SPEED Protocol: Smartcard-based Payment
with Encrypted Electronic Delivery*

Antonio Ruiz', Gregorio Martinez', Oscar Cénovas?, Antonio F. Gémez!

! Department of Information and Communications Engineering
? Department of Computer Engineering
University of Murcia, Spain
{arm, gregorio, skarmeta}@dif .um.es, ocanovas@ditec.um.es

Abstract In these times of the dawning of e-commerce, many issues and
barriers still remain to be solved before electronic transactions over the
Web can be expected to be really successful. One important unresolved
problem is the issue of having efficient and secure payment models based
on e-purses and including electronic product delivery and price negotia-
tion. In response to this need, the SPEED protocol specification has been
proposed. This specification, which is described in this paper, provides a
high level of security for all parties involved in e-commerce transactions
over the Internet; at the same time, we have combined this aim with
the use of highly-recognised standards and all the advantages of using
e-purses implemented on multiaplication smart cards. Our work has also
been tested in a real environment, providing us an interesting feedback
based on technical and user-friendly matters.

1 Introduction

Nowadays, we are under a real revolution concerning the way people as con-
sumers purchase the goods and services they need and desire. The web ex-
ceptional growth has created a new way for commercial transactions, called
e-commerce, involving some powerful and interesting possibilities such as global
market coverage and personalized and direct interaction with customers.

Although the needed technology is already in place, e-commerce has not
really grown as expected. In fact, some people were predicting an incredible
benefit for year 2000 but it was not so high. The main reason for this reluctant
behaviour is that most customers still consider that on-line financial transactions
over the Internet are not secure enough. Some other reasons are the lack of
efficient distribution systems for delivering individual customer orders, and the
existence of few national and no international laws concerning legal issues such
as copyright, taxation, and on-line agreements and contracts.

These barriers have been observed by a number of companies and research in-
stitutions with interests in secure e-commerce markets. Their answer to this situ-
ation was to present a number of secure payment alternatives based on electronic

* Partially supported by TEL-IFD97-1426 EU FEDER project (PISCIS)

money. Although some of these systems, such as PayWord [RS97], MicroMint
[RS97], Millicent [GT95], NetBill [CTS95], etc. are secure and flexible enough,
they have demonstrated to have many problems to reach real markets. The next
list outlines some of the typical difficulties of most of the current proposals.

— The lack of pilot projects with real users

— Some proposals are not so light as intended

— There is no possibility for price negotiation (quite important in brokering
markets)

— There is no perception of enough security by customers

— Electronic product delivery is not allowed

— There is no possibility of buying different products at the same time

— User mobility is not fully considered

— Some proposals are not based on recognised standards

— It is quite complicated to handle the change of electronic money

— The lack of proper arbitration (e.g., customer paid and did not receive the
product)

Although some of theses problems are already solved by some previous schemas,
to provide a common answer to all them in the specific environment we are
working, we have defined a new payment system called SPEED which is intended
to provide a smart card based stored value payment schema to be used with
electronic products delivery.

It is also indicating the scope of this protocol. In fact, e-purses schemas are
normally used for frequent and/or fast payments with lower-medium value. So,
we have defined and implemented an efficient and secure schema to buy some
products such as music, newspapers, keys providing access to pay-per-view shows
(like movies and sports) etc.

This basic definition is complemented with some other characteristics of high
interest. We have designed this protocol with a negotiation phase (that it can be
omitted if not needed) really important in brokering markets, encrypted delivery,
and using recognised standards like ASN.1 [ITU95] and PKCS#7 [RSA93].

Furthermore, every player in our system (customer, vendor, and broker) has
a private key, normally stored in his or her smart card (it is mandatory for
customers and depends on efficiency issues for vendors and brokers), and a X.509
[HFS99] certificate issued by a supporting public key infrastructure. This security
information is considered as the trust foundation of the whole payment system.

The reminder of this paper is organised as follows. Section 2 describes the
type of smart cards and e-purses we are using in SPEED. Section 3 discusses the
SPEED protocol, while Section 4 describes its messages and existing operation
modes. Section 5 discusses main security issues concerning this protocol. Section
6 describes the pilot project where SPEED has been defined and its currently
used, and outlines some performance analysis. Finally, some conclusions and
future work are provided.

2 Smart Card with E-Purse as a Basic Component of
SPEED

Memory card based e-purses today seem to be only suitable for closed systems
where the e-purse provider is also the service provider or where there is a very
low fraud incentive. The reason is that defrauding such systems is relatively easy.
By interposing itself between an actual card and a point of payment, a small
computer may record the secrets communicated during an initial transaction
and can then, as often as required, be used to play the role of a card having
the initial balance and to pay as the real user. This is the main reason why we
decide to rely our system on smart cards with e-purses.

In our case, the e-purse is implemented as a multicurrency and multiappli-
cation pre-paid IC (Integrated Circuit) card containing digital money which the
cardholder can spend in return for goods and services (such as music, books,
newspapers, and so on) from retailers. This money is decremented using some
specific SAM (Secure Access Module) security modules, which are normally han-
dled by banks. These modules have a daily record of every economic transaction
performed on those electronic purses. Periodically, retailers are reimbursed with
real money from banks, which already obtained the money in advance from card-
holders at the time of storing the corresponding value in their cards (prepayment
concept).

These electronic purses are based on the WG10 [CEN96,CEN95] (also called
“Inter-sector Electronic Purse”) standard proposal defined by CEN (European
Committee for Standardisation) which is made up of some of the most important
European national standardisation bodies.

On the authentication process with the outside (i.e. the SAM modules) it
is relevant to mention that our smart cards are able to run the 3DES sym-
metric cryptographic algorithm using prestored shared keys, as is described in
the standard. A SAM security module uses the keys it shares with the card
to authenticate messages during the decrement (i.e. purchase) or the increment
transaction. This lets the SAM module convince the smart card that it is gen-
uine. The card convinces the module by using the shared key to authenticate
some information, like the amount to manage.

3 SPEED Overview

As commented before, the SPEED protocol is designed for purchasing and de-
livering electronically low and medium priced goods and services (MP3 songs,
electronic documents, keys protecting video streams, etc.). The broker maintains
accounts for vendors (and optionally for customers) and it hosts a set of SAM
modules to perform decrement operations on the customer smart card e-purse.
One SPEED transaction transfers electronic products from one vendor to one
consumer, debiting the customer smart card e-purse (or account) and crediting
the vendor account for the product price. SPEED is designed as a set of phases
to support price negotiation, product delivery and payment.

There are two operation modes in the SPEED protocol: normal mode sup-
ports negotiation and it is designed with higher security capabilities (prevention
of trivial denial of service attacks and full authentication of participating parties
before the product delivery); the aggressive mode is composed by less messages
than normal mode, and it is suitable for smaller products or scenarios with lower
security requirements.

3.1 Players

The SPEED transaction model involves three main parties: the customer, the
vendor, and the broker. Goods and services are delivered over the network, and
SPEED links product delivery and payment into a single atomic transaction.
The broker is not involved until the payment phase, when the customer submits
a transaction request. Previously, the customer and the vendor can negotiate the
product price in the negotiation phase.

Only registered users (customers and vendors) can interoperate using SPEED.
Firstly, the customer and the vendor agree on the product to be purchased and
its price. This can be accomplished after an optional offer and acceptance ne-
gotiation phase between the two parties. A customer receives the product he
purchases if and only if he pays for the product. When the payment is per-
formed, both customer and vendor obtain a proof of the transaction result (for
example, for further complaints). The communication is protected from external
entities using symmetric and, in some special cases, asymmetric cryptography.

SPEED assumes asymmetric trust relationships among the three participat-
ing entities. Brokers are assumed to be the most trustworthy, then vendors, and,
finally, customers. Brokers play the role of serving as accounting intermediaries
between customers and vendors. Vendors go into long-term relationships with
brokers, in the same way as they would go into an agreement with a bank, credit
card or company. Brokers tend to be large, well-known, and distinguished institu-
tions or network service providers. The broker reputation is quite important for
pulling toward customers; this reputation would be quickly loosed if customers
or vendors have troubles with the broker. Vendor fraud consists of not providing
correct products or descriptions. If this happens, customer will complain to the
broker, and broker can drop vendors causing frequent complaints.

3.2 Registration

SPEED is designed considering that its participants are certified entities. It is
assumed that both customers and vendors have a X.509v3 certificate issued by
a trusted certification authority. The broker is also a certified authority, but it
is not mandatory that the same certification authority certifies all the parties
involved, although every certification authority must be considered trustworthy.
Thus, a trusted CA must certify both customers and vendors before they initiate
SPEED communications. As we will see below, real application environments
show that this is not a problem in order to use SPEED in electronic markets or
similar scenarios.

Although the smart card e-purse is the basic payment model (and the pre-
ferred one by the authors of this paper) the use of bank accounts is also allowed
in the SPEED protocol. In order to make use of this information in the payment
process, customer should also provide this data in the registration process.

3.3 SPEED Purchase Overview

Figure 1 shows a global communication scheme conforming the product nego-
tiation, delivery, and payment in the normal operation mode. We can see that
messages 1, 2 and 3 constitute the product negotiation phase, and that they are
exchanged between the customer and the vendor. Message 4 contains the prod-
uct ciphered by a symmetric key generated by the vendor, which will be provided
to the customer once the payment has been performed (messages 5 and 6). The
broker and the customer will exchange additional messages if a smart card based
payment has been selected as the payment mode (dotted line).

BROEKER

6. PurchaseReceipt
5. PaymentOrder

1.Negotation Re quest
2. NegotiationSiep
CUSTOMER 3. Handshake VENDOR
4. CipheredProduciDelivery
.

Figure 1. SPEED messages in the normal operation mode

4 SPEED Protocol Specification

4.1 Notation

In this section we will describe the notation used to specify the sequence of
messages conforming the SPEED protocol.

[Datal) It indicates that this piece of data is optional, and it could
not be in the message.

Hash(Data) A message digest of Data, obtained using a hash algorithm
such as MD5 [Riv92].

| Dataly, Data, encrypted by a symmetric cipher using the key k.

|Datal* Data is authenticated using a HMAC algorithm with a cryp-
tographic key k. This represents a message composed by two
elements: Data and its cryptographic checksum.

|Datal¥ This is equivalent to ||Datal* |,

{Data} x Data, encrypted for X using public key cryptography (RSA).
For computational efficiency, this is implemented using a dig-
ital envelop.

{Data}x-1 Data is signed using the RSA private key of X.

X=Y It indicates that X sends one message to Y.

In next sections we are going to describe all messages involved in the different
phases. This explanation is divided in two blocks related to the normal and the
aggressive operation modes.

4.2 Normal Mode
Generally, this operation mode is suitable in the next three scenarios:

— The customer does not know the product price because it is not fixed

— The customer wants to negotiate a lower price

— The product size, in bytes, is high (over 1 MB). As we will see in next
sections, it could be very easy to perform a denial of service attack in the
aggressive operation mode when the product size is high. For this reason, it
is appropriate to use the normal mode if products are songs, videos, etc.

Negotiation Phase This phase is composed of three messages: NegotiationRe-
quest, NegotiationStep and Handshake. First two steps represent a request /response
message pair where the customer requests or proposes a price, and the vendor
replies to this price. Then, these steps may be repeated as needed until the cus-
tomer and vendor agree on a price, or any of the two parties decide to break the
negotiation. Finally, the Handshake message is sent by the customer to notify
the vendor that the price is accepted.

The NegotiationRequest message is sent the first time a customer and vendor
are negotiating a particular product. This message is digitally signed using the
customer private key, and asymmetrically encrypted using the vendor public key.

1 C = V NegotiationRequest {{NID, SeqN, ProductID,[Price],
VendorID, EnKey, SignKey, Flag}c-1}v

— NID (Negotiation Identifier). It is a 4 bytes value generated by the customer
using a pseudo-random number generator. The NID identifies the negotia-
tion being performed between the customer and the vendor. Although this

identifier is not globally unique, it is used to distinguish between the different
negotiations performed by the same vendor

— SeqN (Sequence Number). During the negotiation phase, it is possible to
exchange several messages. Every message in this sequence must be unique
in order to prevent reply attacks. For this reason, a SegN field is present
in the negotiation messages and each party must increment the SegN value
after receiving this type of messages

— ProductID (Product Identifier). It is a string composed by a product code
and an application-specific description, which the vendor uses to specify the
goods

— Price. It is the price that the customer may be willing to pay for the item.
It is optional in this message because the customer may not know about
the product price. Price is a string specifying a value and the used currency
(coded using ISO 4217)

— VendorID (Vendor Identifier). This field is the digest of the vendor public
key. It identifies the intended vendor of this negotiation request, and binds
the negotiation request to a particular vendor. In this way, we try to avoid
any possible customer impersonation from malicious vendors (we shall anal-
yse this attack in section 5.4)

— EnKey (Encryption Key). EnKey is a symmetric key that will be used to
provide confidentiality to the following messages exchanged between the cus-
tomer and the vendor. It is a 128 bits long value generated by the customer.
The default symmetric cipher to employ is IDEA [Lai92]

— SignKey (Signing Key). SignKey is a symmetric key used to provide in-
tegrity to the subsequent messages exchanged between the customer and the
vendor. It is a 128 bits long value generated by the customer. The default
cryptographic checksum function to employ is HMAC-MD5 [CG97]

— Flag. This field contains a boolean value indicating whether the proposed
price is the last customer offer (i.e., the customer do not want to negotiate
other price)

Some of these fields will appear later in this document, although we will explain
them again only when they have a different meaning.

Both customers and vendors send NegotiationStep messages in order to nego-
tiate the final price of the product. It is protected using symmetric cryptography
and the keys previously exchanged (the message is authenticated using a HMAC
algorithm and then ciphered using a symmetric cipher). In this message, each
party makes a bid that could change in following messages (it depends on the
negotiation strategy).

2 V = C NegotiationStep |[NID, SeqgN, Price,Flagg%;I:;y

— Price indicates the price proposed by the customer or vendor
— Flag codifies a boolean value that represents whether Price is the last offer

Both parties send the message in order to obtain the lowest (or the highest)
product price. This exchange is repeated until one of the following conditions is
reached:

1. The customer accepts the price proposed by the vendor in the last Negotia-
tionStep message. In this case, the customer will send a Handshake message,
as we will see below.

2. The customer or the vendor receive a NegotiationStep containing a last offer
(flag is activated) that they do not agree with. In this case, the communica-
tion is closed.

Once the customer and the vendor have negotiated a price for the product, the
Handshake message is sent to notify the vendor that the customer accepts his
last offer. This message could have been sent after several negotiation steps (it
indicates an active negotiation), or it could be the response to the first bid made
by the vendor when the customer does not want to negotiate the price. The
customer digitally signs the message (in this way the vendor cannot build a
Handshake message using the shared secrets), and then this message is ciphered
using EnKey.

3 C = V Handshake |{NID, Price}c-1|Enkey

Product Delivery Phase This phase is composed by one message named
CipheredProductDelivey. When the vendor receives the Handshake message it
proceeds to send the ciphered product. Then, the vendor constructs a message
containing the product demanded by the customer, but ciphered with a pseudo-
randomly generated symmetric key K. On the other hand, a bill is included in
this message, which is digitally signed by the vendor, containing all the necessary
information to uniquely identify this transaction. After that, this bill is ciphered
using EnKey, and the message is sent to the customer.

4 V = C CipheredProductDelivery |Product|k, [{Bill}y-1|pnikey

— |Product|k is the ciphered product demanded by the customer. Once the
payment is done, the symmetric key that protects this product will be sent
to the customer in order to decipher the product.

— Bill= {Account Number, K } g, Hash(|Product|k), Hash(ProductI D), Pay-
mentOrderID, Price, RecKey

— AccountNumber is the vendor account number and K is the symmetric key
ciphering the product. These fields are encrypted using the broker public
key in order to maintain their confidentiality from the customer.

— Hash(|Product|k) is a message digest computed on the ciphered product,
so the customer will detect any discrepancy before proceeding.

— Hash(ProductID) is a message digest of the ProductID included in the first
message. A hash (and not the complete identifier) is included in order to
hide the product description from the broker. If the deciphered product did
not match with the specified description, the customer would use this field
to reclaim the correct product.

— PaymentOrderID is an identifier for the current transaction, and it must
satisfy the condition of being unique in the whole system, considering all
the transactions made by all the vendors. Two fields compose it: one is the
message digest of the vendor public key, and the other is the NID value.

— RecKey (Receipt Key) is a symmetric key, 128 bits long, generated by the
vendor. As we will see below, the broker will use this key to cipher the
receipt.

Payment Phase The number of messages composing this phase depends on
the payment mode. There are two main messages, which are present in both
operation modes. The PaymentOrder message is submitted by the customer to
the broker, and marks the point of no return for the customer. Once the payment
has been performed, using some of the available methods, the broker returns a
receipt (the PurchaseReceipt message) including the symmetric key protecting
the product, and some information that could be used for further complaints.

5 C = B PaymentOrder {{{Bill}y-1, PaymentMode}c-1}p

— Bill. The customer includes in this message the bill previously received from
the vendor in the CipheredProductDelivery message.

— PaymentMode. The structure of this field depends on the payment mode
selected by the customer. We have the following options:

o {AccountNumber}. If the customer selects the payment mode based on
credit card number, this field represents the customer account number.

e {BEncKey, BSignKey, S1}. As has been commented in previous sec-
tions, in order to perform a smart card based payment, it is needed to
exchange a set of cryptographic messages between the card and a se-
cure access module (hosted by the broker). Those two messages are part
of the SPEED protocol, and therefore they must be protected like the
other protocol messages. To do that, two symmetric keys are provided
with the PaymentOrder message to authenticate (BSignKey) and to en-
crypt (BEncKey) the subsequent messages taking part of the decrement
sequence. The S1 field is necessary to authenticate the smart card and
to do the payment.

When the smart card based payment mode is selected, two additional messages
are needed in order to accomplish the payment. The content of these messages
has been outlined in a previous section, and any further explanation will be
omitted here.

a B = C|PaymentOrderID,S2|p59nk ey
b C = B |PaymentOrderID, S3|g§f§e;y
Once the broker decrements the quantity specified in the bill from the smart

card or the account number, it proceeds to transmit to the customer and the
vendor the receipt containing the product price, the encryption key and the

PaymentOrderID concerning to this transaction. The broker digitally signs this
message, and uses the RecKey contained in the bill to cipher it.

6 B = C,V PurchaseReceipt |{ PaymentOrderID, Price, K} p-1|geckey

When the customer receives the message, he tries to decipher the product
using the symmetric key K. If the key is wrong, the customer will use the receipt
and the product description to make a complaint.

4.3 Aggressive Mode

In this operation mode, there is no negotiation phase since the customer accepts
the price proposed by the vendor, and receives the bill and the ciphered product
immediately. This protocol mode is suitable for scenarios where the negotiation
has no sense (the price is fixed) or those situations where the number of trans-
actions per second is the main goal. However, it is not suitable if the product
size is large (over 1 MB) since it can be considered as a security flaw to perform
denial of service attacks.

This mode reduces the number of messages (four) eliminating the Negotia-
tionStep and Handshake messages, and modifying the NegotiationRequest and
the CipheredProductDelivery messages. The rest of messages are the same that
we have seen in the normal mode section.

Product Request Phase The main differences between the ProductRequest
message and the NegotiationRequest message (normal mode) are those fields
related to the negotiation: the negotiation keys, the flag and the SegN fields has
been deleted since they are not necessaries.

1 C = V ProductRequest {{ NID, ProductI D, Price,VendorID}c-1}y

Product Delivery Phase The main difference between the CipheredProduct-
Delivery of the aggressive mode and the one of the normal mode is that the
former bill is encrypted using the customer public key since there are not sym-
metric keys exchanged in previous phases. However, the message contents are
the same.

2 'V = C CipheredProductDelivery |Product|g,{{Bill}y-1}c

5 Security Analysis of the SPEED Protocol

This section provides a technical analysis of the cryptographic strength of the
SPEED protocol, and it covers some other aspects related with vendor or cus-
tomer frauds, complaints, and information visibility.

5.1 Assumptions about Cryptography

In general, our model assumes perfect cryptography. The following list explains
what this assumption implies for all the cryptographic functions used in SPEED.

— Opaque encryption. Encryption is assumed to be opaque. If a message
has the form {m}x, only party X can learn m.

— Unforgeable signatures. Signatures are assumed to be unforgeable. Mes-
sages of the form {m} x-1 can only be generated by the party X. Anyone who
has the verification key of X is able to verify that the message was indeed
signed by X.

— Collision-free hashes. Hashes are assumed to be collision-free.

— Trusted certificate authority. There exists a trusted certificate authority
(CA). All parties are assumed to have the verification key of the certification
authority, and are able to verify messages signed by it.

5.2 General Objectives: Confidentiality and Authentication

The SPEED protocol encrypts all the information transmitted over the network.
SPEED make use of both, asymmetric cryptography and symmetric encryption,
in order to obtain a high performance in all transactions.

Symmetric encryption is used during the negotiation and the product delivery
phases to protect the product and the bill, as well as in some other messages such
as PurchaseReceipt. The rest of messages are encrypted using digital envelopes.

Short-term session keys are generated both for encryption and authentica-
tion, and they are transmitted using public key cryptography. 128 bits long keys
and IDEA algorithm are used, which is currently considered strong enough to
protect any private information. However, it is important that SPEED securely
protect confidential data against even active attacks. Of course, underlying en-
cryption algorithm should be secure against adaptive chosen plaintext / chosen
ciphertext attacks, but this is not enough on its own. One important attack is
cut-and-paste attack. SPEED uses the most comprehensive defense against this
type of attacks, i.e., it uses strong authentication on all encrypted packets to
prevent external modification of the ciphertext. Every message in the protocol
is authenticated, and the way this is performed depends on the message, which
can be authenticated by a digital signature or by a HMAC checksum.

5.3 Replay Attacks

The use of HMAC or digital signatures does not necessarily stop an adversary
from replaying stale packets. There are some scenarios where this type of attack
can obtain great benefits for an enemy:

— A malicious vendor could be interested in altering the contents of the nego-
tiation messages exchanged between a particular customer and vendor. For
example, the hostile vendor can capture the negotiation messages including

the first price offered by the right vendor, and replay them later to the cus-
tomer, preventing a possible handshake. This situation is solved inserting a
negotiation message sequence number in every message of this phase. This
number is incremented by each party before the message is transmitted. A
negotiation message with a repeated sequence number is interpreted as an
active attack, and it will cause the end of the communication.

— The customer receives more than once the same bill. With this replay at-
tack, the vendor tries to swindle the costumer selling several times the same
negotiated product. The customer can avoid this attack keeping track of
every paid bill, which is identified by a unique PaymentOrderID. The same
benefit could be obtained presenting previous bills to the broker in order to
force repeated payments. It is mandatory for broker to keep track of every
processed transaction.

— A replay attack that could cause a denial of service is the repeated trans-
mission of Handshake messages. If the vendor did not maintain a deliveries
register, the attacker would force the reiterated transmission of large prod-
ucts, and therefore a performance loss of the attacked vendor. For this reason,
vendors should keep track of every received Handshake.

5.4 Impersonation

Abadi and Needham postulated some basic engineering practices for crypto-
graphic protocols in [AN96]. One of these principles is related to naming: “if the
identity of a principal is essential to the meaning of a message, it is prudent
to mention the principals name explicitly in the message”. Impersonation attack
tries to convince some protocol party that the communication is being performed
only between entities A and B, although there is a third party participating in
that communication (impersonating A or B). We have included the VendorID
field in the NegotiationRequest and ProductRequest messages in order to avoid
the following situation (M is the malicious vendor):

1 C=M NegotiationRequest {{NID, SeqN, ProductID, Keys,
Flag}cfl }M

2 M=V NegotiationRequest {{ N1D, SeqN, ProductID, Keys,
Flag}ofl }V

3 C & M & V NegotiationStep |[NID, SeqN, Price, Flag|§i52§;y

In this scenario, the malicious vendor gains access to all the information
exchanged during the negotiation phase (can learn the negotiation strategy of
both parties, the product price, etc.), the customer ignores that he is not talking
with he right vendor, and the honest vendor does not know that there is one man-
in-the-middle. Using the VendorID field (an identifier of the intended vendor),
any forwarded NegotiationRequest message can be interpreted as an attack.

5.5 Visibility

In a payment protocol, some of the exchanged data must be readable by only
those parties needing this information to accomplish their tasks. For example,
vendor account number should be protected from the customer, and vice versa,
the product description should be hidden from the broker, etc. The SPEED
protocol uses encryption and cryptographic checksums to protect this partially-
confidential information from unintended readers. Vendor account number (con-
tained in the bill) is encrypted using the broker public key; only a digest of the
product description is inserted in the bill in order to hide it from the broker;
and the customer never sends his account number (or some other information
related with the smart card) to the vendor.

5.6 Product Delivery Attack

The information contained in the bill transmitted to the customer by the vendor
can be different from the negotiated previously. Particularly, the vendor can be
interested in changing the delivered product, or in modifying the price in order
to get benefit from this change. The customer immediately detects any change
in the product description (its hash) or in the product price, since the customer
knows the product description (included in the first message) and its negotiated
price (it is included in the Handshake message). Moreover, as we will see below,
if the delivered product did not correspond with the provided description, the
customer would possess all the information needed to demonstrate the fraud.

5.7 Customer Complaints

Despite the security mechanisms provided by the protocol, there are frauds that
cannot be controlled as, for instance, the delivery of a product that does not
match with its description. In this type of situations, the customer will make a
complaint to obtain the required product.

— The delivered product does not match with its description. The customer
does not receive the key protecting the product until the payment is done.
Once the customer recovers this key, he deciphers the product and checks
whether it matches with its description. If it does not match, he can present
to the broker the product description exchanged in the first message (the
broker has only the digest), and the deciphered product. In this way, the
customer can demonstrate the vendor fraud.

— The customer does not receive the receipt containing the key. If some intruder
had intercepted the PurchaseReceipt message, the customer would not be
able to decipher the product. It is mandatory for the broker to maintain a
register with the status of all the processed transactions in order to know
whether it can retransmit the encryption key to the customer.

6 Using SPEED in a Real Environment: the PISCIS
Project

The definition of projects and associated pilots on e-commerce marks a qualita-
tive leap in the region or country where it is applied. In fact, we think that these
projects are becoming more and more important to demonstrate final customers
that related technology is mature enough.

In our case, the SPEED protocol has been designed and implemented as part
of the PISCIS project. This project is intended to define an intelligent architec-
ture to securely buy electronic products on the WEB. The communication base
is a cable network provided by an important network service provider in our
country.

To reach this objective, we have defined three main action lines as described
now.

1. The design and implementation of a Java-based public key infrastructure,
which provides all needed private keys and certificates to different players in
our protocol: customers, vendors and broker (or brokers). The certification
authority certificate, which it is distributed in off-line mode, is the trust
foundation of the whole payment system

2. The design and implementation of a security module to access from final user
applications to the information stored in smart cards. This module has been
designed according to the Microsoft Windows security architecture [Cor01],
developing a RSA Crypto Service Provider which implements the CryptoAPI
2.0

3. The design and implementation of the SPEED protocol, as described in this

paper

The next subsection provides some more details on the implementation of the
SPEED protocol in the environment defined by the PISCIS project.

6.1 SPEED Performance Analysis

We carried out the experiments using an Ethernet local area network. Computers
running the customer software were Intel Pentium III 800 MHz processors with
128-MB main memory. Broker and server programs were run in Pentium IT 450
MHz processors with 128-MB main memory. Windows 2000 professional edition
was used as the operating system, and C++ language was used to develop the
software. That software was compiled using the Visual C++ Studio 6.0 with the
mazimize speed optimization option activated.

SPEED was tested using product sizes of 16 bytes, 1IMB, 3MB and 5MB. For
each product size, we used up to five different computers simultaneously acting
as customers. These customers buy products using the normal operation mode,
and they accept the first price proposed by the vendor (only three messages
constitute the negotiation phase). As Figure 2 shows, simultaneous customers
are managed well. Purchase time is formed by two components: time concerning

the product delivery, and time related to the rest of messages. The product
delivery message originates the differences among those purchases of the same
product size, but time used to exchange the rest of messages remains almost
independent of the number of concurrent customers (as is shown by the results
obtained from the purchase of the 16 bytes long product).

SPEED purchase time

0,000

8,000

7,000 o1 customer

6,000 B2 customers
O3 customers

5,000 04 customers

4,000 B S customers

3,000

2,000

1,000 ﬂ

Qo b—m™@€@—m——— ————— —

16 bytes 1imMe 2 MB 5 MB
Product Size

Figure 2. SPEED purchase time

7 Conclusions

This paper has presented one smart-card based payment schema, called SPEED,
for making small and medium price purchases over an open communication sys-
tem. SPEED stands for Smartcard-based Payment with Encrypted Electronic
Delivery. This name is providing us some of the main characteristics of this pro-
tocol: the use of a smart card electronic purse, the use of encryption as the main
technique for protecting products, and the use of an electronic delivery method
for sending products from merchants to customers. Some other important char-
acteristics are also coming to our design, such as, security, non-repudiation, user-
friendly, price negotiation of one product (or even several ones simultaneously)
between the two speakers, web-based implementation, and the use of several
standard formats (ASN.1, PKCS#7, X.509, etc).

Our work is really intended to fill the lack of proposals in the line of electronic
payment methods based on smart card e-purses, defining a secure schema able
to perform a high-speed price negotiation.

We have this payment system running from some time ago in an e-commerce
pilot defined together with an important cable network company. As we have
shown, results are really hopeful, getting the possibility of completing 4 or 5
transactions per second (with just one medium PC server) when the customer
is buying a key to access to one real-time stream of information (music, movies,
football matches, etc.)

8 Future Work

The focus of our future research activity is based on payments by mobile phone.
In fact, we think that electronic commerce by mobile devices or m-commerce is
predicted to be the next step in e-commerce, making use of mobile phones or
PDAs with networking capabilities as the easiest, most flexible, and widespread
smart card based operating platform. In this line, we are planning the adap-
tation of the SPEED protocol to m-commerce scenarios making use of some
new research lines like SIM Application Toolkit with Java Cards [Sun00], WIN
modules [WAP00], and so on.

We are also planning to make use of SPKI [EFLT99] credentials in our proto-
col to prove group membership in order to ask for special discounts to merchants.

Finally, we are also working in a new e-purse standard called CEPS [CEP99]
(Common Electronic Purse Specifications), which it is going to provide interoper-
ability between different standard proposals. It is based on a core set of common
technologies and functions, allowing e-purse to operate in a homogeneous and
global way.

References

[AN96] M. Abadi and R. Needham. Prudent engineering practice for cryptographic
protocols. IEEE Transactions on Software Engineering, 1(22):6-15, January
1996.

[CEN95] CEN/TC224/WG10. Inter-sector Electronic Purse, Part 38: Data Ele-
mentents for Interchanges, December 1995.

[CEN96] CEN/TC224/WG10. Inter-sector Electronic Purse, Part 2: Security Archi-
tecture, January 1996.

[CEP99] CEPSCO LLC. Common Electronic Purse Specifications, March 1999.

[CG97] P. Cheng and R. Glenn. Tests Cases for HMAC-MD5 and HMAC-SHA-1,
September 1997. Request For Comments (RFC) 2202.

[Cor01] Microsoft Corporation. CryptoAPI wversion 2.0. World Wide Web,
http://msdn.microsoft.com/library/psdk/crypto, 2001.

[CTS95] B. Cox, J. D. Tygar, and M. Sirbu. Netbill security and transaction protocol.
In Proceedings of First USENIX Workshop on Electronic Commerce, 1995.

[EFLT99] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen.
SPKI certificate theory, September 1999. Request For Comments (RFC)
2693.

[GT95] S. Glassman et al. The Millicent protocol for inexpensive electronic com-
merce. World Wide Web Journal, Fourth International World Wide Web
Conference Proceedings, pages 603-618, December 1995.

[HFS99] R. Housley, W. Ford, and D. Solo. Internet Public Key Infrastructure, Part
I: X.509 Certificate and CRL Profile, January 1999. Request for Comments
(RFC) 2459.

[ITU95] ITU-T. ASN.1 encoding rules: Specification of Basic Encoding Rules (BER),
Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER),
1995. Recommendation X.690.

[Lai92] X. Lai. On the design and security of block ciphers, volume 2. ETH Series
in Information Processing, 1992.

[Riv92]

[RS97]

[RSA93]

[Sun00]
[WAPOO]

R. L. Rivest. The MD5 Message-Digest Algorithm, April 1992. Request For
Comments (RFC) 1321.

R. L. Rivest and A. Shamir. Payword and MicroMint:two simple micro-
payment schemes. In Mark Lomas, editor, Proceedings of 1996 International
Workshop on Security Protocols, number 1189 in Lecture Notes in Computer
Science, pages 69-87. Springer, 1997.

RSA Laboratories,, PKCS#7: Cryptographic Message Syntaz Standard,
November 1993.

Sun Microsystems. JavaCard 2.1.1 Specifications, May 2000.

WAP Forum. Wireless Application Protocol Identity Module Specification,
February 2000.

