, chip veri�cation complexity increases with the number of layers.

To face the �rst challenge there are several proposals that come from the 2D �eld:

Dynamic Voltage and Frequency Scaling (DVFS) to reduce power dissipation, and

thus temperature. DVFS-based approaches can be applied either to the whole 3D

chip or only to cores that show thermal problems (usually cores away from the

edges of the 3D chip) [40, 62, 82].

Task/thread migration to move execution threads from internal to external cores

whenever possible, or reschedule memory intensive threads to internal cores and

CPU intensive threads to external cores [28, 29, 102].

These mechanisms are usually triggered by a Dynamic Thermal Management (DTM)

scheme, so whenever a core exceeds a certain temperature, power control or task migra-

tion mechanisms take place inside the CMP. However, these mechanisms are not perfect.

As explained in previous chapters, DVFS is a coarse-grain mechanism usually triggered

by the operating system with very long transition times between power modes that leads

to a high variability in temperature. On the other hand, task migration, despite the

fact that it can be applied at a �ner granularity (i.e., faster) than DVFS, has the ad-

ditional overhead of warming up both the cache and the pipeline of the target core.

Moreover, none of these mechanisms a�ects leakage power. Leakage (or static power)

is something that many studies do not take into consideration when dealing with tem-

perature, but it cannot be ignored (since it depends quadratically on temperature). For

current technologies (32nm and below), even with gate leakage under control by using

high-k dielectrics, subthreshold leakage has a great impact in the total energy consumed

by processors. Furthermore, leakage depends on temperature, so it is crucial to add a

leakage-temperature loop to update leakage dissipation in real time depending on the

core/structure's temperature.

Therefore, in order to accurately control peak temperature, which is of special interest

in 3D-stacked processors as this integration technology exasperates thermal problems, a

much tighter control is necessary to restraint the power dissipation of the di�erent cores.

6.1. Introduction 113

In Chapters 4 and 5 we proposed the use of a hybrid mechanism to match a prede�ned

power budget [27]. This mechanism accurately matches a power budget and ensures

minimal deviation from the target power and the corresponding temperature, by �rst

using DVFS to lower the average power dissipation towards the power budget and then

removing power spikes by using microarchitectural mechanisms (e.g., pipeline throttling,

con�dence estimation on branches, critical path prediction, etc).

In this chapter we make three major contributions. First, we analyze the e�ects of

cycle-level accurate power control mechanisms to control peak temperature in 3D die-

stacked processors. Based on this analysis we propose Token3D, a power balancing

mechanism based on PTB that takes into account temperature and layout information

when balancing power among cores and layers. Second, we analyze a wide range of

�oorplan con�gurations looking for the optimal temperature con�guration taking into

account both dynamic and leakage power (as well as the leakage-temperature loop).

And third we include some speci�c power control mechanisms for vertical 3D �oorplans.

Experimental results show a reduction of the peak temperature of 2-26oC depending on

the selected �oorplan when including cycle-level power control mechanisms into the 3D

die-stacked design. Summarizing, the main contributions of the present chapter are the

following:

Reducing the peak temperature through power control mechanisms:

• Implementation and analysis of power balancing mechanisms on 3D die-stacked

architectures to minimize hotspots.

• Introduction of a new policy to balance power among cores, Token3D. This

policy will use layout and temperature information to distribute the available

power among the di�erent cores and layers, giving more work to cool cores

and cores close to edges than to internal cores.

Temperature analysis of the main 3D design choices:

• Analysis of di�erent 3D �oorplan designs using accurate area, power (both

static and dynamic) and heatsink information.

• Analysis of the e�ects of ROB resizing [75] on temperature for vertical designs.

• Temperature analysis when using ALUs with di�erent physical properties

(energy-e�cient vs. low latency ALUs) on the same layout.

• Implementation and analysis of a hybrid �oorplan design (vertical+horizontal).

The rest of this chapter is organized as follows. Section 6.2 provides some background on

power-saving techniques for CMPs and 3D die-stacked multicores. Section 6.3 describes

the proposed Token3D approach. Section 6.4 describes our simulation methodology and

shows the main experimental results. Finally, Section 6.5 shows our concluding remarks.

114 Chapter 6. 3D Die-Stacked Power Budget Matching - Token3D

6.2. Background and Related Work

In this section we will introduce the main power and thermal control mechanisms as well

as an overview on 3D die-stacked processors along with the di�erent �oorplan design

choices.

6.2.1. Power and Thermal Control in Microprocessors

6.2.1.1. Dynamic Thermal Management (DTM)

As mentioned before, temperature is the main drawback in 3D die-stacked designs. In

2001, Brooks and Martonosi [17] introduced Dynamic Thermal Management (DTM)

mechanisms in microprocessors. In that work they explore performance trade-o�s be-

tween di�erent DTM mechanisms trying to tune up the thermal pro�le at runtime.

Thread migration [88], fetch throttling [29], clock gating or distributed dynamic volt-

age scaling [77] are techniques that can be used by DTM mechanisms. For the thermal

management of 3D die-stacked processors, most of the prior work has addressed design

stage optimizations, such as thermal-aware �oorplaning (as in [37]). In [102], the authors

evaluate several policies for task migration and DVS speci�cally designed for 3D archi-

tectures. Something similar is done in [28], where the authors explore a wide range of

di�erent �oorplan con�gurations using clock gating, DVFS and task migration to lower

peak temperature.

However, both thread migration and DVFS-based approaches exhibit really low accu-

racy when matching a target power budget, and thus a high deviation from the target

temperature. So the designers have two choices, either to increase the power constraint

to ensure the target temperature or to use a more accurate way to match the desired

(if needed) power budget and temperature. In order to do this we �rst need a way to

measure power accurately, because up until now power was estimated by using perfor-

mance counters, although the new Intel Sandy Bridge processors include some MSRs

(machine speci�c registers) that can be used to retrieve power monitoring information

from di�erent processor structures. We will use Power-Tokens to deal with this problem.

6.2.1.2. Hybrid Power Control Approaches

In Chapter 4 we introduced a two-level approach that �rstly applies DVFS as a coarse-

grain approach to reduce power dissipation towards a prede�ned power budget, and

secondly chooses between di�erent microarchitectural techniques to remove the remain-

ing and numerous power spikes [26]. The second-level mechanism depends on how far the

processor is over the power budget in order to select the most appropriate microarchitec-

tural technique. Winter et al. also proposed the use of a two-level approach that merges

DVFS with thread migration to reduce temperature in SMT processors [93]. Their se-

lected microarchitectural techniques try to reduce the power of functional units and the

instruction window by means of pro�ling.

6.2. Background and Related Work 115

However, previous approaches failed to match the target power budget when considering

the execution of parallel workloads in a CMP processor. Very recently, we have proposed

Power Token Balancing (PTB) [27] as described in Chapter 5. This mechanism will

balance the power between the di�erent cores of a 2D CMP to ensure a given power

constraint (or budget) with minimal energy and performance degradation. Based in

power token accounting, this proposal uses a PTB load-balancer as a centralized structure

that receives and sends power information (measured as power tokens) from cores under

the power budget to cores over the power budget. Tokens are used as a currency to

account for power, so it is important to note that they are neither sent nor received,

cores just send the number of spare tokens. PTB will bene�t from any power unbalance

between cores. Note also that task migration mechanisms are orthogonal to PTB and

can be applied together for further temperature reductions.

6.2.2. Towards the Third Dimension

While transistor switching speed has continued to improve by roughly a third with each

new manufacturing process, the interconnection networks have comparatively slowed

down in performance [69]. There have been improvements in interconnection networks,

like switching from aluminum to copper or developing better insulating materials between

layers to reduce parasitic capacitance [71]. However, the overall wire performance is

getting worse with each new generation of transistors.

Latency of on-chip wires can be estimated as the product of their resistance and capac-

itance, namely, the RC delay. A wire's RC propagation delay depends quadratically on

its length (i.e., a wire that is twice longer might have an RC delay four times larger).

As process feature sizes shrink, the capacitance of wires slightly decreases. However, the

cross-section of the wire is cut in half, which doubles the resistance, e�ectively doubling

the propagation delay. This would triple the relative di�erence between global wire and

transistor performance every process generation, which leads to a reduction on the chip

area a signal can travel per clock cycle, as illustrated in Figure 6.1 [1].

One possible solution to mitigate this problem is the insertion of bu�ers and/or �ip-�ops

to split a long wire into segments, boosting the signal, as it was done in the Pentium

4 design. Because of the quadratic relation between the length of a wire and it's delay,

splitting a wire into two equal sub-segments reduces the total wire latency by half, al-

though the bu�er itself introduces a small delay. However, bu�ers and �ip-�ops dissipate

additional power. Moreover, the number of bu�ers needed to build the interconnec-

tion network grows exponentially with each new generation of transistors, making this

solution unfeasible as a long term solution.

Another commonly used method to reduce the interconnection network delay is to add

additional metal layers to the interconnect stack [69], as shown in Figure 6.2. Metal

layers are deposited one at a time on top of the silicon substrate. Thicker and shorter

wires reduce interconnection delay. These highest quality wires are used to distribute the

global clock and power to the functional unit blocks. The upper metal layers generally

116 Chapter 6. 3D Die-Stacked Power Budget Matching - Token3D

Figure 6.1: Range of a wire in a single clock
cycle (Source: Real World Technologies).

Figure 6.2: 130nm process genera-
tion with 6 layers of copper interconnect

(Source: Intel).

keep their dimensions and spacing between inherited wires from the previous transistor

generation. As a result, the latency of the global wires is kept constant between genera-

tions. However, the addition of new metal wires increases the total energy consumption,

and more importantly, it requires additional processing steps on the wafers. The extra

steps plus the consequent reduction on yields (or number of good die per wafer) due to

the increased defect rate, increases the overall production costs. Moreover, the addition

of more metal layers is still not enough to reduce the growing gap between transistor and

global interconnect performance. The continuous shrinking on transistor's size is making

chips to be unnecessarily larger to accommodate the global interconnect.

6.2.2.1. Building a 3D Die-Stacked Processor

As seen in the previous section, most modern circuits are already three dimensional in

nature. There are various interconnection metal layers stacked over the silicon layer, yet

the transistors remain in a planar con�guration. 3D die-stacked cores propose the use of

multiple layers of silicon substrate, each one containing transistors, arranged in a stacked

con�guration, one on top of the other. In these cores the interconnect wires not only run

on top of each substrate as in conventional chips, but also vertically through layers [6],

as shown in Figure 6.2.

As mentioned before, the main bene�ts of 3D designs include:

1. Increased packing density and smaller footprint. Cost reduction is a consequence

of this, as fewer pins are needed per chip to communicate with nearby chips or

with the motherboard, simplifying packaging.

2. Increased performance due to reduced interconnect delay.

3. Overal energy reduction due to the shorten in total wire length.

4. Open possibilities to build mixed-technology chips.

6.2. Background and Related Work 117

While all these advantages are signi�cant, the three dimensional integration also has its

drawbacks. As mentioned before, the overall energy consumption is reduced, however,

power density increases in some parts of the 3D integrated circuit (especially in lower

layers of the 3D stack). Without major investments in the design and simulation of the

processor, the operating temperatures could reach unacceptable levels, decreasing the

device's reliability and requiring expensive cooling solutions.

Summarizing, in order to build a 3D die-stacked processor we need to decide two things:

how we build and put together the di�erent layers and how we establish the commu-

nication between them. There are two main approaches to build the layers [91]: the

bottom-up and the top-down approaches.

In the (bottom-up) approach, the front-end processing is repeated on a single wafer to

create multiple silicon layers before building interconnects among them (like interconnect

metal layers). An example of this approach is Multilayer Buried Structures (MLBS)

technology [98][44].

The second approach (top-down) creates each layer of the 3D stack separately using

conventional techniques, and then assembles them using wafer-bonding technologies [81].

There are several possible implementation technologies currently being considered:

The face-to-face (F2F) organization. In particular, this organization provides the

greatest die-to-die via density [14][30][72]. F2F bonding consists of depositing

�stub� vias on to the top-level metal of each die as if another metal layer were to be

implemented. The two dies are then placed face-to-face such that each stub from

the �rst die is directly pressed against the corresponding stub on the second die.

The face-to-back (F2B) organization. In this technology, die-to-die vias must be

etched through the back-side (device-side) of one of the dies [31][81]. The etching

process has less resolution than the �stub� union. As a result, the e�ective den-

sity of the vias in F2B process is lower than the F2F process. Furthermore, the

etching process requires the die-to-die via to pass through the device layer, which

may seriously disrupt the crystal structure of a strained-silicon process. The main

advantage of F2B bonding is that it can be repeated for an arbitrary number dies

to stack them together [78].

If we decide to bound at a wafer level (wafer-to-wafer bonding) we can obtain high

production throughput. On the other hand, die-do-die techniques can provided �ner

layout alignment. After bonding the layers we need to establish communications between

them. There are various vertical interconnect technologies that have been explored,

including wire bonded, microbump, contactless (capacitive or inductive), and through-

via vertical interconnect. A comparison in terms of vertical density and practical limits

can be found in [97, 102]. However, the most promising vertical interconnect strategies

involve through die vias, particularly through silicon vias, which promise the highest

vertical interconnect density.

118 Chapter 6. 3D Die-Stacked Power Budget Matching - Token3D

If we compare MLBS technology to wafer-bonding integration, the former requires more

changes to the manufacture process steps than the later. Another key di�erence that

can in�uence the building process is the size of the vertical vias which provide connec-

tions between the di�erent layers. In wafer bonding, the dimension of the 3D vias is

not expected to scale at the same rate as feature size because wafer-to-wafer alignment

tolerance [31]. Current dimensions of 3D via sizes vary from 1µm by 1µm to 10µm by

10µm [9]. On the other hand, MLBS provides more �exibility in the inter-layer connec-

tion because it can potentially scale down with feature size due to the use of local wires

for connection [98]. Availability of such technologies makes it possible to partition the

cache at the granularity of individual cache cells [45]. However, wafer bonding requires

fewer changes in the manufacturing process and is more popular in industry [68][53]

than MLBS technology. Therefore, the integration approach we adopt in this study is

the wafer-bonding technology.

Finally, the latency to drive a signal from one die another also a�ects how to partition a

processor across multiple dies. For F2F stacking in a 65nm technology, the total length

of the die-to-die via to connect the two die varies from < 5µm to 30µm [30]. This

resolution allows, for example, to split a 6T memory cell across two layers at a wordline

or bitline level [79]. Moreover, in the same paper, Puttaswamy estimates the inter-layer

communication latency to be in the order of one FO4. As current technologies allow to

perform from 9 to 12 FO4 per cycle, the inter-layer communication delay is not critical.

However, there are other papers that claim that inter-layer communication takes as long

as an o�-chip memory access [97].

6.2.2.2. 3D Bonding and Yield

The �nal 3D chip fabrication issue is manufacturing yield (number of good die per wafer)

and testing. As mentioned before, the 3D stack can be assembled at the wafer scale,

before testing [59], or at the die level (after testing).

Wafer-to-wafer bonding of many layers has a negative e�ect on yield, since the more

wafers are stacked together, the more likely the whole chip stack is to be ruined by one

defective layer. If we assume equal size layers, with a die yield of 80%, and we stack

two of these layers together, the resulting yield will be at 64%. However, wafer to wafer

bonding can have a positive e�ect on yield if designers use 3D integration to reduce

the size of each individual die. Speci�cally, breaking a planar die into multiple smaller

pieces will increase the yield of the smaller dice, since more candidates can �t in a given

wafer. Because there are more candidate dice per wafer, the number of defects (which

should be roughly constant), will e�ect a smaller percentage of the overall number of

candidate dices. The bene�ts of additional stacks decreases and will eventually reduce

yield because the attachment process is not perfect.

On the other hand, die-to-die bonding good quality stacks dice together, ensuring high

yield levels before attaching the layers. The manufacturing throughput is reduced since

individual dies are processed rather than complete wafers. However, the yields are higher

6.2. Background and Related Work 119

Figure 6.3: Yield impact of wafer to wafer bonding.

than wafer-to-wafer bonding. In the example in Figure 6.3, a two layer stack with 2

defects per wafer produced 24 out of 28 good stacks, for wafer-to-wafer bonding. In the

same scenario, die-to-die bonding would have better yields, 26 out of 28 good stacks.

6.2.2.3. 3D Integration Technology

From the previously introduced technologies, wafer-to-wafer bonding appears to be the

most promising approach [13] and there are many recent publications that have cho-

sen this type of 3D stacking technology [49, 61, 63]. Therefore, this is the integration

approach we are going to follow in this chapter.

Now there are multiple choices on how cores are distributed along the di�erent layers,

which are shown in Figure 6.4. We can clearly identify two trends; either build the

cores vertical or horizontal. Horizontal distributions (a-c) are the most common choices

in literature, as they are easier to implement and validate. Direct packing is the most

straight-forward design. In this distribution, identical �oorplans are stacked together

to form the 3D processor. Mirror packing is a slight modi�cation to direct packing,

that turns half of the layers 180 degrees. This simple modi�cation reduces temperature

because the L2 of the even layers acts as a heatsink for the odd ones and vice versa.

Finally, L2 packing interleaves core layers with L2 layers further reducing temperature,

but increases the design complexity and testing. On the other hand, vertical designs

(Figure 6.4-d), introduced by Puttaswamy et al. in [79], o�er improved latency and

power reduction compared to horizontal designs. However, they supposed an inter-layer

communication latency to be in the order of one FO4, and current technologies can do

9-12 FO4 in one cycle. Therefore, in their proposal inter-layer communication could

be done in less than one cycle while other papers claim that inter-layer communication

takes as long as an o�-chip memory access [97]. Furthermore, vertical designs require

really accurate layer alignment to match a structure split in di�erent layers, and that

is far from the current technology status. However, as a possible future implementation

of 3D die-stacked processors we also evaluate these �oorplans in this chapter, and for

120 Chapter 6. 3D Die-Stacked Power Budget Matching - Token3D

	

L2
C1

C2

C1

C2
L2

C 1

C2

C3

C 4

C1
C2

C3
C4

C5
C6

C7
C8

L2
L2

L2

L2
 L2

L2

L2

L2

 a) Direct packing b) Mirror packing c) L2 packing d) Vertical packing

Figure 6.4: Core distribution along the layers.

comparative purposes, we also assume one FO4 interconnection delay for our evaluation

of vertical designs (10µm length wires between layers).

6.3. Thermal Control in 3D Die-Stacked Processors

6.3.1. Token3D: Balancing Temperature on 3D Die-Staked Designs

As proposed in Chapter 5, Power Token Balancing (PTB) is a global balancing mecha-

nism to restrain power dissipation up to a preset power budget [27]. One of the main goals

of this chapter is to analyze the e�ects of the original PTB approach in 3D die-stacked

architectures. We will also propose a novel policy, Token3D, aimed at distributing the

power among cores and/or dies that are over their local power budget. Token3D will

give priority to cooler cores, usually located close to the edges/surface of the 3D stack.

By prioritizing those cores, Token3D balances not only power but also temperature, as

cool cores will work more than the rest of cores, balancing the global CMP temperature.

Once a cool core gets to a synchronization point or to a low computation phase (i.e.,

low IPC due to a misprediction event) it will naturally cool down again, acting like a

heatsink to hotter cores located beneath it in the 3D stack.

6.3.2. Token3D Implementation Details

Token3D is a new policy on how PTB splits the available power tokens, given by cores

under the power budget to the PTB load-balancer, among the cores that are over the

power budget (details about power tokens and the PTB approach are covered in sections

2.2 and 5.3.4). Basically, Token3D will create N buckets, where N represents the amount

of layers of our 3D die-stacked processor. Then the PTB load-balancer will place the

coolest core in bucket one and will distribute the rest of the cores between the available

buckets in increments of 5% in temperature. So, cores that have a di�erence between

0 and 5% in temperature with respect to the coolest core will be placed in the same

bucket; cores between 5% and 10% will be placed on the next bucket; and so on until N.

Note that this process does not need to be done at a cycle level, as temperature does not

change so quickly. In our case, this process is performed every 100K-cycles. For example,

6.4. Experimental Results 121

in a four layer 3D-stacked processor, if the coolest core has an average temperature of

70oC, bucket one will hold cores with temperatures between 70oC and 73.5oC, bucket two

will hold cores with temperate between 73.5oC and 77oC, bucket three 77oC to 80.5oC

and bucket four any core over 80.5oC.

Once we have identi�ed the cores that are over the power budget (those that did not

provide any tokens to the PTB load-balancer), the load balancer will distribute the

power tokens between the active buckets (i.e., the buckets that have cores over the power

budget) in an iterative way, giving extra tokens depending on the bucket the core is in.

For a 4-layer design, the bucket that holds the hottest core will have a x1 multiplier on

the number of received tokens, while the coolest bucket will have a x4 multiplier on the

amount of received tokens. For example, if buckets 1, 2 and 3 are active (being 1 the one

that holds the coolest cores), all the cores will receive one token, cores in buckets 2 and

1 will receive a second token and, �nally, cores in bucket 1 will receive a third token. If

there are any power tokens left, we repeat the process.

6.4. Experimental Results

In this section we will evaluate both the original PTB and the novel Token3D approaches

as mechanisms to control temperature in a 3D die-stacked CMP. In addition, we will eval-

uate some speci�c optimizations for a vertical design that uses a custom �oorplan where

hotspot structures have been placed in the upper (cooler) layers whereas cooler structures

are placed in lower layers. We will also analyze the di�erent �oorplan organizations in

order to minimize peak temperature in the 3D die-stacked architecture. For our evalua-

tion the selected power budget is 50% of the original power dissipation of the processor.

We will use this restrictive power budget to force a high usage of the di�erent power

saving mechanisms.

Table 6.1: Evaluated benchmarks and input working sets.

Benchmark Size Benchmark Size

SPLASH-2

Barnes 8192 bodies, 4 time steps Raytrace Teapot
Cholesky tk16.0 Water-NSQ 512 molecules, 4 time steps
FFT 256K complex doubles Water-SP 512 molecules, 4 time steps
Ocean 258x258 ocean Tomcatv 256 elements, 5 iterations
Radix 1M keys, 1024 radix Unstructured Mesh.2K, 5 time steps

PARSEC
Blackscholes simsmall Swaptions simsmall
Fluidanimate simsmall x264 simsmall

6.4.1. Simulation Environment

For evaluating the proposed approaches we have used the Virtutech Simics platform

extended with Wisconsin GEMS v2.1 [67]. As cited in Chapter 2, GEMS provides both

detailed memory simulation through a module called Ruby and a cycle-level pipeline

simulation through a module called Opal. We have extended both Opal and Ruby with

all the studied mechanisms that will be explained next. The simulated system is a

122 Chapter 6. 3D Die-Stacked Power Budget Matching - Token3D

Processor Core

Process Technology: 32 nanometers
Frequency: 3000 Mhz
VDD: 0.9 V
Instruction Window 128 RUU + 64 IW
Load Store Queue 64 Entries
Decode Width: 4 inst/cycle
Issue Width: 4 inst/cycle
Functional Units: 6 Int Alu; 2 Int Mult

4 FP Alu; 4 FP Mult
Branch Predictor: 16bit Gshare

Memory Hierarchy

Coherence Prot.: MOESI
Memory Latency: 300
L1 I-cache: 64KB, 2-way, 1 cycle lat.
L1 D-cache: 64KB, 2-way, 1 cycle lat.
L2 cache: 1MB/core, 4-way, uni�ed

12 cycle latency
TLB: 256 entries

Network Parameters

Topology: 2D mesh
Link Latency: 4 cycles
Flit size: 4 bytes
Link Bandwidth: 1 �it / cycle

(a) Core Structures 	

L2

Dcache

Ic
ac

he

B
pr

ed

T
L

B

A
lu

m
ap

LsQ

FPAlu

FPRegs

ROB

IntRegs In
tE

xe
c

(b) Core Floorplan

Figure 6.5: Core Con�guration

homogeneous CMP consisting of a number of replicated cores connected by a switched

2D-mesh direct network. Table 6.5a shows the most relevant parameters of the simulated

system. Power scaling factors for a 32nm technology were obtained from McPAT [56].

To evaluate the performance and power dissipation of the di�erent mechanisms we used

scienti�c applications from the SPLASH-2 benchmark suite in addition to some PARSEC

applications (the ones that �nished execution in less than 5 days in our cluster). Results

have been extracted from the parallel phase of each benchmark. Benchmark sizes are

speci�ed in Table 6.1.

3D thermal modeling can be accomplished using an automated model that forms the RC

circuit for given grid dimensions. For this work we have ported HotSpot 5.0 [88] thermal

models into Opal and have built our tiled CMP by replicating N times our customized

�oorplan, where N is the number of cores. Figure 6.5b shows the base �oorplan design we

have chosen. This �oorplan was obtained from Hot�oorplaner (provided by the Hotspot

5.0). Our resulting CMP will be composed of a varying number of these cores (from 2

to 16). As cited before, we will assume an interconnection delay between layers of one

FO4 (10µm length wires, as in [79]).

Moreover, thermal hotspots increase cooling costs and have a negative impact on reli-

ability and performance. The signi�cant increase in cooling costs requires designs for

temperature margins lower than the worst-case. Leakage power is exponentially depen-

dent on temperature, and an incremental feedback loop exists between temperature and

leakage, which may turn small structures into hotspots and potentially damage the cir-

cuit. High temperatures also adversely a�ect performance, as the e�ective operating

6.4. Experimental Results 123

60

70

80

90

100

110

120

130

H
or

iz
.

M
irr

or L2
Ve

rti
ca

l

C
us

to
m

H
or

iz
.

M
irr

or L2

Ve
rti

ca
l

C
us

to
m

H
or

iz
.

M
irr

or L2

Ve
rti

ca
l

C
us

to
m

H
or

iz
.

M
irr

or L2
Ve

rti
ca

l
C

us
to

m

H
or

iz
.

M
irr

or L2
Ve

rti
ca

l

C
us

to
m

H
or

iz
.

M
irr

or L2
Ve

rti
ca

l

C
us

to
m

2 Layer 4 Core 2 Layer 8 Core 2 Layer 16 Core 4 Layer 4 Core 4 Layer 8 Core 4 Layer 16 Core

Pe
ak

 T
em

pe
ra

tu
re

 (º
C

)

 . Idle Token3D PTB Base

Figure 6.6: Peak temperature for PTB, Token3D and the base case for di�erent �oorplans and core
con�gurations.

speed of transistors decreases as they heat up. In this chapter we model both leakage

(through McPAT) and the leakage/temperature loop in Opal, so leakage will be updated

on every Hotspot exploration window (10K cycles). Leakage power is translated into

power tokens and updated according to the formula:

Lnew = LBase ∗ eLeakβ∗(TCurrent−TBase)

Where Leakβ depends on technology scaling factor and is provided by HotSpot 5.0, Lnew
is the updated leakage, LBase is the base leakage (obtained using McPAT), TCurrent is

the current temperature and TBase is the base temperature. Once leakage is updated,

it is translated back to power tokens. Another important parameter is the cooling sys-

tem. The regular thermal resistance of a cooling system ranges from 0.25 K/W for the

all-copper fan model at the highest speed setting (very good), to 0.33 K/W for the cop-

per/aluminum variety at the lowest setting. In this work we model a real-world Zalman

CNPS7700-Cu heatsink with 0.25 K/W thermal resistance and an area of 3.268 cm2

(136mm side).

6.4.2. E�ects of Token3D on Peak Temperature

Figure 6.6 shows the peak temperature for di�erent �oorplan con�gurations and a varying

number of cores (from 4 to 16) using stacked bars. The reported �idle� temperature

corresponds to the average idle temperature of the cores1. The Token3D bar corresponds

to the temperature increase from �idle� temperature reached when executing the studied

benchmarks running the new Token3D policy. The PTB bar corresponds to the original

Power Token Balancing approach as proposed in the previous chapter. Finally, the

base bar corresponds to the baseline con�guration where no power/temperature control

mechanisms are used. The studied �oorplans are those described in Section 6.2.2.3:

Horizontal (Figure 6.4.a), Mirror (Figure 6.4.b), L2 (Figure 6.4.c), Vertical (Figure 6.4.d)

and Custom. As cited before, this last �oorplan corresponds to a new con�guration that

1We de�ne �idle� temperature as the temperature of the whole CMP in idle state (i.e., only the
operating system is running).

124 Chapter 6. 3D Die-Stacked Power Budget Matching - Token3D

places hotspots into upper layers of the 3D stack, giving more chances for them to cool

down, and will be further discussed later in the next subsection. In Figure 6.6 we can

clearly see that both L2 and Custom are the best designs to reduce peak temperature

of the processor. This is due to the fact that both designs place the L2 in lower layers,

and, as it can be seen in Figure 6.7, the L2 is the coolest structure within a core, even

though we are accounting for leakage to calculate temperature. This placement leaves

hotspots close to the surface and hot structures can cool down easily. We can also see that

even a simple change in the �oorplan such as mirroring each core between layers gives

substantial peak temperature reduction (5-6oC) compared with the horizontal design.

When considering the vertical design we can observe a higher peak temperature than

the horizontal one. This vertical design was introduced in [79] by Puttaswamy et al.

along with a dynamic power saving mechanism, Thermal Herding, that disables layers

at runtime, depending on the number of bits used by the di�erent instructions. This

vertical design assumes each structure is vertically implemented across all layers. In

our evaluation of this vertical design the area occupied by each structure and its power

dissipation is divided by the number of available layers, but we do not disable any

layer, to isolate our proposed power control mechanisms from the bene�ts obtained by

Thermal Herding. For instance, in a 4-layer vertical design the implemented thermal

model calculates the temperature of a structure in layer i by considering one fourth of

its original power and area, however, the fraction of that structure is stacked on top of

another equal portion of the same structure, with all portions simultaneously accessed,

and therefore, increasing temperature. Note, however, that the use of Thermal Herding

and its ability to disable unused layers for the vertical design is orthogonal to the use of

our proposed PTB and Token3D approaches.

When it comes to the studied power control mechanisms both the original PTB and

Token3D are able to reduce peak temperature by 2-26oC depending on the �oorplan

con�guration. Token3D is always 1-3% better than the original PTB balancing mecha-

nism. We must also note that, as we get closer to the idle temperature, any temperature

reduction comes at a higher performance degradation.

Figure 6.7-top shows a more detailed analysis on the e�ects of both PTB and Token3D

in the peak temperature of the di�erent core structures. We selected the most typical

con�guration for 3D die-stacked cores (Mirror, Figure 6.4.b) and a 4-layer 16-core CMP

for this per-structure temperature analysis. As cited before, PTB and Token3D are eval-

uated with a preset power budget of 50% of the original average power dissipation. For

comparison purposes we also evaluate DVFS trying to match the same target power bud-

get of 50%. Figure 6.7-top helps us to locate our design hotspots (I-cache, TLB, Branch

Predictor, Load Store Queue) and see how both cycle-level power control mechanisms are

able to reduce peak temperature by 20-36%. For example, the I-cache goes from 150oC

down to 110oC, 30oC less than DVFS. We can also see that, on average for this selected

design, Token3D is 5-6oC better than regular PTB. It is also important to note that our

cycle-level mechanisms are able to reduce all hotspots peak temperature and put them

6.4. Experimental Results 125

0

20

40

60

80

100

120

140

160

Ic
ac

he
D

ca
ch

e
Bp

re
d

TL
B

FP
Al

u
FP

R
eg

Al
uM

ap

R
O

B
In

tR
eg

In
tE

xe
c

Ld
S

tQ L2
Av

er
ag

e

M
ax M
in

G
ra

di
en

t

Structure
Pe

ak
 T

em
pe

ra
tu

re
 (º

C
)

.

Base
DVFS
PTB
Token3D

0

20

40

60

80

100

120

140

160

Ic
ac

he
D

ca
ch

e
Bp

re
d

TL
B

FP
Al

u
FP

R
eg

Al
uM

ap

R
O

B
In

tR
eg

In
tE

xe
c

Ld
S

tQ L2
Av

er
ag

e

M
ax M
in

G
ra

di
en

t

Structure
Pe

ak
 T

em
pe

ra
tu

re
 (º

C
)

.

Base
DVFS
PTB
Token3D

0

20

40

60

80

100

120

140

160

Ic
ac

he
D

ca
ch

e

Bp
re

d

TL
B

FP
Al

u
FP

R
eg

Al
uM

ap

R
O

B
In

tR
eg

In
tE

xe
c

Ld
S

tQ L2
Av

er
ag

e

M
ax M
in

G
ra

di
en

t

Structure
Pe

ak
 T

em
pe

ra
tu

re
 (º

C
)

.

Base
DVFS
PTB
Token3D

	

0

5

10

15

20

25
ba

rn
es

ch
ole

sk
y fft

oc
ea

n
ra

dix
ra

ytr
ac

e
to

m
ca

tv
un

st
ru

c.
wa

te
rn

sq
wa

te
rs

p
bla

ck
sc

h.
flu

ida
ni.

sw
ap

tio
ns

x2
64

Av
er

ag
e

Benchmark

S
lo

w
do

w
n

(%
)

 . DVFS
PTB
Token3D

Figure 6.7: Per structure peak temperature (top) and performance (bottom) of a 4-layer 16-core CMP
using the mirror �oorplan.

close to the average core temperature. This last result is especially interesting on 3D

architectures, as they exacerbate thermal problems and a much tighter power control

is necessary. This is the bene�t we expected from the highly accurate power budget

matching provided by our mechanisms, that ensures minimal deviation from the target

power budget and, therefore, temperature. In Figure 6.7-top we also show the spatial

gradient (temperature di�erence between the hottest and coolest structure of the core).

Reducing spatial gradients is important because they can cause clock skew and impact

circuit delay [3]. In particular, both PTB and Token3D are able to reduce this gradient

by more than 50%, from 50oC to 22oC. In terms of performance degradation (Figure 6.7-

bottom), regular PTB behaves slightly better than Token3D, as power is equally divided

between all cores and they can get to the next synchronization point more evenly, while

Token3D will unbalance cores and make them wait at the synchronization point more

time.

6.4.3. Further Temperature Optimizations

In addition to the introduction of Token3D we also wanted to perform some optimizations

for the vertical 3D die-stacked layout. More speci�cally, we will analyze the e�ects

on peak temperature of MLP-based instruction window (ROB) resizing [75] and ALU

selection based on instruction criticality (from ALUs placed on di�erent layers) while

varying the number of cores. We selected these structures because they are well known

hotspots, but have not being well optimized in the 3D die-stacked �eld.

126 Chapter 6. 3D Die-Stacked Power Budget Matching - Token3D

0

20

40

60

80

100

120

140

25% 50% 75% 100%

Usage of the Instruction Window (%)

P
ea

k
Te

m
pe

ra
tu

re
 (º

C
)

 .

0

10

20

30

40

50

60

70

%
 o

f e
xe

cu
tio

n
tim

e

2 Core 4 Core
8 Core 16 Core
SpecINT2000 SpecFP2000
Splash Parsec

0

20

40

60

80

100

120

140

2 4 8 16Cores

P
ea

k
Te

m
pe

ra
tu

re
 (º

C
)

 .

Normal
Alu Crit Select

0

20

40

60

80

100

120

140

2 4 8 16Cores

P
ea

k
Te

m
pe

ra
tu

re
 (º

C
)

 .

Normal
Alu Crit Select

0

20

40

60

80

100

120

140

2 4 8 16Cores

P
ea

k
Te

m
pe

ra
tu

re
 (º

C
)

Normal
Alu Crit Select

0

20

40

60

80

100

120

140

25% 50% 75% 100%

Usage of the Instruction Window (%)

P
ea

k
Te

m
pe

ra
tu

re
 (º

C
)

0

10

20

30

40

50

60

70

%
 o

f e
xe

cu
tio

n
tim

e

2 Core 4 Core
8 Core 16 Core
SpecINT2000 SpecFP2000
Splash Parsec

0

20

40

60

80

100

120

140

25% 50% 75% 100%

Usage of the Instruction Window (%)

P
ea

k
Te

m
pe

ra
tu

re
 (º

C
)

 .

0

10

20

30

40

50

60

70

%
 o

f e
xe

cu
tio

n
tim

e

2 Core 4 Core
8 Core 16 Core
SpecINT2000 SpecFP2000
Splash Parsec

0

20

40

60

80

100

120

140

2 4 8 16Cores

P
ea

k
Te

m
pe

ra
tu

re
 (º

C
)

 .

Normal
Alu Crit Select

0

20

40

60

80

100

120

140

2 4 8 16Cores

P
ea

k
Te

m
pe

ra
tu

re
 (º

C
)

 .

Normal
Alu Crit Select

0

20

40

60

80

100

120

140

2 4 8 16Cores

P
ea

k
Te

m
pe

ra
tu

re
 (º

C
)

Normal
Alu Crit Select

Figure 6.8: Peak temperature of the instruction window (top) and ALUs (bottom) for a varying number
of cores.

Figure 6.8 shows the e�ects on peak temperature of di�erent instruction window (IW)

sizes for a 4-layer vertical core design (Figure 6.4.d). Each core has a 128-entry IW

that is equally distributed across the di�erent layers in the vertical design, (as we are

working with 4 layers, each layer has 32 entries). Entries are disabled by layer, so we

disable entries in groups of 32. In order to decide the current IW size we use a dynamic

MLP-based IW resizing mechanism as proposed in [75]. In Figure 6.8-top, we also show

the distribution of the average IW size for di�erent benchmark suites (represented with

lines). This average window size highly varies between benchmarks, as memory-bound

benchmarks require many IW entries to bring more data simultaneously from memory,

while CPU-bound applications do not need that many entries. Therefore, instead of

just showing the peak temperature reduction of the average benchmarks (bars in Figure

6.8-top) we decided to do a design exploration of the peak temperature based on the IW

size. For example, Parsec benchmarks use 0% of the time 25% and 50% of the IW, 55%

of the time use a 75% of the IW (12oC reduction) and 45% of the time use the whole IW.

This benchmark suite barely gets any temperature bene�t from dynamic IW resizing.

On the other hand SPECINT2000 benckmarks spend 20% of the time using only half of

the IW, and 10% of the time using 25% of the IW. In this benchmark suite we can obtain

temperature reductions of 20-22oC for a 4-layer 16-core CMP by dynamically resizing

the IW. Moreover, as the usage of the IW dependes on the benchmark characteristics

there are some CPU-bound benchmarks that spend most of the time using only 25-50%

of the IW. We can obtain huge overal temperature reductions in those cases. Note also

6.5. Conclusions 127

that the IW is just one of the multiple hotspots of the core, and we cannot expect greater

temperature reductions as the area of the IW is only a 2.5% of the total area of the core.

When working with vertical designs we can think of having di�erent types of ALUs placed

into di�erent layers: fast (and hot) ALUs placed on upper layers for critical instructions

plus slower power-saving ALUs placed in lower layers. As our core design includes an

instruction criticality predictor we can use this information to decide where we want to

send a speci�c instruction. Figure 6.8-bottom shows the e�ect on peak core temperature

having half of the ALUs placed in layers 2-3 (upper layers) and half of the ALUs placed

in layers 0-1 (lower layers). The ALUs in the lower layers dissipate 25% of the original

power dissipation but are also 25% slower than the original ALUs. Results show a peak

temperature reduction of 3-5oC for this con�guration. This small temperature reduction

is due to the fact that in our core design ALUs are not a hotspot (as it can be seen in

Figure 6.7-top: IntExec and FPAlu structures) for the studied benchmarks, and thus,

their temperature contribution has almost no impact on the average peak temperature of

the processor. However, we can expect better results with other CPU-bound applications

where ALUs really become a hotspot. There are other possible policies to decide where

to send an ALU instructions, like temperature or layout information about the available

ALUs. We implemented these policies in the simulator but didn't had time to do a deep

study of the di�erent possibilities.

Finally, we want to introduce a custom �oorplan design that merges both vertical and

horizontal designs in order to minimize hotspots. This design is an extension of the L2

design (Figure 6.4.c) for a 4-layer core. Based on the information provided by Figure

6.7-top we can separate cool from hot structures and place them in di�erent layers. Hot

structures are placed in the top layer (Bpred, Icache, Alumap, TLB, LdStQ, IntReg and

ROB), which is the closest to the heatsink, and it's easier to cool down. The second

layer consists of the rest of structures except the L2. We placed the Dcache under the

Icache as the Icache is our hottests structure and the Dcache was below the average

core temperature. Finally, the last two layers hold the L2 cache and memory controllers.

This custom design has the additional advantage of reducing inter-layer communication

when bringing data from memory, as memory controllers and the L2 are placed close

to the socket. As we can see in Figure 6.6 (last bar on each group), this new design is

able to reduce peak temperature by almost 12oC over the best horizontal design for a

4-layer 16-core processor. It is clear that intra-layer (global) �oorplaning has thermal

advantages over stacking previous layout designs, and it may be necessary if we want to

move to 3D die-stacked microprocessors. However, this �oorplan optimization requires

assembly before in-deep testing, and that may increase production costs.

6.5. Conclusions

3D die-stacked integration o�ers a great promise to increase scalability of CMPs by re-

ducing both bandwidth and communication latency problems. However, the increase on

128 Chapter 6. 3D Die-Stacked Power Budget Matching - Token3D

core density leads to an increase in temperature and hotspots in these designs. More-

over, as building process scales down below 32nm, leakage becomes an important source

of power dissipation and, as it increases exponentially with temperature, causes a pow-

er/temperature loop that a�ects to 3D die-stacked processors negatively. To control

temperature, regular DTM mechanisms detect overheating in any of the temperature

sensors and trigger a power control mechanism to limit power dissipation and cool the

processor down. However, neither DVFS nor task migration (the most frequently used

mechanisms) o�er accurate ways to match a desired target power budget.

Power tokens and Power Token Balancing (PTB) were introduced in Chapters 2, 4 and

5 as an accurate way to account for power and match a power constraint with minimal

performance degradation by balancing power among the di�erent cores of a 2D CMP.

In this chapter we evaluate these mechanisms in a new design scenario, 3D die-stacked

processors. In this scenario PTB is able to reduce average peak temperature by 2-20oC

depending on the selected �oorplan. For speci�c hotspot structures (i.e., instruction

cache) PTB can reduce peak temperature by almost 40% in a 4-layer 16-core CMP. In

addition, we have proposed Token3D, a novel policy that takes into account temperature

and layout information when balancing power, giving priority to cool cores over hot ones.

This new policy enhances PTB by providing an additional 3% temperature reduction over

the original PTB approach. Also note that task migration is orthogonal to PTB and can

be applied simultaneously for further temperature reductions.

To conclude this work we have also extended 3D die-stacked vertical designs with addi-

tional power control mechanisms. First, we enabled instruction window resizing based on

MLP. CPU-intensive applications are highly dependent on cache, but do not show per-

formance degradation if the instruction window is reduced. On the other hand, memory-

intensive applications require big instruction windows to locate loads and stores and take

advantage of MLP. Based on these properties we extended previous vertical designs with

adaptive instruction window resizing. Second, we split ALUs in di�erent groups, low

latency and high latency ALUs. Low latency ALUs dissipate more power and should be

placed in upper layers of the 3D design, on the other hand, high latency ALUs are more

energy-friendly and can be placed in lower layers of the 3D stack, lowering the chances

of becoming a potential hotspot. An instruction criticality predictor was used to decide

where an instruction should be placed, either in a fast but expensive unit or in a slower

but energy-e�cient unit.

Finally, we explored a custom 3D design that merges both vertical and horizontal designs

trying to minimize hotspots. In this design hot processor structures are placed in upper

layers while cool structures are placed in lower layers. This design is able to reduce

peak temperature by an additional 10% over the best horizontal design and 85% over

the vertical design.

Chapter 7

Conclusions and Future Ways

Summary: In this chapter we discuss the conclusions to our work and outline

some future research lines that can be followed in the energy-e�cient processor

design �eld.

7.1. Conclusions

Power dissipation, energy consumption and thermal output (known as the �Power Wall�)

have been, for the past years, the key limiting factors in microprocessor design. With

the megahertz race over, engineers have focused on increasing the available number of

processing cores on the same die. Nowadays, chip multiprocessors (CMPs) are the new

standard design for a wide range of microprocessors: mobile devices (in the near future

almost every smartphone will be governed by a multicore CPU), desktop computers,

laptop, servers, GPUs, APUs, etc. All these microprocessors face constant thermal and

power related problems during their everyday use.

We can distinguish two components in power dissipation, dynamic and static power

dissipation. Dynamic power dissipation is proportional to usage (every time we access

a structure), due to the constant charge and discharge of transistors. On the other

hand, static power dissipation (or leakage), is derived from gate leakage and subthreshold

leakage currents that �ow even when a transistor is not in use. As process technology

advances toward deep submicron, the static power component becomes a serious problem,

especially for large on-chip array structures such as caches or prediction tables. For

current technologies (under 32nm), even with gate leakage under control by using high-

k dielectrics, subthreshold leakage has a great impact in the total power dissipated by

processors. Moreover, leakage depends on temperature as well, so it is crucial to consider

the leakage-temperature loop when measuring leakage.

Perhaps the �rst question we should address is: how do we measure power? Up until

recently (Intel Sandy Bridge processors) power measurements were made as mere ap-

proximations based on performance counters done over periods of thousands of cycles.

129

130 Chapter 7. Conclusions and Future Ways

In this Thesis we wanted to work with microarchitectural techniques that work at a very

�ne granularity (from several to a few tens of cycles) so we needed some way to estimate

power at this �ne granularity. The �rst major contribution of this Thesis were the Power

Tokens. With Power Tokens we can easily estimate the total power dissipated by an in-

struction at commit stage by adding the base power dissipation of the instruction (i.e.,

all regular accesses to structures done by that instruction) plus a dynamic component

that depends on the time it spends on the pipeline. The total power dissipated by the

processor in a given cycle can be thus estimated as the addition of the individual power

tokens from all the instructions inside the pipeline.

Using the power tokens we have studied di�erent power saving mechanisms to reduce

energy consumption in microprocessors, both at the circuit and microarchitecture levels.

DVFS is a circuit level mechanism that uses the relation between dynamic power and

both voltage and frequency (Pd ≈ V 2
DD · f) to save power. The impact on performance

for sequential or multi-programmed applications comes from the frequency reduction

performed by DVFS. Performance impact can be lower in memory-intensive applications

because we only modify the processor frequency but not the memory frequency. There-

fore, o�chip memory latency is reduced as we lower the processor frequency. We have also

evaluated some microarchitectural techniques in terms of power and performance such

as critical path prediction, branch con�dence estimation and pipeline throttling. While

DVFS is quite unstable in terms of power, all the microarchitectural mechanisms reduce

power dissipation smoothly (without major power spikes). However, the performance im-

pact of these mechanisms is higher. In addition, to study static power saving mechanisms

we performed a case study to reduce the average leakage energy of traditional value pre-

dictors with negligible impact on neither prediction accuracy nor processor performance.

We have evaluated both state and non-state preserving techniques for reducing leakage

power in value predictors including Static Value Prediction Decay (SVPD), Adaptive

Value Prediction Decay (AVPD) and a drowsy approach.

We have mainly focused on the dynamic component of power, as nowadays it is the main

source of power consumption in microprocessors. However, as mentioned previously,

leakage power is growing in importance (in our processor design peak leakage power was

measured to be a 30% of the peak dynamic power dissipation) so it is also important to

account for leakage power and implement leakage power saving mechanisms to further

reduce energy consumption and temperature.

There is no discussion about the importance of power dissipation in current designs, but

in this Thesis we wanted to go a step further. It is well known that general purpose

microprocessors can be used in several kinds of gadgets that usually have di�erent power

requirements. In some scenarios being able to de�ne a maximum power budget for the

processor can help the reuse of previous designs in new devices. This can be especially

useful if our only options are either to switch-o� the device or to reduce the power

consumption to match the power constraint. Note that, in many cases, the shut-o�

option is not even viable (e.g., for critical systems). We cannot design the thermal

7.1. Conclusions 131

envelopment of a processor for the worst case scenario, because production price highly

increases and the processor barely ever reaches its peak temperature. However, we can

set a power budget to the processor, limiting its power and temperature.

When we analyzed the di�erent power saving mechanisms trying to match a prede�ned

power budget we discovered that there was still a gap between the reduction on cycles

over the power budget and the perfect power budget matching. In addition, simple

power mechanisms are triggered once the power dissipation goes over the budget. We can

optimize the way we enable the di�erent mechanisms by using some historic information.

We propose two adaptive techniques: Power Token Throttling (PTT) and Basic Block

Level Manager (BBLM). PTT is a token-based approach that keeps track of the current

power being consumed by the processor, measured as tokens, and stalls fetch if the next

instruction to be executed will make the processor go over the power budget. This is

a very aggressive mechanism that obtains an accurate power budget matching but has

a huge performance degradation. On the other hand, BBLM uses basic block power

consumption history (translated into power-tokens) in order to determine the best power

saving technique for the current and near-future processor power dissipation. BBLM

optimizes the use of microarchitectural techniques to minimize performance impact while

removing most of the numerous power spikes. However, these mechanisms by themselves

are not enough to match restrictive power budgets because of their high performance

degradation.

For that purpose we have proposed a two-level approach that combines both microarchi-

tectural techniques and DVFS to take advantage of their best qualities. DVFS acts as

a coarse-grain technique to lower the average power dissipation while microarchitectural

techniques remove all the power spikes e�ciently. The two-level approach (BBLM +

DVFS) is able to beat DVFS in both energy e�ciency (up to 11% more energy e�cient)

and area exceeded over the power budget (up to 6 times less area).

The next logical step was to move all these mechanisms to a chip multiprocessor (CMP)

scenario. When analyzing CMPs running parallel workloads, previously proposed power

managing mechanisms fail to accurately adapt to temporary power constraints, due to

thread dependences and synchronization points. Moreover, power saved just from spin-

locks is not enough to match an aggressive power budget because it is too local and too

low. The performance impact of DVFS in CMPs running parallel workloads can vary

depending on how we apply DVFS. If we apply DVFS at a core level and delay a critical

thread then we will observe a performance degradation on the overall application because

of synchronization points. If we are able to balance the frequency of the di�erent execu-

tion threads we can save power without any performance impact. On the other hand, if

we chose to use DVFS at a chip level, instead of at a core level, the CMP will behave as

the sequential case, with lower performance impact in memory intensive applications. A

global control mechanism is needed to match these design peculiarities.

To overcome these limitations we proposed Power Token Balancing (PTB). PTB dy-

namically balances power among the di�erent cores to ensure that the whole processor

132 Chapter 7. Conclusions and Future Ways

accurately matches a prede�ned and global power budget. Our proposed mechanism

accounts for unused power from cores that are under the power budget (translated into

power-tokens) and passes that power to cores over the power budget, hence, not having

to slow them down to match their local power budget constraint. PTB is a �ne-grain

mechanism that ensures maximum accuracy with minimal standard deviation from the

power budget, which is crucial if you want to optimize packaging costs or to increase the

number of cores in a CMP with the same TDP. However, the accuracy constraint can

be relaxed in order for PTB to be more energy-e�cient by means of applying the power-

saving mechanisms in a less restrictive way, and therefore, not a�ecting performance too

much.

As a side e�ect of this accurate power budget matching, the use of PTB provides an-

other interesting bene�t: a more stable temperature over execution time. For the studied

benchmarks we can obtain a 27-30% peak and average temperature reduction, that also

applies to the individual structures. PTB is also able to balance temperature between

cores, reducing the peak temperature of the hottest core making it equal to the temper-

ature of the coldest core in the base CMP design. This temperature reduction not only

reduces leakage power but also increases reliability and can result in reduced packing

costs.

In the process scaling, interconnects have not followed the same trend as transistors,

becoming a limiting factor in both performance and power. One intuitive solution to

reduce the wirelength of the interconnection network is to stack structures on top of

each other, instead of using a traditional planar distribution. 3D die-stacked integration

o�ers a great promise to increase scalability of CMPs by reducing both bandwidth and

communication latency problems. However, the increase in core density leads to an

increase in temperature and hotspots in these designs. To control temperature, regular

DTM mechanisms detect overheating in any of the temperature sensors and trigger a

power control mechanism to limit power consumption and cool the processor down.

However, neither DVFS nor task migration (the most frequently used mechanisms) o�er

accurate ways to match this target power budget. We decided to evaluate our proposed

mechanisms in a new design scenario, 3D die-stacked processors.

In this scenario PTB is able to reduce average peak temperature by 2-20oC depending on

the selected �oorplan. For speci�c hotspot structures (i.e., instruction cache) PTB can

reduce peak temperature by almost 40% in a 4-layer 16-core CMP. In addition, we have

proposed Token3D, a policy that takes into account temperature and layout information

when balancing power, giving priority to cool cores over hot ones. This new policy

enhances PTB by providing an additional 3% temperature reduction over the original

PTB approach.

To conclude this Thesis we have also extended 3D die-stacked vertical designs with

additional power control mechanisms. First, we enabled instruction window resizing

based on MLP. CPU-intensive applications are highly dependent on cache, but do not

show performance degradation if the instruction window is reduced. On the other hand,

7.2. Future Work 133

memory-intensive applications require big instruction windows to locate loads and stores

and take advantage of MLP. Based on these properties we extended previous vertical

designs with adaptive instruction window resizing. Second, we split ALUs in two di�erent

groups: low latency and high latency ALUs. Low latency ALUs consume more power and

should be placed in upper layers of the 3D design, on the other hand, high latency ALUs

are more energy-friendly and can be placed in lower layers of the 3D stack, lowering the

chances of becoming a potential hotspot. An instruction criticality predictor was used

to decide where an instruction should be placed, either in a fast but expensive unit or

in a slower but energy-e�cient unit. Finally, we also explored a custom 3D design that

merges both vertical and horizontal designs trying to minimize hotspots. In this design

hot processor structures are placed in upper layers while cool structures are placed in

lower layers. This design is able to reduce peak temperature by an additional 10% over

the best horizontal design and 85% over the vertical design.

7.2. Future Work

The results presented in this Thesis open a number of interesting research topics that

can be further developed in the future. The most interesting are detailed as follows:

The use of power tokens as a spinlock detector. One of the indirect bene�ts of

using power tokens is the potential ability to detect spinning or busy waiting of the

cores inside a CMP. As we discussed in Section 5.3.3, when a core enters a spinning

state, the dynamic power has an initial power peak due to useful computation. If

the spinning state lasts enough, the pipeline empties and power goes down and

stabilizes to an amount that is usually under the budget. We can assume then that

the core is spinning. If we could accurately identify these spinning states we could

increase our power savings by stalling the spinning core and giving all its power

tokens to the PTB load-balancer.

The use of the Nitro approach to speed up cores to get earlier to a barrier. As

mentioned in Section 5.3.5.1, there are times when cores receive more power tokens

that they can use. Under these conditions we could overclock the cores that receive

tokens that they cannot use in order to reach to the next synchronization point

faster, and thus reduce global execution time. The overclocking should only be

done as long as we have power tokens left from the PTB load-balancer to prevent

overheating because of exceeding our TDP.

Better mechanisms to balance power in 3D Cores. We did many modi�cations

to the GEMS-Opal simulator to model 3D die-stacked processors that allow us to

vertically and horizontally split all the structures inside the core (even simultane-

ously). However, we didn't had time to do an in depth exploration of the di�erent

combinations of vertical and horizontal designs to optimize energy and tempera-

ture. We believe there is room for improvement in 3D �oorplan designs and 3D

134 Chapter 7. Conclusions and Future Ways

structure optimizations to further reduce temperature in these chips.

Power in Embedded / Low-Power devices. During the past �ve years we have

focused on superscalar out-of-order single-core or CMP processors, but never took

a look at in-order / low-power processors to check if our proposed mechanisms are

feasible in that scenario.

Power in GPUs. In the past few years GPUs have gained much importance in both

the academia and the global market. However, most of the work done with GPUs

is performance-oriented, and not power-oriented. We believe GPUs are an open

�eld of possibilities and would like to focus on this area in the near future.

Bibliography

[1] 3d integration: A revolution in design. website:

http://www.realworldtech.com/page.cfm?articleid=rwt050207213241.

[2] Intel's stacked chip scale packaging. website:

http://www.intel.com/research/silicon/mobilepackaging.htm.

[3] A. H. Ajami, K. Banerjee, and M. Pedram. Modeling and analysis of nonuniform

substrate temperature e�ects on global ulsi interconnects. 24(6):849�861, 2005.

[4] J. L. Aragon, J. Gonzalez, and A. Gonzalez. Power-aware control speculation

through selective throttling. In Proceedings of the 9th International Symposium on

High-Performance Computer Architecture, pages 103�112, 2003.

[5] T. Austin, E. Larson, and D. Ernst. Simplescalar: An infrastructure for computer

system modeling. Computer, 35:59�67, February 2002.

[6] J. Baliga. Chips go vertical. IEEE Spectr., 41:43�47, March 2004.

[7] K. Banerjee, S. J. Souri, P. Kapur, and K. C. Saraswat. 3-d ics: A novel chip design

for improving deep-submicrometer interconnect performance and systems-on-chip

integration. In Proceedings of the IEEE, pages 602�633, 2001.

[8] A. Baniasadi and A. Moshovos. Instruction �ow-based front-end throttling for

power-aware high-performance processors. In Proceedings of the International Sym-

posium on Low Power Electronics and Design, pages 16�21, 2001.

[9] K. Bernstein. Introduction to 3d integration. In International Solid State Circuits

Conference Tutorial, 2006.

[10] R. Bhargava and L. K. John. Latency and energy aware value prediction for

high-frequency processors. In Proceedings of the 16th International Conference on

Supercomputing, ICS '02, pages 45�56, New York, NY, USA, 2002. ACM.

[11] A. Bhattacharjee and M. Martonosi. Thread criticality predictors for dynamic per-

formance, power, and resource management in chip multiprocessors. In Proceedings

of the 36th Annual International Symposium on Computer Architecture, ISCA '09,

pages 290�301, New York, NY, USA, 2009. ACM.

135

136 Bibliografía

[12] C. Bienia and K. Li. Parsec 2.0: A new benchmark suite for chip-multiprocessors.

In Proceedings of the 5th Annual Workshop on Modeling, Benchmarking and Sim-

ulation, June 2009.

[13] B. Black, M. Annavaram, N. Brekelbaum, J. DeVale, L. Jiang, G. H. Loh, D. Mc-

Caule, P. Morrow, D. W. Nelson, D. Pantuso, P. Reed, J. Rupley, S. Shankar,

J. Shen, and C. Webb. Die stacking (3d) microarchitecture. In Proceedings of the

39th Annual International Symposium on Microarchitecture, pages 469�479, 2006.

[14] B. Black, D. W. Nelson, C. Webb, and N. Samra. 3d processing technology and

its impact on ia32 microprocessors. In Proceedings of the IEEE International Con-

ference on Computer Design, pages 316�318, Washington, DC, USA, 2004. IEEE

Computer Society.

[15] M. Bohr, R. Chau, T. Ghani, and K. Mistry. The high-k solution. IEEE Spectrum,

44(10):29�35, Oct. 2007.

[16] S. Borkar. Design challenges of technology scaling. 19(4):23�29, 1999.

[17] D. Brooks and M. Martonosi. Dynamic thermal management for high-performance

microprocessors. In Proceedings of the 7th International Symposium on High-

Performance Computer Architecture, pages 171�182, 2001.

[18] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for architectural-

level power analysis and optimizations. In Proceedings of the 27th Annual Inter-

national Symposium on Computer Architecture, pages 83�94, 2000.

[19] J. A. Butts and G. S. Sohi. A static power model for architects. In Proceedings of

the 33rd Annual IEEE/ACM International Symposium on Microarchitecture, pages

191�201, 2000.

[20] Q. Cai, J. Gonzalez, R. Rakvic, G. Magklis, P. Chaparro, and A. Gonzalez. Meet-

ing points: Using thread criticality to adapt multicore hardware to parallel regions.

In Proceedings of the International Conference on Parallel Architectures and Com-

pilation Techniques, pages 240�249, 2008.

[21] B. Calder, G. Reinman, and D. M. Tullsen. Selective value prediction. In Proceed-

ings of the 26th International Symposium on Computer Architecture, pages 64�74,

1999.

[22] J. Casmira and D. Grunwald. Dynamic instruction scheduling slack. In Proceedings

of the KoolChips Workshop, 2000.

[23] J. M. Cebrian, J. L. Aragon, and J. M. Garcia. Leakage energy reduction in value

predictors through static decay. In Proceedings of the IEEE International Parallel

& Distributed Processing Symposium, pages 1�7, 2007.

Bibliografía 137

[24] J. M. Cebrian, J. L. Aragon, J. M. Garcia, and S. Kaxiras. Adaptive vp decay:

Making value predictors leakage-e�cient designs for high performance processors.

In Proceedings of the 4th International Conference on Computing Frontiers, CF

'07, pages 113�122, New York, NY, USA, 2007. ACM.

[25] J. M. Cebrian, J. L. Aragon, J. M. Garcia, and S. Kaxiras. Leakage-e�cient

design of value predictors through state and non-state preserving techniques. J.

Supercomputing, 55:28�50, January 2011.

[26] J. M. Cebrian, J. L. Aragon, J. M. Garcia, P. Petoumenos, and S. Kaxiras. E�cient

microarchitecture policies for accurately adapting to power constraints. In Proceed-

ings of the IEEE International Parallel & Distributed Processing Symposium, pages

1�12, 2009.

[27] J. M. Cebrian, J. L. Aragon, and S. Kaxiras. Power token balancing: Adapting

cmps to power constraints for parallel multithreaded workloads. In Proceedings of

the IEEE International Parallel & Distributed Processing Symposium, 2011.

[28] A. K. Coskun, J. L. Ayala, D. Atienza, T. S. Rosing, and Y. Leblebici. Dynamic

thermal management in 3d multicore architectures. In Proceedings of the Inter-

national Design, Automation & Test in Europe Conference & Exhibition, pages

1410�1415, 2009.

[29] A. K. Coskun, T. T. Rosing, K. A. Whisnant, and K. C. Gross. Static and dynamic

temperature-aware scheduling for multiprocessor socs. 16(9):1127�1140, 2008.

[30] S. Das, A. Chandrakasan, and R. Reif. Three-dimensional integrated circuits: Per-

formance, design methodology, and cad tools. In Proceedings of the IEEE Com-

puter Society Annual Symposium on VLSI, ISVLSI '03, pages 13�, Washington,

DC, USA, 2003. IEEE Computer Society.

[31] S. Das, A. Fan, K.-N. Chen, C. S. Tan, N. Checka, and R. Reif. Technology,

performance and computer-aided design of three-dimensional integrated circuits.

In Proceedings of the 2004 International Symposium on Physical Design, ISPD '04,

pages 108�115, New York, NY, USA, 2004. ACM.

[32] J. Donald and M. Martonosi. Techniques for multicore thermal management: Clas-

si�cation and new exploration. In Proceedings of the 33rd International Symposium

on Computer Architecture, pages 78�88, 2006.

[33] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge. Drowsy caches:

Simple techniques for reducing leakage power. In Proceedings of the 29th Annual

International Symposium on Computer Architecture, pages 148�157, 2002.

[34] M. J. Flynn and P. Hung. Microprocessor design issues: Thoughts on the road

ahead. 25(3):16�31, 2005.

138 Bibliografía

[35] F. Gabbay and A. Meldenson. Speculative execution based on value prediction.

Technical report, EE Department TR 1080, Technion - Israel Institue of Technol-

ogy, 1996.

[36] B. Goeman, H. Vandierendonck, and K. de Bosschere. Di�erential fcm: Increasing

value prediction accuracy by improving table usage e�ciency. In Proceedings of the

7th International Symposium on High-Performance Computer Architecture, pages

207�216, 2001.

[37] M. B. Healy, M. Vittes, M. Ekpanyapong, C. S. Ballapuram, S. K. Lim, H.-H. S.

Lee, and G. H. Loh. Multiobjective microarchitectural �oorplanning for 2-d and

3-d ics. IEEE Transactions on CAD of Integrated Circuits and Systems, pages

38�52, 2007.

[38] J. L. Henning. Spec cpu2000: Measuring cpu performance in the new millennium.

Computer, 33:28�35, July 2000.

[39] Z. Hu, P. Juang, K. Skadron, D. Clark, and M. Martonosi. Applying decay strate-

gies to branch predictors for leakage energy savings. In Proceedings of the IEEE

International Conference on Computer Design: VLSI in Computers and Proces-

sors, pages 442�445, 2002.

[40] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi. An analysis of

e�cient multi-core global power management policies: Maximizing performance for

a given power budget. In Proceedings of the 39th Annual IEEE/ACM International

Symposium on Microarchitecture, pages 347�358, 2006.

[41] E. Jacobsen, E. Rotenberg, and J. E. Smith. Assigning con�dence to conditional

branch predictions. In Proceedings of the 29th Annual IEEE/ACM International

Symposium on Microarchitecture, pages 142�152, 1996.

[42] P. Juang, P. Diodato, S. Kaxiras, K. Skadron, Z. Hu, M. Martonosi, and D. W.

Clark. Implementing decay techniques using 4t quasi-static memory cells. Com-

puter Architecture Letters, 1(1), 2002.

[43] P. Juang, Q. Wu, L.-S. Peh, M. Martonosi, and D. W. Clark. Coordinated, dis-

tributed, formal energy management of chip multiprocessors. In Proceedings of the

International Symposium on Low Power Electronics and Design, pages 127�130,

2005.

[44] S. M. Jung, J. Jang, W. Cho, J. Moon, K. Kwak, B. Choi, B. Hwang, H. Lim,

J. Jeong, J. Kim, and K. Kim. The revolutionary and truly 3-dimentional 25f2

sram technology with the smallest s3 cell, 0.16um2 and sst� for ultra high density

sram. In VLSI Technology Digest of Technical Papers, 2004.

[45] Y. H. Kang, S. M. Jung, J. H. Jang, J. H. Moon, W. S. Cho, C. D. Yeo, K. H. Kwak,

B. H. Choi, B. J. Hwang, W. R. Jung, S. J. Kim, J. H. Kim, J. H. Na, H. Lim,

Bibliografía 139

J. H. Jeong, and K. Kim. Fabrication and characteristics of novel load pmos sstft

(stacked single-crystal thin �lm transistor) for 3-dimentional sram memory cell. In

Proceedings of the IEEE Silicon-on-Insulator Conference, 2004.

[46] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay: Exploiting generational behav-

ior to reduce cache leakage power. In Proceedings of the 28th Annual International

Symposium on Computer Architecture, pages 240�251, 2001.

[47] S. Kaxiras and M. Martonosi. Computer Architecture Techniques for Power-

E�ciency. Morgan and Claypool Publishers, 1st edition, 2008.

[48] A. e. a. Keshavarzi. Intrinsic iddq: Origins, reduction, and applications in deep sub-

low-power cmos ic's. In Proceedings of the IEEE International Test Conference,

1997.

[49] T. Kgil, A. Saidi, N. Binkert, R. Dreslinski, S. Reinhardt, K. Flautner, and

T. Mudge. Picoserver: Using 3d stacking technology to enable a compact energy ef-

�cient chip multiprocessor. In Proceedings of the 12th International Conference on

Architectural Support for Programming Languages and Operating Systems, pages

117�128, 2006.

[50] N. S. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. S. Hu, M. J. Irwin,

M. Kandemir, and V. Narayanan. Leakage current: Moore's law meets static power.

Computer, 36(12):68�75, 2003.

[51] W. Kim, M. S. Gupta, G.-Y. Wei, and D. Brooks. System level analysis of fast,

per-core dvfs using on-chip switching regulators. In Proceedings of the IEEE 14th

International Symposium on High Performance Computer Architecture, pages 123�

134, 2008.

[52] N. Kirman, M. Kirman, M. Chaudhuri, and J. F. Martinez. Checkpointed early

load retirement. In Proceedings of the 11th International Symposium on High-

Performance Computer Architecture, pages 16�27, 2005.

[53] K. W. Lee, T. Nakqmura, T. Ono, Y. Yamada, T. Mozukusa, H. Hashimoto, K. T.

Park, K. H., and N. Koyanag. Three-dimensional shared memory fabricated using

wafer stacking technology. In International Electron Devides Meeting. Technical

Digest, 2000.

[54] S. Lee, S. S. V. Au, and K. P. Moran. Constriction/ spreading resistance model for

electronics packaging. In Proceedings of the ASME/JSME Thermal Engineering

Conference, 1995.

[55] J. Li, J. F. Martinez, and M. C. Huang. The thrifty barrier: Energy-aware syn-

chronization in shared-memory multiprocessors. In Proceedings of the 10th Inter-

national Symposium on High Performance Computer Architecture, pages 14�23,

2004.

140 Bibliografía

[56] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi.

Mcpat: An integrated power, area, and timing modeling framework for multicore

and manycore architectures. In Proceedings of the 42th International Symposium

on Microarchitecture, pages 469�480, 2009.

[57] T. Li, A. R. Lebeck, and D. J. Sorin. Spin detection hardware for improved man-

agement of multithreaded systems. 17(6):508�521, 2006.

[58] Y. Li, D. Parikh, Y. Zhang, K. Sankaranarayanan, M. Stan, and K. Skadron. State-

preserving vs. non-state-preserving leakage control in caches. In Proceedings of the

International Design, Automation and Test in Europe Conference and Exhibition,

volume 1, pages 22�27, 2004.

[59] P. Lindner, V. Dragoi, T. Glinsner, C. Schaefer, and R. Islam. 3D Interconnect

Through Aligned Wafer Level Bonding, pages 1439�43 BN � 0 7803 7430 4. IEEE,

2002.

[60] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen. Value locality and load value

prediction. In Proceedings of the 7th International Vonference on Architectural

Support for Programming Languages and Operating Systems, pages 138�147, 1996.

[61] G. L. Loi, B. Agrawal, N. Srivastava, S.-C. Lin, T. Sherwood, and K. Banerjee.

A thermally-aware performance analysis of vertically integrated (3-d) processor-

memory hierarchy. In Proceedings of the 43rd ACM/IEEE Design Automation

Conference, pages 991�996, 2006.

[62] P. Macken, M. Degrauwe, M. Van Paemel, and H. Oguey. A voltage reduction

technique for digital systems. In Proceedings of the 37th IEEE International Solid-

State Circuits Conference. Digest of Technical Papers, pages 238�239, 1990.

[63] N. Madan and R. Balasubramonian. Leveraging 3d technology for improved relia-

bility. In Proceedings of the 40th Annual IEEE/ACM International Symposium on

Microarchitecture, pages 223�235, 2007.

[64] G. Magklis, M. L. Scott, G. Semeraro, D. H. Albonesi, and S. Dropsho. Pro�le-

based dynamic voltage and frequency scaling for a multiple clock domain micropro-

cessor. In Proceedings of the 30th Annual International Symposium on Computer

Architecture, pages 14�25, 2003.

[65] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hog-

berg, F. Larsson, A. Moestedt, and B. Werner. Simics: A full system simulation

platform. Computer, 35(2):50�58, 2002.

[66] S. Manne, A. Klauser, and D. Grunwald. Pipeline gating: Speculation control for

energy reduction. In Proceedings of the 25th Annual International Symposium on

Computer Architecture, pages 132�141, 1998.

Bibliografía 141

[67] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.

Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood. Multifacet's general

execution-driven multiprocessor simulator (gems) toolset. SIGARCH Computer

Architecture News, 33:2005, 2005.

[68] J. Mayega, O. Erdogan, P. M. Belemjian, K. Zhou, J. F. McDonald, and R. P.

Kraft. 3d direct vertical interconnect microprocessors test vehicle. In Proceedings

of the 13th ACM Great Lakes Symposium on VLSI, GLSVLSI '03, pages 141�146,

New York, NY, USA, 2003. ACM.

[69] J. D. Meindl. Interconnect opportunities for gigascale integration. In IEEE Micro,

vol. 23, no. 3, pp. 28-35,, 2003.

[70] K. Meng, R. Joseph, R. P. Dick, and L. Shang. Multi-optimization power manage-

ment for chip multiprocessors. In Proceedings of the 17th International Conference

on Parallel Architectures and Compilation Techniques, PACT '08, pages 177�186,

New York, NY, USA, 2008. ACM.

[71] N. Nagaraj, T. Boni�eld, A. Singh, R. Griesmer, and P. Balsara. Interconnect

modeling for copper/low-k technologies. In Proceedings of the 17th International

Conference on VLSI Design, VLSID '04, pages 425�, Washington, DC, USA, 2004.

IEEE Computer Society.

[72] D. Nelson, C. Webb, D. McCauley, K. Raol, J. Rupley, J. DeVale, and B. Black.

A 3d interconnect methodology applied to ia32-class architectures for performance

improvements through rc mitigation. In Proceedings of the 21st International VLSI

Multilevel Interconnection Conference, 2004.

[73] J. Parry, H. Rosten, and G. B. Kromann. The development of component-level ther-

mal compact models of a c4/cbga interconnect technology: The motorola powerpc

603 and powerpc 604 risc microproceesors. IEEE Transactions on Components,

Packaging, and Manufacturing Technology, 21:104�112, 1998.

[74] D. A. Patterson and J. L. Hennessy. Computer Organization and Design, Fourth

Edition, Fourth Edition: The Hardware/Software Interface (The Morgan Kauf-

mann Series in Computer Architecture and Design). Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, 4th edition, 2008.

[75] P. Petoumenos, G. Psychou, S. Kaxiras, J. Cebrian Gonzalez, and J. Aragon.

Mlp-aware instruction queue resizing: The key to power-e�cient performance. In

C. Müller-Schloer, W. Karl, and S. Yehia, editors, Architecture of Computing Sys-

tems, volume 5974 of Lecture Notes in Computer Science, pages 113�125. Springer

Berlin / Heidelberg, 2010.

[76] M. Powell, S.-H. Yang, B. Falsa�, K. Roy, and T. N. Vijaykumar. Gated-vdd: A

circuit technique to reduce leakage in deep-submicron cache memories. In Proceed-

142 Bibliografía

ings of the International Symposium on Low Power Electronics and Design, pages

90�95, 2000.

[77] M. D. Powell, M. Gomaa, and T. N. Vijaykumar. Heat-and-run: Leveraging smt

and cmp to manage power density through the operating system. In Proceedings

of the 11th International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 260�270, 2004.

[78] K. Puttaswamy and G. H. Loh. Implementing caches in a 3d technology for high

performance processors. In Proceedings of the 2005 International Conference on

Computer Design, ICCD '05, pages 525�532, Washington, DC, USA, 2005. IEEE

Computer Society.

[79] K. Puttaswamy and G. H. Loh. Thermal herding: Microarchitecture techniques

for controlling hotspots in high-performance 3d-integrated processors. In Proceed-

ings of the IEEE 13th International Symposium on High Performance Computer

Architecture, pages 193�204, 2007.

[80] R. M. Rao, J. L. Burns, A. Devgan, and R. B. Brown. E�cient techniques for gate

leakage estimation. In Proceedings of the 2003 International Symposium on Low

Power Electronics and Design, ISLPED '03, pages 100�103, New York, NY, USA,

2003. ACM.

[81] R. Reif, A. Fan, K.-N. Chen, and S. Das. Fabrication technologies for three-

dimensional integrated circuits. In Proceedings of the International Quality Elec-

tronic Design Symposium, pages 33�37, 2002.

[82] J. Sartori and R. Kumar. Distributed peak power management for many-core ar-

chitectures. In Proceedings of the Design, Automation & Test in Europe Conference

& Exhibition, pages 1556�1559, 2009.

[83] R. Sasanka, C. J. Hughes, and S. V. Adve. Joint local and global hardware adap-

tations for energy. In Proceedings of the 10th International Conference on Archi-

tectural Support for Programming Languages and Operating Systems, ASPLOS-X,

pages 144�155, New York, NY, USA, 2002. ACM.

[84] Y. Sazeides and J. E. Smith. The predictability of data values. In Proceedings of

the 30th International Symposium on Microarchitecture, pages 248�258, 1997.

[85] G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Albonesi, S. Dwarkadas, and

M. L. Scott. Energy-e�cient processor design using multiple clock domains with

dynamic voltage and frequency scaling. In Proceedings of the 8th International

High-Performance Computer Architecture Symposium, pages 29�40, 2002.

[86] T. Siddiqua and S. Gurumurthi. Balancing soft error coverage with lifetime re-

liability in redundantly multithreaded processors. In Proceedings of the IEEE

Bibliografía 143

International Symposium on Modeling, Analysis & Simulation of Computer and

Telecommunication Systems, 2009.

[87] T. Simunic, L. Benini, A. Acquaviva, P. Glynn, and G. de Micheli. Dynamic

voltage scaling and power management for portable systems. In Proceedings on

Design Automation Conference, pages 524�529, 2001.

[88] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and

D. Tarjan. Temperature-aware microarchitecture. In Proceedings of the 30th An-

nual International Computer Architecture Symposium, pages 2�13, 2003.

[89] S. J. Souri, K. Banerjee, A. Mehrotra, and K. C. Saraswat. Multiple si layer ics:

Motivation, performance analysis and design implications. In Proceedings of the

37th Annual Design Automation Conference, DAC '00, pages 213�220, New York,

NY, USA, 2000. ACM.

[90] S. Thoziyoor and N. Muralimanohar. Cacti 5.1. Technical report, 2008.

[91] A. W. Topol, D. C. La Tulipe, Jr., L. Shi, D. J. Frank, K. Bernstein, S. E. Steen,

A. Kumar, G. U. Singco, A. M. Young, K. W. Guarini, and M. Ieong. Three-

dimensional integrated circuits. IBM J. Res. Dev., 50:491�506, July 2006.

[92] E. Tune, D. Liang, D. M. Tullsen, and B. Calder. Dynamic prediction of critical

path instructions. In Proceedings of the 7th International Symposium on High-

Performance Computer Architecture, pages 185�195, 2001.

[93] J. A. Winter and D. H. Albonesi. Addressing thermal nonuniformity in smt work-

loads. ACM Transactions on Architecture and Code Optimization, 5:4:1�4:28, May

2008.

[94] S. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The splash-2 programs:

Characterization and methodological considerations. In Proceedings of the 22nd

International Symposium on Computer Architecture, June 1995.

[95] Q. Wu, P. Juang, M. Martonosi, and D. W. Clark. Formal online methods for

voltage/frequency control in multiple clock domain microprocessors. In Proceedings

of the 11th International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 248�259, 2004.

[96] Q. Wu, P. Juang, M. Martonosi, and D. W. Clark. Voltage and frequency control

with adaptive reaction time in multiple-clock-domain processors. In Proceedings

of the 11th International Symposium on High-Performance Computer Architecture,

pages 178�189, 2005.

[97] Y. Xie, G. H. Loh, B. Black, and K. Bernstein. Design space exploration for 3d

architectures. J. Emerg. Technol. Comput. Syst., 2:65�103, April 2006.

144 Bibliografía

[98] L. Xue, C. C. Liu, and S. Tiwari. Multi-layers with buried structures (mlbs): An

approach to three-dimensional integration. In Proceedings on IEEE International

SOI Conference, pages 117�118, 2001.

[99] S. Yang, M. D. Powell, B. Falsa�, K. Roy, and T. N. Vijaykumar. An inte-

grated circuit/architecture approach to reducing leakage in deep-submicron high-

performance i-caches. In Proceedings of the 7th International Symposium on High-

Performance Computer Architecture, pages 147�157, 2001.

[100] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. Stan. Hotleak-

age: A temperature-aware model of subthreshold and gate leakage for architects.

Technical report, 2003.

[101] H. Zhou, M. C. Toburen, E. Rotenberg, and T. M. Conte. Adaptive mode control:

A static-power-e�cient cache design. In Proceedings of the International Confer-

ence on Parallel Architectures and Compilation Techniques, pages 61�70, 2001.

[102] C. Zhu, Z. Gu, L. Shang, R. P. Dick, and R. Joseph. Three-dimensional chip-

multiprocessor run-time thermal management. 27(8):1479�1492, 2008.

	Title Page
	Abstract
	Agradecimientos
	Contents
	Table of contents
	List of Figures
	List of Tables

	Resumen
	Introducción
	Contribuciones
	Control de Consumo en Procesadores Mononúcleo
	Control de Consumo en Procesadores Multinúcleo
	Control de Consumo en Procesadores Multinúcleo 3D
	Conclusiones

	 Introduction
	Motivation
	Contributions
	Organization

	Problem Statement and Simulation Methodology
	Introduction
	Power Tokens
	Importance of Accuracy
	Simulators
	Power Models
	Dynamic Power Models
	Leakage Power Models

	Temperature Models
	Benchmarks
	Benchmark Thermal Profiles and Per-Structure Power Distribution
	Performance vs Power-Efficiency in a Multi-Core Scenario

	Power Saving Mechanisms
	Dynamic Power Control Mechanisms
	Dynamic Voltage and Frequency Scaling
	Pipeline Throttling
	Critical Path
	Hybrid Approaches
	Timeline Analysis of Power Dissipation

	Leakage Control Mechanisms
	Value Predictors: A Case Study for Leakage Reduction
	Problem Overview: Generational Behaviour in Value Prediction Structures
	Techniques for Reducing Leakage in Value Predictors
	Experimental Results

	Conclusions

	Single-Core Power Budget Matching
	Introduction
	Power-Saving Microarchitectural Techniques
	Reactive Techniques
	Predictive Techniques

	Experimental Results
	Simulation Methodology
	A Power Budget of What? (100% Usage = 100% Power)
	Cycles Over PB and Area Distribution
	Efficiency on Matching a Power Budget
	Preventive Switch-Off and Predictive Switch-on
	Sensitivity Study

	Conclusions

	Multi-Core Power Budget Matching
	Introduction
	Background and Related Work
	CMP-specific Power Control Mechanisms

	Enforcing a Power Budget in CMPs
	Simulation Environment
	Matching a Power Budget in a CMP Running Parallel Workloads
	Analysis on the Power Dissipated in Spinning
	Power Token Balancing (PTB)
	Reusing Wasted Power to Reduce Energy: Nitro

	Experimental Results
	Efficiency of Power Token Balancing (PTB)
	Dynamic Policy Selector
	Relaxing PTB to be More Energy-Efficient
	The Importance of Accuracy
	Temperature Analysis
	Nitro Energy and Performance Analysis

	Conclusions

	3D Die-Stacked Power Budget Matching - Token3D
	Introduction
	Background and Related Work
	Power and Thermal Control in Microprocessors
	Towards the Third Dimension

	Thermal Control in 3D Die-Stacked Processors
	Token3D: Balancing Temperature on 3D Die-Staked Designs
	Token3D Implementation Details

	Experimental Results
	Simulation Environment
	Effects of Token3D on Peak Temperature
	Further Temperature Optimizations

	Conclusions

	Conclusions and Future Ways
	Conclusions
	Future Work

	Bibliography

