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Abstract—Integrated circuits are getting increasingly vulner-
able to soft errors; as a consequence, soft error rate (SER)
estimation has become an important and very challenging goal.
In this work, a novel approach for SER estimation of combina-
tional circuits is presented. The proposed framework is divided
in two stages. First, signal probabilities are computed via a
hybrid approach combining heuristics and selective simulation
of reconvergent subnets. In the second stage, signal probabilities
are used to compute the vulnerability of all the gates in a
combinational block using a backward-traversing algorithm that
takes into account logical, electrical and timing masking factors.
Experimental results show that our signal probability estimation
approach, in comparison with similar techniques in the literature,
reduces innacuracy by 96% while adding minimal execution time
overhead. In addition, results indicate that our framework is
two orders of magnitude faster than traditional Monte Carlo-
based fault injection with minor loss in accuracy in both signal
probability and SER estimation (average error of 5%).

I. INTRODUCTION

Semiconductor technology scaling has brought tremendous
improvement in both performance and energy efficiency. De-
vice scaling translates into a reduction in feature size and
voltage levels, which results in smaller devices that require
less current to switch; and thus, they can be operated at
higher frequencies. On the other hand, scaling in the sub-
100 nm lithographies has dramatically increased reliability
issues. In particular, nanoscale integrated circuits have become
highly sensitive to single-event transients (SET): disturbances
caused by particle strikes from ionizing radiation. Since the
faults caused by such radiation are not permanent, they are
called soft errors. Historically, soft errors have been tackled
in the context of memory cells because of the large area of
the chip devoted to caches and the higher vulnerability of
SRAM cells in comparison with combinational logic. In this
way, their negative effect in memory has been kept under
control due to the use of protection mechanisms with low
overhead, such as error-correcting codes. On the other hand,
the expected soft error rate (SER) of combinational logic has
been reported [34] to increase by five orders of magnitude
in eight technology nodes (from 600nm to 50nm). As a
consequence, methodologies to accurately deal with SER in
combinational logic have become an important area of study.
In order to develop efficient protection mechanisms, accurate
tools to measure its effect are in dire need.

A variety of techniques have been proposed to estimate the
SER of combinational logic. Several works [4], [11], [23], [38]
are based on Monte Carlo fault injection simulations. These
approaches suffer from large simulation times to reach stable
results and they are not practical for the size of contemporary
circuits. Therefore, most efforts nowadays are based on static,
analytical methods.

Modeling and analyzing the SER in logic is more complex
than in memory elements, since there are some well-known
masking effects that reduce the overall likelihood that a pulse
caused by a particle strike is latched and results in an error.
These masking effects are commonly classified as [26]:

• Logical masking: Transient faults are masked by gates
whose output is independent of the faulty input (e.g., an
OR gate with an input set to 1).

• Electrical masking: The pulse is attenuated (either its
amplitude is reduced or rise/fall times are increased)
by the electrical properties of the gates throughout the
logic chain, and the resulting magnitude is insufficient
to change the value that is latched.

• Timing masking: The pulse arrives at a state-holding
element out of its latching-time window.

Due to the complexity of the problem, a tradeoff between
accuracy, efficiency and scope has to be made. Analytical
techniques that compute the SER at a system level usually
rely on Architecturally Correct Execution analysis [27], which
in some cases can lead to a 7x overestimation [14]. For a
more accurate static analysis, circuit-level approaches can be
adopted. However, their use comes with several shortcomings
and drawbacks. Some fast methods [3], [19], [20], [22], [36]
only take into account one or two masking effects. A number of
works report great accuracy on their estimation of the soft error
rate [28], [37], [41], but they need to perform their analysis
for a large number of input vectors to achieve a high coverage
which, in turn, significantly impacts execution time.

Another important challenge that analytical mechanisms
need to cope with is reconvergence. Whenever a logic signal
splits into multiple branches and later reconverges in two or
more inputs of a gate, it creates dependencies between signals
that complicate the computation of the different masking
effects. Although there are several accurate techniques that use
path extraction or try to analyze multilevel correlations [2], [9],
[10], [35], they suffer from a high computational cost and are
only feasible for small-sized circuits. On the other hand, there
are a few works that try to use heuristics [8], [13], [16] or
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specific data structures [15], [18], [30], [40] to estimate the
effects of reconvergent subnets in the reliability of the circuit.

In this work, we present MASkIt: an accurate and fast
SER estimation framework based on signal probabilities that
considers the effects of the three masking factors and signal
reconvergence. Signal probabilities are estimated using a novel
hybrid method that merges static analysis with selective sub-
circuit simulation: we first exhaustively simulate all small-
sized reconvergent subnetworks of the circuit and then, we run
an estimation algorithm. In this way, we are able to incorporate
accurate signal probabilities in those nodes of the circuit whose
estimation by the heuristic algorithm is inaccurate without
losing its defining speed benefits. Soft Error Rate is estimated
by traversing the circuit from outputs to inputs, computing the
vulnerability of each gate by combining signal probabilities,
data from cell characterization and the incrementally-gained
information about the masking capabilities of the different
paths. Reconvergent fan-outs are handled with Binary Deci-
sion Diagrams (BDD), but their use is limited to small-sized
subnets of the circuit. Therefore, we bypass one of the greatest
weakness of BDDs -scalability- and achieve an accurate and
fast SER estimation.

To validate the proposed approach, we compare the output of
our analysis against Monte Carlo based fault injection using the
ISCAS’85 benchmarks [5], and we show that MASkIt achieves
about the same accuracy (average error of 5%) with two orders
of magnitude less computing time. We study several signal
probability estimation algorithms presented in the literature
and show that the accuracy of our technique is significantly
better (96% error reduction) while adding minimal execution
time overhead.

The remainder of this paper is organized as follows. Section
II formulates the SER estimation and modeling approach. Sec-
tion III describes the mechanism to estimate signal probabili-
ties. Section IV presents the proposed approach for computing
the masking effects. Section V reports the experimental results
of the validation process. Section VI summarizes the major
conclusions of the work.

II. MASKIT: OVERVIEW OF THE PROPOSED APPROACH

A. SER estimation

The overall SER of the circuit can be computed as the
accumulation of the individual SER of all the gates in the
circuit. Each of those SER, SERgatei , is defined as the
probability that a particle with a particular charge q strikes
at gatei and the SET (Soft Error Transient) originated is
not masked. This is computed by integrating the products
of particle-hit rate and masking probability over a range of
charges qmin to qmax. For practicality, the integral is often
approximated as a discrete sum:

SERgatei =

#charges∑

c=1

RPH(qc) ∗ V ul(gatei, qc) (1)

where V ul is the vulnerability of the gate and RPH is the
particle hit rate, defined in [34] as a function of neutron flux,
area and slope of charge collection. qc corresponds to a discrete
charge selected from the continuous range: qc = c ∗ (qmax −

qmin)/#charges. In [40] it is shown that #charges = 5
yields to an accurate enough SER estimation in comparison
with SPICE models.

The vulnerability of a gate is defined as the probability that
a soft error propagates up to a latch. It can be formulated as:

V ul(gatei, qc) = LM(i, c) ∗ EM(i, c) ∗ TM(i, c) (2)

which corresponds to the probability that the SET with charge
qc at gate gatei is neither affected by the logical masking
factor (LM ) nor the electrical masking factor (EM ) nor the
timing masking factor (TM ).

B. Netlist modeling

Given a combinational circuit, our approach needs three
inputs: the netlist of a combinational circuit, a set of input
probabilities and a cell characterization library. The netlist
of the circuit is a list of gates and their connectivity, which
corresponds to a directed acyclic graph defined by the union of
the list of gates G (vertices), the set of connections C (directed
edges), the set I of inputs of the circuit and the set Ω of outputs
of the circuit.

• Each element of G is formed by a pair <ϕ, k>, where
ϕ is a Boolean operation (such as NOT or NAND) and
k is the number of inputs of the gate.

• Each element of C is a connection between one output
of a gate and one or more inputs of succeeding gates.
This is formally defined as a pair <gi, Γi>, where gi
is the ith gate of G and Γi is a set of gates {gam, gbn, gco,
. . .}, where subscripts m, n and o indicate a particular
gate from G and superscripts a, b and c indicate the
input (0, 1, . . . , k-1) of the gate that is connected to the
output of gi.

• Each element of I is a pair <i, a>, where i designates
the ith gate of G and a corresponds to input number a
(0 ≤ a < k) from gi.

• Each element of Ω is pair <i, f >, indicating that gate
gi is connected to the output flip-flop f of the circuit.

Every element i from I has associated an input probability
Pi, which corresponds to the probability that the value of i is
0. In addition, from the cell characterization library, we extract
the following variables of interest:

• Every element gi of G has associated two transition
probabilities T out

i [0 → 1] and T out
i [1 → 0] which

correspond to the probability that, given a strike, the
output at gi transitions, respectively, from 0 to 1 and
from 1 to 0.

• Every element gi of G has associated a rise time tr and
a fall time tf , which correspond to the slopes of the
output pulse generated when gi is struck (from 10% to
90% of Vdd and from 90% to 10% of Vdd, respectively).

• Every element gi of G has associated a propagation
delay δ.

• Every element gi of G has associated a first transition
delay d1 and a second transition delay d2.

• Every element gi of G has associated a width PWmin,
which corresponds to the minimum width the striking
pulse needs in order to flip the logic value of gi.
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• Every element of Ω has associated a time τs and a time
τh, which correspond, respectively, to the setup time and
the hold time of the flip-flop.
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Fig. 1. Overview of the MASkIt tool flow.

MASkIt computes a set of vulnerability probabilities V ul
which indicate, for every gate in G, the probability that a
strike in that gate will be propagated to one or more outputs
in Ω. Finally, it computes the vulnerability of the whole
circuit based on the above probabilities. Figure 1 shows the
flow of the proposed MASkIt framework, which consists of a
preprocessing stage and two main computing stages:

1) Signal Probability Estimation (described in Section
III): Propagates the signal probabilities of the primary
inputs of the circuit to all of the nodes based on the
functionality of each gate and minimal simulations.

2) Masking Effect Calculation (described in Section IV):
Computes the vulnerability of all gates of the circuit
based on signal probability and parameters extracted
from cell characterization.

III. ESTIMATION OF SIGNAL PROBABILITIES

The signal probability Pi of a node i is the probability that
the signal value of the node i will be a 0 under a random
assignment of an input vector. It has been long established
that computing signal probabilities is a #P-complete problem
[24] and, therefore, the usual approach is to estimate such
probabilities instead of running an unduly complex algorithm
to achieve accuracy.

A frequently adopted technique [20], [28], [41] consists in
generating a number of random input vectors and simulating
the circuit using tools such as ModelSim to obtain the state at
each node. To avoid the expensive execution time needed for
high coverage, heuristic algorithms are also used.

The basis for such algorithms is the fact that the signal
probability for a gate can easily be computed according to the
following elemental rules:
The probability PNAND that at the output of a 2-input NAND
gate there is a 0 knowing the probability Pi that there is a 0
at the input i is:

PNAND = (1− P0) ∗ (1− P1) (3)

The probability POR that at the output of a 2-input OR gate
there is a 0 knowing the probability Pi that there is a 0 at the
input i is:

POR = P0 ∗ P1 (4)

This approach can be extended to any kind of gate. Travers-
ing all the gates of the circuit from inputs to outputs using these
elemental rules is referred to as 0-Algorithm [12].

The 0-Algorithm runs in linear time and yields exact signal
probabilities whenever the network is free from reconvergent
fan-outs (nodes with fan-out > 1 whose branches reconverge
within the circuit). In the general case, however, a circuit has
dependencies within input leads of each gate. In fact, it has
been reported that in current VLSI designs about half of the
nodes in a circuit cause a reconvergence [29].

There are a few widely-adopted, polynomial-time algorithms
that try to reduce the lack of precision induced by the 0-
Algorithm by using some heuristics: the Weighted Averaging
Algorithm (WAA) [21], the Dynamic Weighted Averaging
Algorithm [12] and the Possibilistic Algorithm (POSS) [1].
While each approach deals with the problem differently, they
all rely on the observation that the signal probability P (j) of
a node j can be expressed by:

P (j) = P (j|f = 0) ∗ P (f = 0) + P (j|f = 1) ∗ P (f = 1)
(5)

where f is a reconvergent fan-out node (RFON) of the fan-
in cone of j. If f were the only RFON in the circuit, P (j)
could be exactly calculated by using formulas such as (3-4) and
applying three times the 0-Algorithm: first to evaluate P (f),
then forcing the logical value of f to 0 and 1 to calculate the
conditional probabilities.

Another popular approach is the Correlation Coefficient
Method (CCM) [12], which computes the signal probability
of a gate not only using the probability of the inputs but also
explicit ratios that express the correlation between each pair of
inputs. CCM modifies the elemental rules to compute signal
probability by adding a correlation coefficient to each formula
and also proposes a new set of rules to propagate them.

Several works within the literature apply these procedures
as a way to estimate signal probability: CASSER [7] and the
work of Franco et al. [13] use DWAA, while CEP [8] and the
work of Hunag et al. [16] take advantage of CCM.

Since, to the best of our knowledge, there are no compar-
isons in the literature of the accuracy of the four aforemen-
tioned algorithms with circuits with sizes larger than a few
hundreds of nodes, we have implemented them in order to
decide which one to use in our framework.

As detailed in Section V, the use of these heuristics im-
proves the accuracy of the signal probability computation in
comparison with the 0-Algorithm, but it is still insufficient
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considering the importance of the role that signal probability
plays in our reliability estimation algorithm.

Therefore, we propose a new approach that combines the
Possibilistic Algorithm with the exhaustive simulation of only
a critical subset of reconvergent subnets. A simulation of this
kind consists in generating all input vectors for the subnet. We
define its inputs as the leads reaching the subnet and coming
from nodes not contained in the subnet. We propose to generate
the 2n inputs, simulate the circuit 2n times and average the 0-
to-1 ratios of the nodes by the likelihood of each input vector.

In order to perform these simulations, all RFON are
searched using Robert’s algorithm to detect all reconvergent
fan-outs [32], and only the ones with a reconvergent subnet
size of 30 or less gates are simulated. We define a reconvergent
subnet size as the number of gates among all paths between
the source and the destination of reconvergence. Once the
reconvergent subnets are simulated, the Possibilistic algorithm
is run to calculate the rest of the nodes’ signal probabilities.
Section V contains the justification on the threshold value for
the size of the subnets that are considered.

IV. MASKING PROBABILITY COMPUTATION

A. Logical Masking

Logical masking occurs when the generated current pulse
due to a strike arrives at the input of a gate whose output signal
happens to be logically independent of the faulty input at that
time, i.e., the output is determined by the rest of input signals.
We estimate the logical masking effect of each individual gate
by computing the likelihood of controlling input vectors and
combining them with the transition probabilities for each input
combination.

To better illustrate the process, let us consider a 2-input
NAND gate:

1) If both inputs are set to 0, a transient fault at only one
of the inputs (0→ 1) does not affect the output.

2) If one input is 1 and the other is 0:

a) If the input at 1 suffers a transition (1→ 0), the
output is not affected.

b) If the input at 0 suffers a transition (0→ 1), the
output does change.

3) If both inputs are 1, a transition at any input (1 → 0)
changes the output.

Therefore, the effect of not logically masking a SET for a
2-input NAND gate can be expressed as:

NotMaskingNAND2 =

P0 ∗ (1− P1) ∗ T in
0 [0→ 1] (6a)

+ (1− P0) ∗ P1 ∗ T in
1 [0→ 1] (6b)

+ (1− P0) ∗ (1− P1) ∗ (T in
0 [1→ 0] + T in

1 [1→ 0]) (6c)

where (6a) and (6b) correspond to case 2-b) in the previous
example while (6c) corresponds to case 3. T in

j [n → m]
indicates the probability of a transition from n to m at
input j, which corresponds to T out

i [n → m] from the cell
characterization, where i is the gate whose output is connected
to input j.

Similarly, equations to measure the logical masking factor
for any kind of gate (not only NANDs) can be constructed, in
order to calculate the overall LM term in equation (2).

B. Electrical Masking

Electrical masking occurs because of the attenuation of the
transient pulse during its propagation alongside a chain of
gates. In particular, the rise and fall time of the pulse increases
while its amplitude decreases. We estimate the electrical mask-
ing effect of each individual gate by determining if a strike in
that gate is wide enough to be latched when reaching an output.

A strike in a gate directly connected to a primary output
of the circuit needs to be stable from the setup time (ts) and
until the hold time (th) of the output latch. However, a strike
in an intermediate gate (with other gates as successors) is more
unlikely propagated to the outputs since it needs to be wide
enough to be stable from ts until th but also taking into account
the attenuation effect caused throughout the propagation path
to the output latch.

At each visited gate, we calculate how its electrical proper-
ties affect the shape of the pulse using parameters tr, tf , d1 and
d2 from the cell characterization within the glitch propagation
model in [28]. This model contains a set of equations to
initially calculate the output voltage (that depends on the rise
and fall times and also the input pulse width) and then compute
the pulse width at the output using the output voltage.

MASkIt applies those equations in its backward search
algorithm to extract the input pulse width of the gate under
consideration from the propagated output pulse, which corre-
sponds to a previously-computed input pulse from a successor
gate. The resulting input width represents the minimum width
of a SET in order to traverse the path from the struck gate
to any output and be latched. The probability that a strike
generates a pulse of that width corresponds to the probability
that the strike becomes electrically masked. The complement
of that probability is the term EM in equation (2).

C. Timing Masking

Timing masking occurs because latches are insensitive to
signals that arrive out of their latching window. We estimate
the timing masking effect by computing the likelihood that a
particle strikes at such a time that the SET produced cannot
reach an output at an appropriate time to be latched.

Note that a strike in a gate directly connected to an output
needs to be stable before the setup time (ts) of the latch. A
strike in a gate that has other gates as successors needs to
be stable before the setup time of the latch in addition to the
propagation time from its successors to the latch.

In its backward traversal from outputs to inputs, MASkIt
computes at each gate the maximum time within a clock cycle
the SET would need to occur in order to traverse the path
from the struck gate to any output and be latched. To do
so, every gate propagates the maximum time computed by its
successors and adds its own cell-characterized delay δ. The
probability that a particle strikes at that time or earlier in the
cycle corresponds to the probability that the strike becomes
timing masked. The complement of that probability is the TM
term in equation (2).
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D. Reconvergent fan-outs

When a logic signal splits into multiple branches (fan-
out) and later reconverges in two or more inputs of a gate,
the subnet thus formed is referred to as reconvergent fan-
out (RFON). Reconvergent fan-outs need to be taken into
account because they break the assumption that signal paths
are independent.

In this work, we propose to obtain the Boolean difference
of the function at the destination of the reconvergence and use
it in conjunction with the vulnerability of the destination node
to compute the vulnerability at the source node.

When the Boolean difference of a function f with respect
to input xi equals 1, the result is all input combinations for
which a change in xi also changes the output of f . An efficient
structure to represent and operate with Boolean functions is
a Binary Decision Diagram (BDD) [6]. A BDD is a rooted,
directed acyclic graph with one or two terminal nodes labeled
’0’ and ’1’ and with a set of non-terminal nodes labeled with
a Boolean variable. Each non-terminal node has exactly two
edges from that node to others: one corresponding to the
evaluation of the variable as 0 and another one corresponding
to the evaluation of the variable as 1.

A BDD needs to be manipulated in order to represent the
Boolean difference of a function. This can be achieved with a
subset of the basic operations presented in [6]. In particular,
only three procedures are used:

• Apply: Takes two functions f1, f2 and a Boolean op-
erator < op > and produces a BDD representing the
function f1 <op> f2.

• Restrict: Transforms the graph representing a function
f into one where argument xi is replaced with some
constant b.

• Satisfy all: Lists all argument values for which a function
f evaluates to 1.

Binary Decision Diagrams and its operations are used in
MASkIt as follows: When a source of reconvergence is visited,
an initial BDD is created. Then, all the nodes from the
reconvergent subnet are visited until the destination of the
reconvergence is reached. For every gate in the subnetwork, the
Apply procedure constructs a BDD representing the function
computed at the output of each logic gate. When the traversal
of the subnet is completed, the destination node contains a
BDD which represents its Boolean function as a function of
all the subnets inputs. Two Restrict operations are performed to
the final BDD: one replacing the source node variable with the
constant 0 and another replacing the source node variable with
the constant 1. Using the Apply procedure, the XOR of these
two restriction BDDs is computed, resulting in a BDD that
represents the Boolean difference of the destination node with
respect to the source node. Applying the Satisfy all procedure
on the Boolean difference BDD yields all input patterns that
cause a change in the output of the destination if the value
of the source changes. Since the signal probability for every
signal is known, the probability of those input vectors can also
be calculated, i.e., the probability that a strike at the source is
not masked within the subnet. That probability is independent
from the vulnerability of the destination and, therefore, the

vulnerability of the source node can be easily computed by
combining the two. If the source node feeds several subnets,
the process is repeated for all of them, obtaining vulnerabilities
for the different paths. Finally, the different vulnerabilities
are combined as the union of non-mutually exclusive events.
Unlike previous works that also use BDDs such as [40] or [25],
in MASkIt the diagrams are only created to handle RFON
subnets and, consequently, less memory usage is required.
Whenever the vulnerability of a subnet has been computed,
the BDD structure representing that subnet is no longer needed
and it can be freed from memory.

E. MASkIt Algorithm

Algorithm 1 Algorithm to estimate the SER in a circuit

1: Compute signal probabilities of all gates
2: Inititialize Queue with output gates
3: while Queue is not empty do
4: gate ← first element of Queue
5: mark gate as visited
6: for parent ← {Gates in Predecessors(gate)} do
7: if all gates in Successors(parent) have been

visited then
8: Queue ← Queue ∪ parent
9: end for

10: if gate is not source of reconvergence then
11: for j ← {Inputs in Successors(gate)} do
12: Probj ← Compute LM , EM and TM of

any path from gate to a circuit output that
includes the connection from gate to j

13: end for
14: else
15: for j ← {Reconvergent subnets in gate} do
16: Traverse subnet j, building BDDs for each

gate, until the reconvergence destination of
j is reached

17: Probj ← Compute LM , EM and TM of
j using the sensitization BDD and the vul-
nerability of the reconvergence destination

18: end for
19: end if
20: Compute vulnerability of the connection at the output

of gate with all Prob values
21: end while
22: Compute the vulnerability of the circuit based on the

vulnerabilities of all connections

Algorithm 1 presents the procedure to compute the masking
probabilities of each gate in the circuit. The algorithm starts
by estimating the signal probabilities of all gates using the
method described in Section III (line 1). Afterwards, it executes
a Breadth-First Search (lines 3 to 21) starting from the outputs
and then moving backwards until the inputs of the circuit are
reached. A queue, created at line 2, is used to store in the
proper order the gates whose connections at the output are
ready to be visited.
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In every iteration of the main loop, one gate whose suc-
cessors have already been visited is selected to compute its
vulnerability. That gate is removed from the queue (line 4)
and marked as visited (line 5). The predecessors of the gate
are enqueued to be examined later (line 8) only if all their
successors have been visited (line 7). After the queue structure
has been updated, the vulnerability of the gate is computed
according to its successors and whether or not it is a source
of reconvergence.

The majority of gates are not sources of reconvergence. In
that case, every input from all the successor gates of the gate
being visited are considered (line 11). In line 20, we compute
the vulnerability of the connection at the output of the gate
for all alternative paths to the output of the circuit. For this
purpose, we first compute the individual vulnerability for each
set of paths that include the connection from the output of the
gate to a particular input of a successor gate (line 12). This
corresponds to computing LM , EM and TM in equation (2)
by the mechanisms previously described. Then we compute
the vulnerability of the connection at the output of the gate as
a combination of the individual vulnerabilities, assuming that
the probability of masking is independent for different paths.

When the gate being visited is a source of a reconvergence,
the previous independence assumption is never true and, there-
fore, we cannot use the method described in lines 10 through
13. The solution proposed in our methodology is to use Binary
Decision Diagrams (BDD) on the reconvergence subnet. To do
that, we construct the BDD of the reconvergence destination
node by traversing the whole subnet and building the BDD
for each gate (line 16). Then, applying BDD operations, the
list of all input patterns that cause a change in the output of
the destination if the value of the source changes is found.
With the probabilities computed in line 1, the masking value
of the reconvergence subnet is computed (line 17). To compute
the vulnerability of the gate, we need to combine that value
with the vulnerability of the reconvergence destination, i.e., the
probability that the fault is not masked from the destination
until an output of the circuit. This process is repeated for all
subnets for which the gate is a source (line 15) and combined
into one probability for the node in line 20.

Finally, in line 22, we compute the vulnerability of the whole
circuit by combining the vulnerabilities of all its connections,
assuming that the strikes are equiprobable in all connections.
Therefore, the vulnerability of the circuit is the arithmetic
mean of the vulnerabilities of all connections.

V. EXPERIMENTAL RESULTS

In this section, we report the validation results for our
signal probability and circuit SER estimation methods. The
experiments were performed on a machine with an Intel Core
i7-4500U running at 2 GHz with 8 GB of RAM.

A. Signal probability estimation

In order to analyze the accuracy of the several signal proba-
bility computation methods, we compare their estimation with
the output of circuit simulation. To do so, random input vectors
are sampled from an input distribution, the circuit is simulated

and the value at each node is noted. After 107 simulation runs,
the reference ratio between 0 and 1 (the probability that there is
a 0 at that node) at each node is obtained. Then, the different
algorithms, whose outputs are signal probabilities per node,
are executed. Finally, the difference between the reference
probability and the algorithm probability is measured for each
node. The quality of each algorithm is based on the arithmetic
mean of those differences. We used circuits from the ISCAS’85
benchmarks to conduct these experiments. 100 different input
distributions were tested to extract conclusions.

Figure 2 shows that previous algorithms (0-ALG, WAA,
DWAA, CCM and POSS) do not produce accurate enough
estimations. On average, the signal probability estimation
produced by POSS is 33% better than the 0-Algorithm and
the estimation by CCM is a 21% better. The Dynamic WAA
only estimates a 3% better while WAA introduces an additional
35% error. The Possibilistic algorithm is the one that yields the
best results in these experiments but its estimation comes, on
average, with a 0.023 difference per node in comparison with
Monte Carlo signal probability simulation, which still is a very
high error. On the other hand, with the methodology proposed
in this work, the remaining error is only 0.1% (a 96% reduction
with respect to POSS), which is considered good enough to
build the vulnerability estimation upon.

Figure 3 plots the trade-off between the accuracy obtained
simulating fan-out subnetworks up to a particular size and the
execution time of those simulations.

A detailed analysis of the benchmark circuits reveals that
the majority of reconvergent fan-out subnets contain 30 nodes
or less, and that the average number of inputs per fan-out
cone of that size is 21. Simulating 221 inputs can be done in
milliseconds and, since the circuits have an average of 450
reconvergent fan-out subnets, the simulation of all the cones
is completed in a few seconds.

If larger subnets are considered, gates with big fan-in
counts (5 or more) become more frequent, and the number
of inputs reaching the subnet increases dramatically with the
subnet size. Moreover, despite the extra computation effort,
the differences between the simulated probabilities and the
computed probabilities are not reduced significantly. We con-
clude that simulating the small subnets is feasible in terms of
execution time and it provides a significant improvement in
the computation of signal probabilities.

B. Model validation

For the validation of our framework, we compare the output
of the algorithm with the results of fault injection experi-
ments. The experiments consist of three variables: the input
probability distribution, the circuit upon which the injection is
performed and the number of iterations. The input distribution
consists of a random number between 0 and 1 for each
primary input of the circuit. The circuits correspond to the
ISCAS’85 benchmarks synthesized using the Design Compiler
from Synopsys with 15nm Nangate Open Cell Library [17] as
selected technology. The cell characterization of that library is
performed using the methodology in [31].

The fault injection approach consists in changing the bit at
the output of a gate. To perform an experiment, a particular
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Fig. 2. Comparison among methodologies to estimate signal probabilities.

TABLE I. VALIDATION EXPERIMENTS RESULTS FOR ISCAS’85 BENCHMARKS

Circuit Fault injection MASkIt
Name Gate count Vulnerability Execution time Vulnerability Execution time Relative error (%)
c432 160 0.257 1 hour 0.256 15 seconds 0.5
c499 202 0.467 1.5 hours 0.468 22 seconds 0.004
c880 383 0.53 4.7 hours 0.515 33 seconds 2.7

c1355 546 0.385 10 hours 0.365 46 minutes 5.4
c1908 880 0.398 22 hours 0.369 3 minutes 7.3
c2670 1193 0.361 40 hours 0.339 9 minutes 6.14
c3540 1669 0.275 80 hours 0.249 22 minutes 9.5
c5315 2307 0.432 7.5 days 0.409 45 minutes 5.2
c7752 3512 0.375 1.5 weeks 0.344 1.5 hours 8.5
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Fig. 3. Comparison between fan-out subnet size, accuracy and runtime.

input vector from an input distribution is generated and the
circuit is simulated. Then, faults are injected iteratively to
all gates and outputs are observed for changes with respect
to the original simulation. If there are no differences among
the original outputs and the fault-injected ones, the fault was
masked. If one or more outputs have been changed, the fault
was not masked and a counter, representing vulnerability for
the gate, is incremented. This process is repeated for a number
of iterations, inside which new input vectors are sampled from
the input distribution. When a sufficiently large number of
input vectors have been simulated, the vulnerability counter
at each of the gates is divided by the number of iterations,
thus computing the ratio of experiments in which a fault in
the gate was not masked, i.e., its vulnerability. These actions
are repeated for 100 different input probability distributions.

The number of samples in a Monte Carlo experiment is

defined in [33] as a factor of the interval of confidence, the
margin of error and the estimated deviation at the output.
For our experiments, we chose an interval of confidence of
95%. Since the outputs of the experiment are probabilities
representing vulnerability, we chose a margin of error of
1%. Even though we do not know the standard deviation
of our population, it can be estimated by a large number of
beforehand preliminary simulations (such as 107, as suggested
in [39]). Therefore, according to [33], the number of Monte
Carlo trials is 3934. We rounded this number to 4000 iterations.

Table I shows that the proposed approach achieves excellent
accuracy with two orders of magnitude reduction in execution
time with respect to the classic fault injection technique. The
maximum relative error is below 10% with an average of 5%,
while the average absolute error is 1.9% and the maximum
is 3.1%. If the circuit contains few reconvergent fan-outs,
such as c499, the model outputs results almost identical to
those obtained with fault injection. On the other hand, the
size of the circuit does not correlate with the precision of the
algorithm. The average MASkIt runtime, which includes signal
probability estimation, is 350 times faster than classic fault
injection.

VI. CONCLUSION

In this paper, we have presented MASkIt: a Soft Error Rate
estimation methodology for combinational logic. Our approach
is based on a backward-search traversal of the circuit that com-
putes the different masking factors for all gates by combining
signal probabilities with a pre-characterized technology library.
Signal probabilities are approximated using a novel approach
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that integrates an heuristic algorithm along with the simulation
of selected RFON subnets within the circuit. Experimental
results indicate that MASkIt achieves a speedup of two orders
of magnitude over Monte Carlo fault injection campaigns while
incurring in an average error of 5%, and it is much more
accurate than previous techniques with similar computational
requirements, mainly due to the high-accuracy of the novel
approach to compute signal probabilities.
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