
A Distributed Credential Management System for SPKI-based

Delegation Systems

�Oscar C�anovasy, Antonio F. G�omezz

yDepartment of Computer Engineering
zDepartment of Information and Communications Engineering

University of Murcia

30071 Murcia (Spain)
ocanovas@um.es, skarmeta@dif.um.es

Abstract

Traditionally, certi�cates have been used to link a

public key to a particular name identifying that key.

However, public key certi�cates are digitally-signed

statements which can be used in order to assert

many other types of information. SPKI has become

one of the most outstanding proposals referring to

authorization, and several applications have been

based on SPKI certi�cates in order to provide au-

thorization services to well-known scenarios in dis-

tributed systems. Most of these scenarios are based

on delegation, where resource guards have an ACL

with few entries granting keys belonging to some au-

thorization or naming authorities the right to dele-

gate all access to the controlled resources. These au-

thorities can issue certi�cates delegating these per-

missions to other subordinates authorities, or to spe-

ci�c users. In this way, the structure generated re-

ects the system management process. However,

generation of these certi�cates usually is system-

dependent. In this paper, we present a management

system that can be used in all SPKI scenarios based

on delegation. This system addresses some problems

related to scalability, certi�cate distribution, and in-

teroperability. We de�ne how certi�cation requests

can be expressed, how di�erent security policies can

be enforced using this system, which are the entities

involved in a certi�cation scenario, and we propose

a mechanism able to exchange authorization-related

information among these entities.

1 Introduction

Loren Kohnfelder de�ned "certi�cate" in 1978 as

a digitally-signed statement holding a name and a

public key, and nowadays the words certi�cate and

identity certi�cate are still used as synonyms. How-

ever, a certi�cate is a record stating some infor-

mation about the entity the certi�cate was issued

to, and this information may be a role membership

statement, or an authorization. Authorization cer-

ti�cates bind a capability to a key, and this capabil-

ity can be used to determine what the entities are

allowed to do.

One of the most outstanding proposals related to

this type of certi�cates has been the SPKI/SDSI in-

frastructure [8]. SPKI/SDSI provides three types

of digital certi�cates (ID, attribute, and authoriza-

tion) that can be used in several security scenarios.

In fact, there are several proposals which make use

of SPKI certi�cates in order to provide authoriza-

tion services to many di�erent application environ-

ments, such as WLAN networks [10], CORBA dis-

tributed objects [12], or web servers [4]. Most of

these scenarios are based on delegation, where re-

source guards have an ACL with few entries grant-

ing keys belonging to some authorization or nam-

ing authorities the right to delegate all access to

the controlled resources. However, some of these

proposals do not explain how certi�cates are issued

by the authorities, and this usually is application-

dependent. Although simple and not distributed ap-

proaches can constitute a good alternative for small

scenarios, some problems derived from scalability

or interoperability might arise in more complex en-

vironments [3]. Generation or revocation of these

certi�cates should not be implemented using sim-

ple command-line applications. A structured and

distributed system must be provided.

A system is necessary which addresses the prob-

lems related to scalability, certi�cate distribution,

and interoperability. In this paper, we present



DCMS (Distributed Credential Management Sys-

tem). DCMS de�nes how certi�cation requests

should be expressed, how di�erent security policies

can be enforced using this system, which are the

entities involved in a certi�cation scenario, and how

these entities can exchange authorization-related in-

formation. We have used the AMBAR (Access Man-

agement Based on Authorization Reduction) proto-

col [2] in order to perform that exchange, but sim-

ilar protocols can be also used. This system is di-

vided into the naming management system (NMS),

which manages the issues related to SPKI ID cer-

ti�cates, and the authorization management system

(AMS), which is responsible for those procedures

related to SPKI attribute and authorization certi�-

cates. We believe that this system can lead up to

the de�nition of an application-independent system

which can be used in order to provide authorization

services to many di�erent scenarios based on del-

egation. DCMS also complements some proposed

mechanisms for revocation and validation of SPKI

certi�cates [11], and can make use of public reposi-

tories for certi�cate storage purposes [9].

We can �nd similar proposals in the literature. In

[13], a security architecture is presented which is

related to authentication, authorization and delega-

tion in a distributed environment based on SPKI.

This proposal di�ers from DCMS about object for-

mats, and system structure. We use s-expressions

in order to specify the authorization policies and

requests, instead of HTTP-like messages and codes.

We do not �nd necessary to use a di�erent encod-

ing since SPKI-like s-expressions are appropriate,

straightforward, and standard. Moreover, we do

provide a generic framework of authorities, proxies

and protocols that can be used as guidelines to de-

sign and implement authorization management ser-

vices. In fact, our system has been implemented us-

ing the Intel version 3.14 of CDSA (Common Data

Security Architecture) [5].

This paper is organized as follows. Section 2

presents an authorization scenario based on delega-

tion in order to clarify why DCMS is useful. Section

3 provides some basic background on the AMBAR

protocol. Section 4 presents the entities involved in

the naming management system (NMS), and shows

the s-expressions that will be used in this system

to specify certi�cation requests and access control

lists. Section 5 contains similar details concerning

the authorization management system (AMS). Sec-

tion 6 presents how system entities can interoper-

ate using the AMBAR protocol. Finally, Section 7

makes some concluding remarks.

2 Motivation

In this section we are going to show a distributed

system where SPKI certi�cates and delegation can

be used to implement physical access control [3]. We

will also explain why DCMS is necessary.

This distributed system is based on a RBAC (Role

Based Access Control) model [15]. The central con-

cept of RBAC is that permissions are associated

with roles, and users are assigned to appropriate

roles. This greatly simpli�es management of per-

missions since the two relations are considered com-

pletely independent.

In this system, special devices named TICA are

used, which are able to perform some access con-

trol operations like opening doors. They are located

at the entrances of the di�erent buildings and/or

departments, and they can establish their own ac-

cess control conditions, trusted entities, and autho-

rization mechanisms. TICAs delegate authorization

management to particular authorization authorities

(AA). This is accomplished through authorization

certi�cates issued by the TICAs for a set of speci�c

AAs. These certi�cates basically give the AAs to-

tal authority over the device, and also permission

to further delegate the access control is granted.

TICAs can also delegate the authority by means

of ACL entries containing the same information in-

cluded in those certi�cates. Then, AAs usually cre-

ate new attribute certi�cates giving a subset of per-

missions to the roles de�ned by any of the exist-

ing naming authorities (NA). Roles are managed by

NAs, which issue ID certi�cates in order to state

that a particular user has been assigned to a spe-

ci�c role. In this way, TICAs are the beginning of

the authorization path, and not only the policy en-

forcement point. The device is able to make the

security decision regarding the authorization data

presented by the user requesting the access.

However, this certi�cation management process

must be designed and implemented using a scal-

able approach. An encoding for certi�cation re-

quests must be de�ned, and a mechanism is neces-

sary which is able to exchange authorization-related

information among the entities involved.

Using DCMS, once TICAs have delegated the au-

thorization management task to the di�erent au-



thorities, principals can request individual certi�-

cates in order to gain access. These requests can be

generated and sent to the authorities by the princi-

pal itself, or can be submitted using trusted service

access points (SAP). Authorities will issue the re-

quested certi�cates depending on the authorization

policy (authorities are the policy decision point).

This policy can be represented using SPKI ACLs,

a database or any other method, and it is system-

dependent, although in the next sections we will as-

sume that it is implemented using ACLs.

Figure 1 shows a particular scenario where TICAs

delegate the authorization tasks to di�erent AAs.

Users make use of DCMS in order to obtain speci�c

authorization certi�cates from these entities. In this

case, we assume that authority A and the SAP are

the AMBAR peers. Once the certi�cates are gener-

ated, these can be presented to the TICAs in order

to gain access.

Figure 1: Use of DCMS

3 AMBAR Protocol

AMBAR (Access Management Based on Authoriza-

tion Reduction) [2] is a protocol for secure exchange

of authorization-related information based on public

key cryptography. This protocol does not depend on

a particular type of authorization or identity-based

certi�cate, and it contains a negotiation phase de-

signed to adapt the protocol to access control sce-

narios with di�erent requirements (anonymity, con-

�dentiality, credential recovery, etc.). In general,

it provides functionality to transmit resource access

requests, the authorization information related to

those requests (credentials, ACLs), and results ob-

tained from a certi�cate chain discovery method or

compliance checker. ACLs can be transmitted in

order to give some information to the client about

which credentials would be necessary to access the

resource. However, disclosure of security policies

(ACLs are particular implementations of these poli-

cies) must be carefully performed since they can

contain sensitive information [16].

It has been designed to be session-oriented in

order to optimize those scenarios where the re-

quest/response messages are exchanged between the

same client and server. In addition, it does not need

to rely on any additional security protocol since it

adds con�dentiality and integrity to the data being

transmitted.

The AMBAR protocol consists of di�erent compo-

nents organized, as Figure 2 illustrates, in two lay-

ers.

Figure 2: AMBAR Architecture

� Session Management module (SM). This

module transmits the client and server security

preferences, and generates the cryptographic

data used by the TC layer to protect the sub-

sequent communications. Clients and servers

negotiate the following parameters:

{ Symmetric cipher. Parties select the sym-

metric cipher and its key length.

{ Operation mode. AMBAR supports two

operation modes: anonymous client mode

and fully identi�ed.

{ Identity-based certi�cates. It is possible to

select X.509, OpenPGP, or SPKI certi�-

cates.

{ Authorization-based certi�cates. AMBAR

supports SPKI certi�cates, PKIX at-

tribute certi�cates and KeyNote asserts.

{ Credentials distribution. Parties can select

whether the credentials will be provided

by the client (push), or will be obtained

by the server from either a repository or

an issuer (pull).

� Request Management module (RM). The

RM module transmits two types of messages:

messages related to authorization requests and

credentials; and messages related to decisions

and ACLs. Contents and the sequence of these



messages are determined by the negotiated op-

eration mode and the method for distribution

of credentials. As we mentioned previously, a

session-oriented protocol allows some optimiza-

tion to be performed. Therefore, the RM mod-

ule could be responsible for optimizing autho-

rization computations.

� Authorization Results Management

module (ARM). The ARM module gener-

ates noti�cations and transmits the demanded

resources. Negative noti�cations are transmit-

ted by the server when the access is denied. If

the access were granted, there would be two

possible response messages: an aÆrmative no-

ti�cation if the client requested the execution

of remote actions; or the controlled resource.

It also enables (disables) the DSM module

when an authorization request demanding the

establishment (conclusion) of a data stream is

granted.

� Error Management module (EM). Sys-

tems use the EM module to signal an error or

caution condition to the other party in their

communication. The EM module transmits a

severity level and an error description.

� Data Stream Management module

(DSM). The described request/response

model is not suitable if we plan to use

AMBAR as a transparent layer providing

con�dentiality, authentication and access

control services. The DSM module, initially

disabled, controls the transmission of arbitrary

data streams, which are enabled once a request

demanding the activation of this module is

granted.

� Transport Convergence module (TC).

The TC module provides a common format to

frame SM, RM, ARM, EM, and DSM mes-

sages. This module takes the messages to be

transmitted, authenticates the contents, then

applies the agreed symmetric cipher (always

a block-cipher), and encapsulates the results.

The cryptographic data used to protect the in-

formation is computed by the SM module dur-

ing the negotiation phase.

The AMBAR protocol is part of a complete autho-

rization framework for certi�cate-based access con-

trol systems. It is implemented with the Intel 3.14

version of CDSA (Common Data Security Architec-

ture) [5]. We have used the CSP (Cryptographic

Service Provider) module built upon OpenSSL, and

the X.509 and SPKI CL (Certi�cate Library) mod-

ules. We decided to use CDSA since this architec-

ture provides all security services necessary to im-

plement the framework and additionally, this pro-

vides integrity services which can be used to en-

sure component integrity and trusted identi�cation

of the component's source.

4 Naming Management System

(NMS)

As we mentioned previously, DCMS is composed by

two subsystems, NMS and AMS. In this section we

are going to present the naming management sys-

tem, which is responsible for the certi�cation oper-

ations related to SPKI ID certi�cates. This type of

certi�cates can be used to link a name to a partic-

ular principal (public key), and also to de�ne group

membership. NMS is very useful when authoriza-

tion is based on group membership. In relation to

the scenario presented in Section 2, we can imagine

a TICA granting physical access to those principals

which are members of group G. NMS can be used

by principals in order to obtain an ID certi�cate

for group G, which is issued by a particular naming

authority.

Naming is not a requirement of distributed sys-

tems, but it is worth noting that large-scale SPKI-

based delegation systems can be simpli�ed using

this mechanism. Naming is an optional tool for

group management which can be useful to address

scalability of complex systems.

4.1 Architectural elements

Figure 3 shows the three types of entities involved

in NMS: requestors, service access points, and nam-

ing authorities. In this section we are going to give

a brief description about these core entities, we in-

troduce why they are necessary and how they inter-

operate.

� Requestor. A requestor is a principal de-

manding the generation of a new ID certi�-

cate. This entity must create a certi�cation

request and must send it to a particular nam-

ing authority (NA) in order to obtain the de-

manded certi�cate. This submission can be ac-

complished using a service access point or mak-

ing use of an AMBAR connection between the



Figure 3: NMS entities

requestor and the NA. Other certi�cates can be

attached to the request in order to demonstrate

that the principal has permission to obtain the

demanded certi�cate. There are two types of

requestors: �rst, the principal demanding an

ID certi�cate for a particular public key; sec-

ond, the principal demanding an ID certi�cate

for a particular name (e.g. a certi�cate stating

that group B is a subgroup of group A). As we

will see later, these two situations are managed

following di�erent approaches.

� Service access point. Requestors can make

use of access points in order to submit their

certi�cation requests to the appropriate nam-

ing authorities. Access points are optional, but

they are very useful since they provide several

additional services to requestors. First, naming

authorities can be hidden from users. More-

over, in some scenarios with many authorities,

it might be complicated to know which are the

appropriate naming authorities for a particu-

lar ID certi�cate (especially with group mem-

bership certi�cates). SAPs can learn that lo-

cation information from digitally-signed state-

ments containing information about the system

structure and properties. It is simpler to dis-

tribute this type of information to few SAPs

than to all the principals. Finally, they can pro-

vide a certi�cation service to requestors with-

out AMBAR capabilities. Communication be-

tween requestors and access points is system-

dependent, and it ranges from secure connec-

tions to public terminals placed at buildings or

departments.

� Naming authority. Naming authorities are

the certi�cate issuers. They create ID certi�-

cates upon the requests received through the

access points or directly from the requestors.

NAs are controlled by a particular authoriza-

tion policy, which can be implemented using

SPKI ACLs or other mechanisms. Whenever

a NA receives a request and its related cer-

ti�cates, it executes a certi�cate chain discov-

ery algorithm [6] in order to determine whether

the certi�cation request must be granted or de-

nied. Inputs to this algorithm are the request,

the additional certi�cates, and ACL entries. If

a certi�cate chain is discovered, the algorithm

returns the information that will be used to

generate the new certi�cate. Communication

with NAs are performed using AMBAR. As

we have previously mentioned, AMBAR pro-

vides functionality to exchange authorization-

related information. Using this protocol, enti-

ties can be authenticated (identi�cation of re-

questors is optional), messages are encrypted

and authenticated, and some optimization can

be performed in order to avoid unnecessary cal-

culations and transmissions (previous messages

and authorization decisions can simplify further

requests).

4.2 S-expressions for certi�cation re-
quests and ACL entries

Certi�cation requests for ID certi�cates must

contain information about the issuer de�ning

the name, the name itself, the intended subject,

and validity dates. Encoding can be based on

s-expressions [14] since there is no need for making

use of new syntax, and this can simplify the

authorization process. Thus, requests might be

encoded according to the representation form

recommended by SPKI for the authorization tag

�eld [7]. However, it is worth noting that the data

elements contained in a request are also contained

in a SPKI ID certi�cate, and therefore the structure

for this type of certi�cates can be used. It is not

necessary to de�ne a completely new structure in

order to express certi�cation requests. Moreover,

as we will explain, the same structure can be used

by ACLs in order to encode authorization policies.

S-expressions that we have used for certi�cation

requests and ACL entries have the following format:

(cert-request

(issuer (name NAi N
j
i ))

(subject P)

(valid ..)

)

� cert-request. This identi�es the s-expression as

a certi�cation request.



� NAi. This is the public key of the naming au-

thority. This authority is responsible for issuing

the ID certi�cates related to the name N
j
i .

� N
j
i . N j

is one of the names de�ned in the

namespace of the authority NAi.

� P. This is the principal (or principals) request-

ing the ID certi�cate. P might be:

{ A public key.

{ A set of entities. There are two possibili-

ties in order to express a set of entities. On

the one hand, we can use a group name,

i.e., (name NA N). On the other hand, we

can use the *-operator set, such as for in-

stance (* set Q R), where Q and R must

be public keys or names.

� valid. This speci�es the requested validity pe-

riod. The structure of this �eld is the one in-

cluded in the SPKI standard.

If this s-expression is used as a certi�cation request,

P can only be a public key or a name, and it means

that a new ID certi�cate is being demanded, whose

issuer will be NAi, P will be the subject, N
j
i will

be the name linked to P , and will be valid during,

at most, the speci�ed validity interval. However,

if this s-expression is included in the tag �eld of a

SPKI-like ACL entry, it means that the principal

(or principals) P are authorized to obtain an ID

certi�cate from NAi, where the name N
j
i will be

linked to P (or each of the principals contained in P )

during the speci�ed validity period. Furthermore,

N
j
i can make reference to several names when a (*

pre�x) form or a (* set) form is used.

Certi�cation requests are encoded as sequences of

two elements. The �rst element is the s-expression

specifying the request, and the second one is a dig-

ital signature of that sequence. Signatures are en-

coded using the signature structure de�ned in [7],

and they are generated using the requestor's private

key. Requests have similar structure to certi�cates,

but certi�cates are signed by issuers and requests

are signed by requestors.

4.3 Some examples

In order to clarify how NMS entities cooperate to

generate ID certi�cates, in this section we are go-

ing to analyze two certi�cation requests. First, we

explain how a principal can obtain an ID certi�-

cate. Then, we will show how subgroups can be

de�ned using ID certi�cates whose subject �eld also

is a name. In these examples, authorization policies

are represented by ACLs.

4.3.1 ID certi�cates for principals

In this �rst example, P is a principal demanding

an ID certi�cate stating P as a member of group

N j
, which is de�ned by NAi. P creates the next

certi�cation request:

(sequence

(cert-request

(issuer (name NAi N
j
i ))

(subject P))

(signature ..)

)

This request is sent to NAi in order to obtain the

demanded certi�cate. The request will be granted

if NAi can �nd a certi�cate chain from its ACL

entries to the requestor's public key. The authority

contains the next ACL:

(acl

(entry

(subject (name NAl N
k
l ))

(tag (cert-request

(issuer (name NAi N
j
i ))

(subject (* set P Q R))

))

)

)

This ACL speci�es that only members of Nk
l can

request an ID certi�cate for N
j
i . If P , Q, or R

were members of Nk
l they could request their own

certi�cates. Otherwise, Nk
l can be considered as

a relaying party able to make the request. In this

case, we will assume that P is a member of Nk
l ,

and therefore P must send the next ID certi�cate

in order to be authorized:

(cert

(issuer (name NAl N
k
l ))

(subject P)

)



Finally, the naming authority uses the data ob-

tained from the authorization decision in order to

create the certi�cate (signature has been omitted).

(cert

(issuer (name NAi N
j
i ))

(subject P)

)

4.3.2 Subgroups

Subgroups are created using ID certi�cates whose

subject �eld is also a name. This can be useful

in order to establish group hierarchies by means of

ID certi�cates. However, it is worth noting that

a signi�cant di�erence exists between generation of

subgroups and creation of ID certi�cates for pub-

lic keys. Generation of ID certi�cates is normally

requested by the principals involved, but subgroup

certi�cates cannot be requested by the subgroup it-

self. Authorized requestors are policy-dependent,

but some appropriate candidates are the naming au-

thority de�ning the subgroup, or even a subgroup

member. In this example, the authorized requestor

is the naming authority, but this has delegated the

authorization to principal R in order to avoid sign-

ing certi�cation requests with the same private key

used to generate ID certi�cates.

This is the request sent by R to NAi in order to

de�ne Nk
l as subgroup of N

j
i (it is signed using the

private key of R):

(sequence

(cert-request

(issuer (name NAi N
j
i ))

(subject (name NAl N
k
l )))

(signature ..)

)

Next ACL speci�es that NAl can request an ID

certi�cate for N
j

i , and can also delegate that

permission.

(acl

(entry

(subject NAl)

(propagate)

(tag (cert-request

(issuer (name NAi N
j

i ))

(subject (name NAl N
k
l ))

))

)

)

R also sends the next authorization certi�cate

in order to demonstrate that NAl delegated the

permission to R:

(cert

(issuer NAl)

(subject R)

(tag (cert-request *))

)

Finally, NAi uses the data obtained from the au-

thorization decision in order to create the certi�cate.

(cert

(issuer (name NAi N
j
i ))

(subject (name NAl N
k
l ))

)

5 Authorization Management Sys-

tem (AMS)

Section 2 shown a scenario where authorization cer-

ti�cates can be used in order to gain physical ac-

cess to buildings. The system was based on dele-

gation, and users obtained this type of certi�cates

from trusted authorization authorities. In this sec-

tion we are going to present the authorization man-

agement system, which is responsible for certi�ca-

tion operations related to SPKI authorization and

attribute certi�cates.

5.1 Architectural elements

NMS and AMS are based on similar architectural el-

ements. Requestors and access points are also part

of AMS. Naming authorities are replaced by autho-

rization authorities (AA), but they share some basic

functionality. AAs create attribute and authoriza-

tion certi�cates upon the requests received through

the access points or directly from the requestors.

An AMS requestor is a principal demanding the gen-

eration of a new attribute or authorization certi�-

cate. This entity must create a certi�cation request

containing information about the authorization tag

(the tag is completely application-dependent). Like



in NMS, there also are two types of requestors: �rst,

the principal requesting an authorization certi�cate;

second, the principal requesting an attribute certi�-

cate for a particular name. As we will see later, we

consider that these two situations should be man-

aged following di�erent approaches.

5.2 S-expressions for certi�cation re-
quests and ACL entries

S-expressions used in AMS to specify certi�cation

requests are also based on the structure de�ned by

SPKI for attribute and authorization certi�cates.

The main di�erence between NMS and AMS s-

expressions is the tag �eld. This �eld contains in-

formation about the particular authorization being

requested (when it is contained in a certi�cation re-

quest) or granted (when it is part of an ACL entry).

Certi�cation requests are also encoded as sequences

composed by the request itself, and its signature.

5.3 Some examples

In order to clarify how AMS entities cooperate to

generate authorization and attribute certi�cates, in

this section we are going to analyze two certi�ca-

tion requests. First, we explain how a principal can

obtain an authorization certi�cate. Then, we will

show how attribute certi�cates can be generated.

In these examples, authorization policies are also

represented by ACLs.

5.3.1 Authorization certi�cates

In this �rst example, P is a principal demanding

an authorization certi�cate containing a tag tagA

from authority AAi . Next certi�cation request is

created by P :

(sequence

(cert-request

(issuer AAi)

(subject P)

(tag tagA))

(signature ..)

)

This request is sent to AAi in order to obtain the

demanded certi�cate. The request will be granted

if AAi can �nd a certi�cate chain from its ACL

entries to the requestor's public key. The authority

contains the next ACL:

(acl

(entry

(subject P)

(tag (cert-request

(issuer AAi)

(subject P)

(tag tagB)

))

)

)

This ACL speci�es that P can request an authoriza-

tion certi�cate containing the permission speci�ed

by tagB (tagA must be more restrictive or equal

to tagB). Finally, the authorization authority uses

the data obtained from the authorization decision

in order to create the requested certi�cate.

(cert

(issuer AAi)

(subject P)

(tag tagA)

)

One of the main advantages of this proposal is that

it is possible to specify a class of certi�cates, pos-

sibly in�nite in size, without having to issue them

all. The appropriate �nite subset of that class can

be issued on demand. The potential in�nite size of

the class comes from use of *-forms.

5.3.2 Attribute certi�cates

Attribute certi�cates can be used to specify roles.

The subject can be a name de�ning a role, and this

type of certi�cate states the permission related to

that role. Roles can be seen as various job functions

in an organization, and users can be assigned to one

role depending on their responsibilities. The role

permissions use to be stable since roles activities do

not change frequently. However, we must answer the

question: "Who must the requestor of an attribute

certi�cate be?"

Certi�cates are issued by authorization authorities,

hence valid requestors are those speci�ed by their

authorization policies. AMS should keep inherent



policies to a minimum, in order to allow users of

the system to design their own authorization poli-

cies. Therefore, valid requestors can range from role

members to speci�c role managers. Nevertheless, we

�nd the latter approach very interesting for complex

systems since role management can be greatly sim-

pli�ed using speci�c administrators (role managers).

Authorities can authorize role managers to request

attribute certi�cates for a particular set of group

names. This authorization can be expressed as:

AAi ) RM1

i (N
k
l ; N

g

f ); RM
n
i (N

h
j )

This expression denotes that authority AAi autho-

rizes role manager RM1
to request attribute cer-

ti�cates for the group Nk
de�ned by NAl, and for

the group Ng
de�ned by NAf . AAi also autho-

rizes RMn
to request this type of certi�cates for

the group Nh
de�ned by NAj .

We are going to see how this relation can be

implemented using AMS. In this example, RM1

i

requests an attribute certi�cate for N
g

f , with the

authorization tag tagA. This is the request sent by

RM1

i to AAi (it is signed using the private key of

RM1

i ):

(sequence

(cert-request

(issuer AAi)

(subject (name NAf N
g

f ))

(tag tagA))

(signature ..)

)

The authority contains an ACL implementing the

above-expressed relation. This is the ACL:

(acl

(entry

(subject RM1

i )

(tag (cert-request

(issuer AAi)

(subject (* set

(name NAl N
k
l )

(name NAf N
g

f )))

(tag tagB)))

)

(entry

(subject RMn
i )

(tag (cert-request

(issuer AAi)

(subject (name NAj Nh
j ))

(tag tagC)))

)

)

Finally, the authorization authority uses the data

obtained from the authorization decision in order

to create the requested certi�cate.

(cert

(issuer AAi)

(subject (name NAf N
g

f ))

(tag tagA)

)

6 Use of AMBAR in DCMS

Requests and certi�cates are exchanged using AM-

BAR connections. Although other protocols like

SSL (Secure Socket Layer) can be used for this pur-

pose, we �nd AMBAR a valuable approach since it

has been designed to exchange authorization-related

information. Entities making use of AMBAR do

not pay attention to issues such as the encapsula-

tion of requests or certi�cates. They create AM-

BAR connections in order to exchange this type of

information, and AMBAR modules are responsible

for encapsulation and protection. Furthermore, this

protocol has been designed to be session-oriented

in order to optimize those scenarios where the re-

quest/response messages are exchanged between the

same client and server (such as for instance, access

points and authorities).

In DCMS, there are two types entities which must

make use of AMBAR: access points and authori-

ties. Requestors can request their certi�cates using

access points, and therefore AMBAR functionality

is not a requirement for them. Authorities should

not employ their private keys to establish AMBAR

connections since it is not suitable to protect their

communications making use of the same private key

signing the certi�cates. Authorities should generate

a new key pair for communication purposes, and

they should issue a certi�cate authorizing the new

key pair to act as their network interface. This cer-

ti�cate should include a tag (tag dcms-com), and

will be used by access points and requestors to val-

idate that they are indeed exchanging information

with the right authority.



AMBAR connections used in DCMS can perform

authentication based on X.509 certi�cates, or SPKI

certi�cates. Access points and authorities are al-

ways authenticated, but identity of requestors can

be preserved using the anonymous mode. Creden-

tials (additional certi�cates attached to the request)

can be provided by access points or requestors (push

method), or can be recovered from public reposito-

ries by authorities (pull method). Figure 4 shows

an exchange (push) between an access point and an

authorization authority, and how data are encap-

sulated in AMBAR messages. If the certi�cation

request is granted, the authority sends a Resource

message containing the certi�cate. Otherwise, a

Negative Noti�cation message is generated. Negoti-

ation is performed only once. Then, requests and re-

sults are exchanged using the previously-established

channel.

Figure 4: Communication between an access point

and an authority

7 Conclusions

In this paper, we have proposed a management sys-

tem that can be used in SPKI scenarios based on

delegation. We present how certi�cation requests

for ID, attribute, and authorization certi�cates can

be expressed, how authorization policies can be en-

forced in a distributed way, and which are the enti-

ties involved in a certi�cation scenario.

We consider that our system provides strong mecha-

nisms to address scalability-related problems. First,

we have tried to keep inherent policies to a mini-

mum, in order to allow system administrators to de-

sign their own authorization policies. What is more,

following our approach, it is possible to specify a set

of certi�cates without having to issue them all since

they are issued on demand. Added to this, we make

a clear distinction between requestors and subjects

of certi�cates. We do not force both entities to be

the same one, enabling therefore the participation

of relying parties.

In order to complete our proposal, additional mech-

anisms must be designed, such as certi�cate revo-

cation or certi�cate storage. Currently, we are also

developing a new service of DCMS for automatic re-

duction of certi�cation chains. Certi�cate reduction

can be used to improve performance of authoriza-

tion decisions and, as is commented in [1], to provide

anonymity services.

8 Acknowledgements

This work is partially supported by TIC2000-0198-

P4-04 project (ISAIAS), and by IST-2001-32161

project (Euro6ix)

References

[1] T. Aura and C. Ellison. Privacy and Account-

ability in Certi�cate Systems. Technical Report

HUT-TCS-A61, Helsinki University of Technol-

ogy, 2000.

[2] O. Canovas and A.F. Gomez. AMBAR: Ac-

cess Management Based on Authorization Re-

duction. In Proceedings of the International

Conference on Information and Communica-

tions security (ICICS 2001), volume 2229 of

Lecture Notes in Computer Science, pages 376{

380. Springer Verlag, November 2001.

[3] O. Canovas, A.F. Gomez, H. Martinez, and

G. Martinez. A Role-Based Implementation

of Physical Access Control using Authorization

Certi�cates. Technical Report UM-DITEC-

2002-2, Department of Computer Engineering,

University of Murcia, January 2002.

[4] Dwaine Clarke. SPKI/SDSI HTTP Server and

Certi�cate Chain Discovery in SPKI/SDSI .

Master's thesis, M.I.T., September 2001.

[5] Intel Corporation. Common Data Security

Architecture (CDSA). World Wide Web,

http://developer.intel.com/ial/security, 2001.

[6] J.E. Elien. Certi�cate discovery using

SPKI/SDSI 2.0 certi�cates. Master's the-

sis, Massachusetts Institue of Technology, May

1998.

[7] C. Ellison, B. Frantz, B. Lampson, R. Rivest,

B. Thomas, and T. Ylonen. Simple Public Key

Certi�cate. IETF Internet Draft, draft-ietf-

spki-cert-structure-06.txt edition, July 1999.

[8] C. Ellison, B. Frantz, B. Lampson, R. Rivest,

B. Thomas, and T. Ylonen. SPKI certi�cate



theory, September 1999. Request For Com-

ments (RFC) 2693.

[9] T. Hasu and Y. Kortesniemi. Implementing an

SPKI Certi�cate Repository within the DNS,

Poster Paper Collection of the Theory and

Practice in Public Key Cryptography (PKC

200) edition, January 2000.

[10] J. Koponen, P. Nikander, J. Rasanen, and

J. Paajarvi. Internet access through WLAN

with XML encoded SPKI certi�cates. In Pro-

ceedings of NordSec'00, October 2000.

[11] Y. Kortesniemi, T. Hasu, and J. Sars. A Re-

vocation, Validation and Authentication Pro-

tocol for SPKI Based Delegation Systems. In

Proceedings of Network and Distributed System

Security Symposium (NDSS 2000), February

2000.

[12] T. Lampinen. Using SPKI Certi�cates for

Authorization in CORBA based Distributed

Object-Oriented Systems. In Proceedings of

NordSec'99, pages 61{81, November 1999.

[13] Per Harald Myrvang. An Infrastructure for

Authentication, Authorization and Delegation.

PhD thesis, Department of Computer Science,

University of Tromso, May 2000.

[14] R. Rivest and B. Lampson. SDSI: A simple

distributed security infrastructure.

[15] R. Sandhu, E. Coyne, H. Feinstein, and

C. Youman. Role-based access control models.

IEEE Computer, 29(2), February 1996.

[16] K. Seamons, M. Winslett, and T. Yu. Lim-

iting the Disclosure of Access Control Policies

during Automated Trust Negotiation. In Pro-

ceedings of Network and Distributed System Se-

curity Symposium, April 2001.


