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The traditional performance cost benefits we have enjoyed for decades from technology scaling are challenged
by several critical constraints including reliability. Increases in static and dynamic variations are leading
to higher probability of parametric and wear-out failures and are elevating reliability into a prime design
constraint. In particular, SRAM cells used to build caches that dominate the processor area are usually
minimum sized and more prone to failure. It is therefore of paramount importance to develop effective
methodologies that facilitate the exploration of reliability techniques for caches.

To this end, we present an analytical model that can determine for a given cache configuration, address
trace, and random probability of permanent cell failure the exact expected miss rate and its standard
deviation when blocks with faulty bits are disabled. What distinguishes our model is that it is fully analytical,
it avoids the use of fault maps, and yet, it is both exact and simpler than previous approaches. The analytical
model is used to produce the miss-rate trends (expected miss-rate) for future technology nodes for both
uncorrelated and clustered faults. Some of the key findings based on the proposed model are (i) block disabling
has a negligible impact on the expected miss-rate unless probability of failure is equal or greater than 2.6e-4,
(i1) the fault map methodology can accurately calculate the expected miss-rate as long as 1,000 to 10,000
fault maps are used, and (iii) the expected miss-rate for execution of parallel applications increases with
the number of threads and is more pronounced for a given probability of failure as compared to sequential
execution.
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1. INTRODUCTION

For the past 50 years, technological advances have enabled the continuous miniaturiza-
tion of circuits and wires. The increasing device density offers designers the opportunity
to place more functionality per unit area and, in recent years, has allowed the inte-
gration of large caches and many cores into the same chip. Unfortunately, the scaling
of the device area has been accompanied by at least two negative consequences: a slow-
down of both voltage scaling and frequency increase due to slower scaling of leakage
current as compared to area scaling [Borkar 1999; Frank 2002; Taur 2002], and a shift
to a probabilistic design and less reliable silicon primitives due to static [Borkar et al.
2003] and dynamic [Bowman et al. 2009] variations.

A previously published resilience road map underlines the magnitude of the problem
we are confronting [Nassif et al. 2010]. Table I shows the psq; (probability of failure)
predicted in Nassif et al. [2010] for inverters, latches, and SRAM cells due to random
dopant fluctuations as a function of technology node.

These trends render essential the development of reliability techniques against per-
manent faults for future processors that are both scalable and performance effective.
This is especially important for caches that take up most of the real estate in processors
and contain numerous, vulnerable-to-failure SRAM cells.

In the literature many different solutions can be found to deal with permanently
faulty cells such as spares, robust cells, frequency and voltage binning, and error-
correcting codes. These techniques maintain the cache capacity but at the cost of either
increasing the complexity or decreasing the performance of the cache. Another ap-
proach, central to this work, consists of disabling cache blocks [McNairy and Mayfield
2005; Patterson et al. 1983; Sohi 1989] that contain faulty bits upon permanent fault
detection (at manufacturing or in the field). These disabled blocks are not replaced
with a spare,? which results in a reduction of cache capacity. Block disabling is an
attractive option because of its low overhead, one bit per cache block,? but the reduced
cache capacity can degrade performance.

Previous block-disabling-based studies [Ishihara and Fallah 2005; Lee et al. 2007a,
2007b, 2011; Pour and Hill 1993; Roberts et al. 2007; Shirvani and McCluskey 1999;
Sohi 1989] rely on the use of an arbitrary number, small or large, of random fault
maps. Each random fault map indicates faulty cache cell locations and determines the
disabled faulty cache blocks. The fault maps are used either to obtain the performance
degradation of a program through cycle accurate simulation or to determine the impact
on the miss-rate of a program’s address trace. In general, however, the number of fault
maps used in these studies is very small as compared to the number of all possible
maps. Therefore, the accuracy of previous research articles in predicting expected
performance has not been established.

Our proposal avoids fault-map-based analysis of block-disabling techniques by us-
ing instead an analytical model that calculates the Expected Miss Ratio (EMR) for a
given application, a cache configuration, and a given random probability of permanent
cell failure (pyq;). We also show how to obtain the standard deviation for the EMR
(SD_MR), which provides an indication for the range of expected degradation of the
cache. Additionally, we extend our model to take into account the variation of faults
across a wafer and examine how this affects both performance and yield. Furthermore,
we explain how to calculate a probability distribution for the EMR for a given number
of faulty blocks. All of this is accomplished without producing and using fault maps.

2Disabling can be employed after spares have been exhausted.
3This logical bit needs to be resilient either through circuit design or extra protection, because if faulty it
renders whole cache faulty.
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Table I. Predicted py 4 for Different Types of Circuits
and Technologies

Technology | Inverter | Latch | SRAM
45 nm ~0 ~0 6.1e-13
32 nm ~0 1.8e-44 | 7.3e-09
22 nm ~0 5.5e-18 | 1.5e-06
16 nm 2.4e-58 | 5.4e-10 | 5.5e-05
12 nm 1.2e-39 | 3.6e-07 | 2.6e-04

The capabilities of the proposed model are demonstrated through an analysis of the
trends of the mean and standard deviation of the cache miss rate with changing feature
size (and pyq;). This analysis reveals that caches that disable blocks with faulty bits
incur a minimal increase in the expected miss ratio when cell py,; is up to 2e-4. Other
analysis for the programs and cache configurations used in this study shows that the
random fault map methodology provides highly accurate mean and standard deviation
estimations when using 100 to 1,000 maps. A correlation analysis investigating these
results reveals a very high degree of correlation between the number of accesses and the
access distribution across sets for several benchmarks. This implies that a relatively
small number of fault maps suffices to capture the mean and standard deviation of the
cache miss rate.

This article also presents results regarding the implications of fault variation across
a wafer on yield and performance. Assuming that fault clustering is given at the level
of dies (caches), whereas the specific localization of faults for a given cache is randomly
distributed [Cheng et al. 2011], we find the effect of fault variation to mainly depend
on the cache associativity. If associativity is low, a higher clustering of faults improves
both performance and yield, whereas high associativity affects negatively. One other
study in this article examines how the number of threads of parallel applications affects
the performance of faulty caches. showing that, in general, the performance impact of
permanent faults increases with the number of threads. Finally, we show how our
model can be used to compare two different graceful degradation techniques.

The rest of this paper is organized as follows: Section 2 reviews related work.
Section 3 presents our model to calculate the EMR and SD_MR, and Section 4 ex-
tends our model to take into account variation effects. In Section 5 we describe the
methodology followed in the evaluation, which is presented in Section 6. Finally, Sec-
tion 7 summarizes the main conclusions of this work.

2. BACKGROUND AND RELATED WORK
2.1. Sparing and Circuit-Level Approaches

In the past, when variation issues were less dominant, it may have been acceptable
during postmanufacturing tests to discard chips even with a single faulty cache bit.
Nowadays, this is not a viable approach as reflected by the use of extensive spare
columns and rows in contemporary cache SRAM arrays [Le et al. 2007]. However, the
amount of spares needed to ensure a fault-free cache can grow faster than the area
scaling rate and, consequently, diminish scaling benefits.

An approach that can reduce the amount of spares needed to address parametric
variations and power constraints is the use of more robust cells [Agarwal and Nassif
2006]. SRAM cells are commonly implemented with a conventional six-transistor
structure. This design provides enough stability at today’s nominal voltage. However,
limiting power consumption requires a reduction in the supply voltage. In this case,
the Static Noise Margin (SNM) decreases significantly, which increases soft and
parametric errors. Some studies reveal that voltage cannot be scaled down to 0.7V

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 29, Publication date: December 2013.



29:4 D. Sanchez et al.

for an SRAM cell at 65nm to work properly [Yamaoka et al. 2004; Zhang et al.
2004]. To mitigate the effects of minimum supply voltage in SRAM cells, engineers
have proposed new designs using more transistors per cell such as 8T [Verma and
Chandrakasan 2008] and 10T [Kim et al. 2008] designs. These cells have lower pq,
but each one requires more transistors and a larger area, which results in longer
overall cache access time. Another approach is frequency and voltage binning, which
results in operating a chip at lower frequency or higher voltage than intended, so
that all cells can be accessed correctly [Borkar et al. 2003]. This ensures functional
correctness, but it either reduces performance or increases power/temperature.

The above approaches aim to provide fault-free caches by mitigating manufacturing
and static parametric faults. This is desirable but not realistic to accomplish cost-
effectively for future caches due to the mismatch between the cell py,; versus area
rate of scaling. Furthermore, wear-out faults that occur in the field are becoming more
common [Nassif et al. 2010]. Consequently, we may be forced to ease the requirement
of shipping only chips with fault-free caches and replacing parts that experience a
wear-out fault. But this may require performance cost-effective mechanisms to deal
with permanent faults in a cache during operation.

2.2. Architectural Solutions Based on Disabling

Another set of approaches is based on disabling of faulty cache portions, also referred
to as graceful degradation techniques. One solution is to disable blocks [Patterson
et al. 1983; Sohi 1989] that contain faulty bits upon permanent error detection (at
manufacturing time or in the field). Such disabled blocks are not replaced with a spare
and, therefore, the cache capacity is reduced. Block disabling is an attractive option
because it has low overhead, but its reduced cache capacity could degrade performance.

Block disabling is not a new concept. It has been proposed and evaluated before
[Ishihara and Fallah 2005; Lee et al. 2007a, 2007b; Pour and Hill 1993; Roberts et al.
2007; Shirvani and McCluskey 1999], for example, as a way to improve manufacturing
yield [Lee et al. 2007b; Pour and Hill 1993; Sohi 1989] and to enable cost-effective
operation below Vce-min [Ladas et al. 2010].

Finer-grain disabling techniques have also been proposed, such as word disabling
(wdis) and bit-fix [Wilkerson et al. 2008]. The wdis technique tracks faulty data cells at
word granularity by means of fault masks. These masks are kept at every line’s tag and
contain as many bits as words, each one indicating whether the corresponding word
is disabled or not. When the wdis technique is deactivated, the fault mask is ignored.
However, when it is active, all pairs of consecutive blocks in a set are combined to
form one logical block. The effect of this mechanism is that both the capacity and
associativity of the cache are reduced by half. In order to obtain a logical block in
aligned form, wdis introduces a shift-multiplexer network, which is controlled by each
block’s fault mask and is used to discard the defective words. This way, wdis tolerates
up to n/2 faulty words in a logical block with n words. Unfortunately, the alignment
network increases the access latency of the cache. Specifically, for eight-word blocks,
wdis requires a line to pass through four different multiplexers (to discard up to four
faulty words), something that increases the latency of the cache by one cycle [Wilkerson
et al. 2008]. In bit-fix [Wilkerson et al. 2008], the granularity of disabling is extended
to the bit level. In this scheme, a quarter of the ways in a cache are used to provide the
repairs for the potentially faulty bits in the rest of ways, reducing the capacity of the
cache by 25%. This approach requires a complex merging mechanism, which again can
increase the cache access latency.

The buddy cache [Koh et al. 2009] is based on the same finer-than-block disabling
principle but only groups faulty blocks. This way more cache blocks, as compared
to wdis, remain usable and, therefore, it provides better performance. However, the

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 29, Publication date: December 2013.



Modeling the Impact of Permanent Faults in Caches 29:5

buddy cache requires deep changes in the cache implementation such as the buddy
map, which is used to identify which blocks can be combined, and this increases the
access latency to the L2 cache. The ZerehCache [Ansari et al. 2009] can be considered
as an optimization of wdis. Instead of merging blocks, the ZerehCache minimizes the
amount of redundancy by selecting specific lines in a pool of spare lines. This way,
multiple defective lines can be mapped to just one (faulty or not) spare line. The
amount of cache space available remains unaltered (despite the faulty words), so the
performance slowdown is limited. However, this proposal requires a mechanism to
select the group of spare lines at manufacturing time, making the architecture not
tolerant to permanent errors due to aging or voltage variations.

As far as we know, in all previously discussed block disabling-based schemes, the
performance methodology relies on a specific number (small or large) of random fault
maps. The random fault maps indicate the location of faulty cache cells and determine
the disabled faulty cache blocks. They are used to either obtain the performance degra-
dation of a program through cycle-accurate simulation or to determine the impact on
miss-rate of a program’s address trace through other analytical models [Agarwal et al.
1989; Pour and Hill 1993]. We claim that all these studies are limited because they
do not provide a justification as to why the particular number of fault maps they use,
which is typically a very small subset of the actual number of possible mappings, is
representative of the expected behavior. Therefore, it remains unclear whether the
conclusions reached in these studies are representative. In this work we propose an
analytical methodology that completely avoids the use of random fault maps for the ex-
act calculation of the EMR for a given application address trace, a cache configuration,
and random probability of permanent cell failure (pq1).

3. ANALYTICAL MODEL FOR CACHE MISS RATE BEHAVIOR IN THE PRESENCE
OF UNCORRELATED FAULTS

In this section, we present an analytical model that can determine the EMR, SD_MR,
and an approximate probability distribution of miss ratios (PD_MR) for a given pro-
gram address trace, cache configuration, and random probability of permanent cell
failure (prqi) [Sanchez et al. 2011]. The EMR captures the average degradation due to
random faulty cells. The SD_MR provides an indication of the range of the degradation,
whereas PD_MR reveals the shape (distribution) of the degradation. These character-
istics can be used to assess the implications of faults in a cache and compare different
cache reliability schemes.

The model’s key novelty is that it does not rely on fault maps and provides exact
EMR and SD_MR rather than an approximation; that is, it determines them as if all
possible fault maps for a given random py,; have been considered. Previous studies
that relied on fault maps may not have produced representative conclusions because
they cannot generate and evaluate, in general, all possible cache fault maps for a given
Pfqil in a reasonable amount of time.

3.1. Assumptions and Definitions

The presented analytical model addresses the performance impact of block disabling
in a cache architecture prone to permanent faults. Block disabling disables the use of
a block in which at least one bit is detected as faulty. These faults are assumed to be
detected with postmanufacturing and boot time tests, ECC, and built-in self-tests.

The model initially assumes that the permanent faulty cells occur randomly and are
uncorrelated with probability pfs;. This random fault behavior is indicative of faults
due to random dopant fluctuations and line-edge roughness, two prevalent sources of
static variations.
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Fig. 1. pe; with different py,;s for a 32 KB eight-way L1 cache.

A cache configuration is defined by the number of sets (s), ways per set (n), and block
size in bits (k). We consider a block containing one or more permanent faulty bits as
faulty. In that case, the faulty block is disabled and the cache capacity is reduced.

The model assumes LRU replacement policy. The possible extensions to other re-
placement policies are subject of future work.

Each program address trace is generated through a cache simulator to obtain for
a given cache configuration the vector M. This vector contains n + 1 elements, one
element more than the number of cache ways. M; corresponds to the total misses when
there are only n —i valid ways in each set in the cache. More specifically, M; equals the
sum of all references that hit on the i least recently used blocks in each set, plus the
misses of the fault-free cache. For example, M equals the misses of a fault-free cache;
M,, represents the misses of a cache in which all ways are entirely faulty, meaning that
all accesses are misses; and M; equals the misses of the fault-free cache plus all the
hits in the LRU position (refer to the example in Section 5.1).

3.2. EMR and SD_MR

This section shows how the model obtains the EMR and SD_MR given a cell pgq,

cache configuration, and the miss vector of an address trace. The model obtains the

probability of block failure pyr using the following expression (based on well-known
binomial probability):

por =1—Q1 = pra)’ (1)

Although pyr gives information about the fraction of blocks that are expected to fail

in the cache, the impact on the miss ratio is still unknown as it depends on the fault’s

location and the amount of accesses to faulty blocks. However, with the pys we can
obtain the probability distribution pe; for the number of faulty ways in a set:

pe; = (?)péf(l — o) (2)

which provides, for every possible value of i [0...n], the probability of having n — i
nonfaulty ways. This distribution is very useful because it provides the complete picture
about how likely it is to lose a given number of ways in a set. We can see the pe;
distribution for a 32 KB, eight-way L1 cache with different pfq;s in Figure 1. In the
figure, we can see that the probability of having faulty blocks in an eight-way cache
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increases with higher prq;,. For example, we can see that for a ps; 1.0e-03, the
probability of having no faults in a set is close to 0, while the probability of having four
faulty blocks is around 30%.

The expectation of a random variable X = xg, x1 . . ., &, for which each possible value
has probability p = po, p1, ..., pm can be calculated as:

EXI=) x-pi 3)
i=0

In our case, the random variable X corresponds to the total number of misses for a
cache with faults; x; corresponds to the total misses when there are only n — i valid
ways in each set in the cache; and p; is the probability of having i faulty ways in a set.
Therefore, we can express the expectation of the number of misses for a cache with
disabled blocks as:

n
Emisses = Z M - pe; (4)
i=0
and obtain the expected miss ratio of the cache using:

EMR — EI‘HLSSQS (5)
accesses

This simple formula can be used to obtain the exact EMR without using fault maps.
The key insight behind this formula, expressed better in Equation (2), is that caches
have a useful property: for the same number of faulty blocks f in a set, the reduced
associativity will be the same n — f. That is, for analyzing block-disabling approaches,
what matters is the number of faulty ways in a set, not which specific ways in the set
are faulty. As a result, this reduces the complexity of the problem.

The EMR provides the average case performance for a given psq;. However, we
have no information about the variation in the miss ratio. Variation information is
useful for assessing whether disabled blocks lead to caches with a wide-variation (less
predictable) miss rate.

One way to measure this variation is through the standard deviation of the miss
ratio or SD_MR. Unfortunately, the standard deviation cannot be directly obtained for
the whole cache. However, given that we already know the probability distribution of
faulty blocks in a set, we can calculate its variance as follows:

n
vjll...s], VAR-Enu'sseSj = Z pei - (xij - Emjsses.f)2 (6)
i=0
where x;; is the number of misses obtained when having n — i nonfaulty ways in the jy,

set.
Although the total EMR is equal to the sum of individual sets EMR :

EMR =) EMR, (7
j=1

we cannot combine the variation of each set in the same way. Instead, we compute the
deviation for the misses of the whole cache SD_MR by using the root mean square in
the form:

\/ijl VAR_EMR,
SD_MR = 8)

accesses
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3.3. EMR Approximate Probability Distribution

The SD_MR provides the range of deviation of the EMR. However, it may be useful
also to know the probability distribution of cache misses (PD_MR) within the deviation
range.

We propose to build an approximate probability distribution of misses in a stepwise
manner. We first calculate the EMR for every possible number of faulty blocks (0 to the
number of cache blocks) and then combine this information with the probability that a
given number of faulty blocks occurs.

Equation (9), similar to Equation (2), gives the probability of x number of faulty
blocks for a given block probability failure (ppr):

This equation can be evaluated for different x to obtain a probability distribution.
Then, we need to calculate the EMR for every possible number of faults. This problem
has traditionally been solved by means of random fault maps [Pour and Hill 1993].

For a given number of faults, this problem is analogous to selecting at random n
balls from an urn that contains dk balls without replacement, where d is the number of
unique colors and % is the number of balls of each color. The urn represents the cache,
the variable n the faults, d the number of blocks, and £ the number of bits in each block.
The mean number of distinct blocks, u, that contain at least one faulty cell in a cache
with n faulty cells can be approximated with very high accuracy [Yao 1977]:

u=d—d1 — pra) (10)

This means that we can obtain an approximation of PD_MR analytically, without
using fault maps. Simply use Equation (10) to convert the number of faulty blocks to

DPfair- This gives the expression:
[s-n—ux;
DPfai;, = 1 — v s—nl (11)

This way, we can calculate the py,; for a cache with s sets, n ways, and x; faults.
Then, every prqi;, can be used to calculate the EMR associated to each number of faulty
blocks.

Although a PD_MR provides more information than simply expected values, due to
space limitations and for the sake of visibility, in this paper we will only show results
for the EMR. Deriving more accurate PD_MR with bounded error is the subject of an
ongoing research effort.

4. MODELING VARIATION EFFECTS OF THE Prai.

The model, so far, presents the psq; as a homogeneous effect. However, several pre-
vious studies [Bowman et al. 2002; Unsal et al. 2006; Bowman et al. 2007] report
nonnegligible variations of pf,; in memory cells.

In this section, we address this variation effect by a two-level model in which faults
are clustered at coarse granularity (intradie), whereas the specific location of faults
within the SRAM structures is randomly distributed as suggested by Cheng et al.
[2011]. This means that, in every chip, faults are homogeneously distributed. However,
for different chips in a wafer the number of faults is different according to a cluster-
ing parameter. To model this clustering effect we make use of the negative binomial
distribution.
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4.1. Negative Binomial Distribution
When the number of components n is very large and the probability of fault ps; is
small, the binomial distribution presented in Equation (2) can be approximated by the
Poisson distribution as follows:
Ak

P(k) = e (12)
where X is the expected number of faults given by n * ps,; and & is the number of
occurrences of a given event. The Poisson distribution is not well suited to model defects
or faults when they do not occur independently. Therefore, the compound Poisson

distribution is introduced:
o 1k

P = [ e PGod (13)
. R

As proposed in Stapper et al. [1983], P(1) can be expressed as a gamma distribution
as follows:
ﬁa )\ot—le—ﬂ)t
')
Finally, applying Equation (14) to Equation (13), we obtain the negative binomial
distribution, which is able to adjust variance and mean with two parameters « and B:
I(k+a)p
EIT(a)(1 + BYrte

In Equation (15), I'(x) is calculated as (x — 1)!, whereas « and B are adjustment
parameters satisfying the following:

P = (14)

P(k) = (15)

o
= — (16)
"=
and
o

,32
in which p is the average number of faulty components per chip and o is its standard
deviation.

Given those equations and a known u and o, it is easy to find parameters o and 8.

Applying Equation (15) to the particular case of £ = 0, we obtain the Yield, formulated
as:

1+p8) 17)

0,2

Y= Plh=0= > _ (18)

(1+2)°
4.2. Applying the Negative Binomial Distribution

In this work, we follow an approach similar to the one presented by Koren et al. [1993].
The total area of the wafer is divided into segments where the number of faults follows
a negative-binomial distribution. Faults within a segment are modeled by means of
a uniform distribution. With this approach, each of the segments corresponds to the
size of a cache. This modeling approximation is supported by previous studies that
show highly correlated regions to be significantly larger than the total size of caches
[Bowman et al. 2007; Cheng et al. 2011].

We use Equation (15) to calculate the probability P(k) for each value & = {0..n}. This
means that, for a given mean psq; (1) and a clustering parameter «, we can provide
the fault density function (or py,; distribution).
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Fig. 2.  prqi distribution for a 32 KB, eight-way cache with 1 = 1.0e-03.

The effect the alpha parameter has over the p,; distribution can be observed in
Figure 2. When the « value is small, the clustering effects are larger, and faults con-
centrate in specific areas that are heavily damaged, whereas other areas remain unaf-
fected. Therefore, the shape of the curves for small « values is wider. On the contrary,
a large « value means that faults are not clustered but homogeneously distributed;
therefore, the shape of the probability distribution is narrower and centered around u
(similar to Figure 1 where no variation is considered).

5. METHODOLOGY

Sections 3 and 4 introduced the proposed model. In this section, we explain the method-
ology used to extract the per application information needed by our model. We also
explain how we produce random fault maps used for comparing the proposed model
and the fault-map methodology.

5.1. Generating Maps of Accesses

The input to the analytical model is a map of accesses to the cache for every application.
One way to accomplish this is to run the application for every possible cache configu-
ration. In order to avoid this cost, we have used an algorithm called all-associativity
simulation [Hill and Smith 1989], previously used in Pour and Hill [1993].

This algorithm takes as input a trace of memory accesses, which is converted to
a map of accesses to a cache of any desired configuration (sets and ways) following
a deterministic replacement policy (LRU in our case). This allows us to obtain the
number of accesses per way and per set without the need for new simulation runs. The
output of the algorithm is a matrix in which each row corresponds to a set and each
column to a position in the LRU stack. Each value of the matrix indicates the number
of accesses to every position in the LRU sequence for every set. This information is
highly useful for offline analysis given that we can extract the number of misses for a
given number of ways w in our cache by simply adding the accesses for the last n — w
columns of the matrix.

We can see an example of how this method works in Table II for a cache with four ways
and four sets. The first column from the left (way3) refers to the accesses to the first
(most recently used) position in the LRU stack for each set. The last column (misses)
refers to accesses to data not previously accessed or with a position in the LRU sequence
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Table II. EMR Calculation after Executing the All-Associativity Algorithm
(a)

way3 way2 wayl way0 misses
set0 120 100 110 60 100
setl 150 140 110 55 90
set2 180 134 80 50 200
set3 220 200 100 30 180
(b)
way3 way2 wayl way0 misses
set0 490 370 270 160 100
setl 545 395 255 145 90
set2 644 464 330 250 200
set3 730 510 310 210 180
(¢
way3 way2 wayl way0 misses
‘ cache 2409 1739 1165 765 570

greater than our threshold, meaning a miss. In order to calculate the number of misses
of the cache in a fault-free environment, we simply sum the accesses that appear in the
last column. The number of misses of this example would be 570 (100 + 90+ 200 + 180).

But this table can be used to compute the misses in a faulty environment. For this,
and according to Equation (5), we need to calculate the number of misses with a given
number of ways (from 0 to 4 in our example) disabled in the cache due to permanent
faults. First, we accumulate the number of accesses in every position per set. The
result of this is in Table II(b). Finally, we perform the same operation per set to get the
cumulative vector in Table II(c). This vector indicates exactly the number of misses
the cache would suffer as a result of losing from 0 to w ways. Finally, this vector can
be used by the model to obtain the EMR and SD_EMR for a faulty cache.

This methodology is similar to the methodology used in DEFCAM [Lee et al. 2011].
DEFCAM uses a greedy algorithm over the matrix of accesses to determine the mini-
mum and maximum impact of disabling lines and sets. However, DEFCAM still relies
on the simulation of multiple faults maps to produce average miss rates. Our approach
is different from DEFCAM in that it avoids completely the evaluation of different fault
maps while providing a precise value for the EMR and its standard deviation.

5.2. Misses Based on Random Fault Maps

Part of the analysis in the paper examines how accurate the random fault-map-based
methodology is in estimating EMR and SD_MR. Each random fault map reflects a
number of disabled ways for every set in our architecture, regardless of the location
of these faults in the set. This is so because the position does not alter the number of
misses in the cache because of associativity and LRU replacement policy.

To generate these random maps, we have used the GNU Scientific Library (GSL).
We generate random numbers in the interval [0, 1] to mark the faulty blocks in terms
of a given pyq;. Finally, we compute the number of misses produced by a fault map by
using the access maps obtained with the all-associativity algorithm.

6. EVALUATION

For the experiments, we simulate a processor architecture by means of Virtutech Simics
[Magnusson et al. 2002] and GEMS [Martin et al. 2005]. We have performed several
modifications to the simulator to extract memory address traces. Then, we use these
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traces to generate the map of accesses for every possible cache configuration by means
of the all-associativity algorithm as explained in Section 5.

We conducted experiments by executing both sequential applications from SPECcpu-
2006 [Henning 2006] (bzip2, gcc, hmmer, mcf, perlbench, sjeng) and parallel applications
from SPLASH-2 [Woo et al. 1995] (Barnes, Cholesky, EM3D, FFT, Ocean, Radix, Ray-
trace, Tomcatv, Unstructured, Waternsq, Watersp) and PARSECv2.1 [Bienia et al. 2008]
(Blackscholes, Fluidanimate, Swaptions). In the case of parallel benchmarks, the exper-
imental results reported correspond to the parallel phase of each program. Benchmarks
are executed in a CMP with private L1 caches and a shared L2. The number of cores
in each case depends on the number of threads. In all cases, the warming up of caches
has been taken into account. For the evaluation of L1 caches, benchmarks have been
executed for 300 million cycles, whereas for the evaluation of the L2 cache, benchmarks
have been run to completion.

The different psqi;s used for the evaluation of the caches are those shown in Table I
with the exception of the 6.1e-13 psq;;, which produces virtually no faulty blocks in our
experiments. All these py,s are predictions for the fault probability of SRAM cells for
different scales of integration. Additionally, we have used py,; 1le-03, which is usually
studied in related work.

6.1. Yield Analysis

One important tool that helps to understand the behavior of a cache prone to permanent
faults is the Yield analysis. The Yield is a statistical metric referred to as the proportion
of valid caches (or other devices) from a population. In this article, we consider that
a cache with permanent faults cannot be used (i.e., its Yield is 0) when all the blocks
in a specific set have been disabled. In this section, we assume that a cache block is
disabled if it has one or more faulty bits.

Figure 3(a) presents the Yield for a 32 KB L1 cache with different associativities
and pyaqizs. As depicted, Yield is unaffected when the number of ways is eight. However,
if the associativity is reduced, then a significant number of caches become unusable.
This effect is more clearly seen for higher pfq;s such as 1.0e-03, for which the Yield is
reduced to 96% and 79% for four-way and two-way caches, respectively.

However, this first study does not take into account the effect of clustering. As stated
before, models that do not address clustering make skewed predictions in relation to
Yield. Figure 3(b) shows the Yield for a py,; of 1.0e-3 for different degrees of clustering.
A small value of the clustering parameter « indicates that faults tend to group in specific
locations on a wafer, whereas a high value indicates that faults are homogeneously
distributed. It is noteworthy that when increasing the « value, the expected Yield
converges to the Yield without clustering. This is expected since a higher value of
« implies higher dispersion. In other words, a higher fault dispersion means more
homogeneous fault distribution caches, whereas less dispersion leads to caches with a
high density of faults or to caches with few or no faults.

As we can see in Figure 3(b), fault dispersion has a different effect depending on
the cache associativity. On the one hand, medium to high associative caches (four- and
eight-way caches) are able to mitigate a moderate density of faults without affecting the
usability of the cache; that is, rarely all blocks of the same set are disabled. Therefore,
a homogeneous distribution of the faults results in an increased Yield. On the other
hand, the density of faults that low associative caches (two-way in Figure 3(b)) are able
to absorb is limited. Consequently, the Yield of the entire population is higher because
most faults occur in few caches (which become not usable). In conclusion, when the
associativity is moderately high, Yield improves with fault dispersion, whereas low
associativity is better with fault clustering.
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6.2. Faulty Block Distribution

We validate the number of faulty blocks produced using randomly generated fault maps
by comparing against those obtained using Equation (1).

In Figure 4, we can see the probability distribution of the number of faulty blocks
for different p s (We omitted 6.1e-13 because it has almost perfect yield) in a 32KB,
eight-way associative cache with 615 bits per block.* Results show the estimated faulty
blocks provided by Equation (1) (analytical) and by different numbers of random fault
maps (from 100 to 10 million). As can be observed, few fault maps are not able to
catch the exact behavior. However, when the number of maps is increased (1K maps or
more), the number of faulty blocks per cache is obtained with high accuracy. Nonethe-
less, this analysis cannot show how adequate approximation random fault maps are

for estimating the expected misses of a cache since it does not consider cache access
distribution.

6.3. EMR and SD_MR for Sequential Benchmarks

In this section, we show the estimated EMR for several sequential benchmarks for an
eight-way 32KB L1 with different permanent cell pqis.

4We consider L1 cache blocks composed of 64 bytes for data and eight bytes for its ECC; 28 bits for the tag;
three control bits for valid, disable, and dirty states; and one byte for its ECC.
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Fig. 5. EMR and SD_MR relative increase for sequential applications in an eight-way 32KB L1 cache.

6.3.1. Uncorrelated Faults. Figure 5 shows the relative EMR increase with respect to
a fault-free scenario for different applications and pfqis. As we can see, the impact
of permanent faults in EMR varies among different traces. In particular, applications
such as hmmer and sjeng are affected even at very low py.s such as 2.6e-04, whereas
the impact on other benchmarks is negligible. We can notice that SD_MR also grows
in relation to the py,; and that this growth is application dependant as well.

In Section 6.2, we showed how fault maps can approximate the number of faulty
blocks per cache. Nonetheless, it is still unknown how many maps are needed to ap-
proximate the EMR. The answer can be found in Figure 6, which shows the EMR for
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Fig.6. EMR and SD_MR for different applications in an eight-way associative 32KB L1 cache with different
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different applications for an eight-way 32 KB L1 cache. As we can see, using 10 and 100
random fault maps is not enough to approximate the results provided by our model.

For the studied benchmarks, 10 and 100 fault maps underestimate or overestimate
the EMR for pyq; 1.0e-03, while differences are barely noticeable with the smallest
Pfails- This is due to the fact that the number of affected blocks is very small and the
effect over the total number of misses is negligible. However, with a higher number of
maps, the EMR and SD_MR converge to the one provided by the analytical model. In
general, we can state that 1,000 to 10,000 maps are needed to produce very accurate
values for both EMR and SD_MR. Therefore, we can state that our analytical model,
besides producing accurate results, requires much less time to provide them since we
only require one execution of the benchmark.

6.3.2. Clustering Effects. When calculating the EMR in the presence of a clustering
parameter, the result is a distribution of EMR rather than a single value. This means
we obtain a scalar value plus a probability of that EMR to happen. In order to make
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these EMR distributions simpler to understand, we produce the “Expected EMR” or
“EEMR,” which is the result of the addition of every EMR multiplied by its probability.

Figure 7 shows the EMR distribution for bzip2 in the presence of fault clustering
for a fixed average number of faults per device u given by u = prq * k for different o
values. For a high clustering degree, « = 0.1, the curve behaves as an asymptote. This
means that the distribution of faults among different caches is erratic; that is, some
of them are not affected at all, whereas others are deeply affected. On the contrary,
when clustering degree is lower, « = 7, faults are homogeneously distributed among
all the caches and the curve for the EMR behaves as a Gaussian bell. For the sake of
visibility, in the rest of the article we will only show the expected values for the EMR
distributions (or EEMR), given by Equation (3).

Figure 8 shows the EMR for different degrees of fault clustering for a 32KB, two-way
L1 cache with 1.0e-03 p 4.5

As depicted in Figure 8(a), for two-way caches a higher level of clustering (i.e., a
lower value of «) provides a reduced EMR than with lower levels of clustering for all
the studied benchmarks. However, this trend is different for four-way and eight-way
caches as shown in Figure 8(b) and Figure 8(c), respectively.

These results are consistent with the Yield analysis presented in Section 6.1. As we
can see, the effect of faults is more noticeable in low-associativity caches when using
block disabling. This way, if faults are concentrated in some chips on a wafer and the
rest of them remain unaffected, the impact on the EMR is lower. On the other hand,
higher cache associativities are more tolerant to faults. Therefore, if faults are more
homogeneously distributed, the expected EMR is reduced.

Finally, as depicted in Figure 8(c), when « >= 7, the negative-binomial distribution
behaves similarly to the binomial distribution and EMR results converge, as shown in
Figure 6.

6.3.3. Correlation Analysis. Surprisingly, this study shows that a moderately small num-
ber of random fault maps is enough to approximate the EMR. The reason is the uniform
accesses to the different cache sets. The reason for this is that there are no particular
sets in which the accesses per way are clearly more accessed than others along the
overall execution of the benchmark. This makes the EMR virtually independent of the

5We have reduced this analysis for this specific p fail due to space limitations.
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Fig. 8. Expected EMR for a 32KB L1 cache with different « values for ps,;; = 1.0e-3.
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Table Ill. Average for the Pearson Coefficient Matrix for Every Benchmark

Benchmark | Mean Pearson Coeff. | DEV
bzip2 1999 .0005
gee 999 .0001
hmmer .992 .0197
mef .999 .0002
perlbench 997 .0039
sjeng .994 .0139

allocation of faults, and that is the reason why 1,000 to 10,000 fault maps are able to
provide such accurate estimations.

In order to measure the cache access uniformity, we have performed a study of the
correlation of accesses between all the sets in the L1 cache used in this study. We have
used the Pearson correlation coefficient. Given X and Y, two different sets of our cache
with different accesses per way

X=x1...%,Y =y1...9 (19)
the Pearson correlation coefficient is calculated as:
YV — %)y — )
rxy =
VN G =22 2N i — 92

When ry, is close to 0, it means that there is no correlation between variables,
whereas when it is close to 1, there exists a relation between them. We have calculated
the matrix of correlations for the number of accesses to an eight-way 32KB L1 cache for
the SPEC benchmarks. Table III reflects the average value for the Pearson coefficients
as well as its standard deviation. As we can see, all coefficients are very close to 1 and
deviations are small. This means that the accesses among sets are highly correlated.

But still we can study the significance of the Pearson correlation coefficient to assess
if the correlation among the variables is true as it was not produced arbitrarily. For
that, we can calculate Student’s ¢ as:

(20)

f= 21)
1-r2
N—2
in which N is the number of values for the variables. In our example, for an eight-way
cache, we have that N = 8 + 1, taking into account the number of cold misses. For
the worst correlation exhibited by the studied benchmarks, which is hmmer with .992,
we have that ¢t = 10.21. By means of a calculator for the ¢ distribution, for a degree of
liberty IV = 7, we can determine that our sets are correlated with a maximum risk of
1e-05 corroborating our hypothesis.

The lesson from this study is that when accesses across sets are correlated, the
amount of random fault maps needed to approximate the EMR is moderately low. In
cases in which the correlation is not high, only a larger number of fault maps will be
needed.

6.4. EMR for Shared-Memory Applications

The model can also be used to study how the EMR is affected when varying the number
of threads for a parallel application. In this study, each thread runs in a different core of
a CMP. This way, both the number of cores and the number of private L1 caches increase
with the number of threads. The size of the shared L2 cache remains constant.
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Fig. 9. Results for an eight-way 512 KB L2 cache for parallel applications.

The general trend in a nonfaulty environment for the parallel applications we have
executed can be seen in Figure 9(a). The miss ratio increases with the number of
threads. This is due to two main reasons. First, the number of L2 accesses decreases
with the number of threads/cores as a result of the increased total available L1 cache
capacity. Second, the absolute number of L2 misses increases with the number of
threads due to the increased cache contention, a result consistent with previous studies
such as Song et al. [2007].

Therefore, it is expected that the impact of permanent faults on L2 cache performance
is higher when increasing the number of threads due to the increased pressure, that
is, higher miss ratios. Indeed, this behavior can be observed in Figure 9(b). Let us
focus the attention on pyr,; = 5.5e-05. When the number of threads is small (i.e., one
or two threads), the impact on EMR is barely noticeable in comparison to a nonfaulty
environment.® However, when the number of threads is moderately high (i.e., four
threads and more), the EMR grows accordingly.

6From the point of view of EMR, both p fail = 7.3e-09 and pyq; = 1.5e-06 provide similar results as the base
case without faults.
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This trend suggests that, in a future in which applications will employ more and more
threads/cores, the impact of permanent faults when using fault-tolerant techniques
such as block disabling will start increasing even at small pgq;s such as 5.5e-05.

Regarding the effect of the fault clustering parameter, in general, a higher « value
provides a reduced EMR for a moderately high associativity. However, as shown in
Figure 9(b), when the cache pressure is too high, that is, eight threads and 16 threads
with prei; = 1.0e-03, a lower « value provides better performance. Overall, when the
number of threads and, therefore, the cache pressure, increases, the impact of pyq; is
more noticeable and the fault clustering results in a better performance.

6.5. EMR Impact of Block Disabling and Word Disabling

In this section, we evaluate the performance implications of block disabling and word
disabling (wdis) [Wilkerson et al. 2008]. In wdis, faults are tracked at word granularity
by means of fault masks in the tag array. In order to provide fault tolerance, two
potentially faulty cache lines are combined to obtain a fault-free one. This reduces the
overall capacity and associativity of the cache by 50%.

In Figure 10, we can see the EMR of block disabling and word disabling provided
by our model, for a 32KB L1 cache with a different number of ways for the SPEC
applications. It is worth noticing that for word disabling EMR remains constant for the
different pyqis.

We can also observe in Figure 10 that for p ;s up to 2.6e-04, block disabling obtains
lower average EMR than word disabling for each configuration. However, with a pr
of 1e-03, word disabling results in a lower EMR for all associativities. Furthermore,
the deviation starts to grow noticeably in block disabling, whereas in word disabling it
remains constant, as explained before. This result confirms the findings of Ladas et al.
[2010] that are based on random fault-map methodology.

This analysis highlights how the proposed analytical model can be used as a tool for
evaluating different fault-tolerant cache techniques.

7. CONCLUDING REMARKS

Technology scaling is enabling continuous miniaturization of circuits and wires, offer-
ing designers the opportunity to place more functionality per unit area. Furthermore,
the increased device density is allowing the integration of large caches and many cores
into the same chip. However, this trend is challenged by the decrease in resiliency with
every new technology node. In particular, SRAM cells are very susceptible to decreasing
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voltage, higher frequencies and temperature, and other events such as power supply
noise, signal cross-talking, and process variation, which, combined, severely affect the
reliability of caches. Block disabling is a low-cost approach to provide correctness in
the presence of faulty cache cells.

Previous proposals study the impact of block disabling due to permanent faults using
an arbitrary number of random fault maps. In this article, we present an analytical
model to determine the Expected Miss Ratio (EMR) and its standard deviation (SD_MR)
for a given application address trace, cache configuration, and random probability of
cell failure (py;) that avoids the use of random fault maps.

This analytical model enables designers to determine the implication of faults (both
uncorrelated and clustered) in caches in terms of EMR and its deviation, without the
need of performing any iterative analysis with random fault maps. Our experiments
suggest that to provide accurate results, 100 to 1,000 fault maps are needed.

We have evaluated our model with both L1 and L2 caches with several sequential and
parallel benchmarks from SPECcpu2006, SPLASH-2, and PARSECv2.1. Results show
that L1 cache Yield improves with a higher clustering (due to variation) in the case
of low associative caches (two ways), whereas for medium to high associative caches
(four and eight ways), the best Yield is obtained when faults are uniformly dispersed
across the wafer. The EMR is lower for low associative caches if there exists a high
degree of clustering, whereas fault dispersion provides better results in medium to high
associative caches. We have also shown that EMR has a noticeable impact on perfor-
mance when pr,; is greater than 2.6e-4. With respect to shared-memory applications,
we have shown that the EMR increases according to the number of threads. Finally, we
compared block- and word-disabling techniques and found block disabling to be better
performing except when pgy; is very high.
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