J Supercomput (2018) 74:1836-1862 @ CrossMark
https://doi.org/10.1007/s11227-017-2193-5

Design of an accurate and high-speed binocular pupil
tracking system based on GPGPUs

Juan Mompean'2® - Juan L. Aragén® -
Pedro M. Prieto? - Pablo Artal?

Published online: 17 November 2017
© The Author(s) 2017. This article is an open access publication

Abstract An efficient and robust pupil tracking system is an important tool in visual
optics and ophthalmology. It is also central to techniques for gaze tracking, of use in
psychological and medical research, marketing, human—computer interaction, virtual
reality and other areas. A typical setup for pupil tracking includes a camera linked
to infrared LED illumination. In this work, we evaluate and parallelize several pupil
tracking algorithms with the aim of accurately estimating the pupil position and size in
both eyes simultaneously, to be applied in a high-speed binocular pupil tracking sys-
tem. To achieve high processing speed, the original non-parallel algorithms have been
parallelized by using CUDA and OpenMP. Modern graphics processors are designed
to process images at high temporal frequencies and spatial resolution, and CUDA
enables them to be used for general-purpose computing. Our implementation allows
for efficient binocular pupil tracking at high speeds for high-resolution images (up to
988 fps with images of 1280 x 1024 pixels) using a state-of-the-art GPU.

Keywords High-speed eye pupil tracking - GPU - GPGPU - Image processing -
Real-time systems - Gaze tracking

1 Introduction

Eye and gaze tracking has been a relevant topic for decades, not only providing
key information about eye physiology in vision sciences and ophthalmology but also
enabling a wide variety of applications on both the research and commercial fields.

B Juan Mompedn
juan.mompean @um.es

Dept. Ingenieria y Tecnologia de Computadores, Universidad de Murcia, Murcia, Spain

Laboratorio de Optica, IUiOyN, Universidad de Murcia, Murcia, Spain

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-017-2193-5&domain=pdf
http://orcid.org/0000-0002-0192-2985

Design of an accurate and high-speed binocular pupil... 1837

Examples of such applications include novel human—computer interfaces, virtual real-
ity immersion, remote control of devices, marketing/advertising research or in-vehicle
driving assistance. Although there is a range of radically different approaches to eye
and gaze tracking, optical methods are widely used nowadays because they are non-
invasive and can be inexpensive. Some of the simplest and cheapest techniques rely
on pupil tracking, i.e., on determining pupil position and size in real time.

Pupil tracking is of special interest in physiological optics. Ocular wavefront aber-
ration measurement and manipulation require precise knowledge of the pupil position
since its center is taken as origin of coordinates for expressing the eye’s aberrations.
Early aberrometers required careful alignment of the subject’s pupil and uncomfort-
able methods for head fixation. Instead, current devices typically allow some degree
of free movement and involve a tracking algorithm to determine the instantaneous
pupil position [9]. Even more demanding are the requirements for aberration cor-
rection/manipulation using adaptive optics, since slight misalignment can affect the
coupling between subject’s and induced wavefronts. In this context, a fast and accu-
rate pupil tracking system would be a requirement for a free floating system where
pupil movements are detected and dynamically compensated on the adaptive ele-
ment or using additional components such as galvanometric mirrors. Adaptive optics
visual simulation [34], consisting of the manipulation of ocular aberrations to per-
form visual testing through a modified optics, is a practical application that requires a
high-performance pupil tracking algorithm.

Pupil tracking is typically performed by using infrared illumination. This invisible
light has advantages in terms of subject’s comfort, who would probably be dazzled by
a visible beam of similar intensity. In addition, pupil size does not change with infrared
illumination, which is useful in many experiments. Furthermore, the usage of infrared
light allows to use a filter to reject all the visible light, which is useful to avoid corneal
reflections from the stimulus display. In real-time experiments or measurements, pupil
tracking must be accomplished at a high speed and with high accuracy. While gaze
tracking routines do not typically require high-accuracy pupil determination [14], a
low-precision approach can lead to important errors in the final results in some visual
optics applications.

Several algorithms for calculating the pupil position and size can be found in the
literature and in some cases tailored for a particular optical setup and illumination. We
have selected three of them: (1) the Starburst algorithm [19] which traces a number
of rays that search for large gradient changes (in order to detect the edge of the pupil)
and provides information not only about the pupil size and position but also about its
shape and orientation; (2) an algorithm that thresholds the image and selects a circle,
iteratively searching for the biggest circle [16]; and (3) an algorithm that uses the
resulting edges from a Canny edge detector [7] and then applies the Hough transform
[3] to finally calculate the pupil’s position and size.

These three algorithms, which are further described in Sect. 2, have been paral-
lelized and evaluated in different parallel computing systems, from general-purpose
multicore CPUs to state-of-the-art GPUs, by using OpenMP [29] and CUDA [27]
programming environments. It is important to note that although pupil tracking is
a widely used tool, it is still hard to achieve a high-speed tracking with high-quality
images. This is a challenging problem since accurately tracking the pupil at high speed

@ Springer

1838 J. Mompein et al.

is a computationally intensive task and high-definition images require some prepro-
cessing treatment which is also power demanding. Furthermore, a binocular system is
required to segregate and process two pupils simultaneously. As we will see, the three
evaluated algorithms offer a different pupil detection accuracy depending on the input
image quality and they also present big differences in their computational require-
ments. An exhaustive evaluation of the algorithms has been carried out by covering
a wide range of tuning parameters for each one. Experimental results have shown a
speedup of 57.3 x compared to their corresponding sequential implementation, which
enables a high-speed processing (up to 1260 fps), while not sacrificing detection accu-
racy. (More than 90% of the pupils in the dataset were detected with an error lower
than 6%.)

A preliminary version of a monocular pupil tracking approach was published in
[25]. Compared with that conference version, this paper includes several extensions
and improvements. The pupil size estimation accuracy has been improved by fitting
to an ellipse rather than to a circle (analyzed in Sect. 5.1.1). We have improved the
parallel version of the Starburst algorithm in [25] by introducing a number of addi-
tional optimizations, which are described in Sect. 4.1 and evaluated in Sect. 5. In
particular, we have made use of CUDA streams, have reduced the memory bandwidth
usage, accelerated corneal reflection removal and pipelined different stages of the
pupil detection algorithm, in addition to other improvements such as removing syn-
chronizations, reducing GPU-to-host communication, increasing thread re-usage, or
using the CUDA ballot instruction. Another new contribution has been the extension
of the tracking mechanism to process two eyes simultaneously, developing a binocular
pupil tracking system (as described in Sect. 2.5 and evaluated in Sects. 4 and 5), which
achieves a throughput of 988 fps, despite doubling the computational requirements.

The remainder of this paper is organized as follows: Sect. 2 describes the three
algorithms that have been parallelized and evaluated. Section 3 details the experimental
setup. In Sect. 4, we evaluate the optimizations implemented to accelerate the GPU
code which are later evaluated and analyzed in Sect. 5. Section 6 reviews the most
relevant literature in the field. Finally, Sect. 7 summarizes the main conclusions of the
work.

2 Pupil tracking algorithms: a GPU-based implementation

The first goal of this work is to parallelize several state-of-the-art pupil detection
algorithms. In order to correctly evaluate these algorithms, an exhaustive evaluation
of the parameters of each of these algorithms must be performed. This will allow us
to characterize their performance and achieved accuracy with different settings.

2.1 Preprocessing

The same preprocessing flow has been applied to all of the images in order to perform
a fair comparison of the three algorithms. A set of good quality images, which are in
focus and do not contain significant noise, has been used for the experiments (refer to
Sect. 3 for additional details). However, the images contain corneal reflections added

@ Springer

Design of an accurate and high-speed binocular pupil... 1839

@ (b)

(©) (d)

Fig. 1 a Eye image of a subject with the described illumination setup. b Result of the top-hat filter.
¢ Threshold and dilation filters applied. d Final eye image with the corneal reflections removed

by the infrared LEDs used to illuminate the eye (as it will be explained in Sect. 3).
These reflections must be removed to avoid problems in the pupil detection process.
The chosen algorithm for this purpose was proposed by Aydi et al. [1]. It is a common
approach that applies a top-hat transform, followed by an image thresholding, an image
dilation and, finally, an interpolation of the detected points. An example of the corneal
reflection removal process is shown in Fig. 1.

The mentioned dilation and erosion filters are computationally intensive, and a
naive implementation in CUDA, processing n” elements per output pixel, might not
perform as required. For our implementation, we have used squared kernels, which
are separable filters that can be expressed as the outer product of two vectors. On the
other hand, the thresholding filter is a straightforward operation in CUDA: Pixels with
a value over a threshold are interpolated using the pixels in the border of the corneal
reflection. By weighting the pixel values based on their distance to the replaced pixel,
a smooth result is generated avoiding the creation of new borders inside the pupil.

Finally, although the image is clean, there are still some sharp edges (specially in
the eyelashes) which could lead to wrongly detected points. To remove those sharp
edges, a Gaussian filter is applied (with a kernel size of 5 and a sigma of 2). An imple-

@ Springer

1840 J. Mompein et al.

mentation of the Gaussian filter, with a two-dimensional space domain convolution
processing n> elements per output pixel, is straightforward in CUDA but not very
efficient. To improve its performance, two separable kernels have been used, similarly
to the approach used with the erosion and dilation filters. These CUDA optimizations
are extensively detailed in Sect. 4. A median filter has also been tested as an alterna-
tive for the Gaussian filter. The median filter is usually used to remove noise while
not destroying real information from the image. In our implementation, it selects the
median value of the pixels around each pixel with a chosen radius. In the parallel
median filter implementation, an histogram is used. One thread is used to calculate
the histogram of the pixels around its center and to finally scan the histogram to find
the median value.

2.2 Case 1: thresholding and labeling algorithm

For the first evaluated pupil tracking algorithm, a similar approach to the one pro-
posed by Rankin et al. [31] has been used.! We have, however, modified the original
algorithm to select the biggest blob instead of the central one. Our implementation
uses several threshold values to improve the result. This is parameterized by defin-
ing a minimum and a maximum threshold and a step size. Depending on the chosen
step size, the processing time of the algorithm will vary and also its accuracy. There-
fore, the performance and accuracy achieved by this algorithm are a trade-off: The
faster the less accurate, and vice versa. In our experiments, we have used 20 and
100 for the minimum and maximum threshold values. Step values ranging from 5 to
40 have been tested. After applying the threshold to the image, the labeling process
is carried out. A state-of-the-art labeling algorithm proposed by Chen [8] has been
used which scans the image to find unconnected areas that are assigned a different
label. Figure 2a, b shows both a thresholded image and a labeled image, respec-
tively.

When the image has been labeled, the histogram of the image is calculated to easily
find the biggest labeled area (the one with the maximum value within the histogram)
which corresponds to the pupil. Once the biggest area is found, the image is processed
to remove the rest of areas, as it is shown in Fig. 2c. The final step detects the border
of the labeled area. A simple border location algorithm has been used, which searches
0-value pixels in the image and checks whether the value of any of its eight neighbors
is different than 0. In this case, its position is stored in a list of border pixels.? After
this step, we have located the boundary of the biggest thresholded area of the image,
as shown in Fig. 2d.

The final step of this pupil tracking algorithm consists of performing a RANSAC
(random sample consensus) circle fit to find the pupil position. The points found after
the previous processing of the thresholding and labeling algorithm usually are in the

! Their approach thresholds the image and applies a series of morphological operations to finally select the
central blob.

2 One CUDA thread is launched per each pixel in the image in order to detect the border pixels. Once the
border pixels are detected, they are added in parallel to the list, by increasing a counter with an atomic
operation.

@ Springer

Design of an accurate and high-speed binocular pupil... 1841

(a) (b)

(© (d

Fig. 2 a Thresholded image. b Labeled areas. ¢ Biggest labeled area. d Boundary of the selected area

border of the pupil. However, some of them might be outside or inside the pupil.
Therefore, if all of the points were used to perform a circle fit, the outliers would
distort the result. Alternatively, the RANSAC algorithm uses only a few points to fit a
circle and then checks how many of the points of the whole ensemble are closer than
a given distance to the fitted circle (number of votes). We have used 5 points for the
circle fit and a maximum distance of 2 pixels to accept the vote for a point. The initial
set of 5 points is randomly selected. Generating random numbers is a slow operation,
but they can be generated only once and then be reused for all of the analyzed images,
as described in Sect. 4. Every time that RANSAC is performed, 1024 fits are calculated
using 1024 sets of 5 points. The sets are generated by multiplying the random numbers
(in the range from 0 to 1) by the total amount of points, generating indexes in the array
of points. Then a circle fit is performed for each set of points using the algorithm
developed by Taubin [36]. Afterward, the distances are computed and a reduction
operation is performed to sum up the votes for each circle. Finally, the circle with the
maximum number of votes is selected as the best fit. The process is repeated for all of
the thresholds, and the circle with the largest number of votes is selected as the circle
that represents the pupil.

@ Springer

1842 J. Mompein et al.

2.3 Case 2: Starburst algorithm

The second pupil detection algorithm is called Starburst and was proposed by
Dongheng and Parkhurst [19]. It is based on the fact that the pupil border is usu-
ally the place with the biggest gradient values. This algorithm is very sensitive to the
corneal reflections, so the preprocessing step for removing them (as already explained
in Sect. 2.1) is crucial.

After removing reflections, the Starburst algorithm is used to iteratively search
for the pupil. The algorithm needs a starting central point for the search. For exam-
ple, in a live capture, the previous center is used, which significantly speeds up the
search and sometimes increases the accuracy. Otherwise, the center of the image is
typically selected. A variable number of rays (we have used 20) are launched from
the center to the limits of the image. Each ray is projected in a different direction,
dividing a circle in equal portions, and using the pixels along its direction to calculate
a gradient. This gradient is later inspected to search for the first value higher than a
threshold (i.e., a high gradient change) which is interpreted as a potential pupil bor-
der. The result of each iteration is the set of potential border points found along the
rays.

Initially, the rays’ directions need to be obtained, and each direction is calculated
by a CUDA thread. Then, for each ray one thread is issued per pixel along the ray to
calculate the gradient for that pixel. If the pixel gradient is over a threshold, its position
in the ray is stored using the atomicMin CUDA operation. Therefore, the closest point
to the origin of the ray is saved (Fig. 3a). In a second stage of the Starburst algorithm,
the set of border points are used to create new outgoing rays within an arc of £ 50°,
instead of the 360° used in the first stage, toward the center (Fig. 3b, ¢). The purpose
of limiting the angle to &= 50° is to force finding new border points on the opposite side
of the pupil. For the second stage, the parallelization is performed by using different
CUDA threads in a similar way as for the first stage.

Finally, the border points found in both stages are joined (Fig. 3d) and the same
RANSAC circle fit is performed, as described for the previous thresholding and label-
ing algorithm. Note, however, that in the original Starburst algorithm, the average
location of the points was used as the convergence criteria, while our implementation
utilizes a RANSAC circle fit because of its faster convergence. To this end, the distance
between the new center and the old one is calculated, stopping if closer than 10 pixels.
Otherwise, another iteration is executed (Fig. 3e) until the algorithm converges or a
pre-defined number of iterations are performed.

2.4 Case 3: Canny edge detector and Hough transform algorithm

The last evaluated algorithm uses the Canny edge detector [7] and the Hough transform
[3]. First, the Canny edge detector is applied to the image to obtain the edges (Fig. 4a).
We are particularly interested in the edges of the pupil, which should be quite similar
to a circumference. To that end, the Hough transform is applied to the resulted image
and the best fitting circle is obtained (Fig. 4b). To perform the Canny edge detection,
the image is first smoothed horizontally and vertically with a 1-D Gauss kernel, and

@ Springer

Design of an accurate and high-speed binocular pupil... 1843

(a) (b)

(c) d)

(e)

Fig. 3 aRays are launched from a starting point (blue point). b Second stage’s rays from one of the points
found in the pupil border. ¢ Second stage’s rays from a point outside the pupil border. d Border points after
the first iteration and the center of the best circle fitted with RANSAC (blue point). e Border points after
the second iteration and the center of the best circle fitted with RANSAC (blue point) (color figure online)

then convoluted with the first derivative of a Gauss kernel; all of them are run in the
GPU. Later, the gradient value and direction are calculated using one CUDA thread
per processed pixel in the image.

@ Springer

1844 J. Mompein et al.

(b)

Fig. 4 a Canny edge detector result. b Hough transform result

The Canny edge detector uses two threshold values to process the initial image.
The high threshold value is calculated as the minimum value which is higher than
the 80% of the pixels’ values. To that end, the histogram of the image is needed. The
low threshold value is established at 40% of the high threshold. Then the maximum
gradient value is calculated to normalize the gradients: The maximum reduction is
performed first in shared memory for each block and then in global memory for all
of the blocks. The double thresholding is applied followed by a hysteresis filter to
remove the low values and keep the higher ones. All of these operations are performed
in parallel in the GPU. An example of the output of the Canny edge detector is shown
in Fig. 4a.

The next stage consists of applying the Hough transform. Since only a small fraction
of the pixels in the resulting image are edges, it isn’t necessary to test all of them. To
reduce the amount of computation, an array of edges is initially built. One CUDA
thread is launched per pixel of the image; if it is part of an edge, it is added to the
array. Then the edge pixels vote for the different radii. The amount of memory allocated
for voting depends on the number of radii tested and the size of the image. Each pixel in
an edge votes by increasing the value at the locations which are at a distance r (current
radius). While voting for all the pixels at a distance » would be the best approach, itis a
very expensive operation. To reduce the cost of the voting process, a step parameter is
used to define the distance between each of the pixels sampled. Several threads work
on parallel on each edge pixel, voting for different radii. After the voting is finished
the best center and radius is found by searching for the maximum in the voting data
structure.

2.5 Binocular pupil tracking

For some visual optics applications, both pupils need to be tracked. To that end,
we have developed a binocular system capable of tracking both pupils simultane-

3A parallel maximum search has been performed using the Thrust library [4].

@ Springer

Design of an accurate and high-speed binocular pupil... 1845

ously. Our approach assumes that both pupils are in the same image. Therefore, for
evaluation purposes we have created a dataset of binocular images by duplicating
each pupil from the monocular dataset. Note that since we are using one single
image containing two pupils, the preprocessing stage is shared by both pupils and
so not incurring in additional computational needs provided that the image size is not
changed.

In our evaluation, only the Starburst algorithm has been tested with the binocular
approach, as we will explain in Sect. 5. The algorithm has been modified accordingly
so that each pupil is searched independently, assuming there is one pupil on the left
half of the image and the other is on the right half. The algorithm takes this new
scenario into account when it is launching the rays for searching the pupil borders. In
particular, we need to provide the starting points for the left and right halves of the
image, and use the correct image width for each pupil.

3 Experimental framework

There are many lighting configurations which might be used for a pupil tracking sys-
tem; our particular approach consists of a set of infrared LEDs and a camera focusing
atthe eye (Fig. 5a, b). The optical setup in the figure appears more complicated because
there are extra optical elements, not related to our pupil tracking system, because that
setup was used for another optics experiment for locating the achromatizing pupil
position and first Purkinje reflection in a normal population [22]. The high-speed
camera can be seen at the end of the setup, whereas the ring of LEDs is closer to
the eye of the subject. The subject sits in front of the camera and stays there, while
the pupil is tracked. The tracking process can be done in real time or off-line if a
video is captured. An image of an eye captured with this setup is already shown in
Fig. la.

Two lighting modes are available; either half circle or the whole circle of LEDs
can be turned on. The semicircular set of LEDs generates corneal reflections that
appear as bright spots inside the pupil; however, using the full circle of LEDs
would have added an artificial illuminated circle to the images that could lead to
an increased number of false positives. We have opted for the semicircular ring
of LEDs which produces a more homogeneous illumination to later eliminate the
corneal reflections in the preprocessing stage, as explained in Sect. 2.1 and shown in
Fig. 1.

The GPU used for testing the CUDA programs is a high-end NVIDIA GeForce
GTX 980, with 2048 CUDA cores and 4GB of main memory. The CUDA version
used to compile the code is CUDA 8.0. For the OpenMP experiments in a traditional
CPU, we have used an Intel i5-4690 (up to 3.9 GHz) processor with 4 physical cores
and 16 GB of 1600 MHz DDR3 RAM (dual channel). The compiler used is gcc-7 with
the flags -O3 and -fopenmp.

Pupilimages dataset The evaluation was performed using 964 pictures of 1280 x 1024
pixels taken with the described optical setup from 51 different subjects. The dataset
contains pupils with a wide variety of radii, ranging from 1.66 to 4.28 mm, with a
mean of 3.21 mm. Furthermore, the images in our dataset have different illumination

@ Springer

1846 J. Mompein et al.

(a) (b)

Fig. 5 a Optical setup for pupil tracking. b Infrared illumination subsystem

Occurrences
N
o
T

Pupil diameter (mm)

Fig. 6 Histogram of the different pupil sizes in the evaluated set of images

intensities and include pupils with a high variety of shapes since they belong to different
subjects. In order to have a reference of the correct pupil position and size for each
image in the dataset, they have been manually processed. Five points are selected in
the border of the pupil, both a circle fitting and an ellipse fitting are performed and
the result is saved as the reference. Figure 6 shows a histogram of the different pupil
sizes found in the dataset.

@ Springer

Design of an accurate and high-speed binocular pupil... 1847

" OpenMP memm—
CUDA monocular s
40 | CUDA binocular ===

10} 92

2 S
o /7@ /(/ {’e
PR ,, C &5 s, o, 9,
"’eg% s, ”s@ “f Do % % 0%, °<~Z7: 5

Fig. 7 Speedup of the parallelized Starburst algorithm by using OpenMP, CUDA monocular and CUDA
binocular approaches (over sequential version)

4 Optimizing for high-speed pupil tracking

In order to use the huge computing power available in modern GPUs, a powerful
programming language is required. CUDA was created to enable programmers to use
all the hardware capabilities of the GPUs. However, while a naive implementation of
an algorithm in CUDA might provide a reasonable performance gain, additional and
careful algorithm optimization must be carried out in order to achieve a much better
and significant speedup. The following paragraphs explain the different CUDA opti-
mizations that have been applied to the pupil tracking algorithms. As a quick reference,
in Fig. 7 we show the speedup obtained by the Starburst algorithm for each CUDA
optimization with respect to the sequential version in a high-end CPU for both the
monocular and binocular datasets. The sequential version uses the OpenCV library
(version 3.3.1) to perform the preprocessing tasks. OpenCV is a high-performance
computer vision library which uses vector instructions in some of its functions [6].
For comparison purposes, we have also included numbers for an OpenMP imple-
mentation running in a multicore CPU (details shown in the previous section). Note
that CUDA optimizations have been applied in a cumulative way since while each of
them independently would not produce a big performance impact, however, altogether
significantly reduce the global execution time. Furthermore, the reported speedups
include the communication time required to copy the images and the results between
the host and the GPU.

OpenMP implementation There are several loops where OpenMP has been used. The
pragma omp parallel for has been used in the top-hat transform, the dilation, the
thresholding, the corneal reflection removal and in the RANSAC circle fitting. Those
are the loops where most of the execution time is spent and benefit the most from
parallelization. The achieved speedup for a varying number of threads is shown in
Fig. 7.

Naive CUDA implementation A naive CUDA implementation directly maps the C
code into CUDA. While the code is not optimized, however, some good practices
are still followed: Unnecessary memory copies are avoided, intrinsic functions are
preferred (high precision is not necessary) and optimal block sizes are selected. This
implementation uses the NPP (NVIDIA Performance Primitives) for performing the

@ Springer

1848 J. Mompein et al.

preprocessing operations: erosion, subtraction, dilation, thresholding and Gaussian
filter. The naive implementation for the monocular setup achieves a tracking speed
of 21 fps and a speedup of 1.0 x (1.3x for the binocular setup) over the sequential
version.

Custom preprocessing kernels Even though the NPP are highly optimized, still it
is possible to improve their results with a custom implementation. This is due to
the abstractions used in the NPP: We can avoid memory accesses and implement
some optimizations by developing a tailored implementation. We have replaced all the
functions used from the NPP (erosion, subtraction, dilation, thresholding and Gaussian
filter) with our own kernels obtaining a significant improvement in the processing
speed. The implementation for the monocular setup achieves a tracking speed of 38.6
fps and a speedup of 1.8 x (2.3 x for the binocular setup) over the sequential version.

Pre-calculating random numbers Random numbers are used in the RANSAC method.
They are generated with the cuRAND library [10] and scaled to match the range
of the number of points previously found. However, generating random numbers is
a computationally expensive task that should be avoided whenever possible. In the
naive implementation, new sets of random number are calculated every time that the
RANSAC is performed, leading to a poor performance. However, due to the changes in
the points found in the border of the pupil between iterations the same random points
can be pre-calculated and reused through the whole execution. Since the amount
of points found is unknown before running each iteration, the random numbers are
generated between 0 and 1 and later scaled between 0 and number_of _points. After
removing the generation of random numbers off the main loop and pre-calculating
them at the beginning, the tracking speed is increased to 62.4 frames per second and
the speedup over the sequential version raises to 2.8 x (3.7 x for the binocular setup).

Separable preprocessing kernels The erosion, dilation and gaussian filter operations
are performed with a two-dimensional k x k filter in the naive implementation. As
a result, they generate a large number of load operations that saturate the memory
system while not fully utilizing the CUDA cores. Although newer GPUs implement
bigger caches that partially mitigate this problem, it s still possible to highly reduce the
required memory bandwidth by dividing the kernel into two one-dimensional kernels.
These three preprocessing operations can be divided into two kernels reducing the
memory loads of each thread from k x k to 2 x k. And so only an intermediate buffer,
which can be pre-allocated, is needed. After applying this optimization, the frames per
second are dramatically increased to 203.2 and a huge speedup of 9.2 x is obtained
(11.0 x for the binocular setup).

Preprocessing kernels with shared memory The previous optimization (separable ker-
nels) has greatly reduced the memory bandwidth used by the preprocessing operations.
However, there is still room for improvement in those kernels. Most of the pixels loaded
by each thread are also loaded by others threads in the same block, so it is a good idea
to preload the data once to shared memory [30] and do the calculations accessing the
much faster shared memory. After adding the shared memory to the three preprocess-

@ Springer

Design of an accurate and high-speed binocular pupil... 1849

ing operations, the frames per second are increased to 257.9 and the speedup over a
single CPU raises to 11.7 x (13.6 x for the binocular setup).

Pre-allocate memory The allocation of the memory in the GPU is a very slow operation,
so whenever possible memory should be reused. In the naive implementation, the
memory is allocated for each image or even for each iteration of the Starburst for
some variables that may slightly change its size through iterations. However, the size
of those structures is known, so they can easily be pre-allocated when the execution is
started and reused while processing the images. After applying this optimization, the
obtained number of frames per second is 378.8 and the speedup increases to 17.2 x
(19.0 x for the binocular setup).

Pinned memory The images must be copied from host memory to device memory;
however, memory copies between them are relatively slow. Furthermore, the amount of
time spent processing an image after applying the previous optimizations has decreased
a lot, and the overhead due to the memory copies has increased its weight. More than
25% of the processing time is spent copying the images to the GPU. Each image is
only copied once, so this cannot be reduced. However, using pinned memory instead
of virtual memory the time spent copying the images could be reduced. When some
data are copied to the GPU using virtual memory, it must be copied first to a pinned
memory buffer. Therefore, if pinned memory is used from the beginning one copy is
avoided. After switching to pinned memory, the number of frames per second obtained
is 428.6 and the speedup raises to 19.5 x (21.2 x for the binocular setup).

Reduction with shuffle instructions To find the best fitting circle from all of the fitted
circles using the randomly selected points, a reduction is performed to sum up the votes
from every point. This reduction is performed in parallel for over 100 points for the
1024 circles. The naive approach, which uses an atomicAdd operation, is very slow.
(Note that in the naive implementation we were using a typical approach using shared
memory [13].) However, shuffle instructions provide a significant improvement for this
stage, although as the time spent in the reduction operation is low, the global speedup
is modest. Shuffle instructions enable CUDA threads within the same warp to send
data to each other directly; therefore, the communication overhead of other approaches
such as atomic operations or the use of shared memory and synchronization is highly
reduced. The number of frames per second raises to 449.4, while the achieved speedup
increases to 20.4 x (22.0 x for the binocular setup).

Joining kernels Programming abstractions are useful to simplify the code and improve
legibility; however, they can affect the performance. In this case, there are three oper-
ations where separating the functionality has resulted in repeated accesses to memory
and, as a consequence, wasted execution time. These three functions are: the last part of
the top-hat function (second step dilation and subtraction) and the thresholding filter;
generating gradients and searching the border points in Starburst; and the RANSAC
with the reduction operation. These three functions share the same pattern: They are
accessing the data generated from the previous one. After joining them into a single
kernel, they avoid the storage of data in the (slow) global memory to be later re-loaded

@ Springer

1850 J. Mompein et al.

and reused by the following step. After this optimization, we achieve 512.6 fps and a
speedup of 23.3 x (25.2 x for the binocular setup).

Template unrolling Templates can be used to implement generic programming, but
they are also very useful to enable compile time optimizations. They are supported by
CUDA, and we have used them to parameterize some loops. After the use of templates
for the gaussian, the erosion and the dilation filters, the radius of these convolutions
can be parameterized enabling the compiler to apply loop unrolling for these functions.
However, templates reduce the flexibility of the code, since only the values specified
at compile time can be used. To increase the number of allowed values, a switch
with different radius sizes has been added to the kernels to keep a small amount of
flexibility. Unrolling the loops avoids checking for each iteration the loop’s termination
condition, thereby reducing some time. The number of frames per second raises to
530.3 and the achieved speedup to 24.1 x (26.6 x for the binocular setup).

4.1 Additional CUDA optimizations for Starburst

Asynchronous computing with CUDA streams Usually, the biggest advantage when
using CUDA streams is the ability to run several small kernels in parallel. However,
this is not always possible due to inter-dependencies between kernels. This is the
particular case of the Starburst algorithm, although it is still possible to run in parallel
some stages such as the initializing portion of the algorithm. For example, we have
used CUDA streams for calls to the cudaMemsetAsync function in order to initialize the
memory used for storing the located pupil border points. But there are other advantages
when using CUDA streams. In particular, the overhead of launching the kernels is
significantly reduced due to the fact that they can be launched, while the previous
kernels are still running, and so almost hiding the launching time overhead. After
applying this optimization, the number of frames per second raises to 629.4 and the
speedup to 28.6 x (30.3 x for the binocular setup).

Reducing memory bandwidth usage We are working with 8-bit grayscale images;
however, we were using 32-bit integers for storing each pixel. Since the memory
bandwidth for the GPU is a scarce resource, we should try to reduce its usage as much
as possible. Simply by changing the data type of the image pixels from integer (as we
were using in [25]) to byte, the bandwidth is reduced to one-fourth for many memory
operations. The resulting frames per second raises to 667.9 and the speedup increases
to 30.4 x (31.7 x for the binocular setup).

Enabling fast math Even though modern GPUs implement high-performance floating
point units, they still perform worse than integer operations and might be avoided at
the expense of losing some accuracy—if we seek a high-performance implementa-
tion and the loss of accuracy can be afforded. Although our Starburst implementation
uses single-precision floats for a few operations (calculating rays’ directions, circle
fitting, ellipse fitting and the Gaussian filter), there is still room for improvement.
In CUDA, some single-precision mathematical functions can be translated into tran-
scendental functions [20] (e.g., sine, logarithm and exponential). These functions are

@ Springer

Design of an accurate and high-speed binocular pupil... 1851

faster but less accurate than the standard ones, and they can easily be switched on
or off using the -use-fast-math compilation flag. There is another math optimization
that can be used. In particular, calculating the second power of a number using the
pow function is less efficient than simply multiplying a number by itself, and this
is a common operation in our algorithm. The number of frames processed per sec-
ond raises to 677.9 and the speedup obtained is 30.8 x (33.1 x for the binocular
setup).

Avoiding corneal reflection interpolation As explained before, the corneal reflection
removal stage is crucial for the Starburst algorithm to accurately locate the pupil. But
it is a relatively expensive task in terms of processing time. Fortunately, it is possible
to significantly speed it up. While the straightforward approach simply replaces the
pixels in the detected reflections with interpolated values and continues searching for
a high gradient change along a ray, using the interpolated values, a more effective
approach consists of ignoring the whole corneal reflection area during the searches
of the gradient, avoiding a lot of useless computation. In order to implement this
approach, a new data structure for storing the affected areas is created. This data
structure is used to check whether the current pixel along a ray is inside or outside a
corneal reflection. The resulting amount of frames per second is 725.7 and the new
speedup is 33.0 x (34.6 x for the binocular setup).

Removing synchronizations While the implementation of the preprocessing filters we
used for the monocular version in [25] was highly optimized, some additional per-
formance gain can be obtained by reducing the synchronization required to perform
each operation. In [25], the shared memory was initialized to a given value which
was later overwritten with the values loaded from the image. The purpose of initial-
izing the shared memory was to fill with valid values positions that could be outside
of the image. However, the initialization can be replaced with a test to determine
whether a given position is inside or outside of the image. With this test, a call to the
__syncthreads() function can be eliminated and some time is additionally saved due to
the more efficient usage of the already limited GPU shared memory. The new amount
of frames per second is 740.4 and the speedup obtained is 33.7 x (35.3 x for the
binocular setup).

Reducing device-to-host communications In [25], the selection of the best circle fit
was divided in two steps, requiring two memory copies and two synchronizations
in the host: Firstly, the index of the best circle fitting was found and copied to the
host, and secondly, the best circle fitting itself was copied to the host. This operation
can be optimized if the kernel in charge of selecting the best fitting copies it to a
given memory address that is known by the host. Therefore, only one copy and one
synchronization are required. After removing this extra communication, the amount
of frames processed per second raises to 747.4, whereas the new speedup to 34.0 x
(37.2 x for the binocular setup).

Increasing thread re-usage Depending on the amount of work assigned to each thread
sometimes, it is useful to reuse the same thread to process several elements instead of
launching one thread per element. We have opted for this approach when the rays are

@ Springer

1852 J. Mompein et al.

Stream 1 Preprocessing image

Stream 2 Memset Memset

Stream 3 Memset Memset

Stream 4 Stage 1 [IiStage2l RANSAC Stage 1 [IStagel2l RANSAC
Stream 5 Stage 1 [INISEagel2ll RANSAC Stage 1 [INSEagel2liill RANSAC
Stream 6 Memset Memset

Stream 7 Memset Memset

Fig. 8 Kernel execution overlapping when searching for two pupils in parallel

launched and inspected for locating the pupil border. In the previous approach, each
thread was restricted to process only one pixel, while in the current implementation
each thread is able to process several pixels. Only a small increase in the amount of
frames per second is achieved with a final number of 753.0, and a speedup of 34.2 x
(37.5 x for the binocular setup).

Reduction with the ballot instruction While performing a reduction with the CUDA
shuffle instruction is a very fast approach (as seen in the previous subsection), there
is a more efficient method for counting votes (which is the last step of the RANSAC
operation). The CUDA ballot instruction sets the ith bit of a given integer to 1 when
a thread is active and the value provided to ballot is different than zero. An integer
mask is returned per each warp. Therefore, counting the bits set to 1 in that mask (with
the __popc instruction) will return the number of votes obtained in the warp. Still the
votes from every warp need to be added up, but using an atomicAdd at this level is not
a bottleneck. After applying this optimization the number of frames per second raises
to 760.2 and the speedup to 34.6 x (37.5 x for the binocular setup).

Using CUDA streams for binocular images In the binocular version, the search of the
left and right pupils is completely independent and can be done in parallel. To increase
the parallelism, we have made use of CUDA streams since they allow to concurrently
run several kernels. Obviously, these kernels cannot have any dependency among
themselves or they will have to be executed sequentially. Additionally, some time is
saved because some cudaMemset calls that were previously performed sequentially
have been replaced with the cudaMemsetAsync function, and so they can be executed
in parallel with other computation or among themselves. Furthermore, some extra
time is additionally saved due to the cudaLaunch calls overhead being completely
hidden by computation. To better illustrate this effect, a simplified execution timeline
is shown in Fig. 8. All the kernels (shown as different stages) run concurrently for both
pupils, and only two explicit synchronizations on the host code are mandatory. The
first synchronization is for testing that some points were found in the image. And the
second synchronization is for copying the best circle of each iteration to the host to test
if the termination condition is met. After applying this optimization to the binocular
setup, the number of frames per second raises to 689.8 and the speedup to 40.8 x.

Pipelining pupil tracking A similar approach as before can be done at a higher level,
when a flow of images is considered for pupil tracking. Some systems are designed

@ Springer

Design of an accurate and high-speed binocular pupil... 1853

stream 1 [MEREpyNHECD Search pupil

Stream 2 Memcpy HtoD Search pupil

Stream 3 Memcpy HtoD Search pupil

Stream 4 Memcpy HtoD Search pupil

Stream 5 Memcpy HtoD Search pupil

Fig. 9 Pipelining pupil tracking: overlapping computing stages with memory/communication phases

for achieving a low latency, while others are designed for obtaining a high through-
put. So far we have optimized our pupil tracking system for a reduced latency, taking
into account one single image. A different approach can directly focus on increasing
the overall throughput of the real-time system even though the latency of processing
an individual image may slightly increase as a side effect. This can be achieved by
pipelining the whole algorithm and taking into account that our pupil tracking system
is intended not for processing a single image but a real-time flow of images. Figure 9
illustrates how a classical pipelining approach has been applied to our process, effi-
ciently overlapping different and independent computing stages and also overlapping
computing with communication phases.

As the images are completely independent from each other, they can be processed
in parallel. Thus, while one image is copied to the GPU, the previous one is processed,
efficiently overlapping computation with memory operations. Note that we have also
overlapped the different computation stages of several images. As a result, the usage
of the GPU has increased and the throughput is maximized, although the latency of
processing each image has increased. To enable this approach, it is necessary to use
either dynamic parallelism in the GPU or several threads in the CPU. We have decided
to implement it using dynamic parallelism in the GPU. The key is being able to launch
several memcpys and several kernels for searching the pupils without waiting for the
previous one to finish. As we have explained before, in the standard implementation
there are a couple of mandatory synchronizations on the host side. Thus, it was not
possible to launch several kernels for processing different pupils without waiting for
the previous ones to finish. However, if the processing loop is encapsulated within a
single kernel that copies the result to a given memory address, several kernels can be
launched in parallel. Dynamic parallelism enables this approach because it allows new
kernels to be launched from kernels that are already running in the GPU, so we only
need to add a wrapper kernel to the processing loop. After applying this optimization
the number of frames per second raises to 1260 and the speedup to 57.3 x (988 fps
and 58.5 x for the binocular setup). Since the achieved performance depends on the
number of streams used, its effect will be further analyzed and discussed in Sect. 5.1.2.

5 Accuracy and performance evaluation
5.1 Starburst algorithm evaluation

The accuracy of the Starburst algorithm for several image preprocessing configurations
is shown in Fig. 10a. A deep exploration of the parameter space has been carried out,

@ Springer

1854 J. Mompein et al.

100 T T Fr o reflections 25, median 7 m—
90 nag'é‘?:;—f reflections 19, median 7 m——
80 B ZC g g mmEaEEEEEN reflections 19, Gaussian (5, 2) =

reflections 13, median 11 ===
70 W”% reflections 13, median 7 3
60 reflections 13, Gaussian(5, 2) 1

reflections 25, median 7 —8—
40 - reflections 19, median 7 —-©&--
30 reflections 19, Gaussian (5, 2) —&—
20 - reflections 13, median 11 —s—
reflections 13, median 7 —o—

re‘flecti?ns 1‘3, Ga\‘Jssial‘w(S, 2‘) —I‘—

10000
1000

Accuracy %
1%,
o
T

0 1 1
0 2 4 6 8 10 12 14 16 18 20

Margin of error %
(a) (b)

Fig. 10 a Starburst’s accuracy for different configurations. b Starburst’s performance for the same config-
urations

1
Frames per second

CPU GPU

but for the sake of visibility we only report here six representative configurations. Two
of the selected configurations use a Gaussian filter with a kernel size of 5 and a sigma
of 2, whereas four of them use a median filter with a kernel size of 7 or 11. The size
of the corneal reflection removal kernel is also specified, with values between 13 and
25.

The accuracy of a pupil detection algorithm is measured as the percentage of images
where the center and radius have been found within a given margin of error with respect
to the correct position and size. For example, if the error in the calculated radius is
0.1 mm, whereas the error in the center is 0.05 mm, and assuming a pupil radius of
2 mm, then the relative margins of error are 5 and 2.5% for the pupil radius and the
center, respectively. For our evaluation report, the biggest error is always used (5% in
the previous example).

In Fig. 10a, the six configuration legends are ordered from more to less accurate.
It can be observed that for the three first configurations more than 85% of the images
detected with an error under 5% and also more than 95% of images detected with
an error smaller than 10%.* To complement the accuracy evaluation, a performance
comparison is shown in Fig. 10b for the same configurations. Clearly, using the median
filter is slower than using the Gaussian filter due to the different performance of both
methods, while a similar accuracy is achieved. Therefore, considering both accuracy
and performance metrics, the best configuration was [reflections 19, Gaussian(5,2)]
reporting an average of 1260 frames per second.

5.1.1 Ellipse versus circle fitting

As cited earlier, the form of the pupil varies significantly from subject to subject.
Although it can be effectively approximated by a circle, it is more precisely approxi-
mated by an ellipse [38]. As we are developing a high accurate pupil tracking system,
we have evaluated both cases.

In order to measure the accuracy of both approaches, all the images in the dataset
have been manually fitted to an ellipse in the same way they were manually fitted

4 Note that for the average pupil in the dataset (the average radius is 3.21 mm) a relative error of 5% will
translate into an absolute radius error of 0.16 mm.

@ Springer

Design of an accurate and high-speed binocular pupil... 1855

100 T T T T .. 1 T T T T T T
90 1400 | Ellipse fitting m——
=] Circle fitting C———J
80 A S 1200 | &
Q O
i 70 .4 0 1000 |-
g% $ 800 |-
2 50 7/ g
3 40 A @ 600
|}
< ;g E 400
Ellipse —&— | T+ 200
10 /4 Circle —x—1 =
0 Il Il Il Il 0
0 2 4 6 8 10 1 2 3 4 5 6 7 8 9
Margin of error % Number of streams
(a) (b)

Fig. 11 a Accuracy of circle fitting versus ellipse fitting. b Performance of circle fitting versus ellipse
fitting with varying number of streams

to a circle previously. Figure 11a shows a comparison of the accuracy of both circle
and ellipse fittings. The overall accuracy is similar, and as we relax (increase) the
margin of error, more pupils are successfully detected within a lower margin of error
for the ellipse fitting than for the circle fitting, which makes the former a more accurate
approach at the cost of some performance degradation.

As expected fitting to an ellipse is more computing intensive than fitting to a circle.
As a result, the performance of pupil tracking is reduced when the ellipse fitting is
used, as it is shown in Fig. 11b. We also evaluate here the impact of using a different
number of CUDA streams (as explained in 4.1). In general, it can be seen that using
the ellipse fitting degrades performance in an absolute number of around 60 fps (on
average) regardless of the number of CUDA streams used. This represents less than
5% of performance degradation (in terms of fps) that could be tolerated in case the
extra accuracy is required.

5.1.2 Pipelining evaluation

As illustrated in Fig. 9, the pipelined implementation for processing the pupil images
can be configured with a varying number of CUDA streams. In the non-pipelined
implementation, where a single image was processed at a time, the kernels were
launched from the host (the CPU). Alternatively, in the new implementation several
images are processed concurrently and the kernels are launched from the device (the
GPU). Since CUDA version 5.0, it is possible to launch new kernels from the device
itself using what NVIDIA refers to as dynamic parallelism. While this feature is
intended to dynamically change the amount of threads working in some data, it has
another interesting use case. In particular, it can be used for wrapping several calls to
kernels, memcpys and/or synchronizations into a single kernel to be run individually.

In the previous non-pipelined Starburst implementation, we couldn’t start process-
ing one image until the result of the previous one was copied to the host and the
convergence criterion was met. However, the new implementation using dynamic par-
allelism can process in parallel as many images as needed without waiting for the
convergence criterion because this is now tested by a CUDA thread, so no synchro-

@ Springer

1856 J. Mompein et al.

100 T T T T T T T T&L step 5 mmmm

90 T&L step 10
I Y RHHKHHKHRK T&L step 20 ——
o 8o T&L step 40 C——1
X 70
M“D
g 60 &//C/‘(T 1000
2 s0 VAR af S
3 40 9 100 .
£ 30 [o T&Lstep5 —— 4
20 /o Telstep10 —x— | & 10
)f/ T&L step 20 —x— 0
10 4 o
T&L step 40 —e— € 1k
0 Il Il Il Il Il Il Il Il Il
0 2 4 6 8 10 12 14 16 18 20 g 0.1
Margin of error % CPU GPU

(a) (b)

Fig. 12 a Thresholding and labeling accuracy for different step sizes. b Thresholding and labeling perfor-
mance for the same step sizes

nization is required on the host side. Still, the new pipelined implementation adds
some overhead, and therefore, the speed is slightly reduced if only one stream is used.

Figure 11b shows the results of running the pipelined implementation with different
amounts of CUDA streams, ranging from 1 to 9. As it can be observed, the maximum
rate achieved by the circle fitting version is 1260 fps (a speedup of 57.3 x), while the
ellipse fitting version achieves 1180 fps (a speedup of 53.6 x). Note also that in the
non-pipelined GPU version 33% of the time is used for transferring the images from
the host to the device; therefore, the pipelined version is expected to achieve at least
50% more frames per second due to overlapping memory copies with computation.
Furthermore, the throughput has been increased by an additional 17% due to the benefit
of overlapping the computation of different stages for different images, in addition to
hiding the overhead of launching kernels and memory copies, as illustrated in Fig. 9.

5.2 Thresholding and labeling algorithm evaluation

The accuracy of the thresholding and labeling algorithm (referred to as T&L in
Fig. 12a) is quite good taking into account that this algorithm is very sensitive to over-
lapping of the eyelids and eyelashes. In particular, it is able to achieve an accuracy
over 90% for small steps within a reasonable margin of error. However, its accu-
racy decreases as the step size parameter is increased. As expected, the performance
(Fig. 12b) is directly related to the step size parameter: An increase in the step size
results in a reduced execution time because it decreases the number of iterations of
the algorithm. Moderately high speeds are achieved with a step size of 20 and 40 (61
and 121 fps, respectively). After examining the accuracy and the performance of the
T&L algorithm, it is clear that there is a trade-off between them both. Increasing one
will decrease the other, so a balance must be found.

5.3 Hough transform algorithm evaluation

The Hough transform algorithm turns out to obtain very accurate results (Fig. 13a).
Different configurations have been tested changing the amount of pixels voting for each

@ Springer

Design of an accurate and high-speed binocular pupil... 1857

Hough transform Step 18°

Hough transform Step 92
Hough transform Step 6° =
Hough transform Step 4.5¢ ———
Hough transform Step 3.62]
2
5 100
Hough transform Step 182 —+— 8
Hough transform Step 9¢ —e— o110
Hough transform Step 62 —x— _| [}
Hough transform Step 4.5¢ —&— Q. 1
‘ Hough transform Step 3.60 —&— i 4
£
0 2 4 6 8 10 12 14 16 18 20 © 0.1
Margin of error % w CPU GPU
(a) (b)

Fig. 13 a Hough transform accuracy for different step sizes. b Hough transform performance for the same
step sizes

position and radius. In particular, we have tested the following five configurations: One
pixel tested every 18°, every 9°, every 6°, every 4.5° and every 3°. Depending on the
step size parameter, the accuracy and performance are either increased or decreased. As
expected, the best accuracy is achieved by the configuration with the smallest step and
vice versa. Despite its accuracy, it is a very slow algorithm, as it is shown in Fig. 13b.
The Hough transform requires a huge computing power because it is checking all
the possible radii for all the pixels in the image (refer to Sect. 2.4 for the algorithm
details). Again, the performance depends on the step size used, and as expected the
configurations with bigger step sizes are faster than those with smaller step sizes (with
a performance ranging from 15 to 23 fps).

5.4 Side-by-side comparison of the three algorithms

A side-by-side comparison of the accuracy (Fig. 14a) and the performance (Fig. 14b)
helps to understand how well the three algorithms behave. For the sake of simplicity,
only the best configuration for each algorithm is shown. For Starburst, a corneal
reflection removal kernel of size 19 and a Gaussian filter of size 5 and sigma 2 are used.
For thresholding and labeling, a step size of 20 is chosen. And for Hough transform,
a step size of 3.6° has been used.

If both metrics, performance and accuracy, are used to compare the three algo-
rithms, it stands out that the best overall algorithm is Starburst. Its accuracy has been
measured to be really high, with 96.2% of the pupils detected within a margin of
error of 10%. Although the Hough transform is just slightly better (96.4% of the
pupils detected within a margin of error of 10%), it exhibits a extremely low per-
formance (15.3 fps) making it unusable for real-time applications. Contrarily, the
Starburst algorithm achieves 1260 fps for the mentioned accuracy. On the other hand,
the threshold and labeling algorithm is much worse in terms of accuracy with 78.5%
of the pupils detected within a margin of error of 10% (although other configura-
tions of the T&L have shown a higher accuracy, again, at the cost of degrading too
much the performance) and also worse in terms of performance when compared to
the Starburst, achieving only 61.9 fps. Summarizing, the GPU-accelerated version of

@ Springer

1858 J. Mompein et al.

100 == 10000
* CPU
90 o
80 > U oo S TY) . GPU 1]
X 70 / X o
> 60 | e Y100
9 / 9] [
© 50 o
5 ¥/ o 10 1
o 40 o
g 30 I €
20 L Starburst, reflections 19, Gaussian (5, 2) —&— _| © 1
Hough transform Step 3.62 —¥— L
10 T&L steps of 20 —x— 7 0.1
0 . . : : . . : : . Starburst Hough T&L
0 2 4 6 8 10 12 14 16 18 20 transform
Margin of error %
(a) (b)

Fig. 14 a Accuracy comparison of the 3 algorithms. b Performance of the 3 algorithms using a resolution
of 1280 x 1024

Starburst, after applying all the CUDA optimizations discussed in this work, is by far
the fastest approach while exhibiting a high accuracy.

6 Related work

GPU processors are used nowadays for an increasingly number of applications. As
expected, some works are related to pupil tracking on GPUs. Mulligan was the first
to develop a GPU-based implementation of a pupil tracking algorithm [26]. It was
a simple algorithm using a threshold for determining whether a pixel belongs to the
pupil or not. Then, the center of mass of the pixels believed to be inside the pupil
is calculated. Furthermore, only a relatively small region of interest of 192 x 192
is used (the total size is 640 x 480) for calculating the center of mass. Finally, a
test is performed to accept or discard the ROI as an acceptable pupil. However, this
approach may have problems to find the pupil when the eyelashes are partially hiding
it or when there are big corneal reflections inside the pupil. The speed achieved by this
implementation was quite outstanding when the paper was published, and it managed
to process up to 250 fps for low-resolution images.

Another approach was proposed by Borovikov, a GPU-based implementation of an
algorithm designed for color images [5]. A custom blob detector is used for searching
the pupil. It is an iterative method, which assumes that the pupil is a dark blob close
to the image center. A weighted center of mass is calculated during each iteration. In
order to calculate the center of mass, only the pixels inside of a given radius around the
previous center of mass are used, and the darker the pixels, the more the weight they
are assigned. The termination condition evaluates the distance between the current
center of mass and that from the previous iteration, checking whether the difference
is smaller than a given threshold. Another pupil tracking implementation using GPUs
was published by Du Plessis and Blignau [11]. They present a GPU-assisted eye tracker
which is capable of attaining a sample frequency of 200 Hz in a mid-range laptop. Due
to the limitations of the hardware used, they obtained a low throughput even though
they used a small ROI for performing the tracking.

However, the pupil tracking literature related to GPGPU is relatively small if it
is compared with all the available papers about GPGPU. There is a huge number of

@ Springer

Design of an accurate and high-speed binocular pupil... 1859

papers related to medical image processing [33,37] and image processing [39]. Some
of the problems those papers try to solve are closely related to the ones we try to solve
in this paper. We perform some image processing operations and the final purpose
is to find the pupil. Comparing with most of the literature regarding medical image
processing, the idea is the same. Some operations are performed in the images to find
something (organs, tumors, bones, etc.).

More pupil tracking algorithms without using GPUs can be found in the literature.
A well-known approach is the Starburst algorithm [19], one of the evaluated in this
paper. The original algorithm only processes a small percentage of the pixels of the
image; therefore, it achieves a higher throughput than others with higher processing
requirements. Still it has a high computing cost when high-resolution images are used.
As explained in Sect. 2, to track the pupil a few lanes of pixels going from an initial
position to the edges of the image are processed. The algorithm expects to find a sharp
change within the gradient of these lanes, and that pixel is considered to be in the
border of the pupil. In a second stage, the process is repeated, but now the lanes go
backwards from the found points toward the previous initial position within a search
angle. The goal of the second stage is to find points in the opposite border of the pupil.
After finding a set of border pixels, its center of mass is calculated and the process is
repeated until it converges. Finally, a RANSAC operation is performed to calculate
the best fitting circle to the pupil border points that have been found.

Another approach to find the border of the pupil proposes the use of an algorithm
called Graph Cuts [24]. The algorithm searches the minimum cut between the pupil
and the rest of the eye. In order to do this, the pixels are encoded as nodes of a graph,
while the edges are their relationships. Since the algorithm expects the pixels inside
the pupil to be dark, a previous step for locating and avoiding the eyelashes is required.
Otherwise, they could be wrongly labeled as pupil border points. Then a pixel from
inside the pupil and a pixel from outside are selected as initial values for starting the
Graph Cuts search.

Another interesting approach has been proposed using the algorithm Gradient Vec-
tor Flow (GVF) snake [15]. This algorithm is capable of finding the borders of a
given object with a very high precision. An initial estimation of the pupil position is
calculated using a region of interest around the center of the image. This might be a
problem if the pupil was outside of that area, but this is a strange case in most setups.
An histogram of the selected area is calculated in order to select a good threshold,
and later, a morphological processing is applied to remove the eyelashes and others
dark areas of the eye. This algorithm results in a highly accurate location of the pupil
border. However, it relies on very high contrast images and it may not perform as well
with images with a lower contrast.

While the above are somehow complex algorithms for tracking the pupil, simpler
approaches which offer reasonable good results can be also found in the literature.
The pupil usually has a quite well-defined edge around it; therefore, a combination of
the Hough transform and the Canny edge detector algorithm [35] has also been used
for detecting the pupil [23]. Although the initial goal was doing iris segmentation,
still it can be used for pupil tracking. As it is typical in other algorithms, this one
requires a preprocessing stage for removing the eyelids. Then the Canny algorithm is
used for processing the image and the Hough transform searches for a circle within a

@ Springer

1860 J. Mompein et al.

range of possible radii. The method is quite accurate (as shown in Sect. 5), although
it is sensitive to all the features present in the image, either from the eye itself or
from the corneal reflections. However, it is a extremely slow approach given the huge
computing power required by the Hough transform.

Another technique consists in using blobs as applied in [31]. In this approach, the
central blob of the image is assumed to be the pupil. This is a rather simple method.
Using a threshold the pupil is selected from the whole image. However, there are
other parts of the eye that could make this method to fail, such as the eyelids and the
eyelashes, which frequently overlap with the pupil and could result in a bad detection.
Note that this method was also intended to perform iris segmentation, and therefore,
the iris is expected to be visible and so the pupil.

Gaze tracking is based on tracking the pupil and it is also a very interesting topic in
many areas. There are multiple approaches in the literature about how to do it [21]. The
typical setup used for gaze tracking is a bit different than the one used just for pupil
tracking. For gaze tracking, the subject usually has a big freedom of movement and
a wide-field angle camera is used. Still infrared illumination is preferred. As a result,
the resolution available for tracking the pupil is highly reduced comparing with setups
where the camera is much closer to the eye. Therefore, the precision for detecting the
pupil is reduced as well [12,32]. It would be also possible to have a camera tracking
the movements of the subject which would be closer to the subject but keeping a high
freedom of movement. But it would be an expensive, complex and most probably an
error-prone system. However, having a head-mounted system allows head movements
while increasing the resolution available for performing pupil tracking [2, 18].

It is also possible to use a different illumination setup to track the pupil. By using
two LEDs placed at different distances of the camera, the dark and bright pupil effect
can be generated turning on one of the LEDs at a time. This system was proposed
by Ebisawa [28] resulting in an increase in the complexity of the illumination setup
and its synchronization with the camera but simplifying the pupil tracking. Finally,
GPUs have also been used in a related field to pupil tracking as it is blink detection
[17]. Although for this application the whole head is included in the images, it again
demonstrates how well GPUs fit real-time image processing.

7 Conclusions

This work demonstrates that highly accurate and fast pupil tracking can be achieved.
This has been possible with the Starburst algorithm that has been parallelized by
using CUDA. The speedup achieved by a high-end GPU is 57.3 x with respect to
the non-parallelized version, highly surpassing the 2.2 x speedup obtained by using
OpenMP in a high-end multicore CPU. Indeed, the performance of the parallelized
binocular pupil tracking algorithm is so high (988 fps) that it is possible to perform
high frequency tracking of fast movements of the eye, such as saccades, with high-
quality images. High-speed cameras capable of capturing hundreds of frames per
second are widely available and they can be used in combination with our GPU-
accelerated algorithm to perform accurate and real-time (25 Hz) pupil tracking even at
much higher frame rates. Furthermore, in real-time environments usually some time

@ Springer

Design of an accurate and high-speed binocular pupil... 1861

must be spent on communication with the cameras and the actuators. So the GPU
cannot be processing all the time; therefore, having an algorithm that is faster than
what it is theoretically needed is a must in order to enable real-time processing when
considering the overhead of the communication and synchronization. Summarizing,
the proposed parallel implementation is a powerful tool that will help to improve many
visual optics applications which rely on pupil tracking, enabling processing speeds
and a pupil tracking accuracy that were not possible previously.

Acknowledgements This research has been supported by the European Research Council Advanced Grant
ERC-2013-AdG-339228 (SEECAT), “Fundacién Séneca,” Murcia, Spain (Grant 19897/GERM/15), and
the Spanish SEIDI under Grants FIS2013-41237-R, and TIN2015-66972-C5-3-R, as well as European
Commission FEDER funds.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Aydi W, Masmoudi N, Kamoun L (2011) New corneal reflection removal method used in iris recognition
system. World Acad Sci Eng Technol 5(5):898-902
2. Babcock JS, Pelz JB (2004) Building a lightweight eyetracking headgear. In: Proceedings of the ACM
Symposium on Eye Tracking Research and Applications, pp 109-114
3. Ballard DH (1981) Generalizing the hough transform to detect arbitrary shapes. Pattern Recognit
13(2):111-122
4. Bell N, Hoberock J (2011) Thrust: a productivity-oriented library for cuda. GPU Comput Gems Jade
Ed 2:359-371
5. Borovikov I (2009) Gpu-acceleration for surgical eye imaging. In Proceedings of the 4th SIAM Con-
ference on Mathematics for Industry (MI109), San Francisco, CA, USA
6. Bradski G (2000) The opencv library. Dr. Dobb’s J Softw Tools Prof Program 25(11):120-123
7. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell
8(6):679-698
8. Chen P, Zhao HL, Tao C, Sang HS (2011) Block-run-based connected component labelling algorithm
for gpgpu using shared memory. IET Electron Lett 47(24):1309-1311
9. Chirre E, Prieto PM, Artal P (2014) Binocular open-view instrument to measure aberrations and
pupillary dynamics. Opt Lett 39(16):4773—4775
10. cuRAND library, CUDA 7 (2010) NVIDIA Corporation, Santa Clara
11. Du Plessis J-P, Blignaut P (2016) Performance of a simple remote video-based eye tracker with gpu
acceleration.] Eye Mov Res 9(4):1-11
12. Hansen DW, Majaranta P (2011) Basics of camera-based gaze tracking. In: Majaranta P (ed) Gaze
interaction and applications of eye tracking: advances in assistive technologies. IGI Global, Hershey,
pp 21-26
13. Harris M et al (2007) Optimizing parallel reduction in CUDA. NVIDIA Dev Technol
2(4). http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/
doc/reduction.pdf
14. Hennessey C, Noureddin B, Lawrence P (2008) Fixation precision in high-speed noncontact eye-gaze
tracking. IEEE Trans Syst Man Cybern Part B Cybern 38(2):289-298
15. Jarjes AA, Wang K, Mohammed GJ (2010) GVF snake-based method for accurate pupil contour
detection. Inf Technol J 9(8):1653-1658
16. Koprowski R, Szmigiel M, Kasprzak H, Wrébel Z, Wilczyniski S (2015) Quantitative assessment of
the impact of blood pulsation on images of the pupil in infrared light. JOSA A 32(8):1446-1453

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf

1862 J. Mompein et al.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

35.

36.

37.

38.
39.

Lalonde M, Byrns D, Gagnon L, Teasdale N, Laurendeau D (2007) Real-time eye blink detection with
gpu-based sift tracking. In: Proceedings of the IEEE 4th Canadian Conference on Computer and Robot
Vision, Montreal, Canada, pp 481487

Li D, Babcock J, Parkhurst DJ (2006) Openeyes: a low-cost head-mounted eye-tracking solution.
In: Proceedings of the ACM Symposium on Eye Tracking Research and Applications, San Diego,
California, pp 95-100

Li D, Winfield D, Parkhurst DJ (2005) Starburst: a hybrid algorithm for video-based eye tracking
combining feature-based and model-based approaches. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR)—Workshops, San Diego, CA, USA

Lindholm E, Nickolls J, Oberman S, Montrym J (2008) Nvidia tesla: a unified graphics and computing
architecture. IEEE Micro 28(2):39-55

Majaranta P, Bulling A (2014) Eye tracking and eye-based human—computer interaction. In: Fairclough
SH, Gilleade K (eds) Advances in physiological computing. Springer, London, pp 39-65

Manzanera S, Prieto PM, Benito A, Tabernero J, Artal P (2015) Location of achromatizing pupil
position and first purkinje reflection in a normal population. Invest Ophthalmol Vis Sci 56(2):962-966
Masek L et al (2003) Recognition of human iris patterns for biometric identification. Master’s Thesis,
University of Western Australia

Mehrabian H, Hashemi-Tari P (2007) Pupil boundary detection for iris recognition using graph cuts. In:
Proceedings of the International Conference on Image and Vision Computing New Zealand (IVCNZ),
pp 77-82

Mompean J, Aragén JL, Pedro P, Pablo A (2015) Gpu-accelerated high-speed eye pupil tracking system.
In: 2015 27th International Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD), Florianépolis, Brazil, IEEE, pp 17-24

Mulligan JB (2012) A GPU-accelerated software eye tracking system. In: Proceedings of the ACM
Symposium on Eye Tracking Research and Applications, Santa Barbara, CA, USA, pp 265-268
Nvidia Corporation (2015) CUDA C Programming guide

Ohtani M, Ebisawa Y (1995) Eye-gaze detection based on the pupil detection technique using two
light sources and the image difference method. In: IEEE 17th Annual Conference on Engineering in
Medicine and Biology Society, 1995, vol 2. IEEE, pp 1623-1624

OpenMP Architecture Review Board (2011) OpenMP application program interface version 3.1
Podlozhnyuk V (2007) Image convolution with CUDA. NVIDIA Corporation White Paper, vol 2097,
no3

Rankin DM, Scotney BW, Morrow PJ, McDowell DR, Pierscionek BK (2010) Dynamic iris biometry:
a technique for enhanced identification. BMC Res Notes 3(1):182

San Agustin J, Skovsgaard H, Mollenbach E, Barret M, Tall M, Hansen DW, Hansen JP (2010)
Evaluation of a low-cost open-source gaze tracker. In: Proceedings of the ACM Symposium on Eye-
Tracking Research and Applications, Austin, Texas, pp 77-80

Schellmann M, Gorlatch S, Meildnder D, Kosters T, Schifers K, Wiibbeling F, Burger M (2011)
Parallel medical image reconstruction: from graphics processing units (gpu) to grids. J Supercomput
57(2):151-160

. Schwarz C, Prieto PM, Ferndndez EJ, Artal P (2011) Binocular adaptive optics vision analyzer with

full control over the complex pupil functions. OSA Opt Lett 36(24):4779-4781

Soltany M, Zadeh ST, Pourreza H-R (2011) Fast and accurate pupil positioning algorithm using circular
Hough transform and gray projection. In: Proceedings of the International Conference on Computer
Communication and Management (CSIT), Sydney, Australia, vol 5, pp 556561

Taubin G (1991) Estimation of planar curves, surfaces, and nonplanar space curves defined by implicit
equations with applications to edge and range image segmentation. IEEE Trans Pattern Anal Mach
Intell 13(11):1115-1138

Valero P, Sanchez JL, Cazorla D, Arias E (2011) A gpu-based implementation of the mrf algorithm in
itk package. J Supercomput 58(3):403-410

Wyatt HJ (1995) The form of the human pupil. Vis Res 35(14):2021-2036

Yam-Uicab R, Lopez-Martinez JL, Trejo-Sanchez JA, Hidalgo-Silva H, Gonzalez-Segura S (2017) A
fast Hough transform algorithm for straight lines detection in an image using gpu parallel computing
with cuda-c. J Supercomput 73(11):4823-4842

@ Springer

	Design of an accurate and high-speed binocular pupil tracking system based on GPGPUs
	Abstract
	1 Introduction
	2 Pupil tracking algorithms: a GPU-based implementation
	2.1 Preprocessing
	2.2 Case 1: thresholding and labeling algorithm
	2.3 Case 2: Starburst algorithm
	2.4 Case 3: Canny edge detector and Hough transform algorithm
	2.5 Binocular pupil tracking

	3 Experimental framework
	4 Optimizing for high-speed pupil tracking
	4.1 Additional CUDA optimizations for Starburst

	5 Accuracy and performance evaluation
	5.1 Starburst algorithm evaluation
	5.1.1 Ellipse versus circle fitting
	5.1.2 Pipelining evaluation

	5.2 Thresholding and labeling algorithm evaluation
	5.3 Hough transform algorithm evaluation
	5.4 Side-by-side comparison of the three algorithms

	6 Related work
	7 Conclusions
	Acknowledgements
	References

