
RSIM x86: A COST-EFFECTIVE PERFORMANCE SIMULATOR

Ricardo Fernández and José M. Garcı́a
Departamento de Ingenierı́a y Tecnologı́a de Computadores

Universidad de Murcia, 30071-Murcia (Spain)
E-mail: {r.fernandez,jmgarcia}@ditec.um.es

KEYWORDS
High-performance simulators, multiprocessor architec-
tures, computer architecture, large scale computing plat-
forms.

ABSTRACT

In this paper we present RSIM x86, a port of the widely
used RSIM performance simulator for cc-NUMA multi-
processors to GNU/Linux and x86 hardware. Then, we
evaluate the simulation throughput obtained by RSIM in
several platforms with respect to the hardware cost of
each platform. We show that this port of RSIM obtains
much better execution times using cheaper and more eas-
ily available hardware than the original RSIM, allowing
a more efficient usage of our research resources.

INTRODUCTION

Doing research or system design in computer architec-
ture involves deciding among many interrelated tradeoffs.
Computer architecture is increasingly driven by quantita-
tive data. Usually, developers can devise analytical mod-
els to bound the design space in the very early develop-
ment stages but the interactions between many design de-
cisions in today increasingly complex systems make im-
possible to use these analytical models to accurately pre-
dict the performance of a finished system. Hence, we
need experimental models in order to guess the perfor-
mance impact of a possible design decision before build-
ing a finished system.

Doing direct performance measurements requires a fin-
ished model, hence it is not possible to do it during the
design phase. Also, building prototypes is too expen-
sive for most research projects. As an alternative, system
architects and researches use performance simulators to
predict the effect of the ideas and techniques that they
need to evaluate.

Performance simulators are complex software systems
which accurately model the behavior of a hardware sys-
tem. Doing a simulation of a hardware model is several
orders of magnitude slower than running the simulated
system. Developers need fast and accurate simulators to

be able to perform as many useful experiments as possi-
ble.

There are two main types of performance simulators for
processors: trace driven and execution driven. Trace
driven simulators use traces obtained from the real exe-
cution of programs to drive a performance model while
execution driven simulators simulate the actual execution
of a program recording detailed performance statistics.
The current trend in performance simulation is to use ex-
ecution driven simulation because it allows much more
precise results specially for current processors which ex-
ploit instruction level parallelism using out of order exe-
cution and speculation.

There are several popular execution driven perfor-
mance simulators and simulation frameworks like SimOS
(Rosenblum et al. 1997), MASE (Larson et al. 2001),
Winsconsin Wind Tunnel II (Mukherjee et al. 2000),
SimpleScalar (Austin et al. 2002), Simics (Magnusson
et al. 2002), Asim (Emer et al. 2002) or RSIM (Hughes
et al. 2002).

RSIM (Hughes et al. 2002; Pai et al. 1997a) is a simulator
primarily targeted to study shared-memory cache coher-
ent (cc-NUMA) multiprocessor architectures built from
processors that aggressively exploit instruction-level par-
allelism (ILP).

RSIM key advantage is that it models a system comprised
by several out-of-order processors which aggressively ex-
ploit instruction level parallelism (ILP). The model in-
cludes an aggressive memory system and a scalable in-
terconnection network. Using detailed ILP models for
the simulated processors provides a realistic approxima-
tion to modern and future multiprocessor systems. RSIM
provides a great flexibility which allows using it to simu-
late a range of systems from monoprocessors to different
cc-NUMA configurations.

The accurate and flexible model provided by RSIM im-
plies a slower execution speed than other less detailed
simulators. Furthermore, although RSIM is supposed
to be portable it was not available on common and
cheap architectures like Linux/x86, requiring instead So-
laris/SPARC, IRIX/MIPS or other big-endian machines.
This has proved to be a serious problem to our research
group due to the limited access to these kind of machines.



In this work we show how we ported RSIM to Linux/x86
and how that allows us to obtain an increased perfor-
mance for our simulations at a fraction of the original
cost.

In the next section we examine some other performance
simulators available, specially those derived from RSIM.
Later, we explain some key characteristics of RSIM
and the approach we have followed to porting RSIM to
Linux/i386. After that section, we evaluate the perfor-
mance of the ported simulator with respect to the cost of
the hardware used to run the simulations. And, finally,
in the last section, we present our conclusions from this
work.

RELATED WORK

Some performance simulators already mentioned,
like Simics or SimpleScalar, already have functional
Linux/x86 ports. However, none of them is suitable for
our purposes due to the lack of detail of the simulation
and the different system architectures that they model.

Simics is a full system functional simulator which at-
tempts to strike a balance between accuracy and per-
formance. The goal of Simics is to allow the simula-
tion of realistic workloads running unmodified operating
systems and applications. Simics supports several simu-
lated architectures including x86, UltraSPARC-II, Pow-
erPC and others. It includes accurate device models to
simulate I/O intensive applications common in commer-
cial workloads. However, the big performance that it
needs and its genericity prevents a detailed enough simu-
lation necessary for many of our tasks.

SimpleScalar is a simulation toolset which provides an
infrastructure for simulation and architectural modeling.
The toolset can model a variety of platforms ranging from
simple unpipelined processors to detailed dynamically
scheduled microarchitectures with multiple-level mem-
ory systems. However, it simulates only uniprocessor
systems.

RSIM has been used by many research groups since its
publication and continues to be used nowadays. How-
ever, up to our knowledge, no one has published a func-
tional x86 port until now. The original RSIM authors re-
ported initial efforts in this direction, but their x86 port
was never published, if it was ever completed.

Schaelicke and Parker ML-RSIM (Schaelicke and Parker
2002) is a derivative of URSIM (Zhang 2001) which
is based on the original RSIM. It models the entire In-
put/Output subsystem and includes a functional operative
system kernel called Lamix which is System V compat-
ible. ML-RSIM has been ported to Linux/x86 architec-
tures.

Unfortunately, ML-RSIM differs significantly from
RSIM and does not model a cc-NUMA architecture,
which makes it unfit for our research.

PROBLEMS PORTING RSIM

RSIM is an interpreter for Solaris/SPARC v9 application
executables. Internally, RSIM is a discrete event-driven
simulator based on the YACSIM (Yet Another C Simu-
lator) library from the Rice Parallel Processing Testbed
(RPPT) (Convington et al. 1991; Pai et al. 1997b).

RSIM interprets application executables rather that uses
traces, enabling more accurate modeling of the effects of
contention and synchronization in multiprocessor simula-
tions as well as speculation in multiprocessor and unipro-
cessor simulations. For speed, it converts the SPARC v9
instructions into an expanded, loosely encoded instruc-
tion set format and internally caches them.

RSIM subsystems include the processor engine, the
memory module, the cache module, the directory mod-
ule and the interconnection network. Each subsystem
is mostly independent from each other and they interact
through a small number of predefined interfaces.

RSIM is written in a modular fashion using C++ and C
for extensibility and portability. Initially, it was devel-
oped using Sun systems (Solaris 2.5) on SPARC. It has
successfully ported to HP-UX 10 running on a Convex
Exemplar and to IRIX running on MIPS. However, port-
ing it to 64-bit or little-endian architectures requires sig-
nificant additional effort.

We have successfully ported RSIM to GNU/Linux run-
ning on x86 architectures. The main problems that we
have had to solve were:

• Build issues due to differences in libraries and head-
ers between Solaris and Linux.

• Byte Ordering Issues.

• System call interface differences.

• Floating point incompatibilities.

RSIM was developed using big-endian machines and
simulates a big-endian architecture. This configuration
is straightforward, but on the other hand our port needs
to simulate a big-endian architecture on top of a little-
endian machine. This implies that at some places we have
to change the order of bytes in words.

We keep the simulated memory always unmodified in the
target endianness, so that unaligned accesses or packed
arrays are easy to handle. Basically, we swap bytes when
performing each simulated memory operation.



The predecoded executable data is generated at bench-
mark build time. Therefore, it is in the same endianness
than the original executable. We swap its bytes after load-
ing it for simulation and cache the byteswapped version.

The endianness differences also subtly affect other parts
of the simulator, like partially overlapped forwarding
of memory operations and some initialization routines.
Some of these cases have been detected only after careful
debugging.

Linux and Solaris system call interfaces are not exactly
the same, althought they are very similar since they are
both based on System V. Hence, some simulator traps
that rely on host system calls require a translation of its
parameters before they can be executed.

The floating point incompatibilities between SPARC and
i386 are caused by the fact that SPARC implements the
IEEE 754 floating point standard while i386 processors
use the Intel x87 80-bit format for representing floating
point numbers in the processor registers, even if they are
stored in IEEE 754 format in memory.

In most cases, the extra precision is beneficial, but not
for our purposes because it causes different results due to
rounding differences. We wish to obtain the exact same
results independently of the underlying architecture to be
able to compare with our previous results, and the round-
ing differences would make this impossible.

To solve this, we instruct the compiler to produce floating
point code using SSE2 instructions and registers present
in newer x86 processors (Intel Corporation 2004). These
instructions use eight 128-bit registers which can hold
two double precision (64-bit) or four single precision (32-
bit) numbers using the IEEE 754 format and perform
short vectorial operations with them or scalar operations.

Another problem related with floating point differences
is the different bit representation of the “Not a Number”
(NaN) value in SPARC and i386 using SSE. Both rep-
resentations are correct according to the IEEE 754 stan-
dard, but a benchmark could behave sightly differently if
it tried to interpret the in memory representation of a NaN
value.

Out port can optionally normalize the NaN representa-
tion ensuring that the SPARC representation is always
used (this normalization process may affect simulation
performance for our port. This option was enabled in the
simulations used to measure times for this work). Most
benchmark results are unaffected by this difference, but
it makes debugging the port harder due to the different
values stored in the simulated registers and memory.

Finally, the functions used to implement the simulated
SPARC instructions to change the rounding modes are
different between Solaris and Linux.

We have ensured that our port obtains exactly the same
simulation results in both Solaris/SPARC and Linux/i386
architectures. This allows us to use all our machines to
perform simulations and, more importantly, meaningfully
compare the results of benchmarks and compare new re-
sults with old results from experiments performed prior
to the port.

During the development of the port, we extended RSIM
to produce extensive trace information detailing the con-
tent of every register and the instructions being executed
at every moment in an easy to parse and compare format.
This tracing support has proved useful beyond its initial
purpose to diagnose problems during the development of
new experiments.

EVALUATION

The purpose of our evaluation is to check if using the
ported version of RSIM on off-the-shelf x86 machines is
a cost-effective solution to perform the great number of
long running simulations needed for our research.

Firstly, we compare the execution speed of RSIM run-
ning in several different architectures. Secondly, since
the execution time of a single benchmark is not the most
valuable metric for our purposes, we define a better in-
dicator of the usefulness of each simulation platform and
version of RSIM.

Usually, simulations are run in batches using a queue
management system like Condor (Thain et al. 2004). We
will measure which version allows us to utilize our com-
puting resources more efficiently in terms of hardware
cost and execution time. We will use a metric based in
the normalized number of simulations per hour per thou-
sand euros.

We have measured the impact that the actual benchmark
being simulated has in the speedup obtained by our port
and have found that it is small, but not inexistent. Hence,
we have chosen a small set of representative benchmarks
from the SPLASH suite to perform our experiments. The
chosen benchmarks are:

fft: Complex unidimensional version of the radix-
√

n

six-step FFT algorithm optimized to minimize in-
terprocessor communication. It is one of the fastest
benchmarks with less memory requirements.

em3d: Models the propagation of electromagnetic
waves through objects in three dimensions.

ocean: Studies large-scale ocean movements based on
eddy and boundary currents.

We have also measured the impact that varying the prob-
lem size of the simulated benchmarks has in the achieved



Figure 1: Normalized Throughput Per Processor for Each
Architecture

speedup and have found that it is very small once a certain
threshold is reached. Other simulator parameters, like the
number of processors, have a very small influence too.

We have chosen medium problem sizes and we use two
processors and default values for the rest of the parame-
ters for our experiments.

We have evaluated the speed of running our port of RSIM
in the following machines:

• A high-end Solaris/SPARC Sunblade-2000 system:
SPARC-1.

• A low-end Solaris/SPARC Sunblade-100 system:
SPARC-2.

• A high-end Linux/Athlon64 SMP system (running
in legacy IA-32 mode): X86-64.

• A high-end Linux/Xeon SMP system: XEON.

• A low-end Linux/Pentium-IV system: P-IV.

The relevant characteristics and price of each machine is
shown in table 1. When testing both SPARC machines,
we have used a version of RSIM targeted for that plat-
form. The prices indicated for the machines are necessar-
ily approximate. These are the approximate prices that
those systems would cost as of January 2005 in Spain.

In figure 1 we show the normalized throughput time of
our set of benchmarks for each architecture. In other
words, we show the throughput speedup of each machine
compared with the slowest one (SPARC-2). For now, we
only use one processor per machine even on those ma-
chines which have two processors, to allow a fair com-
parison between them.

We see that Linux/x86 based machines outperform the
more expensive Solaris/SPARC based ones in raw sim-
ulation speed per processor. The fastest platform is

Figure 2: Average Number of Simulations Per Hour Per
Thousand Euro

the Linux/Athlon64 based machine, which is 81% faster
than the Xeon based machine and 67% faster than the
Pentium-IV based machine (despite the much higher
clock frequency of the Pentium-IV).

Some of our machines are SMP systems with two proces-
sors. In those cases, we can run two instances of RSIM si-
multaneously effectively doubling the throughput. Since
the simulation work is CPU limited with very little IO
and modest memory requirements there is no contention
between the two independent processes.

In figure 2 we show the average number of simulations
per hour per thousand euros achieved for each platform.
When we account for the price of each machine, we see
that the cheapest platform, the Pentium-IV, is the best op-
tion for efficiently take advantage of any given budget.
Also, the easy availability of these kind of machines make
them an even more attractive alternative to the expensive
Solaris/SPARC machines used until now to run simula-
tions based on RSIM. The two Solaris/SPARC based ma-
chines are much less cost-effective than the other plat-
forms despite their higher prices.

CONCLUSIONS

The purpose of our port of RSIM is to allow us to use our
research resources more efficiently. Prior to the port, the
small number of available machines to develop and run
our simulations created long waiting queues and serious
organizational problems.

Using a RSIM version which runs on cheap and read-
ily available x86 hardware allows us to provide each re-
searcher with its own workstation to comfortably develop
and test his experiments and use an inexpensive cluster
of Linux/x86 machines to execute the longest simula-
tions. The x86 version not only executes each benchmark
faster, but more importantly, it is easier to provide more
resources to increase the throughput of the whole team.



Table 1: Characteristics of Evaluated Configurations

SPARC-1 SPARC-2 X86-64 XEON P-IV
Processor UltraSPARC-III UltraSPARC-IIi AMD Opteron Intel Xeon Intel Pentium-IV
No. of processors 1 1 2 2 1
Frequency 1015 MHz 650 MHz 1791 MHz 2 GHz 3 GHz
RAM Memory 2GB 256 MB 1GB 1GB 1GB
L2 Cache 8MB 512 KB 1024 MB 512 KB 1024 KB
Price 5000e 1800e 3000e 2600e 600e

The work required to port RSIM to x86 resulted greater
than initially expected. RSIM code makes too many as-
sumptions about low level details that are not portable
and debugging problems caused by the different endian-
ness proved to be difficult and time-consuming.

The code resulting from the port still has many portability
problems that prevent its use in 64-bit architectures, like
AMD x86-64 in native mode.

We are looking forward into making RSIM code more
portable. In particular, we will make it 64-bit clean so it
can be compiled natively for x86-64 architectures.

AVAILABILITY

The source of our port is publicly available at:
http://www.ditec.um.es/gacop/tools/RSIM-x86

ACKNOWLEDGEMENTS

This work has been supported by the Spanish Ministry
of Ciencia y Tecnologı́a and the European Union (Feder
Funds) under grant TIC2003-08154-C06-03, and by fel-
lowship 01090/FPI/04 from the Comunidad Autónoma
de la Región de Murcia (Fundación Séneca, Agencia Re-
gional de Ciencia y Tecnologı́a).

REFERENCES

Austin, T.; E. Larson and D. Ernst. February 2002.
“Simplescalar: An infrastructure for computer sys-
tem modeling”. IEEE Computer 35(2), 59–67.

Convington, R. G.; S. Dwarkadas; J. R. Jump; J. B.
Sinclair and S. Madala. 1991. “Efficient simula-
tion of parallel computer systems.”. International
Journal in Computer Simulation 1(1).

Emer, J.; P. Ahuja; E. Borch; A. Klauser; C.-K. Luk;
S. Manne; S. S. Mukherjee; H. Patil; S. Wallace;
N. Binkert; R. Espasa and T. Juan. February 2002.
“Asim: A performance model framework”. IEEE
Computer 35(2), 68–76.

Hughes, C.; V. Pai; P. Ranganathan and S. Adve.
February 2002. “RSIM: Simulating shared-
memory multiprocessors with ILP processors”.
IEEE Computer 35(2), 40–49.

Intel Corporation. 2004. IA-32 Intel architecture
software developer’s manual. Intel Corporation.
Available at http://developer.intel.com/.

Larson, E.; S. Chatterjee and T. Austin. 2001. “MASE:
A novel infrastructure for detailed microarchitec-
tural modeling”. In Proceedings of the IEEE Inter-
national Symposium on Performance Analysis of
Systems and Software, pp. 1–9.

Magnusson, P. S.; M. Christensson; J. Eskilson;
D. Forsgren; G. Hållberg; J. Högberg; F. Lars-
son; A. Moestedt and B. Werner. February 2002.
“Simics: A full system simulation platform”. IEEE
Computer 35(2), 50–58.

Mukherjee, S. S.; S. K. Reinhardt; B. Falsafi;
M. Litzkow; M. D. Hill; D. A. Wood; S. Huss-
Lederman and J. R. Larus. October 2000. “Wis-
consin wind tunnel II: A fast, portable parallel
architecture simulator”. IEEE Concurrency 8(4),
12–20.

Pai, V. S.; P. Ranganathan and S. V. Adve.
1997a. “RSIM: An Execution-Driven Simulator
for ILP-Based Shared-Memory Multiprocessors
and Uniprocessors”. In Proceedings of the Third
Workshop on Computer Architecture Education.
Also appears in IEEE TCCA Newsletter, October
1997.

Pai, V. S.; P. Ranganathan and S. V. Adve. 1997b.
“RSIM reference manual. version 1.0”. Technical
Report 9705, Electrical and Computer Engineer-
ing Department, Rice University.

Rosenblum, M.; E. Bugnion; S. Devine and S. Herrod.
January 1997. “Using the SimOS machine simu-
lator to study complex computer systems”. ACM
Transactions on Modeling and Computer Simula-
tion 7(1), 78–103.

Schaelicke, L. and M. Parker. 2002. “ML-RSIM ref-
erence manual”. Technical Report 02-10, Depart-
ment of Computer Science and Engineering, Uni-
versity of Notre Dame.



Thain, D.; T. Tannenbaum and M. Livny. 2004. “Dis-
tributed computing in practice: The condor expe-
rience”. Concurrency and Computation: Practice
and Experience 17, 323–356.

Zhang, L.. 2001. “URSIM reference manual”. Techni-
cal Report UUCS-00-015, University of Utah.

AUTHOR BIOGRAPHIES

RICARDO FERNÁNDEZ PASCUAL was
born in Madrid, Spain and went to the Uni-
versity of Murcia (Spain), where he studied
Ingenierı́a Informática and obtained his mas-
ter degree in 2004. He is currently a re-
searcher in the Computer Engineering De-

partment at the Universidad de Murcia. His main re-
search interests are cc-NUMA architectures, fault toler-
ance and performance simulation. His e-mail address is
r.fernandez@ditec.um.es.

JOSÉ M. GARCÍA received the MS and
the PhD degrees in electrical engineering
from the Technical University of Valencia
(Spain), in 1987 and 1991, respectively. Cur-
rently, Dr. Garcı́a is a professor in the

Computer Engineering Department at the Universidad
de Murcia (Spain), and also the head of the research
group on parallel computing architecture. He special-
izes in computer architecture, parallel processing, and
interconnection networks. Dr. Garcı́a served as vice-
dean of the School of Computer Science from 1995 to
1997, and also as director of the Computer Engineer-
ing Department from 1998 to 2004. His current re-
search interests lie in high-performance coherence pro-
tocols for shared-memory multiprocessor systems, and
high-speed interconnection networks. Dr. Garcı́a is
member of several international associations such as the
IEEE and ACM, and also member of some European as-
sociations (Euromicro and ATI). His e-mail address is
jmgarcia@ditec.um.es.


