
Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-022-04332-7

1 3

Energy‑efficient design of a presbyopia correction wearable
powered by mobile GPUs and FPGAs

Juan Mompeán1,2 · Juan L. Aragón2 · Pablo Artal1

Accepted: 20 January 2022
© The Author(s) 2022

Abstract
This paper presents an energy-efficient design and evaluation of a novel portable
device for the automatic correction of presbyopia in human eyes driven by the use of
opto-electronic lenses and based on the dynamic pupil response of the subject. Due
to the wearable nature of the proposed Dynamic Auto–Accommodation Glasses, in
addition to the real-time requirement, an energy-efficient implementation is critical
for the success of the device. In this work, the binocular pupil tracking of a subject,
followed by the calculation of the eyes’ vergence, and the control of a pair of opto-
electronic lenses are implemented and evaluated on several hardware platforms,
including two mobile GPU/SoCs, a high-end FPGA, a low-cost FPGA, and a desk-
top GPU (as a reference point). The pupil tracking algorithm has been parallelized,
applying different platform-specific optimizations for each case, to design a fast yet
energy-efficient wearable. The hardware platforms have been evaluated to determine
which one is the most appropriate for the presbyopia correction task. The experi-
mental results show that the most energy-efficient platform is a mobile GPU (Sam-
sung Exynos 8890) capable of processing frames at 0.016 Joules/frame, still allow-
ing real-time processing (24 frames/sec).

Keywords GPU · FPGA · Image processing · OpenCL · Presbyopia · Real time

 * Juan Mompeán
 juan.mompean@um.es

 Juan L. Aragón
 jlaragon@um.es

 Pablo Artal
 pablo@um.es

1 Laboratorio de Óptica, IUiOyN, Universidad de Murcia, Murcia, Spain
2 Departamento de Ingeniería y Tecnología de Computadores, Universidad de Murcia, Murcia,

Spain

http://orcid.org/0000-0002-0192-2985
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04332-7&domain=pdf

 J. Mompeán et al.

1 3

1 Introduction

Nowadays, there are many devices fitting in the category of wearables that are
designed to target many different purposes such as monitoring/analyzing body
signals or sensing ambient data in real time to provide immediate feedback to the
user (e.g., heart rate monitoring, diabetes control, etc). Wearables have exploded
in the recent years and a plethora of devices can be found in the market. They
have become so popular that major semiconductor companies have developed
specific low-cost and power-efficient processors for this particular market, such
as the Cortex-M series from ARM [26], aimed at developing more complex and
powerful wearable solutions.

This paper proposes the energy-efficient design and evaluation of a novel wear-
able device for the automatic correction of presbyopia, which is the reduction of
the accommodation range of the human eye that disables us to focus near objects.
This is accomplished by using a pair of opto-electronic lenses which are driven by
the dynamic pupil response of the subject’s eyes (the subject is the person wear-
ing the glasses). The wearable nature of the proposed Dynamic Auto–Accom-
modation Glasses, in addition to the fluent response that is needed to be optically
comfortable, make the device’s energy efficiency and performance two critical
implementation challenges.

In this work, we have implemented the three key tasks of the system (namely,
the subject’s binocular pupil tracking, the eyes’ vergence determination, and the
opto-electronic lenses’ control) on several hardware computing platforms aim-
ing at designing a fast yet energy-efficient device. It is important to note that
our working prototype for the automatic presbyopia correction is a device that
demands more computing power than most of the currently available weara-
bles. This is due to the hardware involved (two cameras and two opto-electronic
lenses) and the real-time image processing that has to be performed. Therefore,
it is expected a higher power consumption than that of simple monitoring weara-
bles. As wearables are powered by batteries, a high power consumption severely
limits the autonomy of the device before recharging its battery. In our case, due
to the cordless nature of the presbyopia correction glasses, having a long-lasting
battery is critical for the success of the device.

The most compute-intensive part of the proposed presbyopia correction device
is the binocular pupil tracking, which involves heavy image processing and some
other complex operations. Therefore, our implementation is primarily focused on
improving the energy efficiency of this task. In particular, we have evaluated two
mobile GPUs/SoCs (a Samsung Exynos 8890 and a Qualcomm Snapdragon 650),
two FPGAs (a low-cost Xilinx ZedBoard and a high-end Xilinx Alveo u250),
and a high-end desktop GPU (NVIDIA 980 GTX) in order to determine the most
energy-efficient platform. Running compute-intensive operations on battery-pow-
ered devices is challenging, and choosing the right computing platform is impor-
tant to achieve the highest autonomy for the device. Furthermore, efficiently pro-
gramming FPGAs to obtain their maximum performance and energy efficiency is
still a challenge. Although, the usage of OpenCL to program FPGAs may ease the

1 3

Energy‑efficient design of a presbyopia correction wearable…

implementation effort, applying platform-specific and energy-oriented optimiza-
tions is still critical to achieve the maximum battery autonomy and performance
[15].

The device performance is another key factor to achieve a truly smooth opti-
cal feeling for the subject. The eyes of young people accommodate very fast when
switching their focus from far to near distance, and vice versa. Therefore, a simi-
lar response has to be provided by our Dynamic Auto–Accommodation Glasses (as
analyzed in Sect. 4.3). To achieve such a fast response, the performance has been
improved by parallelizing the pupil tracking algorithm and enabling platform-spe-
cific optimizations (refer to Sect. 5 for further implementation details). Mobile SOCs
are becoming more powerful and they are capable of executing compute-intensive
applications, provided they are properly optimized [1, 27].

On the other hand, presbyopia is an eye condition that affects everybody. As such,
different solutions have been developed to reduce the lack of accommodation of the
eye. The most common solution is the utilization of multifocal or progressive spec-
tacles. Fixed-distance glasses for near work are also popular, but also the utilization
of contact lenses or intra-ocular lenses (although the latter are most commonly used
to replace lenses with cataracts, there are intra-ocular lenses specifically designed
for presbyopia). All those are good solutions in general, however, all of them pre-
sent drawbacks and limitations. Some of the aforementioned treatments are invasive
such as intra-ocular lenses or refractive surgery. Non-invasive solutions also pre-
sent trade-offs. E.g., progressive spectacles enhance either far or near distance at
the expense of reducing image contrast. In addition, the available focus points are
limited, so the user experience is limited as well. Differently, the proposed Dynamic
Auto–Accommodation Glasses are non-invasive and offer a dynamic continuous
focus, providing a smooth optical experience similar to the human lens.

The rest of the paper is organized as follows. Section 2 presents some background
and reviews some relevant literature. Section 3 describes some of the technologies
and works related to this paper. Section 4 explains the system’s design and behavior.
Section 5 explains the implementation details and the platform-specific optimiza-
tions. Section 6 presents the performance and energy-efficiency results for the differ-
ent computing platforms, as well as the discussion of those results. Finally, Sect. 7
summarizes the major conclusions of the work.

2 Background on presbyopia

Presbyopia is the reduction of the accommodation range of the human eye as a
result of aging that disallows the capacity to focus near objects. The accommoda-
tion range of the human eye defines how close it can focus an object, and it ranges
from more than 10 diopters for a child, to about 0 diopters for a 60 year old person.
Or expressed in distance, a child can clearly focus an object at 10 cm, while a 60
year old person can only focus properly at the infinity, unless he or she is myopic. A
large body of research can be found in the Optometry and Ophthalmology literature.
Measuring the human lens and the muscles involved in accommodation is extremely
complicated and such complexity is the reason why some aspects of presbyopia are

 J. Mompeán et al.

1 3

not completely known yet. Fisher, and Glasser and Campbell [10, 11] observed that
the loss of elasticity of the eye’s lens is the main factor of the decrease in the accom-
modation range. The eye’s lens loses its elasticity in a natural way due to aging.
Another study by Heys et al. [12] described a massive increase in the stiffness of the
nucleus of the eye’s lens, which might be an important factor in presbyopia.

The accommodation range of the human eye continuously decreases through our
lives. Children can usually accommodate more than 10 diopters, which means that
they can focus targets as near as 10 cm [25]. However, the accommodation range
of the human eye keeps decreasing until the late fifties [7] or sixties [12]. Although
presbyopia starts developing at early ages and keeps developing throughout a per-
son’s life, it remains unnoticed until the forties, when near targets start to appear
blurred. At the fifties, presbyopia is already limiting our capabilities to focus near
targets making it difficult to read small texts. I.e., when the text is far enough to be
focused, it is too small to be readable. And when the text is near enough to have an
appropriate size, it cannot be focused by a presbyopic eye. However, myopic people
are still able to focus near targets thanks to their myopia condition.

3 Related work

3.1 Tunable lenses

Our Dynamic Auto-Accommodation Glasses rely on the use of a pair of tunable
opto-electronic lenses which can change their focal length dynamically. This change
might be accomplished with different methods. The capability of dynamically
changing the focal length is a very useful property in different fields such as machine
vision, microscopy or refraction correction. For our glasses, we have selected the
Optotune tunable lenses [6] that are polymer-based lenses with a high focal length
range, going from −100 to +100 mm (or analogously, from −10 to +10 diopters).

3.2 Eye trackers

Eye tracking is widely used in many fields, from research to marketing. Many differ-
ent approaches have been developed for such purpose, including thresholding tech-
niques, labelling algorithms, usage of the Hough transform and template matching.
A survey in [2] compares the most common approaches to perform eye tracking.
Because of the high interest in eye tracking, there are different commercial devices
from several companies such as Tobii, SMI, Eyelink, ISCAN, or Pupil Labs.

Even though we have used an image processing-based eye tracking approach
in this work, other ways of performing pupil tracking might be useful in wearable
devices. A novel method for eye tracking has been developed by Mastrangelo et al.
comprising a small number of LEDs and light sensors to reduce both the size of the
tracking device and the power required to run it [17].

1 3

Energy‑efficient design of a presbyopia correction wearable…

3.3 Integrated wearable solutions

In [18] we presented an early and rather bulky proof-of-concept prototype for pres-
byopia correction. It was a large optical set-up sitting on a 2 m2 benchtop and driven
by a high-end desktop PC and a high-performance GPU. This early setup used a
high-speed camera to image both eyes at 150 frames per second and a resolution of
1280 × 1024 pixels. To process such a big amount of data, a PCI-based GPU was
needed. The major drawback of this early proof-of-concept system was the fact that
it was attached to an optical benchtop, therefore, not being portable nor autonomous.
Contrarily, the device evaluated in this paper is fully portable thanks to the smart-
phone where all the processing is performed and the control is executed. A previous
work focused on the evaluation of the optical and visual performance [20], however,
the current paper focuses on the hardware implementation and the energy efficiency
of the system evaluating different computing platforms with the goal of creating the
best possible prototype with enough performance and battery life.

Two other works have presented prototypes for presbyopia correction with opto-
electronic lenses devices [13, 22]. The work in [13] focuses on the design of an
opto-electronic lens with a big aperture of 20 mm and a range of 3 diopters. They
have integrated their lens with a distance sensor to change their focal length accord-
ing to the distance where the subject is looking at. However, this design has a main
drawback: if the user eyes are not looking straight, the optical power applied by the
lenses could be wrong. Our presbyopia correction glasses, instead, calculate the ver-
gence of the eyes to avoid this problem. The device presented in [22] uses a com-
mercial pupil tracker, a depth sensing system and a couple of opto-electronic lenses.
However, to the best of our knowledge, their system is not portable, which is the
most important goal of our presbyopia correction glasses.

4 Dynamic auto–accommodation glasses

These glasses are a new invention which disrupt with existing solutions for presbyo-
pia. This section describes how they are built, the control algorithm and shows some
tests of their functioning. Understanding the device implementation is important
to understand the challenges associated to developing a fully functional solution.
Looking at the device is easy to understand the need for portability and comfortabil-
ity. In the same way, the control algorithm shows how important is to have a fast and
reliable pupil tracking system to update the correction.

4.1 Glasses frame

A great effort has been made to build our presbyopia correction device. It inte-
grates many parts within a compact custom frame to enhance portability. Achiev-
ing such integration is challenging due to the reduced space available, but also
because of the distance between the eyes and the cameras. Tiny cameras and

 J. Mompeán et al.

1 3

infrared LEDs have been used to achieve the desired integration. Furthermore, a
micro-USB hub has been installed to connect the smartphone with the two drivers
of the opto-electronic lenses and the two USB cameras. As a result, the device is
small and relatively light. Figure 1 shows a 3D model of the frame whereas Fig.
2 shows the actual prototype with the soft pad, the opto-electronic lenses, the
cameras and all the connections.

Fig. 1 A 3D model of the frame used for the Dynamic Auto-Accommodation Glasses where the opto-
electronic lenses, the drivers of the lenses and the cameras will be integrated

Optoelectronic
Lenses

Cameras

Infrared
LEDs

Fig. 2 Actual 3D-printed frame covered with a soft pad for better comfort and stability. This prototype
includes the opto-electronic lenses and the wiring

1 3

Energy‑efficient design of a presbyopia correction wearable…

The cameras are compatible with the UVC standard (USB Video Class) which
is not natively compatible with Android, so a library has been used to drive them:
UVCCamera [24]. The Optotune lenses are controlled through the COM port. In
order to connect and communicate with the COM port in Android, the UsbSerial
library [8] has been used.

4.2 Glasses control

A high-level scheme of the algorithm used to control the presbyopia-correction
glasses is shown in Fig. 3. Initially, a one-time calibration step is performed:
the subject is asked to look straight at a far target and his/her eyes’ position is
recorded. As soon as the calibration is finished (which takes <0.2 sec) the correc-
tion loop begins. Images are grabbed continuously by the cameras, which are then
processed to locate the pupils on them. When the pupils’ positions are known,
the eyes’ vergence is calculated and the distance where the subject is looking
at is obtained. Finally, depending on this distance, the required optical power is
applied by the opto-electronic lenses. This loop is repeated until the correction
phase is stopped by the user.

An Android application has been developed to operate the glasses and execute
the control algorithm. This application includes different configuration parame-
ters to allow the user to run the calibration protocol, control the camera bright-
ness or check the pupil tracking performance. Figure 4 shows a screenshot of the
application, where it can be seen a preview of both cameras while running the
pupil tracking algorithm which highlights the located pupils of the subject (in
green). This screen also shows a plot of some pupil tracking and correction infor-
mation over the last few seconds to check the system behavior.

Fig. 3 Diagram of the algorithm
used to control the device Start

Calibration

Grab an
image

Locate the
subject’s
pupils

Calculate
the looking
distance

Apply the
needed

optical power

 J. Mompeán et al.

1 3

4.3 System behaviour and validation

A deep integration and a correct synchronization of all the steps is important to
achieve a smooth response to the eyes’ movements in order to guarantee a smooth
user experience. To illustrate the response time and behavior of the Dynamic
Auto-Accommodation Glasses, a use case example is shown in Fig. 5. A subject
was asked to alternatively look at a far and at a near target. The Figure shows the
change in the eyes vergence (i.e., the distance between the two pupils – green
line) and the corresponding diopters applied by the opto-electronic lenses (pur-
ple line). It can be observed that when the eyes are closer (lower values for the

Fig. 4 Screenshot of the
developed Android application
to control the Dynamic Auto-
Accommodation Glasses. The
located pupils of the subject and
a plot of some measured param-
eters over the last few seconds
are shown

Fig. 5 Use case example for a subject looking at far and near alternatively. The green line shows the dis-
tance between the two pupils while the purple line represents the diopters applied by the opto-electronic
lenses as a response to the movement of the pupils

1 3

Energy‑efficient design of a presbyopia correction wearable…

inter-pupillary distance) the glasses react by applying the diopters needed by
the subject. Similarly, when the two pupils are farther away from each other
(higher values for the inter-pupillary distance) the applied diopters are reduced
accordingly.

In order to validate that the algorithm used to calculate the position where
the subject is looking at is working correctly, a validation process has been per-
formed. Two artificial eyes were used to simulate the movement of the eyes of a
subject. The artificial eyes were placed on top of a rotation mount with a 2-degree
precision. Several positions have been tested for each eye, including positions
with both eyes at the same angle, and positions with each eye at different angle.
The calculations of the current rotation of the eye are performed as described
in the patent in [5]. Figure 6 plots both the expected and the measured angle in
degrees. It can be observed how well they both correlate, and therefore, the high
accuracy of the calculations.

5 Energy‑efficient implementation of pupil tracking

Several computing platforms have been tested and evaluated in order to determine
which one performs better for the presbyopia-correction application, paying spe-
cial attention to their respective energy consumption in order to select the most
efficient one for a wearable design. The evaluated platforms include two mobile
GPU/SoCs (integrated in commercial smartphones), a low-cost FPGA, a high-end
FPGA and, finally, a high-end desktop GPU (to be used as a reference point).

As mentioned before, in terms of computing, the most demanding task is track-
ing both pupils. Therefore, we describe first the utilized pupil tracking algorithm
to later focus on the implementation details to provide a highly parallel imple-
mentation of the pupil tracking algorithm for each computing platform.

Fig. 6 Accuracy of the eye angle calculation performed by the presbyopia-correction glasses using an
artificial eye. A comparison between the real angle and the measured one is shown

 J. Mompeán et al.

1 3

5.1 Pupil tracking algorithm

The Starburst algorithm [16] has been used for our pupil tracking phase. This algo-
rithm was parallelized for high-end NVIDIA desktop GPUs using CUDA in [19].
However, in this paper, we present a novel implementation using OpenCL, due to
the incompatibility of CUDA with the evaluated mobile platforms, and focusing on
optimizing the energy efficiency of the device rather than just focus on the perfor-
mance, as it was the case of the work in [19].

The pseudocode of the algorithm used to perform the pupil tracking is shown
in Algorithm 1. The main processing tasks to locate the pupils are: the preprocess-
ing of the input image, the search of points that correspond to the border of the
pupils, and the fitting of those points to ellipses. A detailed explanation of those
tasks follows.

1. A preprocessing phase (line 2 in algorithm 1) is performed to identify the corneal
reflections introduced by the LEDs.

(a) A top-hat transform is applied to the image. This operation intends to exac-
erbate the corneal reflections to more precisely identify them. In particular,
it returns an image containing the elements that are smaller than the used
kernel size.

(b) The result of the top-hat transform is thresholded to select only the corneal
reflections. However, after applying the thresholding operation, the area
covered by the detected corneal reflections may be smaller than their actual
size.

(c) Therefore, a dilation operation is applied to ensure that the whole corneal
reflection is selected.

2. The border points of the pupil are searched (line 5 in algorithm 1) as follows:

1 3

Energy‑efficient design of a presbyopia correction wearable…

(a) First, an initial point is provided. This initial point is usually the center of
the pupil detected in the previous frame. Otherwise, the geometric center
of the image is used.

(b) Then, an initial set of points is searched in the image. For that purpose, a set
of “rays” going from the initial center to the image borders are processed.
These “rays” are evenly distributed around 360◦ . A pixel along one of these
rays is identified as a potential pupil border if the gradient at that point is
bigger than a threshold. Pixels in the border of the pupil usually have high
gradient values due to the change in brightness between the pupil (blackish)
and the iris (grayish).

(c) A second wave of “rays” is generated from the points found in the previ-
ous step. However, this new wave is narrower than before (100◦). Also, the
search direction goes from the points found in (b) towards the center pro-
vided in (a). The same procedure as in (b) is used to identify new potential
pupil border points. This step intends to reinforce the results from (b). I.e.,
if a good point was found in (b), the “rays” generated in this step will be
directed towards the other side of the pupil. As a result, more pupil border
points can be found.

(d) The center of mass of the pupil border points located in (c) is calculated
and its position is compared with the previous center. If the difference is
smaller than a given threshold, the algorithm has converged and it continues
to the third stage. Otherwise, the search is repeated from step (b) but using
the calculated center of mass as the new search center.

3. Finally, a RANSAC (Random Sample Consensus) ellipse fitting (line 6 in algo-
rithm 1) is applied to the complete set of border points and the best fitting ellipse
is selected as the final pupil. The RANSAC algorithm is a powerful approach
when performing a fitting that includes noisy data points since the latter can be
ignored in order to fit only the correct data points [9].

As it can be noticed, pupil tracking is a very computing intensive task. In par-
ticular, the Starburst algorithm shows high computing demands in stages (2)
and (3). The RANSAC also performs many calculations of distance for fitting
to an ellipse which is an expensive operation. Likewise, the preprocessing phase
requires applying some computer vision functions which process the complete
image pixel by pixel. The preprocessing and the Starburst algorithm are mem-
ory-bound tasks, they have a low ratio of calculations per memory access. While
the RANSAC has a higher ratio of calculations per memory access mainly due
to the ellipse fittings. Of course, depending on the resolution of the images the
computing required to process the images will vary.

Next, we describe the different hardware computing platforms we have evalu-
ated and the specific optimizations we have used on each case.

 J. Mompeán et al.

1 3

5.2 Case 1: Mobile GPU implementation

A specialized novel implementation using OpenCL [21] has been programmed for
mobile GPUs (also referred to as the smartphone implementation in the paper).
Smartphones are heterogeneous computing devices integrating general purpose
cores (CPUs), graphics processors (GPUs) and many other specialized hardware
units, such as DSPs or AI specific accelerators. Our smartphone implementation has
focused on using the GPU to run the binocular pupil tracking algorithm, whereas
the control of the cameras and the opto-electronic lenses is performed on the CPU
cores. The GUI of the Android application is also controlled by the CPU. Since the
highest compute-intensive task is the execution of the pupil tracking algorithm, only
this part has been taken into account for the performance and energy-efficiency
measurements reported in Sect. 6.

Two smartphones have been evaluated, one of them is the Samsung Galaxy S7
(running Android 7.0) which integrates a Samsung Exynos 8890 SoC and supports
OpenCL 1.2. The Exynos 8890 incorporates a Mali-T880 GPU which has a peak
rate of 265 GFlops [4]. The other is a Xiaomi Redmi Note 3 Pro (running Android
6.0) which integrates a Qualcomm Snapdragon 650 SoC and supports OpenCL 2.0.
The Snapdragon 650 incorporates an Adreno 510 GPU which has a peak rate of 154
GFlops In order to run C++ and OpenCL codes in Android, the NDK kit (Native
Development Kit 18b) has been used.

Several optimizations have been applied to the OpenCL implementation devel-
oped for GPUs. Those optimizations are: vectorized memory accesses, local
memory usage, native math operations (sine, cosine, etc.), kernel fusion, and
reduced-precision floating point data types where possible. Those optimizations are
described next.

Vectorized memory accesses

They improve the effective bandwidth of the memory by means of fusing several
small load operations into a bigger one. Increasing the effective memory bandwidth
results in an increase in performance due to having more data available to process.
This kind of optimization works best with algorithms that load continuous data in a
loop and process each element independently. In those cases, several iterations of the
loop can be unrolled into a single one and the data can be loaded in a single wider
operation. This is a common optimization in image processing tasks. We have used
it for the top-hat transform, the thresholding and the dilation operations. In addition,
the coordinates of the located pupil border points are stored using packed data types,
such as float2.

Local memory

It is a small fast on-chip memory with a much higher bandwidth than the main
device memory. Because of its smaller size, it is commonly used for very specific
purposes. E.g., it can be very useful on algorithms that load several times the same
data for different threads (or the same ones). But, local memory is only shared by

1 3

Energy‑efficient design of a presbyopia correction wearable…

threads within the same work group. In our case, this optimization has been used for
the image processing operations, the RANSAC and in the search of the pupil border
points. An important point about the usage of local memory on the Mali GPU evalu-
ated on this paper should be made. The architecture of the Mali Midgard maps local
memory to global memory, therefore, it is supported but there is not performance
benefit from using it [3]. However, to have a homogeneous and future-proof code we
have decided to keep this optimization in all the implementations.

Native operations

They are specialized math functions optimized for performance at the expense of
losing some arithmetic precision. We have employed them for calculating the angles
during the search of the pupil border points and to perform the distance calculations.
In particular, we have used: native_sin, native_cos and native_sqrt.

The half data type

This is a floating point data type that uses 16 bits to store its information. As such,
its range and precision is lower than floats and doubles. However, it allows for
more calculations to be performed simultaneously and more half elements can be
accessed consuming the same memory bandwidth. We have used this optimization
to improve the search of the pupil border points and in the RANSAC algorithm.

Kernel fusion

It consists of joining two kernels which are executed one after another. However,
to obtain a benefit from the fusion there must be some data which is stored by the
first kernel and later accessed by the second kernel. By fusing kernels, the load/
store operations to the main device memory can be avoided improving performance.
Furthermore, kernel fusion has a second advantage when the kernel overhead has a
relatively big weight, removing the launch of a second kernel completely removes
its overhead. That is specially important for mobile SoCs [14]. This optimization is
applied to the top-hat transform and the thresholding operation.

Separable filters

The final optimization, we have used in our GPU implementation is known as sepa-
rable filters. It has been used to optimize the image processing functions leading to a
further reduction of the execution time.

To measure the power consumption, the app Trepn Power Profiler [23] by
Qualcomm has been used, which can monitor several parameters of a mobile
phone. In order to only account for the time of the processing (pupil tracking),
our App notifies Trepn profiler when the pupil tracking has started and when it
has finished. To exclude the power of the screen and other potential power drain
sources in the smartphone, a base power measurement is done with the device

 J. Mompeán et al.

1 3

in an idle state as follows: during 30 seconds the phone’s power dissipation is
recorded and the average is used as the base (or idle) power to be later removed.

5.3 Case 2: FPGA implementation

Our second case, an FPGA implementation has been tested on both a high-end
Xilinx Alveo u250 and a low-cost Xilinx ZedBoard. The Alveo u250 has 1728K
LUTs (Look-up Tables) and 3456K registers, while the ZedBoard used (Z-7020) has
53K LUTs and 106K registers. Xilinx offers a wide variety of programming alterna-
tives for their devices, including: C/C++, OpenCL and HLS. We have used OpenCL
1.0 and synthesized using the Xilinx SDX 2018.3 development environment. Since
the same programming language (OpenCL) has been used for all our implementa-
tions, a lot of the code is shared among all of them. Although specific optimizations
have been applied to each computing platform where it was possible. In fact, some
of the optimizations are used in both computing platforms but employed in a differ-
ent way due to the big differences between the platforms. For the FPGA implemen-
tation, local memory, loop unrolling, pipelining, and array partitioning have been
used by including specific pragmas developed by Xilinx for their FPGA products.
Other optimizations are used in a similar way as for the Smartphone/GPU imple-
mentation, like kernel fusion to avoid OpenCL API calls overhead and unnecessary
memory operations; or the usage of vectorized data types for storing the pupil bor-
der locations; or native math operations which can potentially increase the perfor-
mance and are also available for Xilinx’s FPGAs. Specific details about the FPGA
optimizations, we have implemented follow.

Local memory

Similarly to its equivalent in GPUs, local memory is a close, low latency, high-
bandwidth and small memory which might be used for caching data that is reused
through the computation. Local memory has been used in the image processing
functions (erosion, dilation, and gauss filters) and in the RANSAC. Contrarily to the
GPU implementation, the local memory is statically allocated, so its size its known
at compile time and the compiler can optimize the generated hardware to take full
advantage of it. Only the filter size provided at compile time can be used by the syn-
thesized hardware, but that is a common trade-off on FPGAs. Just like in GPUs, the
local memory is a scarce resource, and an FPGA can easily run out of it.

Loop unrolling

This optimization is crucial in FPGAs for an improved performance since the
unrolled loop iterations can run in parallel if there are enough resources (logic cells)
in the FPGA. However, it is needed to know the total number of iterations at compile
time. We have implemented loop unrolling in the image processing functions, which
already had a fixed size at compile time after applying the previous optimization.
Loop unrolling is enabled by adding a pragma before the loop to unroll: #pragma

1 3

Energy‑efficient design of a presbyopia correction wearable…

__attribute__((opencl_unroll_hint)). It can be applied to the loops
that load the data into shared memory and to the loops that process the data. How-
ever, loop unrolling has to be used cautiously since it dramatically increases the
usage of hardware resources.

Pipelining

This optimization allows for a much higher concurrency. It is a widely used feature
(in many fields) because it is a very effective technique to increase resource utiliza-
tion. On FPGAs it is commonly used in loops: as soon as the first iteration has com-
pleted its first instruction, the second iteration starts and so does the third iteration,
when the previous one moves a step forward. In our implementation, pipelining has
been used for the search of the pupil border points with a significant performance
gain. This optimization is applied in a similar way as loop unrolling, a pragma is
added before the pipelined loop: #pragma __attribute__((xcl_pipe-
line_loop)). Note that enabling this optimization does not consume more hard-
ware resources, as opposed to loop unrolling.

Array partitioning

This optimization increases the bandwidth that might be used to load data from local
memory. This is especially useful in the image processing functions where a heavy
usage of the local memory has been implemented. Array partitioning splits the local
memory in several smaller arrays and increases the number of read and write ports.
As a result, the bandwidth is significantly increased for the partitioned array. An
example of this optimization is shown in the following code example where a cyclic
partitioning is employed.

Max memory ports

This option has been selected to allow using different ports for different global
memory buffers, thus enabling parallel memory operations. Without this option only
one port is available to load/store data to global memory, serializing the memory
operations and reducing the overall performance.

The image processing tasks of the preprocessing step have achieved a significant
performance boost through the combination of Local memory + Loop unrolling +
Array partitioning + Max Memory Ports optimizations. As we will report in the

 J. Mompeán et al.

1 3

Results Section, when comparing the non-optimized initial version with the opti-
mized one, the speedup is 17.0x for the ZedBoard and 17.2x for the Alveo u250.

The pupil border search step has also improved its performance with the combi-
nation of Pipelining + Max Memory Ports optimizations. Comparing the non-opti-
mized initial implementation with the optimized one, the speedup is 10.7x for the
ZedBoard and 9.2x for the Alveo u250.

Finally, the power consumption of the several synthesized implementations for
each FPGA is the one reported by the Xilinx Vivado environment.

5.4 Case 3: Desktop GPU implementation

As a final case, a high-end desktop GPU has been included in the evaluation of
computing platforms, mainly as a reference point, even though its size and power
consumption make this platform unfeasible as a wearable solution. In particular, we
have evaluated a NVIDIA 980 GTX mounted in a desktop PC. This implementation
uses again OpenCL and has been compiled with CUDA 10.1. The OpenCL code
here is very similar to the one used in the smartphone implementation (Sect. 5.2).
The main difference is the replacement of the half data type by the float data
type because the former is not supported on this GPU (desktop GPUs support for
halfs has not been very wide until recently, when mainstream graphics cards
from NVIDIA started to include half-precision compute capabilities). Overall, desk-
top GPUs are much more powerful than mobile GPUs. Their performance is much
greater but also their power consumption (that we have measured using the com-
mand line tool nvidia-smi).

5.5 Performance and efficiency analysis methodology

In order to fairly evaluate the three hardware platforms, the same input images
have been used across all the platforms. A video of 250 frames recorded with the
Dynamic Auto-Accommodation Glasses at a resolution of 1280 × 960 has been used
to evaluate the performance and energy efficiency. This video includes one blink and
eye movements to different positions, so it is representative of the normal behav-
ior of an eye. To include the variability from the different images in the results the
whole video is processed and the average time for processing a frame is calculated.
Even though the video was recorded at the highest (native) resolution of the cam-
eras, we are also interested in evaluating lower resolutions. Therefore, the video has
been downscaled to 640 × 480 and 320 × 240 pixels. The lower-resolution images
are needed to enable real-time processing on some of the tested devices (e.g., the
low-cost FPGA). The videos at different resolutions have been used to evaluate the
different platforms: a Samsung Exynos 8890 (mobile GPU), a Qualcomm Snap-
dragon 650 (mobile GPU), a Xilinx ZedBoard (low-cost FPGA), a Xilinx Alveo
u250 (high-end FPGA), and a NVIDIA 980 GTX (desktop GPU).

Finally, even though the control of the Dynamic Auto-Accommodation Glasses
includes the management of two cameras and two opto-electronic lenses, as this
time is independent of the computing platform, our evaluation only includes the

1 3

Energy‑efficient design of a presbyopia correction wearable…

processing time of the images, i.e., the binocular pupil tracking algorithm (which
determines the center of both pupils) plus the computation of the optical power to be
applied by the lenses.

6 Results and discussion

6.1 Experimental results

In order to evaluate and compare the developed implementations, several experi-
ments have been carried out. Figure 7 reports the overall performance of each com-
puting platform, showing the time (in milliseconds) required to process a single
frame (i.e., the reported performance metric is milliseconds/frame or frames per
second) with a red line showing the minimum performance to achieve real-time
processing (25 frames/sec). On the other hand, Fig. 8 shows the time breakdown
for the main phases involved in processing an image. Those phases are the same
than the ones described in the pseudocode of the pupil tracking algorithm shown in
Fig. 1. Finally, Fig. 9 reports the energy efficiency of each platform showing how
much energy (in Joules) it takes to process a single frame (i.e., the reported energy-
efficiency metric is Joules/frame). A detailed discussion of the experimental results
follows.

6.2 Performance

Figure 7 shows the processing time per frame in milliseconds for the different
platforms and resolutions used. The desktop GPU platform (NVIDIA 980 GTX)

Fig. 7 Performance comparison of the different computing platforms. Three different image resolutions
are compared: 320 × 240, 640 × 480 and 1280 × 960 pixels. The red line highlights the real-time limit
(40 ms/frame, or 25 frames/sec)

 J. Mompeán et al.

1 3

achieves a very high performance, as expected, beating both FPGAs and mobile
GPUS by a big margin. Next are the mobile GPUs and the Alveo FPGA with
similar results. Finally, the Zedboard FPGA obtains the slowest processing time
of all the tested platforms.

More detailed results are shown in Fig. 8, this figure shows the time per frame
broken down in four main phases of the processing: copying the data, image pre-
processing operations, searching the points and fitting the ellipses (RANSAC). In
this figure two implementations are plotted for the FPGAs, an optimized imple-
mentation and a not-optimized one. The slowest implementations are the not-
optimized FPGAs versions, in those implementations most of the time was spent
in the preprocessing and in the points search phases. After applying the optimiza-
tions it remains true, but their overall contribution is much smaller. For higher
resolutions the preprocessing phase increases the execution time due to the more
work required.

Finally, looking at the performance results achieved by the mobile GPUs, both
the Samsung Exynos 8890 and the Qualcomm Snapdragon 650 are similar in per-
formance, being the Exynos slightly slower than the Snapdragon. In particular, the
Qualcomm Snapdragon 650 is capable of processing 640 × 480 images in less than
36 ms, i.e., fast enough to allow for real-time processing (or at least 40 ms/frame).
The Samsung Exynos 8890, on the other hand, is only capable of processing 320 ×
240 images under the real-time constraint. Still this lower resolution is enough for
accurately detecting the pupils and properly driving the Dynamic Auto-Accommo-
dation Glasses.

The final takeaway of Fig. 7 is that the processing time of these mobile GPUs
slowly increases with the increase of the image size. This is partially due to the

Fig. 8 Time spent by each platform in each processing step. Copy: copy the input data, the results and
any intermediate value between the host and the device. Preprocessing: image processing operations
before starting with the search of the pupils. Points: find the points in the border of the pupils. And fit-
ting: fit the ellipses to the points and select the best ones

1 3

Energy‑efficient design of a presbyopia correction wearable…

overhead of the OpenCL API calls being constant and also due to the better usage
of the hardware resources with bigger images.

6.3 Energy efficiency

Regarding the energy efficiency of our OpenCL implementations for each of
the evaluated computing platforms, Figure 9 reports the Joules required by each
platform to process a single frame (J/frame). A common energy efficiency met-
ric used in computer architecture is performance/watt (or throughput/watt). As
the performance of our device, at the application level, is measured as processed
frames per second (fps), it leads to:

Table 1 Maximum power (in
watts) for each platform under
three different resolutions

Resolutions 320 × 240 640 × 480 1280 × 960

Mali T-880 1.58W 2.06W 2.39W
Adreno 510 4.18W 4.78W 4.92W
NVIDIA 980 GTX 80.35W 92.12W 112.09W
Zedboard 3.48W
Alveo 19.78W

Fig. 9 Energy efficiency of the different computing platforms. Three different image resolutions are com-
pared

 J. Mompeán et al.

1 3

As a more intuitive way to report the energy efficiency of the evaluated platforms, in
Fig. 9 we report the inverse of Eq. (1), i.e., Joules/frame (or the energy consumed in
processing each frame).

On the other hand, Table 1 shows the peak power drawn by each platform under
different scenarios. This metric is useful to understand which platforms could be
powered by a battery and which not.

It can be observed that both FPGA implementations show a low energy efficiency.
In the case of the low-cost ZedBoard (which achieves 0.23 J/frame), it is because of
the lack of logic cells that results in a not completely optimized implementation.
The ZedBoard has a relatively low peak power consumption of 3.48 Watts. On the
other hand, the Alveo u250 platform suffers from the high power dissipation of this
high-end FPGA (we have measured an average of 19.2 Watts and a peak power of
19.8 Watts). This high power dissipation hurts its energy efficiency (0.43 J/frame)
despite the reasonable achieved performance (22.1 ms/frame when considering 320
× 240 images).

The desktop GPU, as expected, has a very high power consumption (we have
measured an average of 100 Watts depending on the image size) but this time it is
compensated by a very high performance. As a result, its energy efficiency (0.018 J/
frame) is similar to the efficiency obtained by the mobile GPUs.

Finally, mobile GPUs show a good efficiency which is similar for both of them,
being the Exynos 8890 more energy efficient than the Snapdragon (0.016 J/frame vs.
0.037 J/frame). This was an expected result since mobile GPUs are designed to be
highly energy efficient.

6.4 Discussion and future work

Overall, low-power consumption is a key requirement for our Dynamic Auto-
Accommodation Glasses which are powered by a small battery. Table 2 shows a
summary of the results presented in Sect. 6. That table shows that using a mobile

(1)

Energy Efficiency =
performance

watts

=
frames per second

watts

=
frames

seconds ∗ watts
=

frames

Joules

Table 2 Summary of the
performance and energy
efficiency of the different
devices

Device Time per frame (ms) Energy
per frame
(J)

Exynos 8890 42 0.016
SnapDragon 650 16 0.037
Zedboard 73 0.23
Alveo u250 22.1 0.43

1 3

Energy‑efficient design of a presbyopia correction wearable…

GPU for processing the images from the camera results in the best power-perfor-
mance tradeoff, making the mobile GPU the best computing platform among the
evaluated ones for our particular purpose.

The performance achieved by the low-cost FPGA platform (ZedBoard) might
look poor in Figs. 7 and 8 (73 ms per frame) but it is not surprising due to the
small number of programmable elements it includes (85K logic cells) prevent-
ing an efficient utilization of the FPGA optimizations such as loop unrolling,
the use of local memory regions or array partitioning. Due to limited resources
only the lowest resolution (320x240) could be processed on the FPGAs. Further-
more, even though some previous works have pointed that almost-direct ports of
OpenCL kernels to a FPGA might result in poor performance [28], in Fig. 8 it
can be seen a comparison of both FPGAs implementations (ZedBoard and Alveo)
along with their non-optimized version. This test shows that the non-optimized
version is much slower than the optimized one, which shows that even the basic
optimizations applied are able to significantly boost performance (13.8x for the
ZedBoard and 13.5x for the Alveo FPGA).

Regarding the desktop GPU, it is much more powerful than mobile GPUs since
it has much higher memory bandwidth, computing power and resources (cores,
internal memories, caches, clock frequency). Therefore, it was expected that it
would get the best performance of all the platforms. Its energy-efficiency is also
good because the high performance compensate for its high power dissipation.
However, a desktop GPU is not feasible as a wearable solution due to its size and
high power dissipation. Still, this platform has been added as a reference point to
enrich the comparison.

From these findings, it is clear that future work using mobile SoCs is the best
approach for a wearable solution. However, it is true that a lower-level FPGA imple-
mentation would probably yield better results in both metrics, performance and
energy-efficiency. Of course, developing a lower-level FPGA implementation takes
longer than writing the same code for a mobile SoC. Therefore, it is critical to evalu-
ate if the potential improvement is worth the development time.

7 Conclusions

A novel Dynamic Auto-Accommodation device controlled by either a mobile GPU
or a low-cost FPGA has been proposed. The device is capable of tracking in real
time the pupil of the subject, calculating its gaze distance in order to apply the right
amount of diopters. A novel OpenCL implementation of a pupil tracking algorithm
has been implemented and optimized for both GPUs and FPGAs. A performance
and energy-efficiency comparison of several hardware platforms have been per-
formed to find the best one for the presbyopia correction application. Two mobile
GPUs, two FPGAs and one desktop GPU have been evaluated, measuring their per-
formance and energy efficiency, and showing that the most energy-efficient platform
while meeting the real-time constrain is a mobile GPU (Samsung Exynos 8890)
capable of processing frames at 0.016 Joules/frame.

 J. Mompeán et al.

1 3

Acknowledgements This work was supported by the Spanish MCIU and AEI under grant RTI2018-
098156-B-C53, grant PID2019-105684RB-I00 and Fundación Séneca-Agencia de Ciencia y Tecnología
de la Región de Murcia (19897/GERM/15).

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

 1. Afonso S, Acosta A, Almeida F (2019) High-performance code optimizations for mobile devices. J
Supercomput 75(3):1382–1395

 2. Al-Rahayfeh A, Faezipour M (2013) Eye tracking and head movement detection: a state-of-art sur-
vey. IEEE J Trans Eng Health Med 1:2100212

 3. Arm Ltd (2021) Arm mali midgard opencl developer guide 3.14. https:// devel oper. arm. com/ docum
entat ion/ 100614/ 0314/ OpenCL- conce pts/ Mali- GPU- OpenCL- memory- model. Accessed 17 Nov
2021

 4. Arm Ltd (2021) Mali-t880. https:// devel oper. arm. com/ ip- produ cts/ graph ics- and- multi media/ mali-
gpus/ mali- t860- and- mali- t880- gpus. Accessed 17 Nov 2021

 5. Artal P, Mompeán J, Aragón JL. Optoelectronic binocular instrument for the correction of presbyo-
pia and method for the binocular correction of presbyopia. US Patent No. 10,898,073. 26 Jan 2021

 6. Blum M, Büeler M, Grätzel C et al (2011) Compact optical design solutions using focus tunable
lenses. Optical Design and Engineering. International Society for Optics and Photonics, Bellingham

 7. Duane A (1922) Studies in monocular and binocular accommodation with their clinical applica-
tions. Am J Ophthalmol 5(11):865–877

 8. Felipe Herranz (2016) Usbserial. https:// github. com/ felHR 85/ UsbSe rial. Accessed 16 Nov 2016
 9. Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with appli-

cations to image analysis and automated cartography. Commun ACM 24(6):381–395
 10. Fisher R (1971) The elastic constants of the human lens. J Physiol 212(1):147–180
 11. Glasser A, Campbell MC (1998) Presbyopia and the optical changes in the human crystalline lens

with age. Vision Res 38(2):209–229
 12. Heys KR, Cram SL, Truscott RJ (2004) Massive increase in the stiffness of the human lens nucleus

with age: the basis for presbyopia? Faculty of Engineering and Information Sciences - Papers: Part
A. 2667

 13. Jarosz J, Lavigne Q, Molliex N et al (2018) Experimental optical analysis of an original presbyopia-
correcting variable focus lens. Invest Ophthalmol Vis Sci 59(9):255

 14. Kim S, Oh S, Yi Y (2021) Minimizing GPU kernel launch overhead in deep learning inference on
mobile GPUS. Association for Computing Machinery, New York, NY, USA, pp 57–63

 15. Kono F, Nakasato N, Hayashi K et al (2018) Evaluations of OpenCL-written tsunami simulation on
FPGA and comparison with GPU implementation. J Supercomput 74(6):2747–2775

 16. Li D, Winfield D, Parkhurst DJ (2005) Starburst: a hybrid algorithm for video-based eye tracking
combining feature-based and model-based approaches. In: 2005 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition (CVPR’05)-Workshops, IEEE, pp 79

 17. Mastrangelo AS, Karkhanis M, Likhite R et al (2018) A low-profile digital eye-tracking oculometer
for smart eyeglasses. In: 2018 11th International conference on human system interaction (HSI),
IEEE, pp 506–512

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://developer.arm.com/documentation/100614/0314/OpenCL-concepts/Mali-GPU-OpenCL-memory-model
https://developer.arm.com/documentation/100614/0314/OpenCL-concepts/Mali-GPU-OpenCL-memory-model
https://developer.arm.com/ip-products/graphics-and-multimedia/mali-gpus/mali-t860-and-mali-t880-gpus
https://developer.arm.com/ip-products/graphics-and-multimedia/mali-gpus/mali-t860-and-mali-t880-gpus
https://github.com/felHR85/UsbSerial

1 3

Energy‑efficient design of a presbyopia correction wearable…

 18. Mompeán J, Manzanera S, Aragón JL et al (2016) Presbyopia correction with optoelectronic lenses
driven by pupil size. Invest Ophthalmol Vis Sci 57(12)

 19. Mompeán J, Aragón JL, Prieto PM et al (2018) Design of an accurate and high-speed binocular
pupil tracking system based on GPGPUS. J Supercomput 74(5):1836–1862

 20. Mompeán J, Aragón JL, Artal P (2020) Portable device for presbyopia correction with optoelec-
tronic lenses driven by pupil response. Sci Rep 10(1):1–9

 21. Munshi A (2009) The opencl specification. In: 2009 IEEE Hot chips 21 symposium (HCS), IEEE,
pp 1–314

 22. Padmanaban N, Konrad R, Wetzstein G (2018) Autofocals: gaze-contingent eyeglasses for presby-
opes. ACM SIGGRAPH 2018 Emerging Technologies. ACM, New York, p 3

 23. Qualcomm Technologies, Inc (2018) Trepn power profiler. https:// devel oper. qualc omm. com/ softw
are/ trepn- power- profi ler. Accessed 10 Jun 2018

 24. Saki (2018) Uvccamera. https:// github. com/ saki4 510t/ UVCCa mera. Accessed 5 Mar 2021
 25. Sterner B, Gellerstedt M, Sjöström A (2004) The amplitude of accommodation in 6–10-year-old

children-not as good as expected! Ophthalmic Physiol Opt 24(3):246–251
 26. Yiu J (2017) Arm cortex-m for beginners. An overview of the Arm Cortex-M processor family and

comparison. [White paper]. ARM
 27. Zhao D (2015) Fast filter bank convolution for three-dimensional wavelet transform by shared mem-

ory on mobile GPU computing. J Supercomput 71(9):3440–3455
 28. Zohouri HR, Maruyama N, Smith A et al (2016) Evaluating and optimizing opencl kernels for high

performance computing with fpgas. In: SC’16: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, IEEE, pp 409–420

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://developer.qualcomm.com/software/trepn-power-profiler
https://developer.qualcomm.com/software/trepn-power-profiler
https://github.com/saki4510t/UVCCamera

	Energy-efficient design of a presbyopia correction wearable powered by mobile GPUs and FPGAs
	Abstract
	1 Introduction
	2 Background on presbyopia
	3 Related work
	3.1 Tunable lenses
	3.2 Eye trackers
	3.3 Integrated wearable solutions

	4 Dynamic auto–accommodation glasses
	4.1 Glasses frame
	4.2 Glasses control
	4.3 System behaviour and validation

	5 Energy-efficient implementation of pupil tracking
	5.1 Pupil tracking algorithm
	5.2 Case 1: Mobile GPU implementation
	5.3 Case 2: FPGA implementation
	5.4 Case 3: Desktop GPU implementation
	5.5 Performance and efficiency analysis methodology

	6 Results and discussion
	6.1 Experimental results
	6.2 Performance
	6.3 Energy efficiency
	6.4 Discussion and future work

	7 Conclusions
	Acknowledgements
	References

