
Extending SRT for Parallel Applications in Tiled-CMP Architectures

Daniel Sánchez, Juan L. Aragón and José M. Garcı́a

Departamento de Ingenierı́a y Tecnologı́a de Computadores

Universidad de Murcia, Spain

Email: {dsanchez, jlaragon, jmgarcia}@ditec.um.es

Abstract

Reliability has become a first-class consideration issue for

architects along with performance and energy-efficiency. The

increasing scaling technology and subsequent supply voltage

reductions are increasing the susceptibility of architectures

to soft errors. However, mechanisms to achieve full coverage

to errors usually degrade performance in an unacceptable

way for the majority of common users.

Simultaneous and Redundantly Threaded (SRT) [13] is a

fault tolerant architecture in which pairs of threads in a SMT

core redundantly execute the same program instructions. In

this paper, we study the under-explored architectural support

of SRT to reliably execute shared-memory applications. We

show how atomic operations induce a serialization point

between master and slave threads. This bottleneck has an

impact of 34% in execution speed for several parallel

scientific benchmarks. We propose an alternative mechanism

in which the L1 cache is updated by master’s stores before

verification reducing the overhead up to 21%. Our approach

also outperforms other recent proposals such as DCC with

a decrease of 8% in execution speed.

1. Introduction

Nowadays, market trends are positioning Chip-

Multiprocessors (CMPs) as the best way to use the

large number of transistors we can fit into a chip. By

increasing the number of cores per chip and the size

of caches, we aim to improve the performance in an

energy-efficient way, as well as keeping a manageable

complexity to exploit the thread-level parallelism.

However, with the increase in the number of transistors

per chip, the failure ratio continuously grows in every new

scale generation [15]. Firstly, the mere fact of having a

higher number of transistors per chip, increases the prob-

ability of a fault. Secondly, the growth of temperature,

the decrease of the voltage supply and the subthreshold

voltage in the chip, in addition to other non-desirable effects

such as higher power supply noise and signal cross-talking

compromise the system’s reliability.

Hardware errors can be divided into three main categories:

transient faults, intermittent faults and permanent faults

[10], [3]. Both transient and intermittent faults appear and

disappear by themselves. The differences between them are

their duration and their causes: while transient faults are

originated by external factors, like particle strikes over the

chip, intermittent faults are caused by intra-chip factors, such

as process variation combined with voltage and temperature

fluctuations [20]. In addition, transient faults disappear much

faster than intermittent faults, on average. Finally, permanent

faults remain in the hardware until the damaged part is

replaced. Thus, this paper is aimed at the study of fault

tolerant techniques to detect and recover from transient and

intermittent faults, also known as soft errors.

Although the fault ratio is still low for the majority of

users, several studies show how soft errors can heavily

damage industry [10]. For instance, in 1984 Intel had some

problems delivering chips to AT&T because of alpha particle

contamination in the manufacturing process. In 2000, a

reliability problem was reported by Sun Microsystems in its

UltraSparc-II servers as a result of an insufficient protection

in the SRAM. A report from Cypress Semiconductor shows

how a car factory is halted once in a month because of soft

errors [23]. Another fact to take into account is that the fault

ratio increases as altitude does. Therefore, reliability has

become a major design problem in the aerospace industry.

Fault detection has usually been achieved by means

of redundant execution of the program instructions, while

recovery methods are commonly based on checkpointing.

A checkpoint reflects a safe state of the architecture in a

temporal point. When a fault is detected, the architecture is

rolled-back to the previous checkpoint and the execution is

restarted.

There are many proposals to achieve fault tolerance in

microarchitectures. RMT (Redundant Multi-Threading) is a

group of techniques based on redundant execution in which

two threads execute the same instructions. Simultaneous

and Redundantly Threaded processors (SRT) [13] is one of

them, implemented on Simultaneous Multithreading (SMT)

architectures in which the two threads are executed with

a delay respect to the other, called slack, which allows to

speed up the trailing thread. This approach is attractive since

it does not require many design changes in a traditional

SMT processor, and it only adds some extra hardware

for communication purposes between the threads. It also

avoids inter-core communication, one of the major draw-

backs of other proposals such as Chip Redundant Threaded

processors (CRT) [11], Reunion [16] and Dynamic Core

Coupling (DCC) [5]. Although there are several proposals

using SRT in uni-processor environments with sequential

applications [19][4], the architectural support for redundancy

with shared-memory workloads remains unexplored.

The specific contributions of this paper are:

• Building a fault tolerant architecture for shared-memory

applications using SRT as a building block for provid-

ing reliable executions. At the same time we identify

atomic operations as a serialization point which causes

a significant performance degradation.

• Proposing a new design for SRT to reduce the bottle-

necks of the architecture, which consists of updating

L1 data cache before verification.

• Studying the behaviour of a speculative mechanism

which allows sharing unverified data.

The rest of the paper is organized as follows. Section 2

provides some background and reviews the related work.

Section 3 details a reliable tiled-CMP architecture by using

SRT as a building block. In Section 4 we describe a first

design which achieves a noticeable performance degradation

because of serialization in atomic operations, proposing a

new alternative to reduce this bottleneck. Section 5 in-

troduces the methodology employed in the evaluation and

shows the experimental results. Finally, Section 6 summa-

rizes the main conclusions of our work.

2. Related work

There are several proposals to detect and recover from

soft errors. They can be classified attending to their operation

mode, as we can see in Figure 1. In the first category, we find

error detection and correction codes. Error-Correcting Codes

(ECC) and Forward Error Correction (FEC) are created by

specific rules of construction, in order to detect and correct

any error caused in the transmission of data automatically.

ECC codes are commonly used in dynamic RAM and

caches.

�

����������	�
���

���
�
�����

��������������	��

�����

���	��	���������

�����	������

��

����������������

�����	�����

�����	�����

��������
���������

��������

Figure 1. Fault tolerant mechanisms classification.

The second category is composed of redundancy-based

mechanisms. The first approaches to full redundant execu-

tion started with Lockstepping [1], a proposal in which two

statically bound execution cores receive the same inputs

and execute the same instructions. Later, the family of

techniques Simultaneous and Redundantly Threaded (SRT)

[13], Simultaneous and Redundantly Threaded with Recov-

ery (SRTR) [19], Chip Redundant Threading (CRT) [11] and

Chip Redundant Threading with Recovery (CRTR) [2] were

proposed, based on a previous approach called AR-SMT

[14]. In all these studies, the fault tolerance is achieved by

means of redundant execution of thread pairs in SMT cores.

The third category is a novel approach to fault detection

which follows a scheme based on symptoms [6]. In this

study, a characterization of how errors affect either applica-

tion or OS behaviour with almost zero hardware overhead

is presented. By looking for these unusual situations as fatal

hardware traps, abnormal application exits or hangs in either

the program or the OS, faults can be detected and rolled-back

to a previous safe state by means of checkpoints. However,

these techniques cannot provide a solution for those errors

that do not modify the behaviour of applications. This is the

case of errors in ALUs, which simply flip the value of a bit.

This error will be left undetected, leading to an erroneous

program execution.

When comparing different fault tolerance mechanisms, we

can examine four main characteristics. Firstly, the sphere

of replication [13] which determines the components in

the microarchitecture that are replicated. Secondly, the syn-

chronization between redundant copies. Thirdly, the input

replication method, which defines how redundant copies

always observe the same data. Finally, the output com-

parison method, which defines how the correctness of the

computation is assured.

In SRT(R) the redundant threads are executed within the

same core. The sphere of replication includes the entire SMT

pipeline but the first level of cache. The threads execute in

a staggered execution mode, using a strict input replication

and output comparison on every instruction. Other studies

have chosen to allocate redundant threads in separate cores.

This way, if a permanent fault damages an entire core, a

single thread can still be executed. Among these proposals

it is worth mentioning CRT [11], CRTR [2], Reunion [16],

Dynamic Core Coupling (DCC) [5] and Highly Decoupled

Thread-Level Redundancy (HDTLR) [12]. In all these pro-

posals the focus relies on how the redundant pairs commu-

nicate with each other.

In Reunion, the vocal core is responsible for coherently

accessing and modifying shared-memory. However, the mute

core only accesses memory by means of non-coherent re-

quests called phantom requests, providing redundant access

to the memory system. This approach is called relaxed

input replication. In order to detect faults, the current

architectural state is interchanged among redundant cores

by using a compression method called fingerprinting [17]

through a dedicated point-to-point fast bus. Since relaxed

input replication leads to input incoherences masked as fault

detections, the checking interval must be slow (hundred

of instructions). This induces a serialized execution (very

similar to lock-stepped execution) between redundant cores

affecting performance with a degradation of 22% over a base

system when no faults are injected.

DCC [5] does not use a special communication channel

and reduces the overhead of Reunion by providing a decou-

pled execution of instructions, making bigger comparison

intervals (thousand of instructions) and reducing the network

traffic. At the end of each interval, the state of redundant

pairs are interchanged and, if no error is detected, a new

checkpoint is taken. Input incoherences are avoided by a

consistency window which forbids data updates, while the

members of a pair have not observed the same value. How-

ever, DCC uses a shared bus as interconnection network,

which is the best way to detect memory coherence and

consistency violations since all cores are able to see every

message. However, this kind of buses are not scalable as

a result of area and power constraints. In [18], the authors

show when a direct network (as a mesh) is used for DCC,

the performance degradation rises to 10%, 19%, 39% and

42% for 4, 8, 16, and 32-core CMPs.

Recently, Rashid et al. [12] proposed a fault tolerant

architecture in which decoupled threads in different cores

redundantly execute the same program instructions. The

recovery mechanism is based on checkpoints which reflect

the architecture changes between epochs. Instead of a consis-

tency window (as DCC), it employs extra hardware to buffer

unverified stores (thousand of instructions). In this proposal,

the memory system must be severely modified, including a

new structure called PCB (Post-Commit Buffer).

3. SRT as a building block for reliability

In this section we describe the base SRT architecture to

provide fail-safe execution for sequential applications.

SRT is a fault tolerance architecture proposed by Rein-

hardt and Mukherjee [13]. In SRT, two threads in a SMT

core redundantly execute the same instructions providing

transient fault detection. These threads are called master (or

leading) and slave (or trailing) threads, since one of them

runs ahead of the other by an amount of instructions called

slack. As in a traditional SMT, each thread has its own PC

register, renaming map table and register file, while all the

other resources are shared.

The master thread is the one responsible for accessing

memory to load data. When it does, it bypasses the data

loaded, together with the accessed address to the slave

thread by a circular FIFO structure called LVQ (Load Value

Queue). This structure prevents the slave thread from observ-

ing different values from those the master did, a phenomenon

called input incoherence. However, the master thread never

updates memory. When a master’s store commits, it records

the address and value in a structure called SVQ (Store Value

Queue). The slave will access the SVQ for comparison

purposes. If the check succeeds, the memory update will

be issued to L1 cache. Additionally, to avoid divergent path

execution between thread pairs, the master, at the mercy

of its prior execution, indicates the correct destination of

branches through a structure called BOQ (Branch Outcome

Queue).

SRTR [19] was proposed for recovery purposes. It extends

the original SRT proposal by adding an additional structure

called RVQ (Register Value Queue), as shown in Figure

2. The RVQ is used to bypass register values between

threads in order to compare the results from non-memory

instructions, before they are committed by the slave. This

way, the register file is a safe point used to restart the

execution of the master if a fault is detected. However,

the pressure over this structure is high and, despite of the

efforts made in SRTR by using Dependence-Based Checking

Elision (DBCE) [19] to reduce it, it still remains high.

An attractive alternative is the creation of regular small

checkpoints of the register file as proposed in Cherry [9].

When a fault is detected, the checkpoint is used to recover

the register file from both the master and the slave thread.

Then, execution is restarted. The integrity of the checkpoints

is preserved thanks to the fact that unverified data is not

propagated to memory.

In SRT(R) the master thread runs ahead of the slave by

an amount of instructions indicated by the slack. The benefit

of using a slack (staggered execution) in comparison to

lock-stepped execution, is twofold. Firstly, the slave avoids

executing all the instructions in the wrong path since it

obtains the destination for every branch through the BOQ.

Secondly, the master thread acts as a prefetcher for the slave,

since a master memory instruction, that caused a cache miss,

will have been resolved (or almost resolved) by the time the

slave thread executes it.

In this paper we propose to create a reliable architecture

by adding small two-way SRT cores to form a tiled-CMP.

Note that this differs from the original formulation of SRT,

in which all the threads were executed within a unique and

large SMT processor, being this one a non-scalable approach

when the number of threads increases, due to the intrinsic

limitations of SMT processors. On the other hand, CRT

[11] extends SRT by using two-way SMT cores in a CMP

processor, each core executing only two threads. However,

in CRT master threads and their corresponding slaves are

bound to different cores as an effort to maximize overall

throughput. This implies wide data paths between cores

to communicate data and to control messages needed by

structures like the LVQ, BOQ or the SVQ.

With our new design, we accomplish two requirements.

Firstly, we avoid the use of expensive cross-core buses since

master and slave threads are executed in the same SMT core.

Secondly, we provide high scalability because, in contrast

to the original SRT proposal, we use separate dual SMT

�

���
�� ������
��
� ����

����

������

��

����

������

��

��

��

��

��

��

��

����
!"�

�

�

�

�

���

��

��

��

#

�

�

�

��

$%#�

��

��

�
���

��

�&������

�����

��

�'�� ("�

!���
��

!�����

�%#�

��

��������������

�&�����������

��������������

�&�����������

��

��

��

�� ��
��

��
��

�� ��

��

��

��

��

��

��

��

��

��

"!#�

��

��

��

��

%#�

��

��

��

Figure 2. SRT architecture overview.

cores to execute multiple thread-pairs from the same parallel

application.

4. SRT in a shared-memory environment

Although SRT was originally proposed and evaluated for

sequential applications and the authors argue that it could

be used for parallel applications as well, we have found

that, with no additional restrictions, SRT can lead to wrong

program execution for parallel workloads in a CMP scenario

even with the absence of transient faults.

In parallel benchmarks, such as those we can find in

SPLASH-2 [21], the access to critical sections is granted

by primitives which depend on atomic instructions. In SRT,

the master thread never updates memory. Therefore, when

a master executes the code to access a critical section, the

value of the lock variable will not be updated until the slave

executes and verifies the same instructions. This behaviour

might lead two (or more) master threads to access a critical

section at the same time, which potentially leads to a wrong

program execution.

4.1. Synchronizing atomic operations

In order to preserve sequential consistency, and therefore,

the correct program execution, one option is to synchronize

master and slave threads when executing atomic instructions.

This conservative approach introduces a noticeable perfor-

mance degradation. The duration of the stall of the master

thread depends on two factors: (1) the size of the slack,

which determines how far the slave thread is and, (2) the

number of write operations in the SVQ which must be

written in L1 prior to the atomic operation to preserve

consistency.

4.2. Exposing writes to cache

In benchmarks with high contention resulting from syn-

chronization, the constraint previously described can in-

crease the performance degradation of the architecture dra-

matically. To avoid master stalls deriving from consistency,

we propose an alternative design to SRT in which a master

thread is able to update L1 cache.

Collaterally, we clearly reduce the pressure on the STB.

In the original SRT implementation, a master’s load must

check the SVQ to obtain the value produced by an earlier

store. This implies an associative search along the SVQ in

every load instruction. We eliminate this kind of searches

since the up-to-date values for every block are stored in L1

cache, where they can be accessed as usual.

To successfully recover from a fault, additional actions

must be taken. As L1 cache might have unverified blocks,

when a fault is detected all the unverified blocks are invali-

dated. In order to avoid losing the correct updates performed

in a block, when a store is correctly checked by the slave,

the word is written-back in L2 cache which is consistent if

the block in L1 is invalidated.

4.2.1. Implementation details. We propose to allow the

master thread to update L1 cache before checking whether

the generated value is correct or not. However, to avoid error

propagation due to a wrong result stored in cache, we must

identify unverified blocks in cache. In order to do this, we

add an additional bit per L1 cache block called Unverified

bit, activated on any master write. When the Unverified bit

is set on a cache block, it cannot be displaced or shared with

other nodes. Eventually, the Unverified bit will be cleared

when the corresponding slave thread verifies the correct

execution of the memory update.

Clearing the Unverified bit is not a trivial task. A master

thread can update a L1 cache block several times with-

out checking. If the first check performed by the slave

is successful, it means that the first memory update was

valid. However, it does not imply that the whole block is

completely verified since the rest of the updates have not

been checked yet. One simple way of knowing if a L1

block needs more checks before clearing the unverified bit

is by checking if the block appears more than once within

the SVQ. If it does, more checks need to be performed.

Yet, this measure implies an associative search in the SVQ.

However, as we said before, we eliminate much of the

pressure produced by master loads. In quantitative terms,

with the original SRT proposal we had an associative search

every master’s load, and now we need an associative search

every slave’s store, which results in a significant reduction

of associative searches in the SVQ.

Alternatively, we can use a small counter for every L1

cache block to indicate the number of updates performed

by the master. The number of bits per counter depends on

the size of the SVQ which indicates the maximum number

of unverified stores at a given moment. Experimental results

show that 4 bits per L1 cache block are enough, which in a

64KB L1 cache with 64-byte blocks represents an overhead

of 4KB. We believe that the first option is better because the

pressure over the SVQ is lower than in the original proposal

whereas 4KB is an expensive hardware cost.

4.2.2. Speculative sharing. We have studied the effect of

sharing unverified blocks. The basic idea is to allow reads

on data that have not been verified yet, in essence the

mechanism proposed in DCC [5].

In order to avoid an unrecoverable situation, the data spec-

ulatively delivered block the commit stage of the requester.

This way, we introduce speculative data in the pipeline to

operate with (similar to conventional speculative execution

due to branch prediction). Furthermore, a block can be

speculatively shared with two or more requesters. When

the producer validates the block, it sends a signal to all the

speculative sharers confirming that the acquired block was

correct and the commit stage is re-opened in its pipelines.

If a fault is detected in a core which speculatively shared

data, an invalidation message is sent to all the sharers which

flush their pipeline, undoing the previous work.

We have not considered to migrate unverified data spec-

ulatively since an expensive mechanism to keep track of

the changes in the ownership, the sharing chains and the

original value of the data block for recovery purposes would

be needed.

5. Evaluation

5.1. Simulation environment

We have implemented the proposed extensions to SRT

for supporting the execution of parallel applications in tiled

CMPs, evaluating the performance results by using the

functional simulator Virtutech Simics [7] extended with

Wisconsin GEMS [8].

Table 1. System parameters.

Processor Parameters

Max. fetch/retire rate 4 inst./cycle

Processor Speed 2 GHz.

Consistency model Sequential consistency

Write-read reordering Allowed

Cache Parameters

Line Size 64 bytes

L1 Cache:

Size 64 KB

Associativity 4 ways

Hit time 1 cycles

Shared L2 Cache:

Size 512 KB/tile

Associativity 2 ways

Hit time 6+9 cycles (tag+data)

Memory Parameters

Coherence Protocol MOESI

Write Buffer 64 entries

Directory Hit Time 15 cycles

Memory Access Time 300 cycles

Network Parameters

Topology 2D-Mesh

Link Latency (one hop) 4 cycles

Routing Time 2 cycles

Flit Size 4 bytes

Link bandwidth 1 flit/cycle

Fault Tolerance Parameters

LVQ 64 entries

SVQ 64 entries

Slack Fetch 256 instructions

Our study has been focused on a tiled CMP where each

core is a 2-threaded SMT which has its own private L1

cache, a portion of the shared L2 cache and a connection

to the on-chip network. The architecture follows the se-

quential consistency model with the write-read reordering

optimization. The main parameters of the architecture are

shown in Table 1. For the evaluation, we have used a selec-

tion of scientific applications: Barnes, FFT, Ocean, Radix,

Raytrace, Water-NSQ and Water-SP are from the SPLASH-

2 benchmark suite [22]. Tomcatv is a parallel version of a

SPEC benchmark and Unstructured is a computational fluid

dynamics application. The experimental results reported here

correspond to the parallel phase of each program only.

Problem sizes are shown in Table 2.

Table 2. Simulated benchmarks.

Benchmark Size

Barnes 8192 bodies, 4 time steps

FFT 256K complex doubles

Ocean 258x258 ocean

Radix 1M keys, 1024 radix

Raytrace teapot

Tomcatv 256 elements, 5 iterations

Unstructured Mesh.2K, 5 time steps

Water-NSQ 512 molecules, 4 time steps

Water-SP 512 molecules, 4 time steps

5.2. Performance analysis

We have implemented all the SRT mechanisms described

in Section 4. SRT-base corresponds to the SRT implementa-

tion where atomic operations became a synchronizing point

as explained in 4.1. With SRT-FT we refer to the implemen-

tation where stores are exposed to cache as seen in Section

4.2, and finally, SRT-Speculative is the implementation of

the speculative sharing in SRT as seen in Section 4.2.2.

We have noticed that SRT-base is very sensitive to write-

read reordering. If this capability is not activated, every load

must wait for the verification and issue of all the pending

stores in the SVQ before being issued, which implies a huge

performance degradation. Thus, in fairness to the study, we

have allowed for this optimization.

�

���

���

���

���

���

���

���

��	

��

�

�
�

�
�
� ��
�

�
�
�
�
�

�
�
��

�
�
�

�
�
�

��
�
�
�
��

�
�
�
�

�
�
��

�
�

�
�
��

�
�
�

�
�
��

�
�

�

!

��"�#
���

�
�
�
��
�
�
�
�
�
�
	

��
�

�
�
�

$%&"����

$%&"'&

$%&"$����(�����

Figure 3. Performance impact of SRT mechanisms over

a non fault-tolerant architecture.

We have simulated the benchmarks listed in Table 2 in

a tiled CMP with 16 cores. The performance results are

showed in Figure 3. Overall, these results suggest that SRT-

FT and SRT-Speculative perform better than SRT-base. This

tendency is more noticeable in Unstructured or Raytrace

which have many more atomic synchronizations than the

rest of the studied benchmarks, as we can see in Table 3.

Table 3. Atomic synchronizations per 100 cycles.

Benchmark Synchronizations Cycles per synchronization

Barnes 0.162 478.7

FFT 0.039 405.1

Ocean 0.142 376.7

Radix 0.013 451.2

Raytrace 0.2 561.9

Tomcatv 0.02 405.6

Unstructured 3.99 566

Water-NSQ 0.146 563.7

Water-SP 0.014 408.8

SRT-base obtains an average degradation of 34% in per-

formance with regards to a non-redundant system. On the

contrary, SRT-FT is able to reduce this degradation up to

21%. Atomic operations damage SRT-base in two ways.

Firstly, they act as a serialization point: the slave thread

must catch up with the master. In SRT-FT there are no

such serialization points. Secondly, to preserve the sequential

consistency, all the stores in the SVQ must be issued to

memory before the actual atomic operation. Unlike SRT-

base, in SRT-FT the stores are issued to L1 cache without

verification. Therefore, it is unusual for an atomic instruction

to wait for consistency risks.

However, the speculative mechanism implemented does

not increase the execution speed. In SRT, the verification of a

memory update takes a short time (in the order of hundred of

cycles), which creates a small opportunity window to obtain

a benefit from speculation. A larger slack would benefit from

this mechanism, but it would also require bigger sizes in

critical structures like the SVQ or LVQ.

5.3. Comparison against DCC

DCC [5] provides a fault tolerant framework based on

dynamic binding of cores for re-execution, relying on the

use of a shared bus. However, for current and future CMP

architectures, more efficient designs are tiled CMPs, which

are organized around a direct network, since area, scalability

and power constraints make impractical the use of a bus as

the interconnection network.

We have evaluated DCC on the top of a direct network

using the same parameters as seen in Table 1. As studied in

[18], DCC performs poorly in this environment due to the

latency imposed for the age table introduced to maintain

the master-slave consistency. Figure 4 shows the execution

speed for SRT-FT and DCC normalized to a non-redundant

tiled CMP with 16 cores. As we can see, SRT-FT is 8%

faster than DCC on average. Furthermore, DCC uses twice

as much hardware as SRT-FT, because the redundant threads

are executed in different cores. This represents another

advantage of SRT-FT over DCC.

6. Conclusions

Processors are becoming more and more unreliable due

to several factors such as technology scaling, voltage reduc-

tion and signal cross-talking. This makes processors more

susceptible to transient faults also known as soft errors.

Although there are many approaches exploring reliability

for single-threaded applications, the multithreaded, shared-

memory environment has not been completely studied.

In this paper, we study the under-explored architectural

support for SRT to reliably execute shared-memory applica-

tions. First, we have shown how atomic operations induce

a serialization point between master and slave threads. This

bottleneck has an impact of 34% on average in the execution

speed over several parallel scientific benchmarks.

Figure 4. Performance impact comparison between

SRT-FT and DCC.

Besides, to decrease this performance degradation, we

propose allowing for updates in L1 cache before verification.

Thus, we obtain a more decoupled execution reducing the

stall time due to synchronization. To avoid fault propagation

among cores, unverified data reside in L1 cache in which

sharing is not allowed as a conservative measure. With this

mechanism, we can reduce the performance degradation to

21%. This approach is better than the one obtained with

other proposals like DCC, which has a negative impact of

29% in a direct network while using twice the number of

cores than SRT.

In addition, as a way to improve the execution speed, we

have studied a simple speculative mechanism for sharing

unverified data in the same fashion as DCC. However, the

results show that this mechanism does not obtain a better

performance. This is due to the fact that in DCC, the cores

which obtain unverified data can commit, since the old state

is preserved by checkpoints, unlike in SRT, in which the

commit stage is stalled to avoid an unrecoverable error.

As future work, we plan to study sharing patterns in

order to predict future shared blocks so as to speed up their

verification. Furthermore, to increase slave thread speedup

we will also study out-of-order fetch models obtained from

the master thread execution to accelerate critical path in-

structions.

Acknowledgements

This work has been jointly supported by the Fundación

Séneca (Agencia Regional de Ciencia y Tecnologı́a, Región

de Murcia) under grant 05831/PI/07, also by the Spanish

MEC and European Commission FEDER funds under grants

”Consolider Ingenio-2010 CSD2006-00046” and ”TIN2006-

15516-C04-03”

References

[1] J. Bartlett, J. Gray, and B. Horst. Fault tolerance in tandem
computer systems. In The Evolution of Fault-Tolerant Sys-
tems. 1987.

[2] M. Gomaa, C. Scarbrough, T. N. Vijaykumar, and I. Pomer-
anz. Transient-fault recovery for chip multiprocessors. In
Proc. of the 30th annual Int’ Symp. on Computer architecture
(ISCA’03), San Diego, California, USA, 2003.

[3] A. González, S. Mahlke, S. Mukherjee, R. Sendag, D. Chiou,
and J. J. Yi. Reliability: Fallacy or reality? IEEE Micro,
27(6), 2007.

[4] S. Kumar and A. Aggarwal. Speculative instruction validation
for performance-reliability trade-off. In Proc. of the 2008
IEEE 14th Int’ Symp. on High Performance Computer Archi-
tecture (HPCA’08), Salt Lake City, USA, 2008.

[5] C. LaFrieda, E. Ipek, J. F. Martinez, and R. Manohar. Uti-
lizing dynamically coupled cores to form a resilient chip
multiprocessor. In Proc. of the 37th Annual IEEE/IFIP Int’
Conference on Dependable Systems and Networks (DSN’07),
Edinburgh, UK, 2007.

[6] M.-L. Li, P. Ramachandran, S. Sahoo, S. Adve, V. Adve,
and Y. Zhou. Understanding the propagation of hard errors
to software and implications for resilient system design. In
Proc. of the 13th Int’ Conference on Architectural Support
for Programming Languages and Operating Systems (ASP-
LOS’08), Seattle, WA, USA, March 2008.

[7] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,
G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, B. Werner,
and B. Werner. Simics: A full system simulation platform.
Computer, 35(2), 2002.

[8] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty,
M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A.
Wood. Multifacet’s general execution-driven multiprocessor
simulator (gems) toolset. SIGARCH Comput. Archit. News,
33(4), 2005.

[9] J. F. Martı́nez, J. Renau, M. C. Huang, M. Prvulovic, and
J. Torrellas. Cherry: Checkpointed early resource recycling
in out-of-order microprocessors. In Proc. of the Int’ Symp. on
Microarchitecture (MICRO’02), Istanbul, Turkey, Nov. 2002.

[10] S. Mukherjee. Architecture design for soft errors. Morgan
Kauffman, 2008.

[11] S. Mukherjee, M. Kontz, and S. K. Reinhardt. Detailed design
and evaluation of redundant multithreading alternatives. In
Proc. of the 29th annual Int’ Symp. on Computer architecture
(ISCA’02), Anchorage, Alaska, USA, 2002.

[12] M. Rashid and M. Huang. Supporting highly-decoupled
thread-level redundancy for parallel programs. In Proc. of the
14th Int’ Symp. on High Performance Computer Architecture
(HPCA’08), Salt Lake City, USA, 2008.

[13] S. K. Reinhardt and S. Mukherjee. Transient fault detection
via simultaneous multithreading. In Proc. of the 27th annual
Int’ Symp. on Computer architecture (ISCA’00), Vancouver,
British Columbia, Canada, 2000.

[14] E. Rotenberg. Ar-smt: A microarchitectural approach to fault
tolerance in microprocessors. In Proc. of the 29th Annual
Int’ Symp. on Fault-Tolerant Computing (FTCS’99), Madison,
Wisconsin, USA, 1999.

[15] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and
L. Alvisi. Modeling the effect of technology trends on
soft error rate of combinational logic. In Proc. of the Int’
Conference on Dependable Systems and Networks (DSN’02),
Bethesda, Maryland, USA, 2002.

[16] J. C. Smolens, B. T. Gold, B. Falsafi, and J. C. Hoe. Reunion:
Complexity-effective multicore redundancy. In Proc. of the
39th Annual IEEE/ACM Int’ Symp. on Microarchitecture
(MICRO 39), Orlando, Florida, USA, 2006.

[17] J. C. Smolens, B. T. Gold, J. Kim, B. Falsafi, J. C. Hoe,
and A. G. Nowatzyk. Fingerprinting: Bounding soft-error-
detection latency and bandwidth. IEEE Micro, 24(6), 2004.

[18] D. Sánchez, J. L. Aragón, and J. M. Garcı́a. Evaluating
dynamic core coupling in a scalable tiled-cmp architecture.
In Proc. of the 7th Int. Workshop on Duplicating, Decon-
structing, and Debunking (WDDD’08). In conjunction with
ISCA’08, Beijing, China, 2008.

[19] T. Vijaykumar, I. Pomeranz, and K. Cheng. Transient fault
recovery using simultaneous multithreading. In Proc. of the
29th Annual Int’ Symp. on Computer Architecture (ISCA’02),
Anchorage, Alaska, 2002.

[20] P. M. Wells, K. Chakraborty, and G. S. Sohi. Adapting to
intermittent faults in multicore systems. In Proc. of the 13th
Int’ conference on Architectural support for programming
languages and operating systems (ASPLOS’08), Seattle, WA,
USA, 2008.

[21] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 programs: Characterization and methodological
considerations. In Proc. of the 22th Int’ Symp. on Computer
Architecture (ISCA’95), Santa Margherita Ligure, Italy, 1995.

[22] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 programs: Characterization and methodological
considerations. In Proc. of the 22th Int’ Symp. on Computer
Architecture (ISCA’95), Santa Margherita Ligure, Italy, 1995.

[23] J. F. Zielger and H. Puchner. SER-History, Trends and
Challenges. Cypress Semiconductor Corporation, 2004.

