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Abstract—Pupil tracking under infrared illumination is an
important tool for many researchers in physiological visual optics
and ophthalmology. It is also a relevant topic for gaze tracking
which is used in psychological and medical research, marketing,
human-computer interaction, virtual reality and other areas. A
typical setup can be either a low-cost webcam with some infrared
LEDs or glasses with mounted cameras and infrared illumination.
In this work, we evaluate and parallelize several pupil tracking
algorithms with the aim of estimating the pupil’s position and
size with high accuracy in order to develop a high-speed pupil
tracking system. To achieve high processing speed the original
non-parallel algorithms have been parallelized by using CUDA
and OpenMP. Graphics cards are designed to process images at
very high frequencies and resolutions, and CUDA enables them to
be used for general purpose computing. Our experimental results
show that pupil tracking can be efficiently performed at high
speeds with high-resolution images (up to 530 Hz with images of
1280x1024 pixels) using a state-of-the-art GP-GPU.

I. INTRODUCTION

Pupil tracking is an important approach to know key
information about the eye and also for supporting a lot of
different applications on both the research and commercial
arena, specially when used for gaze tracking. There are many
application cases of the later, being an interesting one the
remote control of computers with the subject’s gaze: it can
be used instead of the mouse, for moving the camera in 3D
virtual reality scenarios. But it is also a powerful tool for
disabled people with very reduced movement capabilities who
can control a computer with their gaze.

Pupil tracking is very often performed by using infrared
illumination because it does not perturb the subject, neither
annoys him nor it affects the eye’s properties since the subject
cannot see the infrared light. In particular, the pupil size does
not change with infrared illumination, which could be useful in
some experiments. Pupil tracking under infrared illumination is
commonly used in visual optics experiments and in ophthalmic
instruments. In some cases it is a key component of the system
because the actions that are performed need to be done in the
center of the pupil, which in turn needs to be calculated with
high accuracy and at a high speed. While for eye gazing a low
precision on the pupil determination does not affect much the
results [1], in some visual optics applications a low precision
can lead to important errors in the final results.

Adaptive Optics Visual Simulation [2], consisting of the
manipulation of ocular aberrations in order to perform visual

testing through a modified optics, is an example of application
that would benefit from a fast and accurate pupil tracking
procedure. Nowadays, visual simulation systems rely on the
subject’s pupil being steady with respect to the aberration
generator. This is usually achieved by means of a bite bar or a
chin rest, neither element comfortable nor able to completely
fix the subject’s head. In this context, a fast and accurate
pupil tracking system would be a requirement for a free-
floating visual simulator where pupil movements are detected
and compensated, e.g., with galvanometric mirrors.

There are several algorithms for calculating the pupil
position and size, in some cases tailored for a particular optical
setup and illumination. In this paper, we have selected three
of the most common (and non-invasive) algorithms that can be
found in the literature. One promising and robust algorithm is
called Starburst [3], which is based on tracing a number of rays
that search big gradient changes and it is capable of providing
information not only about pupil size and position but also its
shape and orientation. A second and more standard algorithm
applies a threshold to the image and labels it for iteratively
searching the biggest labelled circle [4]. The third evaluated
approach uses the resulting edges after applying a Canny edge
detector [5] to finally apply the Hough transform [6] in order
to calculate the pupil’s position and size.

In this paper we parallelize and evaluate the aforemen-
tioned pupil tracking algorithms in different computing sys-
tems (from general purpose multicore CPUs to state-of-the-
art GP-GPUs) by using both OpenMP [7] and CUDA [8]
programming environments, with the final goal of designing
a high performance (up to 85.5x speedup compared to their
corresponding sequential implementations) that allows for high
speed processing (up to 530 frames per second) while not
sacrificing a high detection accuracy (more than 90% of the
pupils in the dataset are detected with an error in their radio
lower than 5%).

It is important to note that despite the fact that pupil track-
ing is a widely used tool, it is still hard to achieve high speed
pupil tracking with high quality images. Accurately tracking
the pupil at high speed is a computationally intensive task
and, commonly, images require some pre-processing treatment
which is also computationally intensive, making it challenging
to process high-definition images, or even tracking both eyes
simultaneously. In this sense, the three evaluated pupil tracking
algorithms offer a different pupil detection accuracy depending
on the input image and they also present big differences in
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the computational requirements to perform their calculations,
as we will show in Section VI. For that reason, a second
contribution of this paper is a deep and exhaustive evaluation
of the selected algorithms by covering a wide range of tuning
parameters for each particular case.

II. BACKGROUND AND RELATED WORK

Different algorithms have been developed to track the pupil
position and size under different conditions. A robust and well
known approach is the Starburst algorithm [3]. This is based
on a series of rays that extend from an initial position to the
edges of the image. A change over a threshold is searched in
the intensity derivative of the pixels in each of the rays. Then
new rays are created, that go from the newly found points
to the initial position. By doing this, points on the other side
of the pupil are found. Since only the pixels that belong to
the rays are analyzed, a small amount of pixels of the image
are accessed, which reduces the computation time. While it is
an iterative algorithm, experimental results have shown that in
most cases it converges after two or three iterations.

Another approach is to use a Gradient Vector Flow (GVF)
snake [9]. In this algorithm an estimate of the pupil center is
calculated to reduce the area where the pupil is searched. In
order to estimate the pupil’s position only the middle sub image
is taken into account, which is usually beneficial since the
pupil is commonly located in the center of the image in most
controlled experimental setups. However, this is not always
the case and this approach will fail to detect pupils in some
experiments or in non-ideal environments. Still the algorithm
is interesting because it is able to find the pupil with high
accuracy when the initial assumptions are true.

Pupil detection can also be performed with a technique
called Graph Cuts [10]. In the proposed algorithm the pixels
constitute the nodes of a graph while the edges represent
their relationship. So the Graph Cut algorithm tries to find
the minimum cut between the pupil and the rest of the image.
As a previous step, an eyelash detection algorithm is used to
remove them. This is a basic pre-processing stage in order to
correctly select a pixel from inside the pupil and a pixel from
the rest of the image, which is important because the pixel
from the pupil is selected as a dark pixel in the image and
the algorithm could select a pixel from the eyelashes instead,
provoking the algorithm to fail.

Another simpler approach is to use the Hough Transform
on the edges detected with the Canny algorithm [11]. This
method is also used by Masek [12] with a specific pre-
processing for removing the eyelids. Although it was initially
proposed for segmenting the iris, it can be used for pupil
tracking as well. It is a simple approach, however, its effec-
tiveness and accuracy are very dependent of the input set of
pictures. In addition, this algorithm is very sensitive to noise
added by eyelashes or even other smaller features of the eye.
Furthermore, it is a very slow approach when used in large
images with a wide range of pupil’s radios since it will search
sequentially for all the targeted pupil sizes in all the pixels of
the image.

Blobs have also been applied [13] by using the central
blob of the image as the pupil. This is a simple technique
because by using a threshold the pupil can easily be isolated

from other features of the eye. However, eyelids and eyelashes
could be overlapping and they could be detected as part of the
pupil. To avoid such errors eyelids and eyelashes detection
mechanisms should be previously performed which increases
the computational demands of the algorithm.

GPU processors have been used for pupil tracking with
color images [14]. Borovikov proposed a custom blob detector;
he assumes that the pupil will be near the center of the image
and searches iteratively a dark blob. In each iteration the center
of mass of a circle around the current estimated center is
calculated providing higher values to the darker pixels. After
each iteration the initial radio is decreased and the algorithm
stops when the center position does not change between two
consecutive iterations. Another GPU approach for pupil track-
ing was proposed by Mulligan in [15]. It is based on searching
an area within a threshold in the image. This approach may
have problems to find the pupil when the eyelashes are partially
hiding it or when there are corneal reflections inside the pupil.
Under good experimental conditions it achieves a processing
speed of up to 250 Hz but for low resolution images.

Another field closely related to pupil tracking is gaze
tracking. In the literature there are a number of approaches
to perform it [16]. Usually, a wide-field angle camera with
infrared illumination is used to allow the user to freely move
its head. As a trade-off, the resolution for detecting the eye is
highly reduced as well as the precision for detecting the pupil
[17], [18]. Although it is possible to focus closer to the eye
and move the camera to follow the subject it is a complex
and expensive setup that fails if the subject moves fast. An
alternative consists of using a head-mounted system that allows
head movements [19]. Another approach uses the dark and
bright pupil for tracking the eye [20], [1] which simplifies the
pupil detection but increases the complexity and cost of the
setup since it must synchronize the camera with the two rings
of LEDs.

III. GPU-BASED REAL TIME PUPIL TRACKING
The main goal of this work is to parallelize several state-of-

the-art pupil detection algorithms to develop a high speed pupil
tracking system capable of processing high quality images
with an accurate pupil determination. A deep exploration and
a throughout evaluation must be carried out, by varying the
input parameters of these algorithms to determine how they
behave with different tuning values and, more specifically,
to characterize their run-time performance and the achieved
accuracy, in terms of relative error compared to the correct
pupil size and position.

A. Preprocessing
In order to perform a fair comparison of the algorithms,

the same preprocessing is applied to all the images. The set
of images used for the experiments (refer to Section IV for
additional details) are sharp enough and they do not have
significant noise. However, as it will be also explained in
Section IV, the illumination setup added corneal reflections.
Every image taken with direct infrared illumination will have
similar reflections, so an algorithm for removing them is used.

The algorithm used for this purpose was proposed by
Aydi et al. [21]. It is a simple method that applies a top-
hat transform, followed by an image thresholding, an image
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dilation and, finally, an interpolation of the detected points.
An example of the results of the corneal reflection removal
step is shown in Figure 2b, which can be compared with
the original image in Figure 2a. The dilation and the erosion
filters are computationally intensive, so a naı̈ve implementation
in CUDA is not suitable for high performance applications.
However, these are separable filters which can be expressed
as the outer product of two vectors. The thresholding filter is
a straightforward operation in CUDA, the values of the pixels
above the threshold are interpolated using the values of the
pixels in the border of the corneal reflection. By weighting the
pixel values based on their distance to the replaced pixel, a
smooth result is generated avoiding the creation of new borders
inside the pupil.

After the corneal reflection removal step, a Gaussian filter
is applied (with a kernel size of 5 and a sigma of 2). The
naı̈ve implementation of the Gaussian filter in CUDA is
straightforward, however, it is not very efficient. Similarly to
the approach used with the erosion and dilation two separable
kernels are used. These CUDA optimizations are further de-
scribed in Section V. A median filter has been also tested
as a replacement for the Gaussian filter. The median filter
has the advantage of removing small features while keeping
the pupil edges: it selects the median value of the pixels
around each pixel with a chosen radio. To implement a parallel
median filter, an histogram is used. Each thread calculates the
histogram of the pixels in the area around its center and scans
the histogram to find the element with half of the values on
each side. A texture has been used to optimize the memory
accesses of the GPU threads.

B. Threshold and Labelling Algorithm

A similar approach to the proposed by Rankin et al. [13]
is used. Although instead of selecting the central blob we
have modified the original algorithm to select the biggest blob.
For selecting the threshold several values are tested using
an iterative algorithm which tests values ranging from 20 to
100. Depending on the step size of the iterative algorithm
the accuracy will be higher or lower and also the time
spent in the algorithm is linearly related to this step size
(in our experiments the chosen step size varies from 5 to
40). Therefore, the performance and the accuracy achieved
by this algorithm are a trade off, the faster the less accurate,
and vice versa. After applying the threshold to the image, as
described before, the labelling process is performed. A state-
of-the-art labelling algorithm by Chen [22] has been used.
In the labelling algorithm the image is scanned to find the
connected areas and to assign a different label to each of them.

After labelling the image, the histogram of the image is
calculated. By calculating the histogram of the labelled image
the biggest labelled area can easily be found by searching
the maximum value within the histogram. Once the maximum
label is found the image is scanned to remove the rest of labels
while keeping the biggest labelled area. Then the image is
scanned for searching the border of the labelled area. A simple
algorithm for locating borders is used, which searches empty
pixels in the image and checks if any of its eight neighbours
is different than 0. If any of them is different its position is
stored in a list of border pixels.

With the list of found border pixels a RANSAC (Random
Sample Consensus) circle fit is performed [23] to determine
the pupil. The RANSAC algorithm fits very well the typical
output of this algorithm. Usually, there are a lot of points
found in the pupil border in addition to some points outside
the pupil. If a normal circle fit were performed for all the
points detected, the outliers would distort the result. While the
RANSAC algorithm uses only a few points to fit a circle and
then checks how many of the points are closer than a given
distance to the fitted circle (number of votes). We have used
5 points to do the circle fit and a maximum distance of 2
pixels to accept the vote of a point. The initial set of 5 points
is randomly selected. Generating random numbers is a slow
operation but they can be generated only once and then be
re-used for all of the analyzed images, as described in the
CUDA optimization Section V. Every time that RANSAC is
performed 1024 fits are calculated, using 1024 sets of 5 points.
To generate the 1024 sets of 5 points the random numbers
are multiplied by the total amount of points found, generating
indexes in the array of points. Then a circle fit is performed
for each set of points using the circle fit developed by Taubin
[24]. Afterwards, the votes are computed and a reduction is
performed to add the votes of each circle. Finally, the circle
with the maximum number of votes is selected as the best fit.
The process is repeated for all the thresholds and the circle
with most votes is selected as the circle describing the pupil.

C. Starburst Algorithm

The second algorithm is called Starburst, developed by
Dongheng and Parkhurst [3]. It is based on the fact that the
pupil border is usually the place with the biggest gradient val-
ues. This algorithm is very sensitive to the corneal reflections,
so the preprocessing step for removing them is crucial.

After removing the reflections the Starburst algorithm is
used to search the pupil. Starburst needs a starting central
point of the pupil. When no previous information is available
the center of the image is typically selected. When previous
information is available, for example in a live capture, using
the previous center can significantly speed-up the process and
also increase the accuracy in some cases. A variable number
of rays, we have used 20, are “launched” from the center to
the limits of the image. Each ray is projected in a different
direction, dividing a circle in equal portions. The ray uses the
pixels that are in its direction to calculate its gradient which is
later inspected to search the first value bigger than a threshold.
The result of this stage are the points found in the rays.

At the beginning the rays’ directions are calculated, and
each direction is calculated by a CUDA thread. Then, for each
ray another CUDA thread calculates the gradient along the
ray. If the pixel value is over the threshold its position in the
ray is stored using the atomicMin CUDA operation. Thereby,
the closest point to the origin of the ray is saved. Finally,
the position in the image of each pixel found on each ray is
calculated by using its position in the ray, the center and the
direction of each ray.

In the second stage of the Starburst algorithm those points
are used to create new rays from them to the center. The new
rays are limited to an angle of ±50o instead of the 360o used
initially. The purpose is to find points on the other side of
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the pupil and avoid going out of it. The same method for
parallelizing the process in CUDA is used in this second stage.

Finally, the points from both stages are joined in the same
array and a RANSAC circle fit is performed, as described for
the previous algorithm. In the original Starburst algorithm the
average location of the points was used, in our implementation
we utilize the RANSAC circle fit since it is a faster approach
and it can speed-up the convergence. The distance between
the new center and the old center is calculated and, if it
is smaller than 10 pixels, the algorithm finishes. Otherwise,
another iteration is executed until it converges or ten iterations
have been performed.

D. Canny Edge Detector and Hough Transform Algorithm

The third evaluated algorithm uses the Canny edge detector
[5] and the Hough Transform [6]. For performing the Canny
edge detection, the image is smoothed horizontally and verti-
cally with a 1-D Gauss kernel and with the first derivative of
a Gauss kernel. Four images are generated as the result of the
process. Then the gradient value and direction are calculated
using a naı̈ve CUDA implementation.

The value of the high threshold of the Canny edge detection
is calculated as the minimum value which is bigger than the
80% of the pixels’ values. The histogram of the images is used
to calculate this high threshold. On the other hand, the low
threshold is established as 40% of the high threshold. The max-
imum value is calculated first in shared memory for each block
and then in global memory for all the blocks. The gradient is
normalized with the calculated maximum value using a naı̈ve
CUDA implementation. The non-maximum suppression step
is performed using the normalized gradient and the gradient
direction matrices. Then the double thresholding is performed
and finally the hysteresis is applied to remove the low values
and keep the high ones.

With the result of the Canny edge detector the Hough
Transform is applied. The Hough Transform will check for
each pixel every possible radio in the range selected. So one
thread is issued for every pixel in the image for each one of
the checked radios. Each thread counts the number of pixels
that are in the circumference with center in its position and
with its radio and belong to an edge. An atomicMax CUDA
function is used to check if the current circle has more votes
than the circles previously found. If it is the case, its center
and radio is stored. The final result is the circle which obtains
the maximum number of votes.

IV. EXPERIMENTAL FRAMEWORK

While many different setups can be used for performing
pupil tracking, our approach consists of a set of infrared
LEDs and a camera focusing at the eye (Figures 1a and 1b).
The setup appears more complicated because there are other
optical elements since this setup was used in an experiment
for locating the achromatizing pupil position and first Purkinje
reflection in a normal population [25]. The camera is at the
end of the setup, whereas the ring of LEDs is closer to the
eye of the subject. Only the top part of the ring was used to
avoid adding a circle to the images. In order to track the pupil
the subject sits in front of the camera and stays there while
the tracking is running. The tracking can be done in real-time

(a) (b)

Fig. 1: (a) Setup for pupil tracking. (b) Sub-system for infrared
illumination.

(a) (b)

Fig. 2: (a) Eye image of a subject with the described setup. (b)
Eye image of a subject with the corneal reflections removed.

at the same time that the subject is standing in front of the
camera or later if a video is captured. An image of the eye of
a subject captured with this setup is shown in the figure 2a.
In that image it can be seen that the semicircular set of LEDs
is generating corneal reflections that appear as bright points
inside the pupil. A different distribution of the LEDs could
produce better images, e.g., having only one powerful LED
would be better since there would be only one spot. Having
a semicircular ring can hide half of the pupil border in some
subjects with very small pupils. Depending on the final purpose
of the pupil tracking these subjects might be avoided or not,
so the infrared illumination will have to be chosen taking this
into consideration.

The GPU used for testing the CUDA programs is a high-
end NVIDIA GeForce GTX 980, with 2048 CUDA cores and
4GB of memory. This GPU has one of the biggest amount of
cores currently available. That enables our programs to exploit
all the parallelism in the algorithms. For the CPU and OpenMP
experiments an Intel i7-2600K processor with 4 physical cores
and hyperthreading has been used.

Pupil Images Dataset. The experiments were performed using
964 pictures of 1280x1024 pixels taken with the described
optical setup from 51 different subjects. A subset of this image
collection was used in [25]. The dataset contains pupils with a
wide variety of radios, ranging from 1.66mm to 4.28mm, with
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a mean of 3.21mm. In addition, the evaluated set of images
have different illumination intensities and include pupils with
a high variety of shapes since they belong to different subjects
and every pupil has a different shape.

V. ACCELERATING PUPIL TRACKING

CUDA enables developers to use the huge computing
power of modern GPUs, but it does not come for free. While a
naı̈ve algorithm implementation in CUDA usually provides an
important speedup, in order to achieve higher speedups some
additional optimizations must be performed. The following
paragraphs explain the different CUDA optimizations that have
been used for the pupil tracking algorithms. Note that while
some optimizations apply to all of the algorithms others only
apply to Starburst. Figure 3 summarizes the speedup obtained
by the Starburst algorithm for each CUDA optimization (and
also an OpenMP implementation running in a multicore CPU)
over a sequential implementation in a high-end CPU. The
CUDA optimizations are cumulative and while each of them
separately would not make a big performance impact, together,
they are able to significantly reduce the global execution time.

Naı̈ve CUDA Implementation. A naı̈ve CUDA implementa-
tion directly maps the C code into CUDA. While the code is
not optimized some good practices are followed: unnecessary
memory copies are avoided, intrinsic functions are preferred
(high precision is not necessary) and optimal block sizes are
selected. The naı̈ve implementation achieves a tracking speed
of 38.6 frames per second and a speedup of 6.3x.

Pre-calculating random numbers. Random numbers are used
to select the points used in the RANSAC method. They are
generated with the cuRAND library [26] and then are scaled
to match the range of the number of points previously found.
Generating random numbers is an expensive task, so it should
be avoided whenever possible. In the naı̈ve implementation, the
numbers are generated for each iteration of the Starburst, but
that is inefficient. Since the points found will be different for
each image and for each iteration the same random numbers
can be used for all the images. It is still necessary to scale the
numbers for each set of points to generate random numbers
between 0 and numberofpoints − 1. After removing the
generation of random numbers off the main loop and pre-
calculating them at the beginning, the tracking speed is in-
creased to 62.4 frames per second and the speedup comparing
with the previous version is 1.6x (or 10x respect to the CPU).

Separable preprocessing kernels. The erosion, dilation and
gaussian filter operations are performed with a k*k filter in
the naı̈ve implementation. As a result, they generate a lot of
memory loads saturating the memory system while not fully
utilizing the CUDA cores. Although new CUDA cards have big
caches that partially mitigate the problem it is still possible to
highly reduce the necessary bandwidth by dividing the kernel
in two 1-dimensional kernels. The three operations can be
divided in two kernels reducing the memory loads of each
thread from k*k to 2*k. And only an intermediate buffer, which
can be pre-allocated, is needed. After adding the separable
kernels the frames per second are increased dramatically up to
203.2 and a huge speedup of 32.7x is obtained.

Preprocessing kernels with shared memory. Although the
memory bandwidth used by the preprocessing operations has

been greatly reduced with the separable kernels optimization
there is still room for improvement. Most of the pixels loaded
by each thread are also loaded by others threads in the same
block, so it is a good idea to preload the data once to shared
memory [27] and do the calculations accessing the much faster
shared memory. After adding the shared memory to the three
preprocessing operations the frames per second are increased
to 257.9 and the speedup over a CPU raises to 41.6x.

Preallocate memory. Allocating the memory in the GPU is
relatively expensive, so allocating memory on a loop should be
avoided. In the naı̈ve implementation the memory is allocated
for each image or even for each iteration of the Starburst for
some variables that may slightly change its size through itera-
tions. Since the maximum size of each dynamically allocated
variable is known, they can be preallocated at the beginning
and reused through the whole execution. After applying this
optimization the obtained number of frames per second is
378.8 and the speedup increases to 61.1x.

Pinned memory. Copying the memory from the CPU to the
GPU is an expensive task. Since the amount of time spent
processing an image after applying the previous optimizations
is very low, the overhead due to the memory copies is
increasing its weight. It takes over 25% of the processing
time to copy the images to the GPU. Each image is only
copied once, so it cannot be reduced. However, it is possible to
reduce the memory copy time by using pinned memory. After
switching to pinned memory the number of frames per second
obtained is 428.6 and the speedup over a CPU raises to 69.1x.

Reduction with shuffle instructions. The RANSAC is a key
part of the Starburst algorithm, in order to find the best fitting
circle it needs to sum the votes from every point from all the
circles. It is a reduction which is performed in parallel for over
100 points for the 1024 circles. The naı̈ve approach with an
atomicAdd is very slow, in the naı̈ve implementation we are
using a typical approach with shared memory [28]. However,
using shuffle instructions provides a big improvement, although
the total time spent doing the reduction is low and the achieved
speedup is modest. The new number of frames per second
raises to 449.4 and the resulting speedup increases to 72.4x.

Join kernels While separating the functionality may simplify
the code, it can lead to reduced performance. There are three
functions where separating the functionality has resulted in
repeated accesses to memory and, as a consequence, wasted
computing time. These three functions are: the last part of the
top-hat functions (second step dilation and subtraction) and the
thresholding; generating gradients and searching the points in
Starburst; and the RANSAC with the reduction. All of these
functions shared the same pattern, they were accessing the data
generated from the previous function. After joining them they
are avoiding storing data to global memory that would be later
loaded. After the optimization 512.6 frames per second and a
speedup of 82.6x are achieved.

Template unroll. CUDA is capable of using C++ templates,
which are useful for reusing the same functions with different
types but are also useful for compiling a function several times
for different values of a variable. After adding templates to the
gaussian, the erosion and the dilation filters, the radio of these
convolutions has been parameterized enabling the compiler
to unroll the loop for each of these functions. To do so a
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Fig. 3: Speedup of the parallelized StarBurst using OpenMP and the CUDA optimizations (over a sequential version).

switch with different radio sizes has been added to keep
a small amount of flexibility in the radio size. Unrolling the
loops avoid the tests that must be performed in each iteration
of a loop to check if it must stop or not, therefore, reducing the
execution time. The final number of frames per second raises
to 530.3 and the final achieved speedup is 85.5x.

VI. EXPERIMENTAL RESULTS EVALUATION

A. Starburst Results

Figure 4a shows the accuracy of the Starburst algorithm
applying six different image preprocessing configurations. Two
of them use a Gaussian filter with a kernel size of 5 and a sigma
of 2. Whereas four of them use a median filter with a kernel
size of 7 or 11. The size of the corneal reflections removal
kernel is also specified with values between 13 and 25.

The accuracy is measured as the percentage of images
where the center and radio have been found within a given
margin of error with respect to the correct position and size.
E.g., if the error in the calculated radio is 0.1mm, whereas
the error in the center is 0.05mm, and assuming a pupil radio
of 2mm the relative margin of error are 5% and 2.5% for the
pupil radio and the center, respectively. The biggest error is
used, in this example a 5% corresponding to the pupil radio.

In Figure 4a it can be observed that there are some
configurations with more than 85% of the images detected
with an error under 5% and more than 95% detected with
an error smaller than 10%. For the average pupil, which has
a radio of 3.21mm, a relative error of 5% would mean an
absolute error of 0.16mm in the radio. But the error of the
radio is on average 1% less than the error of the center: the
same amount of pupils are detected within a margin of error
of 5% for the center and within a margin of error of 4% for
the radio. A relative error of 4% for the average radio would
be an absolute error of 0.13mm, and a relative error of 3%
would be an absolute error of 0.096mm.

In addition to that, a performance comparison is shown in
Figure 4b. Clearly, the configurations using the median filter
are slower than the configurations using the Gaussian filter due
to the different performance of both methods.

B. Thresholding and Labelling Results

The accuracy of the Thresholding and Labelling algorithm
(referred as T&L in Figure 5a) is quite good taking into
account that this algorithm is very sensitive to overlappings of
the eyelids and eyelashes. It is able to achieve an accuracy over
90% for small steps within a reasonable margin of error. Still
its accuracy is decreased as the size of the steps is increased
because it misses some good thresholds. The performance
(Figure 5b) is directly related to the size of the steps used.
Increasing the size of the steps decreases the execution time
because it reduces the number of iterations of the algorithm.
Relatively high speeds are achieved with step of size 20 and
40. After examining the accuracy and the performance of the
algorithm it is clear that there is a trade-off between both.
Increasing one of them will decrease the other, so a balance
must be found.

C. Hough Results

The Hough Transform turns out to obtain very accurate
results (Figure 5a). It is able to detect the pupil correctly
despite the iris, eyelashes and eyelids adding edges to the
image. However, it is a very slow method (Figure 5b) since
it is only capable of processing 4.7 frames per second in the
GPU. The Hough Transform requires a huge computing power
because it is checking all the possible radios for all the pixels.

D. Side-by-side comparison of the three approaches

A comparison of the accuracy (Figure 6a) and the perfor-
mance (Figure 6b) helps to understand how well the algorithms
behave. For the sake of simplicity only the best configuration
for both the Starburst and for Thresholding and Labelling is
shown. For Starburst a corneal reflections removal kernel of
size 19 and a Gaussian filter of size 5 and sigma 2 are used.
For Thresholding and Labelling a step of size 20 is chosen.

When considering both metrics, performance and accuracy,
it stands out that the best overall algorithm is Starburst. Its
accuracy has been measured to be really high, with 96.2% of
the pupils detected within a margin of error of 10%. Although
the Hough Transform is just slightly better (96.38% of the
pupils detected within a margin of error of 10%) it exhibits a
significant lower performance, 4.7 frames per second, making
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Fig. 4: (a) Starburst’s accuracy with different preprocessing configurations. (b) Starburst’s performance for the same configurations.

(a) (b)

Fig. 5: (a) Hough and Thresholding and labelling accuracy with different step sizes. (b) Hough and Thresholding and labelling
performance with different preprocessing configurations.

it unusable for real time applications. Contrarily, the Starburst
algorithm achieves 530 frames per second for the mentioned
accuracy. On the other hand, the Threshold and Labelling
algorithm is much worse in terms of accuracy with 78.5% of
the pupils detected within a margin of error of 10% (although
other configurations of the T&L have shown a higher accuracy,
again, at the cost of degrading too much the performance) and
also worse in terms of performance when compared to the
Starburst, achieving only 61.9 frames per second. Summariz-
ing, the GPU-accelerated version of Starburst, after applying
all the CUDA optimizations discussed in the paper, is by far
the fastest approach (able to achieve more than 500 frames per
second) while at the same time exhibiting a high accuracy.

VII. CONCLUSIONS

Looking at the previous side-by-side comparison it is clear
that highly accurate and fast pupil tracking have been achieved
which enables high speed tracking of the pupil with small
errors. This has been possible with the Starburst algorithm that
has been parallelized by using CUDA. The speedup obtained

with CUDA is 85.5x which is much more than the 3.1x
obtained with OpenMP. Indeed, the speed of the algorithm
is so high that it is possible to perform high frequency
tracking of fast movements of the eye, such as saccades, with
high quality images. High-speed cameras capable of capturing
hundreds of frames per second are widely available and they
can be used in combination with our parallelized algorithm
to do real-time tracking with high frame rates. Furthermore,
in real-time environments usually some time must be spent
on communication with the cameras and the actuators. So the
GPU cannot be processing all the time, therefore, having an
algorithm that is faster than what it is theoretically needed is a
must in order to enable real-time processing when considering
the overhead of the communication and synchronization.

The parallel implementation we have developed is a pow-
erful tool that will help to improve visual optics applications
which rely on pupil tracking, enabling speeds and a pupil track-
ing accuracy that were not possible previously. Furthermore,
the stability requirements for the subject could be relaxed in
some experiments.
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Fig. 6: (a) Comparison of accuracy of the algorithms. (b) Performance of the algorithms using a resolution of 1280x1024.
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