Computing (2013) 95:537-566
DOI 10.1007/s00607-012-0236-6

Efficient inter-core power and thermal balancing
for multicore processors

Juan M. Cebrian - Daniel Sanchez -
Juan L. Aragon - Stefanos Kaxiras

Received: 9 May 2012 / Accepted: 31 October 2012 / Published online: 15 November 2012
© Springer-Verlag Wien 2012

Abstract Nowadays the market is dominated by processor architectures that employ
multiple cores per chip. These architectures have different behavior depending on the
applications running on the processor (parallel, multiprogrammed, sequential), but all
happen to meet what is called the power and temperature wall. For future technologies
(less than 22 nm) and a fixed die size, it is still uncertain the percentage of processor that
can be simultaneously powered on. Power saving and power budget mechanisms can be
useful to precisely control the amount of power been dissipated by the processor. After
an initial analysis we discover that legacy power saving techniques work properly for
matching a power budget in thread-independent and multi-programmed workloads, but
not in parallel workloads. When running parallel shared-memory applications sacri-
ficing some performance in a single core (thread) in order to be more energy-efficient
can unintentionally delay the rest of cores (threads) due to synchronization points
(locks/barriers), having a negative impact on global performance. In order to solve
this problem we propose power token balancing (PTB) aimed at accurately matching
an external power constraint by balancing the power consumed among the differ-
ent cores. Experimental results show that PTB matches more accurately a predefined
power budget (50 % of the original peak power) than other mechanisms like DVFS.

J. M. Cebrian (X) - D. Sanchez - J. L. Aragén
Department of Computer Architecture, University of Murcia, Murcia, Spain
e-mail: jcebrian@ditec.um.es

D. Sanchez
e-mail: dsanchez@ditec.um.es

J. L. Aragén
e-mail: jlaragon@ditec.um.es

S. Kaxiras
Department of Information Technology, University of Uppsala, Uppsala, Sweden
e-mail: stefanos.kaxiras @it.uu.se

@ Springer

538 J.M. Cebrian et al.

The total energy consumed over the budget is reduced to only 8 % for a 16-core CMP
with only a 3 % energy increase (overhead). We also introduce a novel mechanism
named “Nitro”. Nitro will overclock the core that enters a critical section (delimited by
locks) in order to free the lock as soon as possible. Experimental results have shown
that Nitro is able to reduce the execution time of lock-intensive applications in more
than 4 % by overclocking the frequency by 15 % in selected program phases over a
period of time that represents a 22 % of the total execution time. We conclude the work
with an analysis of the thermal effects of PTB in different CMP configurations using
realistic power numbers and heatsink/fan configurations. Results show how PTB not
only balances temperature between the different cores, reducing temperature gradient
and increasing signal reliability, but also allows a reduction of 28-30 % of both aver-
age and peak temperatures for the studied benchmarks when a peak power budget of
50 % is exceeded.

Keywords Power consumption - Power budget - Power tokens - Chip multiprocessor

1 Introduction

Chip multiprocessors (CMPs) are the new standard in processor design for a wide range
of devices, from small mobile devices to computation clusters. Whenever the number
of processing cores is doubled, the power dissipation is also approximately doubled.
Fortunately, technology scaling trends keep the dynamic power increase partially under
control on each new generation. However, the complexity of the interconnection net-
work and caches increases when more cores are incorporated into the die resulting in
higher power dissipation. When a CMP runs a parallel multithreaded program where
threads have dependencies (i.e., synchronization), if a traditional power saving mech-
anism is independently applied to a single core it can affect the rest of the threads in
the next synchronization point. This may slow down the whole program execution and
increase the overall energy consumption. We will require global information in order
to avoid this situation by reducing energy mostly in threads that are not in the critical
path of execution [1,2,8,12, 14].

Moreover, since upcoming process technologies (under 22 nm) will fail to benefit
from voltage scaling at the same pace as is the recent past, future many-core designs
will be severely power and thermal constrained. We are inevitably heading to an era
of dark silicon with fast and extremely dense chips that we cannot afford to power
up [6]. The so-called utilization wall will limit the fraction of the chip we can use at
full speed at once. In such context processors will run within a so tight power budget
that only a small fraction of transistors could be activated simultaneously. Therefore, a
research effort is needed to develop novel and more sophisticated techniques so power
and temperature constraints do not strangle next-generation designs.

One possible solution to this utilization wall is specialization and/or heterogeneity.
Inaheterogeneous multicore with different components (GPU + CMP + Accelerators)
an accurate power control of the different components will be required in order to be
able to provide enough power to the processor (CMP power control is addressed in this
paper). This is specially important when using different components simultaneously

@ Springer

Efficient inter-core power and thermal balancing for multicore processors 539

and also to control temperature, because an accurate power budget matching can reduce
the temperature gradient! inside the cores and among the cores of the CMP. Another
possible answer is to selectively throttle different cores of the chip balancing their
aggregate power (proposed in this paper).

In addition, the continuous increase in the number of cores on a CMP is causing
hotspots in inner cores, decreasing the reliability of the processor or even causing
major damage to the die. A straightforward way to reduce temperature is to set a
power budget to the processor [3,8]. It is important to note that the granularity level
required to control temperature is much coarser than to control power and current.
However, as we will see later, a good power control and balancing policy can lower
temperature and reduce the processor temperature gradient without major performance
degradation.

Summarizing, a processor’s power budget can be used either to satisfy external
power constraints (i.e., power cuts or shared power supply), to increase the number
of cores in a CMP maintaining the same thermal design power (TDP), to reuse an
existent processor design with a cheaper thermal package, to precisely control power
dissipation of a sub-area of the die when matching a utilization wall, to control power
domains in a heterogeneous multicore and/or to control temperature.

Dynamic voltage and frequency scaling (DVES) [5,15,22] is a well known mecha-
nism to make the processor’s power converge to a given power budget. DVFS is based
on fact that dynamic power depends on both voltage (quadratically) and frequency
(linearly), so, if we lower any of these terms, we obtain a power reduction. However,
DVES exhibits some important drawbacks: (a) long exploration windows in order to
compensate DVFS overheads; (b) when activated DVFS affects all instructions within
a thread/core regardless of their usefulness to the forward-progress of a program; (c)
voltage swings; and (d) energy overheads during DVFS changes. DVFS is a good
mechanism to control temperature, as temperature variations happen during long time
intervals, but we require additional accuracy levels in order to measure and control
power and current.

In the CMP field we can find many specific proposals to match a predefined power
budget such as [8,18,19], but these proposals are only suitable for CMPs running mul-
tiple single-threaded (or multi-programmed) applications, and have not been tested
with parallel workloads. Moreover, they do not perform any accuracy analysis on the
budget requirements (i.e., total energy consumed over the power budget). There are
other works aimed at reducing the energy wasted when cores wait at synchronization
points, either putting cores to sleep [14] or trying to make all cores reach the syn-
chronization point simultaneously (e.g., meeting points [2] or thrifty barriers [12]).
However, these mechanisms are not suitable for matching a power budget on their
own, the main goal of this work. In order to overcome those limitations, Cebridn
et al. [3] proposed the use of fine-grain microarchitectural power-saving techniques to
accurately match a predefined power budget in a single-core scenario. However, when
applied in a CMP scenario, these techniques still have a great impact on performance
due to synchronization points.

1 The difference between maximum and minimum die temperatures in a given time.

@ Springer

540 J.M. Cebrian et al.

To address the shortcomings of previous proposals we introduce PTB [4], a mech-
anism that balances the CMP power among the available cores. When we set a global
power budget to a CMP, local power budgets are applied to all running cores. Without
any global mechanism the power would be just equally split between the cores. PTB
globally manages power so cores that are under their local power budget give away
their remaining allotment of power (up to the local budget) to cores over the budget
so they can continue execution without performance degradation. PTB is based on the
power imbalance that exists between cores due to cache misses, pipeline stalls, etc.
In addition, PTB transparently benefits from thread’s busy-waiting synchronization.
When a core is waiting in a barrier it naturally reduces its power dissipation. PTB
allows its spare power tokens? to be given to other cores doing useful work (i.e., crit-
ical threads). The same applies to locks: a core that enters a critical section receives
extra power tokens from spinning cores. Thanks to the extra power tokens its local
budget is less restrictive and the core can leave the critical section earlier.

Furthermore, when several cores enter a spinning state in a lock-delimited critical
section they need to wait until the core currently in the critical section leaves it. If we
are working in a power-constrained scenario using PTB, the core in the critical section
will receive extra power from all spinning cores, and most likely will run at full speed
because the additional power will prevent the core to restrain itself to match the power
budget. However, some times, even at full speed, we still have power left to burn. To
reuse this remaining power we introduce Nitro. Nitro reuses power to overclock the
core that enters the critical section. During this time the core will run faster than usual,
leaving the critical section earlier. This novel mechanism allows to obtain speedups
with minimal overclocking run-time while ensuring that overclocking can be safely
done since it is achieved by reusing power from cores under their local power budget.
This approach can be used alone in any CMP but, as our major focus is a power-
constrained scenario, we use Nitro as part of our global power balancing mechanism
for matching a power budget (PTB).

At this point we want to summarize the main contributions of the current paper:

— Introduction of the PTB approach.

— PTBs main goal is to make power dissipation go below a predefined power
budget while maximizing accuracy on matching this budget in an energy-
efficient way. Recall that, because of triggering power control mechanisms,
there will be some performance and energy penalties but it is the purpose of
our PTB approach to minimize them.

— PTBisdesigned, but notlimited, to work in a multicore (CMP) scenario running
parallel workloads.

— PTB is a fine-grain approach (unlike [2,12,14,19]), as it relies on real-time
power estimations and not on coarse-grain time/performance estimations.

— PTB can identify critical threads faster than [2,12,14], (the critical thread
can change during execution) since it relies on fine-grain information (basic-
block/cycle level), increasing its adaptability to the application behavior.

2 These spare tokens represent the amount of power that the core can dissipate and still be under the power
budget, will be defined in Sect. 3.2.

@ Springer

Efficient inter-core power and thermal balancing for multicore processors 541

— PTB is able to obtain greater reductions on both the average power dissipation
and the average/peak chip temperature than other DVFS / microarchitectural
approaches due to its increased power control resolution (tens of cycles) and
the associated additional precision on matching the predefined power budget.

— Accuracy and performance analysis of previous proposals which are compared
with PTB.

— Temperature analysis of different core and floorplan configurations is performed
for PTB.

— Introduction of a novel dynamic overclocking mechanism, Nitro, which selectively
overclocks cores that enter a critical section (delimited by locks) as long as the
rest of the cores do not exceed the predefined power budget.

The rest of the paper is organized as follows. Section 2 provides some background on
power-saving techniques. Section 3 describes our simulation methodology and shows
a first analysis on the individual techniques and motivates the need for CMP-specific
approaches to match the power budget. Section 4 reports the main experimental results.
Finally, Sect. 5 shows our concluding remarks.

2 Background and related work
2.1 Single-core power control mechanisms

Dynamic voltage and frequency scaling (DVFS) has been widely used since the early
1990s [15] offering a great promise to reduce energy consumption in microprocessors.
DVES relies on the fact that dynamic power dissipation depends on both voltage and
frequency (Pp ~ 12) p - f), and it dynamically scales these terms to save dynamic
power [21,22,25]. In the recent years, researchers and designers have moved to mul-
ticore architectures as a way of maintaining performance scaling while staying within
tight power constraints [5,8]. This trend motivates the need for fast per-core DVEFS
control. Kim et al. [11] recently proposed the use of on-chip regulators to achieve fast
transition speeds of 30-50 mV/ns. However, as the building process goes into deep
submicron, the margin between Vpp (supply voltage) and V7 (threshold voltage) is
reduced, and as this margin decreases, the processor’s reliability is reduced (among
other undesirable effects). Moreover, the transistor’s delay (switching speed) depends
on: § ~ 1/(Vpp — Vr)*, with @ > 1. This means that we can lower Vpp for DVFS
as long as we keep the margin between Vpp and Vr constant, so we can obtain the
desired speed. However, the counterpart of reducing Vr is twofold: (a) leakage power
increases as it exponentially depends on V7, which makes leakage an important source
of power dissipation as the process technology scales below 65 nm [7,9,10]; and (b)
processor reliability is further reduced.

Sasanka et al. [20] proposed the use of DVFS and some micro-architectural tech-
niques to reduce energy consumption in real time video programs. Winter et al. [24]
proposed the use of a two-level approach that merges DVFS and thread migration to
reduce temperature in SMT processors. More recently, in [3] we introduced the con-
cept of power tokens in a single-core scenario along with a two-level approach that
first applies DVFS as a coarse-grain approach to reduce power dissipation towards a

@ Springer

542 J.M. Cebrian et al.

predefined power budget, and then selects between different microarchitectural tech-
niques to remove the remaining power spikes. The second-level mechanism depends
on how far the processor is over the power budget in order to select the most appropri-
ate microarchitectural technique. Experimental results show improvements in terms
of both energy reduction and accuracy for a single-core scenario.

2.2 Multicore power control mechanisms

Multicore architectures exhibit some peculiarities when running parallel workloads,
especially in terms of power and performance. In such workloads threads must peri-
odically synchronize (e.g., for communication purposes) and any delay introduced in
one of the threads may end up delaying the whole application.

2.2.1 Saving power from spinning

One of the main sources of useless power dissipation in CMPs running parallel work-
loads is “spinning” or “busy waiting”. When a core is trying to acquire a lock or waiting
in a barrier it enters in a spinning state that may become an important source of use-
less power. In order to detect spinning, initial approaches used source code or binary
instrumentation but that requires recompilation and might be infeasible for certain sit-
uations. Li et al. [14] proposed a real-time hardware mechanism to detect processors in
spinning state. Their mechanism checks the machine’s state between instructions that
cause a backward control transfer (BCT), usually a branch or a jump instruction. If the
machine’s state remains the same between several BCTs, the processor has entered
a spinning state. They also propose scaling frequency for processors in a spinning
state assuming that they can wake up a processor. However, this mechanism does not
provide precise power management and cannot be applied outside locks/barriers.

2.2.2 Multicore processors and DVFS

In 2004, Li et al. [12] proposed thrifty barriers. This DVFS-based mechanism reduces
power dissipation in CMPs by estimating the per-core time interval between synchro-
nization points and disabling or using DVFS in cores that get to the synchronization
point. They approximate the wakeup time by the time the slowest thread takes to get to
the synchronization point. If the sleep/wakeup takes more time than they can save then
the technique is not used. Later on, in 2006, Isci et al. [8] proposed a chip-level dynamic
power management for CMPs just focusing on single-threaded programs while Sartori
et al. [19] extended this work to reduce peak power in a distributed way. However,
these proposals rely on the use of performance counters and/or coarse-grain time esti-
mation and only work properly for multi-programmed or single-threaded applications.
These power estimations can be unreliable due to spinning situations (spinning cores
report high IPC). Moreover, none of the mentioned techniques provides any accuracy
analysis when matching an imposed power budget. In 2008, Cai et al. [2] proposed
meeting points which locates critical threads in parallel regions and uses DVES to
reduce energy consumption of non-critical threads. They achieve substantial energy

@ Springer

Efficient inter-core power and thermal balancing for multicore processors 543

reduction as long as the critical thread can be identified. In the commercial area, Intel’s
17 turbo mode shuts off idle cores, reducing their voltage to zero rather than just low-
ering the power provided to them. Not having as many cores that produce heat will
allow other cores to use more power, increasing the performance of those cores while
still not exceeding the maximum TDP of the processor. This is useful when running
sequential or low-parallel applications. However, for parallel workloads, overclock-
ing two cores does not necessarily mean a performance improvement due to memory
dependences and synchronization points.

3 Enforcing a power budget in CMPs

Most of the previous proposals in power control focus on global power or energy
reduction. However, sometimes we require a precise core-level power/energy control
during regular usage of the processor due to temporal power or thermal constraints.
With this precise power control we can reuse existent hardware in a different scenario
it was originally intended for, increase the number of computation cores reusing a
TDP, ensure strict power control of different domains in an heterogeneous multicore,
etc. Note again that temperature variations are not so fast as power variations, and thus
power measurements to calculate temperature require less “resolution” than power
measurements. In the present work we introduce PTB, a mechanism to restrain the
power dissipation so that the processor can accurately match an imposed power budget
in an energy-efficient way. To achieve this precise power control we first detect program
points where power can be saved without harming performance (e.g., spin-locks,
wrong execution paths, cache misses, etc.) and reduce it; second, we balance the
power among the cores; and finally (when nothing else can be done), we reduce
power locally even at the cost of performance degradation (by means of DVES and/or
microarchitectural techniques).

Generally speaking, we can distinguish three operation levels (Fig. 1) to estimate
power. The first level (coarse-grain, Fig. 1-top) has low resolution (500 K-cycles) and
low predictability, but the cost of measuring (or more precisely, estimating) power is
low: usually performed by means of performance counters. This level can be useful
for coarse-grain power saving mechanisms like DVFS and to perform temperature
estimations. However, as illustrated by Fig. 1, if the average power of the search interval
is under the power budget its low resolution can hide long periods where the processor
is exceeding the power budget. In the initial Power Token approach for the single-core
scenario (in [3] and further detailed in Sect. 3.2), we incorporated two additional levels
of resolution to increase power predictability and to trigger microarchitectural power
saving mechanisms. The second level power estimations will be performed at a basic
block level® (tens of instructions, Fig. 1-mid). This level increases predictability as
we can store the power dissipation of a previously executed basic block in the branch
instruction that points to the beginning of the basic block. Next time we access the
branch instruction we can obtain a power estimation for the next group of instructions.
This power estimation can be used to decide which power saving mechanism should

3 Group of instructions delimited by branches.

@ Springer

544 J.M. Cebrian et al.

80
60
e
207 /
0 . i —
s 0 T T, 125000 250000 375000 500000
781 80
© 60
2 40+ - — f— — f— —
& 201
e O T
& T 65768 T T, 67304 68840 70376 71912 73448 74984
2 65000 66536 68072 69608 71144 72680 74216 T,
& BB BB BB
80 L
60
40

20
[0 R R R R R R R R R RN E R EEEEREEEEEEERERERE)

Tx 65773 65783 65793 65803 65813 65823 65833 65843 65853 65863 TY
65768 65778 65788 65798 65808 65818 65828 65838 65848 65858 65868

Time (Cycles)

Fig.1 Three levels of operation to estimate power, coarse-level (top), fine-level (mid), cycle-level (bottom)

be used depending on how far we are from a target power budget. Finally, most of
the studied micro-architectural techniques perform power decisions at a cycle level.
Therefore, we need to provide power estimations at a cycle-level (Fig. 1-bottom)
for microarchitectural mechanisms to work properly. This section will present our
simulation environment, analyze why legacy power control mechanisms are unable to
match a power budget in CMPs and introduce the PTB approach.

3.1 Simulation environment

For evaluating the proposed approaches we have used the Virtutech Simics platform
[16] extended with Wisconsin GEMS v2.1 [17]. GEMS provides both detailed mem-
ory simulation through a module called Ruby and a cycle-level pipeline simulation
through a module called Opal. We have extended both Opal and Ruby with all the stud-
ied mechanisms that will be explained later. The simulated system is a homogeneous
CMP consisting of a number of replicated cores connected by a switched 2D-mesh
direct network. Table 1 shows the most relevant parameters of the simulated system.
Power scaling factors for a 32 nm technology were obtained from McPAT [13]. To eval-
uate the performance and power dissipation of the different mechanisms we used sci-
entific applications from the SPLASH-2 benchmark suite in addition to some PARSEC
applications (the ones that finished execution in <3 days in our cluster). Results have
been extracted from the parallel phase of each benchmark (initialization, screen out-
puts and result write-backs are removed). Benchmark sizes are specified in Table 2.
We will provide overall CMP energy consumption along with the accuracy of each
evaluated technique on matching a predefined global power budget in the simulation
results. To measure each technique’s accuracy we define the metric Area over the
Power Budget (AoPB). This metric measures the amount of energy (in joules) between

@ Springer

Efficient inter-core power and thermal balancing for multicore processors

545

Table 1 Core configuration

Processor core
Process technology
Frequency
Vbp
Instruction window
Load store queue
Decode width
Issue width

Functional units

Branch predictor
Memory hierarchy
Coherence Prot.
Memory latency

L1 I-cache
L1 D-cache
L2 cache

TLB
Network parameters
Topology
Link latency
Flit size
Link bandwidth

32 nm

3,000 Mhz

09V

128 RUU + 64 IW
64 Entries

4 inst/cycle

4 inst/cycle

4 Int Alu; 2 Int Mult
4 FP Alu; 2 FP Mult
16bit Gshare

MOESI

300

64KB, 2-way, 1 cycle lat.
64KB, 2-way, 1 cycle lat.
1MB/core, 4-way, unified
12 cycle latency

256 entries

2D mesh

4 cycles

4 bytes

1 flit/ cycle

Table 2 Evaluated benchmarks and working sets

Benchmark Size Benchmark Size
SPLASH-2
Barnes 8192 bodies, 4 time steps Raytrace Teapot
Cholesky tk16.0 Water-NSQ 512 molecules, 4 time steps
FFT 256K complex doubles Water-SP 512 molecules, 4 time steps
Ocean 258 x 258 ocean Tomcatv 256 elements, 5 iterations
Radix IM keys, 1024 radix Unstructured Mesh.2K, 5 time steps
PARSEC
Blackscholes simsmall Swaptions simsmall
Fluidanimate simsmall x264 simsmall

the power budget and each core dynamic power (represented by shadowed areas in
Fig. 2). The lower the area (energy) the more accurately the technique will match the
imposed power budget (note that the ideal AoPB is zero). However, this metric by
itself is not enough in some cases. To illustrate this we can think of two scenarios, one

@ Springer

546 J.M. Cebrian et al.

before
g
g
5 i Ay ik Power budget
2
& / \/ \/ \ time
T " >
T1 T2
R \ /
v after
=
g
g o ATy, POWer budget
% .
= time
' T >
Ty To+delay

Fig. 2 Example of the area over power budget (AoPB) metric. Shadowed areas represent the energy
consumed over the target power budget

where the processor is going over the PB by 100 % for 0.1 of the time and another
where it is going over PB by 10 % for 1.0 of the time. These two scenarios will
give the same area over PB value, but the first case could be much more harmful. In
order to properly assess the benefits of the studied power saving mechanisms we will
also provide, for our final results (Sect. 4.1), a population chart where we show the
amount of energy spent in different power intervals on cycles over the power budget,
that go from 50 % of the power budget to our processor peak power consumption.
Performance results will also be shown for the dynamic power balancing approach
(see Sect. 4.1).

3.2 Measuring power in real-time

Power tokens were introduced in [3] as a way to approximate the power being dissi-
pated by the processor at a cycle level. The dynamic energy consumed by an instruction
can be estimated at commit stage by adding to the base energy consumption of the
instruction (i.e., all regular accesses to structures done by that instruction which are
known a priori) a variable component that depends on the time it spends in the pipeline.
A power-token unit is defined as the joules consumed by one instruction staying in the
ROB* for one cycle. The number of power-tokens consumed by an instruction will be
calculated as the addition of its base power-tokens plus the number of cycles it spends
in the ROB. As in [3], the implementation of the Power-Token approach is done by
means of an 8K-entry history table (Power-Token History Table—PTHT), accessed

4 Reorder Buffer.

@ Springer

Efficient inter-core power and thermal balancing for multicore processors 547

by PC, which stores the per cycle power cost (in tokens) of each instruction’s last exe-
cution (total energy/cycles) , and requires 5 bits per entry. The total size of the PTHT
structure is small when compared with other processor structures such as the L1 or
L2. The PTHT is updated with the current number of power-tokens consumed when
an instruction commits. We calculated the base power-tokens of every instruction type
(per op-code power) by running the SPECint2000 benchmark suite with the processor
configuration shown in Table 1. Once we had the base power-tokens for all the possi-
ble instructions, we used a K-mean algorithm to group instructions with similar base
energy consumption. The results presented in [3] showed that having just 8 groups
of instructions is accurate enough for the Power-Token approach to properly work
with an error lower than 1 % (compared to the actual energy consumption in joules
as provided by HotLeakage). Although we assume equal distribution of the per-cycle
power of an instruction in this approximation, this is not completely true. However,
as we are simulating a full-pipelined out of order processor, this error is mostly hid-
den by similar instructions on a different stage. Hence, the overall processor power
dissipation in a given cycle can be easily estimated based on the instructions that are
traversing the pipeline without using performance counters just by accumulating the
number of power-tokens (provided by the PTHT) of each instruction being fetched.
Note that the extra energy consumption of the PTHT structure is also accounted in our
results.

3.3 Matching a power budget in a CMP running parallel workloads

Once we have a mechanism to estimate power in a core, the next step is to analyze
how different power saving mechanisms behave under power constraints in a multicore
processor running parallel workloads. Initially, we will adapt and tune the proposed
techniques in [3] to a CMP scenario. The evaluated techniques are:

— DVFS with five power modes (Voltage, Frequency): (100 % Vpp, 100 % f); (95 %
Vbp, 95 % £); (90 % Vpp, 90 % f); (90 % Vpp, 75 % f); and (90 % Vpp,
65 % f). As we mentioned in Sect. 2.2.2 reducing supply voltage may require a
threshold voltage reduction to obtain a certain switching speed (and that reduces
reliability and increases leakage power), that is why we don’t reduce Vpp any
further than 90 %.

— DFS: Similar to (a) but only scaling down frequency. L.e., Vpp remains 100 % in
all cases.

— Two-level: As in [3], this 2-Level approach uses DVES to lower the average power
dissipation towards the power budget and then uses different microarchitectural
techniques to remove the remaining power spikes (2-level in the graphs). The stud-
ied mechanisms include instruction reordering based on criticality and fetch throt-
tling based on branch confidence information and the ratio of decoded/committed
instructions.

Microarchitectural mechanisms are enabled at a cycle level, but have effects after
certain number of cycles, depending on the processor state. The decisions of what

@ Springer

548 J.M. Cebrian et al.

technique should be applied are taken at a basic block level.> DVFS is applied with an
exploration window of 500 K cycles (check [3] for further details). All the techniques
studied in [3] were designed for the single-core scenario and hence, they are applied
at the core-level instead of at the CMP-level. Therefore, for this new scenario the
first step should be to decide how to split the available power for the whole CMP (as
determined by the global power budget) among the individual cores. An initial and
straightforward implementation is to equally split the available power among all cores.
In this case, power budget techniques will be locally applied to a particular core under
two conditions:

1. The whole CMP is over the global power budget:
Z Core; Power > Global Power Budget
2. A particular core is over its local power budget:
Core; Power > Global Power Budget /#Cores

To analyze whether the single-core mechanisms work properly in the CMP scenario
we will apply the above power matching techniques (DVFES, DFS, 2-level) to a 16-core
CMP (results for 2, 4 and 8 cores have been omitted for the sake of visibility and space
limitation) for the SPLASH-2 benchmark suite and some PARSEC benchmarks with
a global power budget set to 50 % of the original processor peak power consumption
using clock gating. It is important to note that we have selected Kim’s implementation
[11] as a best case scenario for DVFS with a fast transition time of 30-50 mV/ns. Using
a slower and more realistic DVFS will mean that microarchitecture-level techniques
(used by 2-Level) will become even more accurate and energy-efficient than DVFS.
DVES is applied at a core-level to increase its accuracy when matching the power
budget.

In Fig. 3 we can see the normalized energy and AoPB with respect to a base
case where no power-control mechanisms are used (full speed) to match the global
power budget. If we take a look at the energy numbers we can notice that all the
evaluated techniques behave accordingly with the reported numbers in [3] for the
single-core scenario. In benchmarks like Cholesky, the 2-Level approach is able to
reduce energy by almost 13 %. In terms of performance, the average degradation is
under 1 % for the studied benchmarks (although we don’t show the figure due to space
constraints). However, differences arise when looking at the accuracy metric (AoPB).
Although there are particular benchmarks that report a reduced AoPB (depending
on the evaluated technique—for example Blackscholes, Swaptions and x264 from
PARSEC), the average AoPB is still very high. We obtained an average of 45 %
AoPB, which is far from the average 10 % AoPB obtained for the single-core scenario
in [3]. Moreover, for benchmarks like Ocean and Radix, the AoPB is especially high,
around 70-80 %, which means that the global power budget constraint is not properly
respected.

5 As mentioned before, we can store information about past power behavior at a basic block level to predict
future power trends and increase power matching accuracy.

@ Springer

Efficient inter-core power and thermal balancing for multicore processors 549

10
E DVFS
B DFs
= 570 2Level
)
>
> o
w
3
N 51
©
£
2 10
'15 T T T T T T T T T T T T T T
cholesky ocean raytrace unstruct. watersp fluidani. x264
barnes fft radix ~ tomcatv waternsq blacksc. swaptions Avg.
100 E DVFS
90 - EDFS
—~ 80 O 2Level
X
< 704
&
60
o
<
- 50
Q
2 40
©
E 30
o
Z 20
10
cholesky ocean raytrace unstruct. watersp fluidani. x264
bamnes fft radix tomcatv watemnsq blacksc. swaptions Avg.

Fig. 3 Normalized energy (top) and AoPB (bottom) for a 16-core CMP with a power budget of 50 %

There is a key difference between single-threaded applications and parallel work-
loads: synchronization points. In parallel workloads we noticed that synchronization
points alter the optimal execution of the code, so it is no longer dictated by each
individual core, but by the whole CMP. These syncronization points are messing up
the AoPB results. There are some benchmarks with low AoPB in Fig. 3-bottom, these
benchmarks have no lock/barrier contention because they do not have synchronization
points, so single-core mechanisms work properly for them. This initial analysis shows
that previous mechanisms for managing power under temporary power constraints are
not suitable for a CMP scenario when using this initial distribution policy that equally
splits the power among cores.

3.4 Analysis on the power consumed in spinning

Figure 4 shows an analysis on the time spent by a CMP (addition of the data from
individual cores) with a varying number of cores (from 2 to 16) either spinning or

@ Springer

550 J.M. Cebrian et al.

100

\ & Lock-Acquisition @ Lock-Rel M Barrier O Busy\

80 1

60 -

40 4

20

Execution time (%)

2(4|8[16(2|4|8(16|2|4 |8 [16/2|4|8|16(2|4|8[16/2|4|8(16/2|4|8|16(2(4|8[16(2 |4|8(16(2|4(8|16(2|4|8[16(2|4|8(16(2|4|8(16(/2|4| 8|16

bames | cholesky fit ocean radix raytrace | tomeatv [unstructured| watemsq | watersp | swaptions | x264

Benchmark / Cores

Fig. 4 Execution time breakdown for a varying number of cores

performing useful work. Each bar shows the fraction of time spent in lock acquisition,
lock release, barriers, and useful computation (busy). As expected, the time each appli-
cation wastes in spinning grows linearly with the number of cores. Some applications
(Unstructured/Fluidanimate) spend a significant time in Lock-Acq and Lock-Rel states
(contended locks) while others (Cholesky/Blackscholes/Swaptions/x264), in contrast,
have no lock/barrier contention. The spinlock power is close to a 10 % on average for
a 16-core processor running all the studied benchmarks. It is important to note that
the key factor that causes legacy power saving mechanisms to fail is the existence of
synchronization points, not how much power is wasted in spinning. A well balanced
application with very little time wasted in spinning can waste a lot of power in spin-
ning if we randomly slow down threads (create imbalance). In any case, these potential
power savings due to spinning are not enough to accurately match a restrictive power
budget (e.g., 50 % of the peak power) since (a) it is a small amount (10 %); and (b)
spinning is located in very specific points over time while we are aimed at meeting the
power budget constraint as long as it lasts. Therefore, we need a more generic approach
that could benefit from other wasteful situations such as mispredictions events.

3.5 Power token balancing (PTB)
3.5.1 PTB motivation and fundamentals

Imagine a power-constrained scenario with a global power budget that we need to
satisfy and local power budgets that individual cores try to match. Now that we can
account power at a very fine granularity by means of the power tokens, we can find out
situations where power imbalance exists among the cores of the CMP. Once detected
we can balance their power and minimize performance degradation when matching
the power constraint, and that is what PTB tries to achieve. Figure 5 shows an example
where the total power dissipated by the CMP is over the global power budget, but some
cores are under their power budget share. In this example we assume a 4-core CMP
and global power budget of 40 W, with a simple implementation that equally splits
power between cores, so each core has a local power budget of 10 W. We can notice
that phases 1, 2 and 4 are over the global power budget (40 W), so we enable the local
power-saving mechanisms. In phase 1 no power-control mechanisms are applied to
cores 1 and 2, since they are under their local power budget (10 W). On the other hand,

@ Springer

Efficient inter-core power and thermal balancing for multicore processors 551

‘I:ICore1 M Core2 [JCore3 []Core4

LR e R L L LT
0 Global Power Budget 11
= 9
13
= 8
5 301--1_ |------[el e 1M p---
S 15 1
15
@ 20F--1 el T
=
O
10+--J------ -
- 8 12
0 3
1 2 3 4

Program Phase

Fig. 5 PTB motivation (not real numbers)

cores 3 and 4 need to use their local power-saving mechanisms to match their local
power budget. However, if those cores run critical execution threads and we slow them
down, we could potentially harm performance and energy in a future synchronization
point. The same happens in phase 2 with core 3. In phase 3, even though there are
cores exceeding their local power budget, no mechanism is applied as the global CMP
power is under the budget. Finally, in phase 4, all cores exceed their local power budget
(so does the CMP exceeding the global one), and hence local mechanisms are applied
to all cores. However, if we were able to tell cores 3 and 4 in phases 1 and 2 that their
respective local power budgets are less restrictive than 10 W (since cores 1 and 2 have
some power left, 4 + 2 W in phase 1; 2 + 1 W in phase 2) then the effects on the
performance should be less harmful.

In PTB each individual core will count, at a cycle level, the number of power tokens
it has consumed from the available local power tokens. In a given cycle, if a core still
has available power tokens and the CMP is over the global power budget then the
core offers its spare tokens to the PTB load-balancer (as detailed next in Sect. 3.5.2).
Please note that, although this information is gathered at a cycle level, power variations
take place over and during tens of cycles. This means that the situation where a core
goes under the power budget and decides to give tokens to the PTB load-balancer
will usually repeat during the next tens of cycles. Tokens are used as a currency to
account for power, so it is important to note that they are neither sent nor received.
In PTB cores just send the number of spare tokens. Analogously, cores over their
local power budget will receive extra tokens from the PTB load-balancer which will
prevent them to enable a power-saving technique (that can reduce performance) as
long as the global power budget constraint is met. The PTB load-balancer calculates
every cycle the overall available power tokens based on the spare tokens that cores
have for each cycle. Therefore, PTB is not a loan/refund mechanism since a core can
reuse power from others but there is no need to give it back. In PTB we define two
power distribution policies that will be discussed later: (a) give tokens to the most
power-hungry core (ToOne policy); or (b) equally distribute the extra tokens among
all cores over the power budget (ToAll policy). For the later, if the number of tokens
is not a multiple of the power hungry cores a round robin distribution is used for the
remaining tokens. PTB also exhibits two inherent features that allow “transparent”

@ Springer

552 J.M. Cebrian et al.

2.4

2.2+

Power (Watts)
»

1 21 41 61 81 101 121 141 161 181
Cycles

Fig. 6 Per-cycle power behavior of a spinning core

(b)

4

6

Fig. 7 Power token balancing (PTB) example in the case of a barrier (using the 7oA/l policy)

optimizations without any specific mechanism: (1) indirect spinning detection, and
(2) an automatic priority system for non-spinning threads.

Figure 6 help us to illustrate how PTB could be used to detect spinning. When a core
enters a spinning state, the dynamic power follows the behavior shown in Fig. 6. In this
figure we can see an initial power peak due to useful computation. If the spinning state
lasts enough, the pipeline empties and power goes down and stabilizes (cycles over 35
in Fig. 6) to an amount that is usually under the budget. We can assume then that the
core is spinning. Note that spinning is just a particular case of power imbalance, so
our mechanism will benefit from it but that is not the only case. Remember that PTB
knows nothing about locks, barriers, etc, it just balances power.

For illustrating purposes and continuing with the spinning example, Fig. 7 shows
how PTB works in the case of a barrier (using the ToAll policy). For this example let
us assume there are four cores (C1 to C4) with local power budgets set to 10 tokens
and that when spinning a core consumes 4 tokens. As cited before, a spinning core
gives its spare tokens (Total AvailableTokens - UsedTokens) to the PTB load-balancer.
Figure 7a shows that core 2 reaches the barrier and transfers 6 tokens to the load-
balancer. Now the rest of cores have more available power left to burn until they get
to the synchronization point (in our example, cores 1, 3, 4 receive 2 extra tokens each

@ Springer

Efficient inter-core power and thermal balancing for multicore processors 553

from the load-balancer, raising their local budget to 12 tokens). When any other core
(e.g., core 3 in Fig. 7b) reaches to the barrier it also gives 6 spare tokens to the PTB
load-balancer which allows cores 1 and 4 to use the 6 + 6 extra tokens from cores 2
and 3, raising their local budget to 16. Finally, Fig. 7c shows core 1 spinning in the
barrier and giving its six spare tokens to the PTB load-balancer which prevents the
last core (C4) to be slowed down as it can use all the spare tokens. Again, note that
PTB does not explicitly distinguish between barrier- or lock-spinning. It is important
to recall that PTB basically detects power imbalance among cores and also benefits
from any misprediction event (e.g., a cache miss or a mispredicted branch).

3.5.2 PTB implementation details

The implementation of PTB is based on a centralized structure called PTB load-
balancer. This structure receives the number of spare power tokens from all cores under
their local power budget and splits them among the cores exceeding it (intending not to
trigger any power-saving mechanism for the exceeding cores which would result in a
performance degradation). Power balancing is performed every cycle, so tokens from
previous cycles are not stored in the balancer. However, token exchange takes some
cycles. Cores are not stalled during this time, but the core that gives away tokens sets a
more restrictive power budget (its original power budget minus the given tokens) until
tokens reach their destination. This is usually not a major issue as power trends don’t
change that quickly, and if a core gets under the power budget it will remain there
for tens of cycles. To exchange token information we need to build communication
wires between the cores and the PTB load-balancer. We will use four wires for sending
and four wires for receiving the number of tokens per core; this limits the amount of
given/received tokens but makes the mechanism more power-efficient. Note that these
wires are used to send the amount of spare tokens (tokens are used as a currency to
account for power). All these wires will be placed on a different layer of that of the
interconnection network.

To estimate latency delays of the communication wires we used Xilinx ISE for a
processor running at 3 GHz without buffers as a reference to calculate the logic delay
of the circuit. We removed the delay caused by both pins and routing, making the
logic delay almost equivalent to the delay of a circuit in an ASIC implementation. For
a 4-core CMP delays are: one cycle for sending the number of spare tokens, one for
processing tokens and one for sending the number of spare tokens back to the cores
over the power budget. For an 8-core processor, wire delay increases to 2 cycles, so it
will take a total of 5 cycles to send and receive the number of spare tokens to/from the
PTB load-balancer. For a 16-core CMP the mechanism needs 4 cycles for receiving
the tokens, 2 cycles for processing and 4 cycles for sending the tokens to the cores
over the power budget, according to Xilinx ISE. When a core gives away tokens it
sets a more restrictive power budget to ensure it won’t consume additional power until
tokens reach its destination (i.e. 10 cycles for a 16-core CMP). The power dissipation
of the PTB mechanism plus the communication wires has been estimated using Xilinx
XPower Analyzer with the same configuration as the delay latency, increasing the
average application energy consumption by just 1 %, which is also accounted in the
experimental results presented in the next section.

@ Springer

554 J.M. Cebrian et al.

Problems might arise as we increase the number of processing cores, and thus,
the PTB load-balancer communication and processing latencies. For the analyzed
number of cores and latencies, experimental results show significant improvements in
terms of temperature, energy and accuracy on matching the power budget, even with
a pessimistic 10-cycle delay for sending/receiving the number of spare tokens from
other cores. However, when the number of cores increases latencies over 20 cycles,
power variations affect performance of PTB negatively. Nevertheless, one approach to
make PTB more scalable (over 32 cores) consists of clustering the PTB load-balancer
into groups of 8 or 16 cores and replicate the structure as needed. Results in next
section will show that such a group of cores (8 or 16) is enough for PTB to efficiently
balance power and accurately match the imposed power budget.

3.6 Reusing power to reduce energy: Nitro

As mentioned before, when running parallel workloads on a CMP, speeding up or
slowing down a specific core may not vary the final program execution time due to syn-
chronization points. For example, overclocking a core may not lead to any performance
improvement. The key point in a CMP running a parallel application is that, in general,
it is more crucial when you apply the mechanism than the mechanism itself. The idea
behind Nitro is quite simple: save power when a core does not need it (e.g., while
spinning) and reuse it when it becomes really useful (e.g., critical threads/sections).
Nitro differs from other spinning-based mechanisms [2,12,14] in two things. First,
all these mechanisms are meant to reduce energy consumption before/while spinning,
whereas Nitro tries to reuse this energy somewhere else. Second, all these mechanisms
usually try to exploit the barrier synchronization mechanism, while Nitro can benefit
from locks and barriers. Nitro is designed for parallel workloads, looking for code
sections that will benefit from local overclocking.

In Sect. 2.2.1 we mentioned that spinning states can be detected either by hardware
or by static instructions introduced by the programmer (the later is out of the scope of
this paper). In any case, those sections can be identified and, by using the power-token
approach, we can approximate the amount of energy wasted in spinning (depending
on how long a core stays spinning). However, a small structure to account for total
power-tokens saved is still needed. Nitro works as follows: once a lock is detected, the
processor that gets access to the lock after the contention period (lock acquisition) is
overclocked, as long as we have power-tokens left to overclock (from other spinning
cores) and for as long as the critical section lasts. The use of power from spinning cores
ensures that the overall power of the processor remains under it’s TDP, and temperature
is kept under safe limits (similar to Intel’s Turbo Boost). We will assume the proposed
DVFES by Kim et al. [11] which is able to quickly switch between power modes at
speeds of 30-50 mV/ns. The overclocked core will run at a 15 % faster rate than
the base frequency. Of course, sometimes there are not enough cycles in the critical
section to take advantage of Nitro, so we need some kind of mechanism to estimate
the duration of the critical section and only apply Nitro if it lasts for long enough.
For this purpose we use the spinning predictor proposed in [12], based on the PC to
predict a critical section duration. The overclocking will also last for a short period

@ Springer

Efficient inter-core power and thermal balancing for multicore processors 555

of time, so the processor has time to recover after the overclocking. Nitro can also be
applied to speed up the remaining threads while others wait in a barrier, but we did not
implement this feature as there were many studies about overclocking/underclocking
threads in barriers to optimize energy. Please note that Nitro tries to reuse unused power
from spinning cores, so it does not violate the power budget of the whole CMP, only
individual cores for a short period of time. The key difference with Intel’s Turbo Boost
is that the later disables idle cores to overclock one core, for the benefit of sequential
applications. Nitro is a more fine-grain approach and can act at a critical section level
or even when cores are waiting in a barrier, thanks to the cycle level accurate power
information provided by power tokens.

3.6.1 Nitro outside locks

Nitro was designed to benefit from wasted power from spinning cores, saving that
power and reusing it somewhere else. We decided to focus our analysis in lock-
delimited code sections, because there were many previous works that focused on
reusing or balancing power from spinning cores in barriers [2,12,14,19]. However,
with minimal modifications on the PTB mechanism, Nitro can be used to speed up
execution in both barriers and locks. If we take a look at the example in Fig. 7c, once
cores 1, 2 and 3 get to the barrier, the PTB load-balancer receives all their spare tokens,
and gives them to core 4. As there is only one core left, it probably won’t even use any
power saving mechanism, either because the total power dissipated by the whole CMP
will be under the global budget (one of the requirements from Sect. 3.3) or because
the extra spare tokens from the PTB load-balancer prevent the usage of local power
saving mechanisms. Under these conditions we could overclock core 4, the last one
to get to the barrier, in order to reach the synchronization point faster, and thus reduce
global execution time. The overclocking should only be done as long as we have power
tokens left from the PTB load-balancer.

More specifically, if PTB is using the ToOne policy, Nitro will overclock the most
power hungry core (note that this core is not necessarily the latest to get to the synchro-
nization point), speeding it up as long as we have tokens left from spinning cores. On
the other hand, if PTB is using the ToAll policy, power tokens will be equally divided
between all the cores over the budget, and, eventually, all these cores will receive
enough tokens to overclock themselves, speeding up more and more as cores reach
the synchronization point. We did not implement Nitro outside locks in the present
work, but we will evaluate the theoretical potential of this mechanism.

4 Experimental results

4.1 Efficiency of power token balancing (PTB)

In this section we perform an analysis of the PTB mechanism with the previously
defined power-token distribution policies: ToAll (that shares the power-tokens among

all the cores over their local power budget) and ToOne (that gives all the spare power-
tokens to the core that needs them the most). The selected global power budget will

@ Springer

556 J.M. Cebrian et al.

E DVFS
4 -|BDFs
3 [2Level
x H PTB+2Level
> 27|[Relaxed
2, PTB+2Level
(0]
[
(11} 0-
el
IR
©
E 21
[e]
Z 34
4 4
‘5 T T T T T T T
2Core_ToOne 4Core_ToOne 8Core_ToOne 16Core_ToOne
2Core_ToAll 4Core_ToAll 8Core_ToAll 16Core_ToAll
80
70
:\c? 60
2 5
<
- 40
o)
N
< 30
£
o
2 20
10

2Core_ToOne 4Core_ToOne 8Core_ToOne 16Core_ToOne
2Core_ToAll 4Core_ToAll 8Core_ToAll 16Core_ToAll

Fig. 8 Normalized energy (top) and AoPB (bottom) for a varying number of cores and PTB policies

be 50 % of the peak power consumption® with clock gating and a varying number of
processing cores in the CMP (2—16 cores). This restrictive power budget is a worst case
scenario that forces a high usage of power saving mechanisms. Results are normalized
to a base case without power-control mechanisms.

Figure 8-top shows the energy consumption for the evaluated techniques (enu-
merated in Sect. 3.3) using different combinations of core number/policy whereas
Fig. 8-bottom shows the AoPB metric. We can observe that when using the pro-
posed PTB mechanism, area numbers go back to the reported numbers in the pre-
vious work for the single-core scenario: average 8 % of AoPB for a 16-core CMP
when the PTB + 2-level technique is used (although energy numbers are not as
good as for the single-core scenario). In a 16-core CMP, DVFS and DFS’ are unable
to lower the AoPB below 65 % while PTB + 2-level reduces the average area to
just 8 %, getting close to the ideal AoPB of zero. It can also be observed that the

6 We only report results for a 50 % power budget due to space limitations for the sake of visibility. For
less restrictive power budgets PTB also works properly.

7 DVFS and DFS are applied at a core-level to increase its accuracy when matching the power budget.

@ Springer

Efficient inter-core power and thermal balancing for multicore processors 557

20
E DVFS

B DFS
15 9|0 2Level
M PTB+2Level

10 4

N T ﬂﬁﬂiﬁgﬁ

Performance Slowdown (%)
6]

'10 T T T T T T T T T T T T T T
cholesky ocean raytrace unstruct. watersp fluidani. X264
barnes fft radix ~ tomcatv watemsq blacksc. swaptions Avg.
Fig. 9 Detailed performance for a 16-core CMP using the dynamic policy selector

W33 39 030 460546 53] T T T T T T og T gt
m-5359@>59 9 |-------"-------ccccicrccrccccc e ---- - ------ -~~~ ===~

0,87

Energy (Joules)
o
B

= = =
)))
@ o @
) o o
3 + +
(] [} (7]
w w w
> > >
o o =)

DVFS+BBLM
DVFS+BBLM
DVFS+BBLM
DVFS+BBLM
DVFS+BBLM
DVFS+BBLM

blacksch |

x
X
>
2
z
]
3

&
?

Benchmark/Config

Fig. 10 Energy distribution on cycles over the power budget for different mechanisms

accuracy on matching the power budget increases (i.e., AoPB decreases) with the
number of cores, because we have more chances of receiving tokens from other
cores.

For a 16 Core CMP, DVES shows an average energy reduction of 6 % whereas
PTB increases the energy in 3 %. Note, however, that this energy increase can be
turned into energy savings if we relax the accuracy constraint of PTB, as we will show
in Sect. 4.3. In terms of performance (Fig. 9), Unstructured is the application that is
more affected by the microarchitectural power-control mechanisms. Finally, Fig. 10
shows the energy (AoPB) distribution (population chart) of different power intervals
when we request to match a power budget of 50 %. We can clearly see how PTB plus a
2-Level mechanism is able to almost completely eliminate the exceeding energy (area)
over the power budget, ensuring that almost no cycle exceeds 4.6 W when a 3.3 W
power budget is set. Meanwhile DVFS, due to its coarse grain nature, is unable to
properly adapt to the power variations, and still shows some cycles with power peaks
over to 5.9 W. Note that the analyzed dynamic policy selector, for the presented results,
is assisted by actual application-specific information although pure indirect dynamic
detection of the type of spinning is possible (and practical) via heuristics similar to
those described in [14].

@ Springer

558 J.M. Cebrian et al.

4.2 The importance of accuracy

Performance degradation that results from using our proposed PTB mechanism if the
application is parallel enough to use these extra cores.

In this section we will show an example that illustrates the importance of the
accuracy on matching a predefined power budget when moving from a homogeneous
CMP design into a heterogeneous CMP maintaining the same TDP (Thermal Design
Power). Imagine we have a 16-core CMP design that we want to reuse with a 100 W
TDP. In this design each core would use 6.25 W (for simplicity let us ignore the
interconnection network). If we set a power budget of 50 % we could ideally use 50 W
for other types of accelerators, such as GPU, FPGA, etc. But for this ideal case a
perfect accuracy on matching the power budget is needed.

According to the previous results, DVFS incurs in an energy deviation of 65 %
from the target power budget (the AoPB metric). As the average performance penalty
of the studied mechanisms is minimal, we can extrapolate similar per cycle power
deviation. Therefore, with such 65 % deviation each core dissipation may raise up to
3.125 x 1.65 = 5.15 W, meaning that for a 100 W TDP we can reuse a maximum of
17.5 W for the accelerators ensuring that the total per cycle power will remain under
the TDP, and that we can provide enough current to all components. Using a regular
2-level approach (without PTB) the deviation is reduced to 40 % that gives us an
average power dissipation of 3.125 x 1.40 = 4.375 W per core, so we can have 30W
available for accelerators with the same TDP. Finally, when using the non-relaxed
PTB approach the error is reduced below 10 %, that gives us a potential average
power dissipation of 3.125 x 1.1 = 3.4375 W per core, so we could reuse 45 W for
accelerators. Therefore, thanks to the extra hardware we can perfectly overcome the
3 % performance degradation that results from using our proposed PTB mechanism
if the application is able to use these extra resources.

4.3 Relaxing PTB to be more energy-efficient

Up to this point we have focused on a PTB mechanism that maximizes the accuracy on
matching the given power budget. As explained before, this kind of optimization hurts
individual core performance and, therefore, increases overall energy consumption. If
the conditions are not so restrictive (if we want to control temperature for example) or
if we cannot reuse this saved power (obtained by setting a power budget) to overcome
the energy penalty we may be interested in reducing the energy penalty. If we relax the
accuracy constraint, PTB can also achieve positive energy savings since power-saving
mechanisms would be applied in a less restrictive way, not affecting performance that
much. In order to analyze this new focus, Fig. 8 (rightmost bar) shows how PTB
behaves when optimizing for energy-efficiency instead of just accuracy for a power
budget of 50 %. For this experiment we are assuming and AoPB threshold of +20 %.
This relaxed threshold is used to delay triggering a power-saving mechanism when
the global/local power budgets are exceeded. Note that the original PTB may trig-
ger the power-saving mechanisms immediately after detecting that the power budget
was exceeded, if the second level power prediction suggested so (basic block power
prediction).

@ Springer

Efficient inter-core power and thermal balancing for multicore processors 559

If we take for example a 16-core CMP and relax the AoPB metric allowing it to
be 20 % above the power budget, PTB obtains an average energy reduction of 4 %
(Fig. 8-top) similar to that obtained by DVFS, and still being far more accurate than
per-core DVFS on matching the power budget (as seen in Fig. 8-bottom). Of course,
better energy savings could be achieved for the same 16-core CMP if we relax the
area constraint even more. Finally, if we use PTB as a spinlock detector to disable the
spinning cores we could further increase the energy savings. similar to those described
in [14].

4.4 Temperature analysis

Thermal hotspots increase cooling costs and have a negative impact on reliability and
performance. The significant increase in cooling costs requires designs for temperature
margins lower than the worst-case. When we reduce the per-cycle power consump-
tion of an application we can consequently reduce the CMP temperature over time.
Moreover, leakage power is exponentially dependent on temperature and an incre-
mental feedback loop exists between temperature and leakage, which may turn small
structures into hotspots and potentially damage the circuit. High temperatures also
adversely affect performance, as the effective operating speed of transistors decreases
as they heat up. In this section we will analyze the per-structure and per-benchmark
temperature effects of PTB and DVFS when comparing to the base case. Please note
that temperature reductions are simply the result of the combined power reduction
from the selected power saving mechanisms, what we try to illustrate in this section
is the temperature variability from two different mechanisms that work at different
power granularity, both across cores inside the die and structures inside the same core.
In addition we will give some insight of how much temperature reduction can we
expect from setting a power budget to the processor.

Temperature numbers were obtained by introducing the HotSpot 5.0 [23] thermal
models into Opal and building our tiled CMP by replicating N times our custom floor-
plan (depicted in Fig. 11), where N is the number of cores. We simulate a 14-stage,
out-of-order core. Power and area numbers for this core configuration were obtained
through the McPAT [13] framework. We then input these power numbers into GEMS-
Opal to obtain preliminary average power numbers of each structure using a modified
version of the Wattch implementation included in GEMS-Opal (minor bugfixes). Using
these average power numbers we build the input files for HotSpot—HotFloorplanner
that will generate the core floorplan. In addition to the power numbers, HotSpot also
needs per-structure area information (provided by McPAT) and structure communi-
cation needs (we used Alpha 21264 structure dependences as our input for HotFloor-
planner). More specifically, we have modeled both leakage (through McPAT) and
the leakage/temperature loop in Opal, so leakage will be updated on every Hotspot
exploration window (10 K cycles). Leakage power is translated into power tokens
and updated according to the formula Lo, = Lpage - e2¢@ks Teurreni=Thase) where
Leakg depends on technology scaling factor and is provided by HotSpot 5.0, Ly
is the updated leakage, L p,s. is the base leakage (obtained using McPAT thermal
models), T¢yrrens 18 the current temperature and Ty, is the base temperature. Once

@ Springer

560 J.M. Cebrian et al.

L2
Dcache
FPAlu
LsQ
FPRegs
o - g o
3 |E|s| 5 Z
= [2al B =
IntRegs 8

Fig. 11 Core floorplan

leakage is updated, it is translated back to power tokens. Another important parame-
ter is the cooling system. The regular thermal resistance of a cooling system ranges
from 0.25 K/W for the all-copper fan model at the highest speed setting, to 0.33 K/W
for the copper/aluminum variety at the lowest setting. We model a real-world Zal-
man CNPS7700-Cu heatsink with 0.25 K/W thermal resistance and 3.268 cm? area
(136 mm side).

Figure 12 shows both average and peak (maximum) temperatures before using PTB
for the studied benchmarks running on a 16-core CMP along with their corresponding
standard deviation. We define “idle” temperature as the temperature of the whole CMP
in idle state (i.e., only the operating system is running). Therefore, the maximum
temperature reduction any power saving mechanism can achieve will vary between
the base peak/average temperature of the CMP and the idle temperature. For the
studied 16-core CMP the idle temperature reported by McPAT is around 60 °C (red
line in Fig. 12). In Fig. 12 we also see that the average temperature is 72 °C for the
evaluated benchmarks, therefore, the temperature reduction we could aspireis 12 °C on
average.

Figure 13 shows a comparison between the minimum temperature of the CMP
without PTB (coolest core) against the peak temperature of the CMP when using
PTB (hottest core). This initial study shows how PTB is able to balance temperature
between the cores, lowering the peak temperature of the hottest core of the CMP to
almost equal the temperature of the coolest core in the base CMP (without PTB). This
is the major benefit of the PTB mechanism that ensures minimal deviation from the
target power budget and, therefore, temperature.

For a more detailed analysis, Fig. 14 shows the per-structure peak and average
temperatures for a 16-core CMP. Temperatures are normalized against the maximum

@ Springer

Efficient inter-core power and thermal balancing for multicore processors 561

90

[0 Avg Base @ Peak Base
Temperature Temperature

85

80
754
704

65

Temperature (°C)

60 1

55

50 -
cholesky ocean raytrace unstructured watersp fluidanimate x264
barnes fit radix tomcatv waternsq blackscholes swaptions Average

Fig. 12 Average and peak temp. of a 16-core CMP

[J Min. Base B Peak Base [Peak PTB
Temperature Temperature Temperature

80

754

70

65

Temperature (°C)

60 -
cholesky ocean raytrace unstructured watersp fluidanimate x264
bames fft radix tomcatv waternsq blackscholes swaptions ~ Average

Fig. 13 Minimum base versus peak base versus peak PTB temperatures of a 16-core CMP

temperature gain: peak (or average) temperature minus idle temperature. We can see
how PTB and DVFS are able to reduce the temperature of all the internal structures
of the core. However, PTB almost doubles the temperature reduction of DVFS, due to
the extra accuracy when matching the target power budget. In particular, PTB obtains
an average reduction of the peak temperature of all structures of 35 % in addition to
an average reduction of the average temperature of 30 % for the evaluated 16-core
CMP. On the other hand, the per-benchmark temperature reduction achieved by PTB
follows the same trend, as it can be observed in Fig. 15. We can see that, except for
fluidanimate, there exists a temperature reduction in all of the studied benchmarks,
for both peak and average temperature during the benchmark execution. The peak and
average temperature reductions provided by the use of PTB are again close to 27 %
on average, doubling the temperature reduction of DVFS.

Please note that, although we are not trying to match a temperature budget, but a
power budget, the effects on temperature from this accurate power budget matching are
extremely good for temperature (both average and peak) and temperature gradient. If
we were trying to match a temperature budget, using PTB + 2-Level mechanism would

@ Springer

562 J.M. Cebrién et al.

OBase @DVFS OPTB

09
08
071
06
05
04
03
02
0,1

0 -+

Normalized Peak Temperature (°C)

E L E E L E B T B L E 1
Dcache TLB FPReg ROB IntExec L2
Icache Bpred FPAIlu AluMap IntReg LdStQ Average

[JBase @DVFS [OPTB

0,9 1
0,8 1
0,7 +
0,6 1
0,5 1
0,4 1
0,3 1
0,2 1
0,11

0+

BE nE B T B nE T nE na a aE n
Dcache TLB FPReg ROB IntExec L2
Icache Bpred FPAlu AluMap IntReg LdstQ Average

Normalized Average Temperature (°C)

Fig. 14 Normalized per-structure peak (fop) and average (bortom) temperature analysis

increase energy efficiency, reduce the time it takes to get to the target temperature and
the temperature gradient over DVES.

4.5 Nitro energy and performance analysis

Finally, we have evaluated Nitro for a varying number of cores (from 2 to 16) running
the SPLASH-2 benchmark suite and some benchmarks from the PARSEC 2.1 suite.
We will assume the proposed DVFES by Kim et al. [11] which is able to quickly switch
between power modes at speeds of 30-50 mV/ns. Figure 16 shows the performance
improvement (execution time) and the normalized energy reduction over the base
case without power restrictions running at full speed for the different benchmarks. As
expected, the benchmark that benefits the most from Nitro is Unstructured, which is
the one that has the most lock contention from the set of studied benchmarks. Note,
however, that this mechanism does not cause a heavy impact on energy in the rest of
studied benchmarks. For Unstructured, the number of overclocked cycles represents
about 22 % of the total simulation cycles, and that is enough to reduce the energy
consumption of this benchmark by 3-3.5 %. We also obtain 3.5-4.5 speedups from
a potential 3.5-4.5 % according to Amdahl’s law, 15 % frequency increase on a

@ Springer

Efficient inter-core power and thermal balancing for multicore processors 563

O Base @DVFS OPTB

0,9 1
0,8 1
0,7 1
0,6 1
0,5 1
0,4 1
0,3 1
0,2 1
0,11

Normalized Peak Temperature (°C)

0“ e T LE e T LE B T L B s T T s
cholesky ocean raytrace unstructured watersp fluidanimate x264

barnes fft radix tomcatv waternsq blackscholes swaptions Average

L

[OBase @DVFS OPTB

1

0,9 1
0,8 1
0,7 1
0,6 1
0,5 1
0,4 1
0,31
0,2
0,11

Normalized Average Temperature (°C)

0“ e T LE e T LE B T L B s T T s
cholesky ocean raytrace unstructured watersp fluidanimate x264

barnes fft radix tomcatv waternsq blackscholes swaptions Average

L

Fig. 15 Normalized per-benchmark peak (fop) and average (bottom) temperature analysis

22-30 % of the code. However, both the SPLASH-2 benchmark suite and the studied
PARSEC benchmarks are quite optimized and contention periods are kept as low as
possible, especially the ones related to locks, but this is not always the case in parallel
applications such as for commercial and server workloads.

Nevertheless, results obtained by the Nitro approach are encouraging since they
show that, when contention for lock acquisition and release exists, our proposal can
improve both energy and performance. Moreover, the extension of Nitro to work with
both barrier and lock information could achieve even further energy savings. The
fraction of time cores spend in spinning increases with the number of cores. For a
16-core CMP we saw (Fig. 4) an average 16 % barrier time, that will exponentially
increase with the number of cores. The potential speedup for this scenario is lim-
ited by Amdahl’s law to 2.4 % (15 % frequency increase on 16 % of the execution
time). However, for 32 or 64 core processors with barrier times greater than 40 %
this potential speedup increases to >6 %. This also translates into energy savings
as Nitro is reducing execution time reusing wasted power, without additional power
overhead.

@ Springer

564 J.M. Cebrian et al.

[2 Processors
M 4 Processors
4 [J 8 Processors
@ 16 Processors

Performance Improvement (%)
n

OAD-:ﬂiD_pcﬂ__Jﬂ_Eh e -~ [:LEI

T T T T T T T T T T T T T
cholesky ocean raytrace unstructured watersp fluidanimate x264
barnes fft radix tomcatv waternsq blackscholes swaptions

OE"EUT—TtH—‘[ﬂEﬂ] R

L O 2 Processors
-31 M 4 Processors
[J 8 Processors
@ 16 Processors

Normalized Energy Reduction (%)

T T T T T T T T T T T T T
cholesk ocean raytrace unstructured watersp fluidanimate x264
barnes fft radix tomcatv ~ waternsq blackscholes swaptions

Fig. 16 Performance improvement and energy reduction for a 16-core CMP using Nitro
5 Conclusions

We are inevitably heading to an era of dark silicon with fast and extremely dense chips
that we cannot afford to power up. The so-called utilization wall will limit the fraction
of the chip we can use at full speed at once. In such context processors will run within
a so tight power budget that only a small fraction of transistors could be activated
simultaneously. In this paper we have proposed PTB, a mechanism that dynamically
balances power between the cores to ensure that the processor accurately matches a
global power budget, even if there is a performance/energy penalty. Remember that
PTB knows nothing about locks, barriers, etc, it just balances power. Experimental
results show that PTB is able to accurately match the global power budget with an
AoPB of just 8 % for a 16-core CMP with a negligible energy increase (3 %) while
DVFS fails to match the power budget precisely, resulting in a high AoPB of around
65 % when setting a power budget of 50 % on the base processor peak power.

As a side effect of this accurate power budget matching, the use of PTB provides
another interesting benefit: a more stable temperature over execution time. We obtain
a 27-30 % peak and average temperature reduction when setting a power budget of
50 % on the base processor peak power for the studied benchmarks, that also applies

@ Springer

Efficient inter-core power and thermal balancing for multicore processors 565

to the individual structures. PTB is also able to balance temperature between cores,
reducing the peak temperature of the hottest core making it equal to the temperature
of the coldest core in the base CMP design. This temperature gradient reduction not
only reduces leakage power but also increases reliability and reduces packing costs.
Moreover, if we tried to match a temperature budget, a relaxed PTB can beat DVFS,
at both accuracy, energy degradation and time to get to the target temperature.

Finally, we have proposed Nitro. This technique reuses power from spinning cores to
overclock cores that are executing critical sections of the program (e.g., code delimited
by locks). This mechanism is suited for applications with contended locks and does
not degrade performance for the rest of applications. Note that Nitro tries to reuse
unused power from idle or spinning cores, so it does not violate the power budget
of the CMP, only individual cores for a short period of time. Unfortunately, both
the studied benchmark suites are optimized to minimize contention, and only one
benchmark exhibit high lock contention periods. However, other regular programs
with more coarse-grain locks will provide higher improvements. Moreover, we can
expect greater energy savings if we extend Nitro to work with barriers, speeding up
the working cores using the energy from the spinning cores.

Acknowledgments This work was supported by the Spanish MEC, MICINN and EU Commission
FEDER funds under Grants CSD2006-00046 and TIN2009-14475-C04. Also by the EU-FP7 ICT Project
“Embedded Reconfigurable Architecture (ERA)”, contract No. 249059.

References

1. Bhattacharjee A, Martonosi M (2009) Thread criticality predictors for dynamic performance, power,
and resource management in chip multiprocessors. In: Proceedings of the 36th annual international
symposium on computer architecture, ISCA °09, pp 290-301. ACM, New York, NY, USA. http://doi.
acm.org/10.1145/1555754.1555792

2. Cai Q, Gonzalez J, Rakvic R, Magklis G, Chaparro P, Gonzalez A (2008) Meeting points: Using
thread criticality to adapt multicore hardware to parallel regions. In: Proceedings of the international
conference on parallel architectures and compilation techniques, pp 240-249

3. Cebrian JM, Aragon JL, Garcia JM, Petoumenos P, Kaxiras S (2009) Efficient microarchitecture
policies for accurately adapting to power constraints. In: Proceedings of the IEEE international parallel
and distributed processing, symposium, pp 1-12. doi:10.1109/IPDPS.2009.5161022

4. Cebrian JM, Aragon JL, Kaxiras S (2011) Power token balancing: adapting CMPS to power constraints
for parallel multithreaded workloads. In: Proceedings of the IEEE international parallel and distributed
processing symposium

5. Donald J, Martonosi M (2006) Techniques for multicore thermal management: Classification and new
exploration. In: Proceedings of the 33rd international symposium on computer, architecture, pp 78—88.
doi:10.1109/ISCA.2006.39

6. Esmaeilzadeh H, Blem E, St. Amant R, Sankaralingam K, Burger D (2011) Dark silicon and the
end of multicore scaling. In: Proceedings of the 38th annual international symposium on Computer
architecture, ISCA ’11, pp 365-376. ACM, New York, NY, USA. doi:10.1145/2000064.2000108.
http://doi.acm.org/10.1145/2000064.2000108

7. Flynn MJ, Hung P (2005) Microprocessor design issues: thoughts on the road ahead 25(3):16-31.
doi:10.1109/MM.2005.56

8. Isci C, Buyuktosunoglu A, Cher CY, Bose P, Martonosi M (2006) An analysis of efficient multi-
core global power management policies: maximizing performance for a given power budget. In: Pro-
ceedings of the 39th annual IEEE/ACM international symposium on microarchitecture, pp 347-358.
doi:10.1109/MICRO.2006.8

9. Keshavarzi, A. (1997) Intrinsic iddq: origins, reduction, and applications in deep sub- low-power cmos
ic’s. In: Proceedings of the IEEE international test conference

@ Springer

http://doi.acm.org/10.1145/1555754.1555792
http://doi.acm.org/10.1145/1555754.1555792
http://dx.doi.org/10.1109/IPDPS.2009.5161022
http://dx.doi.org/10.1109/ISCA.2006.39
http://dx.doi.org/10.1145/2000064.2000108
http://doi.acm.org/10.1145/2000064.2000108
http://dx.doi.org/10.1109/MM.2005.56
http://dx.doi.org/10.1109/MICRO.2006.8

566 J.M. Cebrian et al.

10. Kim NS, Austin T, Baauw D, Mudge T, Flautner K, Hu JS, Irwin MJ, Kandemir M, Narayanan V
(2003) Leakage current: Moore’s law meets static power. Computer 36(12):68-75. doi:10.1109/MC.
2003.1250885

11. Kim W, Gupta MS, Wei GY, Brooks D (2008) System level analysis of fast, per-core DVFS using
on-chip switching regulators. In: Proceedings of the IEEE 14th international symposium on high
performance computer, architecture, pp 123-134. doi:10.1109/HPCA.2008.4658633

12. Li J, Martinez JF, Huang MC (2004) The thrifty barrier: energy-aware synchronization in shared-
memory multiprocessors. In: Proceedings of the 10th international symposium on high performance
computer, architecture, pp 14-23. doi:10.1109/HPCA.2004.10018

13. Li S, Ahn JH, Strong RD, Brockman JB, Tullsen DM, Jouppi NP (2009) Mcpat: an integrated power,
area, and timing modeling framework for multicore and manycore architectures. In: Proceedings of
the 42th international symposium on microarchitecture, pp 469—480

14. LiT, Lebeck AR, Sorin DJ (2006) Spin detection hardware for improved management of multithreaded
systems 17(6):508-521. doi:10.1109/TPDS.2006.78

15. Macken P, Degrauwe M, Van Paemel M, Oguey H (1990) A voltage reduction technique for digital sys-
tems. In: Proceedings of the 37th IEEE international solid-state circuits conference, digest of technical
papers, pp 238-239. doi:10.1109/ISSCC.1990.110213

16. Magnusson PS, Christensson M, Eskilson J, Forsgren D, Hallberg G, Hogberg J, Larsson F, Moestedt
A, Werner B (2002) Simics: a full system simulation platform. Computer 35(2):50-58. doi:10.1109/
2.982916

17. Martin MMK, Sorin DJ, Beckmann BM, Marty MR, Xu M, Alameldeen AR, Moore KE, Hill MD,
Wood DA (2005) Multifacet’s general execution-driven multiprocessor simulator (gems) toolset.
SIGARCH Comput Archit News 33:2005

18. Meng K, Joseph R, Dick RP, Shang L (2008) Multi-optimization power management for chip multi-
processors. In: Proceedings of the 17th international conference on parallel architectures and compi-
lation techniques, PACT 08, pp 177-186. ACM, New York, NY, USA. http://doi.acm.org/10.1145/
1454115.1454141

19. Sartori J, Kumar R (2009) Distributed peak power management for many-core architectures.
In: Proceedings of the design, automation and test in Europe conference and Exhibition, pp 1556—
1559

20. Sasanka R, Hughes CJ, Adve SV (2002) Joint local and global hardware adaptations for energy.
In: Proceedings of the 10th international conference on architectural support for programming lan-
guages and operating systems, ASPLOS-X, pp 144-155. ACM, New York, NY, USA. http://doi.acm.
org/10.1145/605397.605413

21. Semeraro G, Magklis G, Balasubramonian R, Albonesi DH, Dwarkadas S, Scott ML (2002) Energy-
efficient processor design using multiple clock domains with dynamic voltage and frequency scaling.
In: Proceedings of the 8th international high-performance computer architecture, symposium, pp 29—40
doi:10.1109/HPCA.2002.995696

22. Simunic T, Benini L, Acquaviva A, Glynn P, de Micheli G (2001) Dynamic voltage scaling and power
management for portable systems. In: Proceedings on design automation conference, pp 524-529.
doi:10.1109/DAC.2001.156195

23. SkadronK, Stan MR, Huang W, Velusamy S, Sankaranarayanan K, Tarjan D (2003) Temperature-aware
microarchitecture. In: Proceedings of the 30th annual international computer architecture, symposium,
pp 2-13. doi:10.1109/ISCA.2003.1206984

24. Winter JA, Albonesi DH (2008) Addressing thermal nonuniformity in smt workloads. ACM Trans
Archit Code Optim 5:4:1-4:28. http://doi.acm.org/10.1145/1369396.1369400

25. Wu Q, Juang P, Martonosi M, Clark DW (2005) Voltage and frequency control with adaptive reaction
time in multiple-clock-domain processors. In: Proceedings of the 11th international symposium on
high-performance computer, architecture, pp 178-189. doi:10.1109/HPCA.2005.43

@ Springer

http://dx.doi.org/10.1109/MC.2003.1250885
http://dx.doi.org/10.1109/MC.2003.1250885
http://dx.doi.org/10.1109/HPCA.2008.4658633
http://dx.doi.org/10.1109/HPCA.2004.10018
http://dx.doi.org/10.1109/TPDS.2006.78
http://dx.doi.org/10.1109/ISSCC.1990.110213
http://dx.doi.org/10.1109/2.982916
http://dx.doi.org/10.1109/2.982916
http://doi.acm.org/10.1145/1454115.1454141
http://doi.acm.org/10.1145/1454115.1454141
http://doi.acm.org/10.1145/605397.605413
http://doi.acm.org/10.1145/605397.605413
http://dx.doi.org/10.1109/HPCA.2002.995696
http://dx.doi.org/doi:10.1109/DAC.2001.156195
http://dx.doi.org/10.1109/ISCA.2003.1206984
http://doi.acm.org/10.1145/1369396.1369400
http://dx.doi.org/10.1109/HPCA.2005.43

	Efficient inter-core power and thermal balancing for multicore processors
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Single-core power control mechanisms
	2.2 Multicore power control mechanisms
	2.2.1 Saving power from spinning
	2.2.2 Multicore processors and DVFS

	3 Enforcing a power budget in CMPs
	3.1 Simulation environment
	3.2 Measuring power in real-time
	3.3 Matching a power budget in a CMP running parallel workloads
	3.4 Analysis on the power consumed in spinning
	3.5 Power token balancing (PTB)
	3.5.1 PTB motivation and fundamentals
	3.5.2 PTB implementation details

	3.6 Reusing power to reduce energy: Nitro
	3.6.1 Nitro outside locks

	4 Experimental results
	4.1 Efficiency of power token balancing (PTB)
	4.2 The importance of accuracy
	4.3 Relaxing PTB to be more energy-efficient
	4.4 Temperature analysis
	4.5 Nitro energy and performance analysis

	5 Conclusions
	Acknowledgments
	References

