
Energy-Efficient Hardware Prefetching for CMPs using Heterogeneous
Interconnects

Antonio Flores, Juan L. Aragón and Manuel E. Acacio
Departamento de Ingenierı́a y Tecnologı́a de Computadores

University of Murcia
Murcia, Spain

Email: {aflores, jlaragon, meacacio}@ditec.um.es

Abstract—In the last years high performance processor
designs have evolved toward Chip-Multiprocessor (CMP)
architectures that implement multiple processing cores on a
single die. As the number of cores inside a CMP increases, the
on-chip interconnection network will have significant impact
on both overall performance and power consumption as pre-
vious studies have shown. On the other hand, CMP designs
are likely to be equipped with latency hiding techniques like
hardware prefetching in order to reduce the negative impact
on performance that, otherwise, high cache miss rates would
lead to. Unfortunately, the extra number of network messages
that prefetching entails can drastically increase the amount
of power consumed in the interconnect. In this work, we show
how to reduce the impact of prefetching techniques in terms
of power (and energy) consumption in the context of tiled
CMPs. Our proposal is based on the fact that the wires used
in the on-chip interconnection network can be designed with
varying latency, bandwidth and power characteristics. By
using a heterogeneous interconnect, where low-power wires
are used for dealing with prefetched lines, significant energy
savings can be obtained. Detailed simulations of a 16-core
CMP show that our proposal obtains improvements of up
to 30% in the power consumed by the interconnect (15-23%
on average) with almost negligible cost in terms of execution
time (average degradation of 2%).

Keywords-tiled chip-multiprocessor; energy-efficient archi-
tectures; prefetching; heterogeneous on-chip interconnection
network; parallel scientific applications;

I. INTRODUCTION

In the last years, processor designs have evolved toward
architectures that implement multiple processing cores on
a single die, commonly known as chip-multiprocessors or
CMPs. Today, multi-core architectures are envisioned as
the only way to ensure performance improvements after
microprocessors designers have acknowledged that it is
no longer efficient to rely on higher clock rates and/or
exploiting greater levels of instruction-level parallelism
(ILP). In this way, most of the industry would agree
that multi-core is the way forward and that designs with
tens of cores on the die will be a reality within this
decade. As an example, Intel recently unveiled an 80-core
research prototype called Polaris [1]. Additionally, future
many-core CMPs with several tens (or even hundreds) of
processor cores probably will be designed as arrays of
replicated tiles connected over an on-chip switched direct
network [2]. These tiled architectures have been claimed
to provide a scalable solution for managing the design
complexity, and effectively using the resources available
in advanced VLSI technologies. Maybe, one of the best

Figure 1. Normalized execution time and network power consumption
for a 16-core CMP when different prefetching techniques are considered.

known examples of a tiled CMP architecture today is the
already mentioned 80-core Intel’s Polaris prototype [1].

However, one of the greatest bottlenecks to provide
high performance and energy efficiency in such tiled CMP
architectures is the high cost of on-chip communication
through global wires [3]. Wang et al. [4] reported that the
on-chip network of the Raw processor consumes 36% of
the total chip power. Magen et al. [5] also attribute 50% of
overall chip power to the interconnect. Most of this power
is consumed in the point-to-point links of the interconnect
[4]. Thus, wires pose major performance and power con-
sumption problems as technology shrinks and total die area
increases. This trend will be exacerbated in future many-
core CMP designs. Therefore, as communication emerges
as a power and performance constraint, more important in
some cases than computation itself, wire properties should
be exposed to architects in order to enable them to find
out novel ways to exploit these properties.

One way to tackle problems due to wire delay is to
use latency hiding techniques like hardware prefetching,
which eliminates some cache misses and/or overlaps the
latencies of others. Unfortunately, hardware prefetching
significantly increases on-chip communication since co-
herence between the L1 caches of the tiled CMP must be
ensured, increasing the power consumption of the on-chip
interconnect. As an example of the latter, Fig. 1 shows, for
three hardware prefetching alternatives (see Section II-B
for further details), the average improvement in terms of
execution time and the increase in the on-chip network
power consumption due to the extra communication that

2010 18th Euromicro Conference on Parallel, Distributed and Network-based Processing

1066-6192/10 $26.00 © 2010 IEEE

DOI 10.1109/PDP.2010.12

147

prefetching entails for the parallel scientific applications
considered across this paper (see section IV-A for details
about the evaluation methodology). As it can be ob-
served, increases over 20% in the on-chip network power
consumption are obtained for some of the prefetching
techniques considered in this work.

Another approach to alleviate the negative effect of wire
delays and the increasing interconnect power consumption
is the use of heterogeneous on-chip interconnection net-
works [6], i.e., an interconnect with links comprised of
wires with varying physical properties. By tuning wire
width and spacing, it is possible to design wires with
varying latency and bandwidth properties. Similarly, by
tuning repeater size and spacing, it is possible to design
wires with varying latency and energy properties [7].

This paper explores such approach by proposing the use
of a heterogeneous interconnect in the context of hardware
prefetching schemes for tiled CMPs. In this way, we can
improve the energy-efficiency of prefetching techniques
by transmitting prefetched lines through low-power wires
meanwhile the rest of messages are transmitted using
baseline wires. It is important to note that this work is
not aimed at proposing a particular prefetching scheme
but at exploiting the non-critical nature of these messages
by means of using the energy-efficient and slower wires
of a heterogeneous interconnect. Detailed simulations of a
16-core CMP show that our proposal brings improvements
of up to 30% in the power consumed by the interconnect
(15-23% on average) with almost negligible cost in terms
of increased execution time (average degradation of 2%
with respect to the baseline configuration) when such
a heterogeneous interconnection network is used in the
context of a hardware prefetching scheme.

The rest of the paper is organized as follows. Section II
reviews some related work and presents a background on
hardware prefetching and techniques that enable different
wire implementations for the design of a heterogeneous
interconnect. Our proposal for optimizing the on-chip
interconnection network energy and performance in tiled
CMPs is presented in section III. Section IV describes
the evaluation methodology and presents the results of the
proposed mechanism. Finally, section V summarizes the
main conclusions of the work and points out some future
work.

II. PRELIMINARIES

A. Related Work

The on-chip interconnection network is a critical design
element in a multi-core architecture and, consequently, it is
the subject of several recent works. Among others, Kumar
et al. [8] analyze several on-chip interconnection mecha-
nisms and topologies, and quantify their area, power, and
latency overheads. Their study concludes that the design
choices for the interconnect have a significant effect on
the rest of the chip, potentially consuming a significant
fraction of the real estate and power budget.

Hardware prefetching has been proposed and explored
by many researchers [9], [10], and is currently imple-

mented in many existing systems [11], [12]. From mid-
sixties, early studies [13] of cache design recognized the
benefits of prefetching. Hardware prefetching of separate
cache blocks was later implemented in the IBM 370/168
and Amdahl 470V [14]. Smith summarizes several of these
early approaches in his survey of cache memories [15].
Jouppi [16] introduced stream buffers that trigger succes-
sive cache line prefetches on a miss. Chen and Baer [9]
proposed variations of stride-based hardware prefetching
to reduce the cache-to-memory latency. Dahlgren et. al.
[17] proposed an adaptive sequential (unit-stride) prefetch-
ing scheme that adapts to the effectiveness of prefetching.
Ki and Knowles [18] used extra cache bits to increase the
accuracy of prefetching. Srinivasan et. al. [19], classified
prefetches according to whether they reduce or increase
misses or traffic.

On the other hand, a reduced number of works have
attempted to exploit the properties of a heterogeneous
interconnection network at the microarchitecture level in
order to reduce the interconnect energy share. Beckmann
and Wood [20] propose the use of transmission lines to
access large L2 on-chip caches in order to reduce the
required cache area and the dynamic power consumption
of the interconnection network. In [6], Balasubramonian
et al. make the first proposal of wire management at the
microarchitecture level. They introduce the concept of a
heterogeneous interconnect that is comprised of wires with
varying area, latency, bandwidth, and energy characteris-
tics, and they apply it to register communication within
a clustered architecture. In particular, cache accesses are
accelerated by sending a subset of the address bits on low-
latency wires to prefetch data out of the L1 D-cache, while
non-critical register values are transmitted on low-power
wires. They extend this proposal in [21] with techniques
aimed at accelerating cache accesses in large L2/L3 split
caches (L2/L3 NUCA architectures) by taking advantage
of a lower-bandwidth, lower-latency network.

Recently, Cheng et al. [22] applied the heterogeneous
network concept to the cache coherence traffic problem
in CMPs. In particular, they propose an interconnection
network composed of three sets of wires with varying
latency, bandwidth and energy characteristics, and map
coherence messages to the appropriate set taking into
account their latency and bandwidth needs. They report
significant performance improvement and interconnect en-
ergy reduction when a two-level tree interconnect is used
to connect the cores and the L2 cache. Unfortunately,
insignificant performance improvements are reported for
direct topologies (such as the 2D mesh typically employed
in tiled CMPs [1]).

More recently, we have proposed in [23] Reply Parti-
tioning, a technique that allows all coherence messages to
be classified into two groups: critical and short, and non-
critical and long. In particular, Reply Partitioning focuses
on replies that carry data and split them into a critical and
short Partial Reply message that carries the word requested
by the processor, in addition to a non-critical Ordinary
Reply with the full cache block. Reply Partitioning aims

148

instruction tag previous address stride state

PC effective address

prefetch address

Figure 2. The organization of the reference prediction table (extracted
from [24]).

to use a heterogeneous interconnection network comprised
of low-latency wires for critical messages and low-energy
wires for non-critical ones, which also allows for a more
balanced workload. Note that the proposal presented in the
current paper is orthogonal to that and both can be used
in conjunction.

B. Hardware Prefetching

As mentioned before, hardware prefetching has been
proposed and explored by many researchers, and is cur-
rently implemented in many existing systems [11], [12]. In
this section we present a general background on hardware
prefetching focusing on the schemes that we have chosen
to evaluate our proposal. A more exhaustive study about
data prefetching can be found in [24].

The simplest hardware prefetching schemes are vari-
ations upon the one block lookahead (OBL) approach
which initiates a prefetch for block b + 1 when block
b is accessed. Smith [15] summarizes several of these
approaches of which the prefetch-on-miss (OnMiss) and
tagged prefetch algorithms (Tagged) will be discussed
here. The prefetch-on-miss algorithm simply initiates a
prefetch for block b + 1 whenever an access for block
b results in a cache miss. The tagged prefetch algorithm
associates a tag bit with every memory block. This bit
is used to detect when a block is demand-fetched or a
prefetched block is referenced for the first time. In either
of these cases, the next sequential block is fetched. In
order to avoid memory stalls suffered by processors, it is
possible to increase the number of blocks prefetched after
a demand fetch from one to K, where K is known as the
degree of prefetching.

The main problem with the above techniques is that
they are not able to detect memory access patterns. To
solve this problem several techniques have been proposed
which employ special logic to monitor the processor’s
address referencing pattern to detect memory access pat-
terns originating from looping structures [9], [17], [18].
This is accomplished by comparing successive addresses
used by load or store instructions. A reference prediction
table (RPT) is used to keep this information for the most
recently used memory instructions. The organization of the
RPT is depicted in Fig. 2. Table entries contain the address

of the memory instruction, the previous address accessed
by this instruction, a stride value for those entries which
follow a stride pattern and a state field which records the
entry’s current state.

C. Wire Implementation for Heterogeneous Interconnects

The delay of a wire can be modeled as a first-order
RC circuit [3]. In that model, a CMOS driver is seen
as a simple resistor, Rgate, with a parasitic load, Cdiff

as shown in Equation 1. The CMOS receiver at the
other end of the wire presents a capacitive load Cgate.
Cwire and Rwire are the wire resistance and capacitance,
respectively.

Delay ∝ Rgate(Cdiff + Cwire + Cgate) +

Rwire(
1
2
Cwire + Cgate) (1)

The resistance per unit length of the wire, Rwire,
depends on wire’s characteristics such as wire width or
spacing between adjacent wires. Combining both factors,
we can design wires with lower delays. Furthermore,
the delay of an uninterrupted wire grows quadratically
with its length. Therefore, for long wires, designers must
insert repeaters periodically along the wire to break this
quadratic dependence.

The average leakage power of a repeater is given by

Pleakage = VDD
1
2
(IoffN

WNmin
+ IoffP

WPmin
)s (2)

where IoffN
(IoffP

) is the leakage current per unit NMOS
(PMOS) transistor width and WNmin

(WNmin
) is the width

of the NMOS (PMOS) transistor in minimum size inverter.
On the other hand, the dynamic power consumption

driving the wire segment with activity factor α is

Pswitching = α(s(Cgate + Cdiff) + lCwire)fV 2
DD (3)

where VDD is the power supply voltage; f is the clock
frequency and s is the size of the repeaters.

Equations (2) and (3) show that the dissipated power
can be reduced by employing smaller repeaters and by
increasing their spacing. Banerjee et al. [7] developed a
methodology to estimate repeater size and spacing that
minimizes power consumption for a fixed wire delay.

In summary, by varying some physical properties such
as wire width/spacing and repeater size/spacing, we can
implement wires with different latency, bandwidth and
power properties. As previously mentioned, in [22], the
authors apply this observation to develop a heterogeneous
interconnect. They propose to use two wire implementa-
tions apart from baseline wires (B-Wires): power optimized
wires (PW-Wires) that have fewer and smaller repeaters,
and bandwidth optimized wires (L-Wires) with higher
widths and spacing. Then, coherence messages are mapped
to the appropriate set of wires taking into account, among
others, their latency and bandwidth requirements.

Table I shows the relative delay, area, and power
characteristics of L- and PW-Wires compared to baseline
wires (B-Wires), as reported in [22]. A 65 nm process
technology is considered assuming 10 metal layers: 4

149

Table I
AREA, DELAY, AND POWER CHARACTERISTICS OF WIRE

IMPLEMENTATIONS (EXTRACTED FROM [22]).

Wire Type Relative Latency Relative Area Dynamic Power (W/m) Static Power
α=Switching Factor W/m

B-Wire (8X plane) 1x 1x 2.65α 1.0246
B-Wire (4X plane) 1.6x 0.5x 2.9α 1.1578
L-Wire (8X plane) 0.5x 4x 1.46α 0.5670

PW-Wire (4X plane) 3.2x 0.5x 0.87α 0.3074

Figure 3. Tiled CMP architecture overview.

layers in 1X plane, and 2 layers in each 2X, 4X, and 8X
planes [8]. 4X and 8X metal planes are used for global
inter-core wires. It can be seen that L-Wires yield a two-
fold latency improvement at a four-fold area cost. On
the other hand, PW-Wires are designed to reduce power
consumption with twice the delay of baseline wires (and
the same area cost). As in [8], it is assumed that 4X and
8X wires are routed over memory arrays.

III. A PROPOSAL FOR ENERGY-EFFICIENT

PREFETCHING MANAGEMENT IN TILED CMPS

In this section we present our proposal for reducing
the energy dissipated by prefetching techniques in tiled
CMPs. This section starts with a description of the tiled
CMP architecture assumed in this paper, followed by
a classification of the messages in terms of both their
criticality and size and, finally, the description of the
proposed mechanism.

A. Tiled CMP Architectures

A tiled CMP architecture consists of a number of
replicated tiles connected over a switched direct network
(Fig. 3). Each tile contains a processing core with primary
caches (both instruction and data caches), a slice of the
L2 cache, and a connection to the on-chip network. The
L2 cache is shared among the different processing cores,
but it is physically distributed between them. Therefore,
some accesses to the L2 cache will be sent to the local
slice while the rest will be serviced by remote slices.
In addition, the L2 cache stores (in the tags’ part of
the local L2 slice) the directory information needed to
ensure coherence between the L1 caches. On a L1 cache
miss, a request is sent down to the appropriate tile where
further protocol actions are initiated based on that block’s
directory state, such as invalidation messages, intervention
messages, data writeback, data block transfers, etc. In this
paper, we assume a process technology of 65 nm, a tile
area of approximately 25 mm2, and a die size in the order

Replacement

Cohe response

Response

Request

Cohe command

TypeDestSrc MSHR Cache Block

Dest ControlSrc Type Address

TypeDestSrc MSHR

Dest ControlSrc Type Address

TypeDestSrc MSHR

Cache Block

Dest ControlSrc Type Address

Dest ControlSrc Type Address Cache Block

TypeDestSrc MSHR

Figure 4. Classification of messages that travel on the interconnection
network of a Tiled CMP Architecture.

of 400 mm2 [2], [25]. Note that this area is similar to
the largest die in production today (Itanium 2 processor –
around 432 mm2). Note also that, due to manufacturing
costs and form factor limitations, it would be desirable
to keep die size as low as possible [25]. Further details
about the evaluation methodology and the simulated CMP
configuration can be found in section IV.

B. Classification of messages in Tiled CMP Architectures

There are a variety of message types traveling on the
interconnect of a CMP, each one with properties that are
clearly distinct. In general, we can classify messages into
the following groups (see Fig. 4): Request messages, that
are generated by cache controllers in response to L1 cache
misses, or a likely future L1 cache miss when prefetching
is considered, and sent to the corresponding home L2
cache to demand privileges over a memory line. Response
messages to these requests, generated by the home L2
cache controller or, alternatively, by the remote L1 cache
that has the single valid copy of the data, and they can
carry the memory line or not. Coherence commands,
that are sent by the home L2 cache controller to the
corresponding L1 caches to ensure coherence. Coherence
responses, sent by the L1 caches back to the corresponding
home L2 in response to coherence commands. Replace-
ment messages, that the L1 caches generate in case of
exclusive or modified lines being replaced (replacement
hints are not sent for lines in shared state).

Messages involved in the L1 cache coherence protocol
shown in Fig. 4 can be classified according to their
criticality into critical and non-critical messages. We say
that a message is critical when it is in the critical path
of the L1 cache miss. In other case, we call the message
as non-critical. As expected, delaying a critical message
will result in longer L1 cache miss latencies. On the
other hand, slight slowdowns in the delivery of non-critical
messages will not cause any performance degradation.
Using this criterion, all messages related with prefeching
are non-critical because they deal with data blocks that
will be needed in the future. It is clear that energy is
saved, theoretically without affecting performance, when
this kind of messages travel on slower, power-efficient PW-
Wires. They will be the focus of our proposal.

Fig. 5 (top) plots the fraction of each message type
on the total number of messages for a 16-core CMP
configuration when different prefetching mechanisms are
considered and for the applications used in our evaluation

150

Figure 5. Breakdown of the messages that travel on the interconnection
network for a 16-core CMP (top) and percentage of the power consump-
tion in the interconnect by each type of message (bottom).

(see section IV-A for evaluation details). Results have been
normalized with respect to a base configuration without
prefetching. As pointed out before, hardware prefetching
significantly increases on-chip communication. Average
increases of about 20% in the network traffic are ob-
served. And, on average, between 16% to 34% of the
network traffic is due to prefetching (prefetch requests, its
corresponding replies and all coherence traffic involved),
whereas the rest has to do with ordinary messages.

Even more interesting is Fig. 5 (bottom) which shows
a breakdown of the network power consumption for each
message type. Again, results are normalized with respect
to the network power consumption when no prefetching
technique is used. The amount of power consumed in
the interconnect associated with prefetching traffic ranges
from 17-18% when the more complex stride prefetching
is used, to 32-40% for the simplest schemes.

As previously commented, most of this power is con-
sumed in the point-to-point links, and therefore, message
size plays a major role. In particular, prefetch replies are
67-byte long since they carry control information (3-bytes)
and a cache line (64 bytes). On the contrary, requests and
coherence commands are 11-byte long since beside control
information (3 bytes) they also carry address information
(8 bytes). Finally, coherence replies are just 3-byte long.
Therefore, optimizing the delivery of the prefetch replies
that carry data will be rewarding to reduce the energy

dissipated by the interconnection network in CMPs.

C. Interconnect Design for Efficient Message Manage-
ment

As discussed in section II-C, PW-Wires have the same
area cost than baseline wires while they are twice slower.
Fixing the number of PW-Wires is not a naive task.
They will be used for sending prefeching-related messages
(in particular, prefetch replies with data), whereas the
remaining area will be consumed by B-Wires employed
for sending ordinary messages and short (11-byte and 3-
byte long) prefeching-related messages. The proportion
between PW- and B-Wires has a direct impact in both the
execution time and the power consumption of the intercon-
nect. Preliminary simulations with different proportions of
PW- and B-Wires showed that the best option is to replace
half of the original wires by PW-Wires.

In this work, we use the same main parameters for the
interconnect as in [22]. In particular, message sizes and
the width of the original links of the interconnect are the
same. Short messages can take up to 11 bytes. Requests,
coherence commands are 11-byte long since beside control
information (3 bytes) they also carry address information.
On the other hand, coherence replies are just 3-byte long.
Replacements for lines in modified state are 75-byte long
since they carry both address (8 bytes) and a cache line
(64 bytes) beside control information (3 bytes). Finally,
ordinary/prefetch reply messages are 67-byte long since
they carry control information (3-bytes) and a cache line
(64 bytes).

In order to match the metal area of the baseline
configuration, in our heterogeneous interconnect design,
each original 75-byte unidirectional link is designed to be
made up of 296 B-Wires (37 bytes) and 304 PW-Wires
(38 bytes). For a discussion regarding the implementation
complexity of heterogeneous interconnects we refer the
interested reader to [22].

IV. EXPERIMENTAL RESULTS

This section shows the results that are obtained for
our proposal under different scenarios and compare them
against those achieved with the configuration that employs
just B-Wires, which is taken as baseline.

A. Evaluation Methodology

The results presented in this work have been obtained
through detailed simulations of a full CMP. We have
employed a cycle-accurate CMP power-performance sim-
ulation tool, Sim-PowerCMP [26], that estimates both
dynamic and leakage power and is based on RSIM [27].
In particular, Sim-PowerCMP employs as performance
simulator a modified version of RSIM that models the
architecture of the tiled CMP presented in section III.
Sim-PowerCMP also implements already proposed and
validated power models for both dynamic power and
leakage power of each processing core, as well as the
interconnection network.

Table II (top) shows the architecture configuration used
across this paper. It describes a 16-core CMP built in

151

Table II
CONFIGURATION OF THE EVALUATED BASELINE CMP

ARCHITECTURE AND APPLICATIONS.

CMP Configuration
Process technology 65 nm
Tile area 25 mm2

Number of tiles 16
Cache line size 64 bytes
Core 4GHz, in-order 2-way model
L1 I/D-Cache 32KB, 4-way
L2 Cache (per core) 256KB, 4-way, 6+2 cycles
Memory access time 400 cycles
Network configuration 2D mesh
Network bandwidth 75 GB/s
Link width 75 bytes (8X-B-Wires)
Link length 5 mm

Application Problem size
Barnes-Hut 16K bodies, 4 timesteps
EM3D 9600 nodes, 5% remote links, 4 timesteps
FFT 256K complex doubles
LU-cont 256 × 256, B=8
Ocean-cont 258 × 258 grid
Raytrace car.env
Unstructured mesh.2K, 5 timesteps
Water-nsq 512 molecules, 4 timesteps

65 nm technology. The tile area has been fixed to
25 mm2, including a portion of the second-level cache
[2]. With this configuration, links that interconnect routers
configuring the 2D mesh topology measure around 5 mm.
Table II (bottom) shows the applications used in our exper-
iments. Barnes-Hut, FFT, LU-cont, Ocean-cont, Raytrace
and Water-nsq are from the SPLASH-2 benchmark suite;
Berkeley EM3D simulates the propagation of electro-
magnetic waves through objects in three dimensions; and
Unstructured is a computational fluid dynamics applica-
tion that uses an unstructured mesh. Problem sizes have
been chosen commensurate with the size of the L1 caches
and the number of cores used in our simulations. All
experimental results reported in this work are for the
parallel phase of these applications.

B. Simulation results and analysis

In this section we analyze the impact of our proposal
on both the execution time and on the power consumption
for the inter-core links. All results have been normalized
with respect to the baseline non-prefetching configuration
where only B-Wire, unidirectional 75-byte wide links are
considered (with the exception of Fig. 8 where results are
normalized with respect to a 16-core CMP with the same
prefetching technique).

Fig. 6 shows the normalized execution time with respect
to that obtained for the baseline configuration for a 16-core
CMP without prefetching. Barlines show the normalized
execution time for prefetch-on-miss (OnMiss), tagged
prefetch (Tagged), and stride-based prefetch (Stride)
techniques (see Section II-B) applied to the L1D private
caches. The stride-based prefetching is based on the im-
plementation incorporated in the IBM Power 4 [28]. Each
prefetcher contains three separate filter tables: positive
unit stride, negative unit stride, and non-unit stride. Once
a filter table entry detects a miss stream, the prefetcher

Figure 6. Normalized execution time for different prefetching schemes
(with and without heterogeneous links) for a 16-core CMP.

allocates a stream table entry and initiates the prefetch
of K consecutive cache blocks (for the OnMiss and
Tagged prefetching schemes the value of K is set to 1).
For comparison purposes, the normalized execution time
obtained when only B-Wires are employed is also shown.
On average, we obtain improvements in execution time of
around 10% for all the prefetching techniques evaluated,
which demonstrates the convenience of using hardware
prefetching in future many-core CMPs. This improvement
has high variability, ranging from almost negligible or even
a slight degradation for Barnes, Raytrace, Unstructured
and Water to improvements of 20-35% for em3d and
Ocean-Cont.

This observed variability is due to the memory access
patterns exhibited by the applications. Some applications,
as FFT, LU-Cont, or Ocean-Cont, present regular memory
access patterns that lead to high percentage of useful
prefetches as we can see in Fig. 7 (top) where we present
a classification of the prefetches. In this figure, prefetches
are classified into: useful if the prefetched line is accessed
before being replaced, late if other requests coalesce into
the MSHR allocated for the prefetched line, useless if
the prefetched line gets replaced before it is requested by
the processor, unnecesary if the prefetch coalesces into a
MSHR for an already-on-the-fly cache miss, and invali-
dated if the prefetched line gets invalidated before being
requested by the processor. On the other hand, applications
such as Barnes or Raytrace show a high percentage of late
or useless prefetches that lead to negligible improvements
in the execution time.

Going back to Fig. 6 again, when heterogeneous links
are considered, an average slowdown of about 2% is
observed with respect to the B-Wire-only configuration that
also uses prefetching. In this case, similar degradations
are obtain for all the applications. This degradation is
explained by the additional delay of sending the prefetch
replies through PW-Wires. Fig. 7 (bottom) shows that 5%
of the previously useful prefetches are now classified as
late prefetches, explaining the observed slowdown.

However, the benefits of using a heterogeneous inter-
connect in the context of hardware prefetching, as we

152

Figure 7. Classification of the different types of prefetches observed
for the B-Wire only (top) and heterogeneous interconnect (bottom).

Figure 8. Normalized link power consumption for different prefetching
schemes over heterogeneous links (baseline configuration: 16-core CMP
with prefetching).

propose, can be noticed when considering the network
power consumption. Fig. 8 plots the normalized link power
consumption when the prefetch replies are sent through
PW-Wires. The baseline configuration used for normaliza-
tion is a 16-core CMP implementing the same prefetching
technique but using only B-Wire links. Reductions of up to
30% are obtained (15-23% on average) and in this case the
variability among applications is reduced. Better results
are obtained, as expected, for the OnMiss and Tagged
prefetching techniques due to the bigger emphasis on
prefetching traffic that these techniques show (as seen in

Fig. 5). This leads to more important reductions in the link
power consumption when prefetched lines are sent through
PW-Wires. These improvements translate into reductions
in the normalized energy consumed for the full 16-core
CMP of up to 10% for applications such as EM3D or
Ocean-Cont, with average reductions of 4%.

V. CONCLUSIONS AND FUTURE WORK

One way to tackle the problems due to wire delay is to
use latency hiding techniques like hardware prefetching,
which eliminates some cache misses and overlaps the
latencies of others. Although, hardware prefetching can
bring important improvements in terms of execution time,
it significantly increases the number of messages in the on-
chip network, therefore increasing its power consumption.

On the other hand, the use of heterogeneous on-chip in-
terconnection networks has been previously demonstrated
as an effective approach for alleviating the effects of wire
delays and power consumption. An heterogeneous inter-
connection network is comprised of wires with varying
physical properties. By tuning wire width and spacing,
it is possible to design wires with varying latency and
bandwidth properties. Similarly, by tuning repeater size
and spacing, it is possible to design wires with varying
latency and energy properties.

In this work we propose an energy-efficient prefetch-
ing proposal for tiled CMPs that consists in the use of
a heterogeneous interconnect along with several hard-
ware prefetching schemes. A heterogeneous interconnect
comprised of only two different types of wires is pro-
posed: low-power wires (PW-Wires) used for transmitting
prefetched lines; and baseline wires (B-Wires) used for
the transmission of the rest of messages. Again, we want
to point out that this work is not aimed at proposing a
particular prefetching scheme but at exploiting the non-
critical nature of prefetching traffic by means of using a
heterogeneous interconnect.

Results obtained through detailed simulations of a 16-
core CMP show that the proposed on-chip message man-
agement mechanism can reduce the power consumed by
the links of the interconnection network about 23% with
a degradation in execution time of 2%. Finally, these
reductions translate into overall CMP savings of up to 10%
(4% on average) when the consumed energy is considered.

All these results reveal that correctly organizing the in-
terconnection network and properly managing the different
types of messages through it have significant impact on the
energy consumed by the on-chip interconnect, especially
for next-generation dense CMP architectures.

As part of our future work, we plan to evaluate the
interactions between the proposal presented in this work
and Reply Partitioning [23] in order to determine if a
positive interaction occurs when both techniques are used
together. Moreover, it will be interesting to evaluate the
impact of our proposal for the lookahead program counter
(LA-PC) stride prefeching [9], which is is similar to the
basic stride prefetching but triggered by LA-PC, which is
several iterations ahead of the PC, improving timeliness.

153

We believe that the use of an appropriately adjusted LA-
PC could reduce the small degradation in execution time
experienced by our proposal.

ACKNOWLEDGMENT

This work has been jointly supported by the Span-
ish MEC and European Comission FEDER funds un-
der grants “Consolider Ingenio-2010 CSD2006-00046”
and “TIN2006-15516-C4-03”, and also by the Fundación
Séneca (Agencia Regional de Ciencia y Tecnologı́a,
Región de Murcia) under grant 05831/PI/07.

REFERENCES

[1] S. Vangal, J. Howard, G. Ruhl, S. Dighe et al., “An 80-tile
1.28tflops network-on-chip in 65nm cmos,” Proc. of the
Solid-State Circuits Conference, Feb. 2007, pp. 98–589.

[2] M. Zhang and K. Asanovic, “Victim replication: maximiz-
ing capacity while hiding wire delay in tiled chip multi-
processors,” Proc. of the 32nd Int’l Symp. on Computer
Architecture, IEEE Press, Jun. 2005, pp. 336–345.

[3] R. Ho, K. Mai, and M. Horowitz, “The future of wires,”
Proceedings of the IEEE, vol. 89, Apr. 2001, pp. 490–504.

[4] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik, “Orion:
a power-performance simulator for interconnection net-
works,” Proc. of the 35th Int’l Symp. on Microarchitecture,
IEEE Press, Nov. 2002, pp. 294–305.

[5] N. Magen, A. Kolodny, U. Weiser, and N. Shamir,
“Interconnect-power dissipation in a microprocessor,” Proc.
of the 6th Int’l Workshop on System Level Interconnect
Prediction, ACM Press, Feb. 2004, pp. 7–13.

[6] R. Balasubramonian, N. Muralimanohar, K. Ramani, and
V. Venkatachalapathy, “Microarchitectural wire manage-
ment for performance and power in partitioned architec-
tures,” Proc. of the 11th Int’l Symp. on High-Performance
Computer Architecture, IEEE Press, Feb. 2005, pp. 28–39.

[7] K. Banerjee and A. Mehrotra, “A power-optimal repeater
insertion methodology for global interconnects in nanome-
ter designs,” IEEE Trans. on Electron Devices, vol. 49, Nov.
2002, pp. 2001–2007.

[8] R. Kumar, V. Zyuban, and D. M. Tullsen, “Interconnections
in multi-core architectures: understanding mechanisms,
overheads and scaling,” Proc. of the 32nd Int’l Symp. on
Computer Architecture, Jun. 2005, IEEE Press, pp. 408–
419.

[9] T.-F. Chen and J.-L. Baer, “Effective hardware-based data
prefetching for high-performance processors,” IEEE Trans.
Comput., vol. 44, May 1995, pp. 609–623.

[10] A. Roth, A. Moshovos, and G. S. Sohi, “Dependence based
prefetching for linked data structures,” SIGPLAN Not.,
vol. 33, Nov. 1998, pp. 115–126.

[11] G. Hinton, D. Sager, M. Upton, D. Boggs et al., “The
microarchitecture of the pentium® 4 processor,” Intel
Technology Journal, vol. 1, 2001.

[12] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer,
and J. B. Joyner, “Power5 system microarchitecture,” IBM
J. Res. Dev., vol. 49, Jul. 2005, pp. 505–521.

[13] W. Anacker and C. P. Wang, “Performance evaluation of
computing systems with memory hierarchies,” IEEE Trans.
Comput., vol. 16, Dec. 1967, pp. 764–773.

[14] A. Smith, “Sequential program prefetching in memory
hierarchies,” Computer, vol. 11, Dec. 1978, pp. 7–21.

[15] A. J. Smith, “Cache memories,” ACM Comput. Surv.,
vol. 14, Sep. 1982, pp. 473–530.

[16] N. P. Jouppi, “Improving direct-mapped cache perfor-
mance by the addition of a small fully-associative cache
and prefetch buffers,” SIGARCH Comput. Archit. News,
vol. 18, Jun. 1990, pp. 364–373.

[17] F. Dahlgren, M. Dubois, and P. Stenström, “Sequential
hardware prefetching in shared-memory multiprocessors,”
IEEE Trans. Parallel Distrib. Syst., vol. 6, Jul. 1995, pp.
733–746.

[18] A. Ki and A. E. Knowles, “Adaptive data prefetching
using cache information,” Proc. of the 11th Int’l Conf. on
Supercomputing, ACM Press, Jul. 1997, pp. 204–212.

[19] V. Srinivasan, E. S. Davidson, and G. S. Tyson, “A prefetch
taxonomy,” IEEE Trans. Comput., vol. 53, pp. 126–140,
2004.

[20] B. M. Beckmann and D. A. Wood, “TLC: transmission line
caches,” Proc. of the 36th Int’l Symp. on Microarchitecture
(MICRO 03), IEEE Press, Dec. 2003, pp. 43–54.

[21] N. Muralimanohar and R. Balasubramonian, “The effect of
interconnect design on the performance of large L2 caches,”
Proc. of the 3rd IBM Watson Conf. on Interaction between
Architecture, Circuits, and Compilers (P=ac2), Oct. 2006.

[22] L. Cheng, N. Muralimanohar, K. Ramani, R. Balasub-
ramonian, and J. Carter, “Interconnect-aware coherence
protocols for chip multiprocessors,” Proc. of the 33rd Int’l
Symp. on Computer Architecture (ISCA 06), Jun. 2006, pp.
339–351.

[23] A. Flores, J. L. Aragón, and M. E. Acacio, “Efficient
message management in tiled cmp architectures using a
heterogeneous interconnection network,” Proc. of the 14th
Int’l Conf. on High Performance Computing, Dec. 2007,
pp. 133–146.

[24] S. P. Vanderwiel and D. J. Lilja, “Data prefetch mecha-
nisms,” ACM Comput. Surv., vol. 32, Jun. 2000, pp. 174–
199.

[25] L. Zhao, R. Iyer, S. Makineni, J. Moses et al., “Perfor-
mance, area and bandwidth implications on large-scale
cmp cache design,” Proc. of the 1st Workshop on Chip
Multiprocessor Memory Systems and Interconnects, IEEE
Press, Feb. 2007.

[26] A. Flores, J. L. Aragón, and M. E. Acacio, “An energy
consumption characterization of on-chip interconnection
networks for tiled cmp architectures,” The Journal of Su-
perComputing, Sept. 2008, pp. 341 - 364.

[27] C. J. Hughes, V. S. Pai, P. Ranganathan, and S. V. Adve,
“RSIM: simulating shared-memory multiprocessors with
ILP processors,” IEEE Computer, vol. 35, Feb. 2002, pp.
40–49.

[28] J. M. Tendler, J. S. Dodson, J. S. F. Jr., H. Le, and B. Sin-
haroy, “Power4 system microarchitecture,” IBM Journal of
Research and Development, vol. 46, Jul. 2002, pp. 5–26.

154

