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Abstract

Technology trends are making possible to put billions of transistors in a single
chip, which has allowed computer architects to build single-chip multiprocessors
(CMPs). Unfortunately, these trends of miniaturization also mean that the relia-
bility of individual transistors decreases. This way, transient faults, which were
once a serious problem only for memories and in extreme environments like
aerospatial applications, are expected to be a problem for future many-core CMPs.
One of the components prone to experience transient faults in CMP systems will
be the on-chip interconnection network.

In this thesis, we propose a new way to deal with transient faults in the
interconnection network that is different from the classic approach of building
a fault-tolerant interconnection network. In particular, we propose to provide
fault tolerance measures at the level of the cache coherence protocol so that it
guarantees the correct execution of parallel programs even when the underlying
interconnection network does not necessarily deliver all messages correctly. By
doing this, we can take advantage of the different meaning of each message
to implement fault tolerance with lower overhead than at the level of the in-
terconnection network, which has to treat all messages alike with respect to
reliability.

To demonstrate the viability of our approach, we design a number of fault-
tolerant cache coherence protocols. First, we design FtTokenCMP, based on the
token coherence framework. FtTokenCMP adds timeouts for fault detection and
simple recovery mechanisms for transient faults to a previously proposed token-
based cache coherence protocol. We also extend the general token counting rules
to ensure reliable transference of owned data, to simplify the application of these
fault tolerance measures to other cache coherence protocols based on the token
framework. Secondly, we design FtDirCMP: a directory-based fault-tolerant
cache coherence protocol which adds measures inspired by the previous work
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Abstract

in FtTokenCMP. Finally, the same ideas are used to design FtHammerCMP: a
broadcast-based and snoopy-like fault-tolerant cache coherence protocol based
on the cache coherence protocol used by AMD in their Opteron processors.

We evaluate the proposed protocols using full-system simulation of several
parallel applications. The results of this evaluation show that, in absence of faults,
our fault tolerance measures do not increase significantly the execution time of
the applications and that their major cost is an increase in network traffic due
to acknowledgment messages that ensure the reliable transference of ownership
between coherence nodes, which are sent out of the critical path of cache misses.
The results also show that a system using our protocols degrades gracefully when
transient faults in the interconnection network actually happen, supporting faults
rates which are much higher than expected in the real world with only a small
increase in the execution time.
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Resumen

Introducción

La mejora en la tecnología de semiconductores está haciendo posible que cada
vez se puedan incluir más transistores en un solo chip. Los arquitectos de
computadores deben decidir de qué forma usar estos transistores para obtener el
mejor rendimiento posible. Tradicionalmente, se viene considerando que la faceta
más importante del rendimiento es la velocidad de ejecución de las aplicaciones
que finalmente se ejecutan en esos chips.

Sin embargo, el rendimiento no puede ser entendido solo desde el punto de
vista de la velocidad de ejecución. Otros factores como la dificultad para progra-
mar el procesador resultante o su consumo energético también son importantes.
El peso relativo de cada variable depende del uso final del chip.

Uno de los aspectos del rendimiento de un sistema es la fiabilidad del mismo.
La misma tendencia de miniaturización de los transistores que permite dispo-
ner de mayor número de ellos, también hace que la fiabilidad de los mismos
disminuya. Debido a esto, es necesario aplicar técnicas de tolerancia a fallos a
varios niveles del sistema. Hasta hace poco, estas técnicas eran importantes solo
en determinadas aplicaciones críticas. Sin embargo, actualmente son necesarias
para todo tipo de sistemas para mantener niveles de fiabilidad aceptables.

Los fallos cuya frecuencia está aumentando más rápidamente debido a las
tendencias tecnológicas son los fallos transitorios. Cuando ocurre un fallo transi-
torio, un componente produce una salida incorrecta pero continua funcionando
correctamente después del fallo [87, 89].

Uno de los componentes de un CMP (Chip Multiprocessor [11, 50]) que se
verá afectado por los fallos transitorios mencionados anteriormente es la red
de interconexión. Ésta se usa para permitir el intercambio de los mensajes del
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protocolo de coherencia de caché [27] entre procesadores, cachés y memorias; y
su rendimiento es clave para el rendimiento general del sistema.

La red de interconexión es especialmente vulnerable a los fallos transitorios
debido a que ocupa una porción importante de la superficie del chip, lo que
aumenta la probabilidad de impacto de partículas. Además, está construida
usando hilos más largos en promedio que el resto de componentes, lo que la hace
más propensa a acoplamiento (crosstalk) e incrementa aún más las probabilidades
de fallos transitorios [34]. Los fallos transitorios en la red de interconexión
provocan la corrupción de los mensajes del protocolo de coherencia de caché, lo
que en última instancia causa interbloqueos o corrupción de datos no detectada.

Una forma de solucionar los problemas causados por los fallos transitorios en
la red de interconexión es construir una red de interconexión tolerante a fallos.
Hay múltiples propuestas de redes de interconexión tolerantes a fallos que se
mencionan en la sección de trabajo relacionado de esta tesis.

A diferencia de otros trabajos, en esta tesis se propone tratar con los fallos
transitorios en la red de interconexión a nivel del protocolo de coherencia de
caché, en lugar de a nivel de la propia red. Este enfoque tiene las siguientes
ventajas:

• El protocolo de coherencia tiene más información sobre el significado de
los mensajes y sobre los efectos de perder cada mensaje. De esta forma, se
pueden utilizar opciones más inteligentes para obtener el mismo nivel o
mayor de tolerancia a fallos con una sobrecarga menor. Por su parte, las
medidas de tolerancia a fallos a nivel de la red de interconexión tienen que
tratar a todos los mensajes por igual.

• La implementación de medidas de tolerancia a fallos a nivel de la red de
interconexión limita la capacidad de maniobra del diseñador de la red de
interconexión para optimizar agresivamente otros aspectos del rendimiento
de la misma.

• Como se mostrará más adelante, un protocolo de coherencia tolerante a
fallos se comporta la mayoría del tiempo casi igual que un protocolo de
coherencia convencional. En ausencia de fallos, solo se observan diferencias
cuando un mensaje crítico necesita ser transmitido.

Por contra, implementar las medidas de tolerancia a fallos a nivel del protocolo
de coherencia de caché también tiene sus desventajas. La mayor desventaja es
tener que modificar el propio protocolo de coherencia, cuyo rendimiento también
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es clave para el rendimiento general del sistema y cuyo diseño suele considerarse
complejo. En esta tesis mostramos que el aumento de complejidad es asumible y
la sobrecarga en el rendimiento es pequeña.

En nuestro modelo de fallos, suponemos que, desde el punto de vista del pro-
tocolo de coherencia, la red de interconexión entrega correctamente un mensaje o
bien no lo entrega en absoluto. Esto es fácil de conseguir añadiendo códigos de
detección de errores [58, 89] que sean comprobados a la llegada del mensaje, y
descartando los mensajes que se detecten corruptos. Los mensajes inesperados se
supone que han sido mal enrutados y se descartan también.

Aunque en esta tesis suponemos que los mensajes son descartados debido
a errores transitorios, las mismas técnicas se podrían utilizar si los mensajes
se descartasen por cualquier otra razón como, por ejemplo, falta de espacio
en buffers de la red de interconexión. Esta propiedad puede ser útil para los
diseñadores de red.

En esta tesis se hacen las siguientes aportaciones:

• Se identifican los problemas causados por una red de interconexión no
fiable en CMPs con coherencia de caché.

• Se proponen modificaciones a los protocolos de coherencia de caché que
es más probable que se usen en tiled CMPs [127, 128, 14] para soportar el
descarte de algunos mensajes por la red de interconexión sin añadir excesiva
sobrecarga.

• Un protocolo de coherencia de caché que extiende un protocolo basado
en tokens con medidas de tolerancia a fallos, y modificaciones a las reglas
genéricas de conteo de tokens para asegurar la transferencia fiables de datos
y propiedad de los datos.

• Un protocolo de coherencia de caché que extiende un protocolo de coheren-
cia basado en directorio con medidas de tolerancia a fallos.

• Un protocolo de coherencia de caché que extiendexs un protocolo de cohe-
rencia tipo snoopy basado en broadcast con medidas de tolerancia a fallos.

• Dado que nuestros protocolos de coherencia imponen menos requerimien-
tos a la red de interconexión que otros, esperamos que sean útiles para
simplificar el diseño de la red y permitir la aplicación de técnicas agresivas
para mejorar el rendimiento.
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• Se evalúan los protocolos tolerantes a fallos usando simulación del siste-
ma completo para comprobar su efectividad y para medir la sobrecarga
introducida en ausencia de fallos y la degradación del rendimiento bajo
distintas tasas de fallo.

Premisas generales y requerimientos para los
protocolos de coherencia tolerantes a fallos

Para desarrollar y evaluar las propuestas de esta tesis, partimos de una arquitectu-
ra basada en tiled CMPs [127,128,14]. La gran cantidad de transistores disponibles
en un solo chip ha obligado a replantearse cuál es la mejor forma de organizarlos.
Mientras que hasta hace pocos años se trataba de obtener el mayor rendimiento
posible aumentando la frecuencia del circuito y explotando el paralelismo a
nivel de instrucción (ILP), los límites físicos y la gran complejidad necesaria para
obtener pequeñas mejoras hacen estas vías poco atractivas actualmente. Hasta
la fecha, la forma más práctica que se ha propuesto para hacer uso de estos
transistores es construir multiprocesadores en un solo chip (CMPs) que exploten
el paralelismo a nivel de hilo (TLP) además, o incluso en lugar, de a nivel de
instrucción. Para reducir aún más la complejidad de los CMPs, los tiled CMPs se
construyen replicando tiles (baldosas) idénticos entre sí y conectados mediante
una red de interconexión punto a punto. Cada tile está formado por un núcleo de
procesador, una caché privada, una parte de una caché compartida y un interfaz
de red. Los tiled CMPs son una arquitectura muy probable para futuros diseños
de chips con gran número de procesadores.

Para la evaluación, se asume una red de interconexión punto a punto con
topología de malla y enrutamiento determinista, aunque los protocolos en sí
no requieren ninguna característica concreta de la red. En particular, no se hace
ninguna suposición sobre el orden de entrega de los mensajes.

Aunque en esta tesis se asume la arquitectura anteriormente descrita co-
mo base, las propuestas que se presentan son también aplicables a cualquier
tipo de CMP con red de interconexión punto a punto e incluso para sistemas
multiprocesadores en varios chips.

Nuestras propuestas presuponen que la memoria y las cachés están protegidas
mediante ECC (Error Correction Codes) u otros medios. Es decir, los datos solo se
tienen que proteger mientras viajan por la red.

Nuestro objetivo es diseñar protocolos de coherencia de caché que garan-
ticen la correcta ejecución de aplicaciones paralelas incluso sobre una red de
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interconexión no fiable, sin tener que realizar nunca rollback debido a errores
en dicha red. Así mismo, evitaremos la introducción generalizada de mensajes
de reconocimiento punto a punto, para evitar incrementar innecesariamente la
latencia de las transacciones de coherencia, el tráfico de la red, o el tamaño de los
buffers.

Una red de interconexión no fiable causa una serie de problemas en un tiled
CMP: corrupción silenciosa de datos, violación no detectada de la coherencia
de memoria, interbloqueos (deadlock), errores detectables pero no recuperables
(interbloqueos, corrupción o pérdida de datos) o degradación del rendimiento.

Para evitar los problemas mencionados anteriormente, un protocolo de cohe-
rencia de caché tolerante a fallos debe ofrecer las siguientes características:

Evitar corrupción de datos: El sistema debe ser capaz de detectar mensajes que
han sido corrompidos y descartarlos. Para ello, se pueden utilizar códigos
de detección de errores (EDC). Algunos sistemas ya usan EDC en los
mensajes de la red de interconexión para evitar la corrupción no detectada
de datos aunque no dispongan de otras medidas de tolerancia a fallos en el
protocolo de coherencia.

Evitar pérdida de datos: Debido a que los mensajes pueden ser descartados, es
necesario que se evite enviar datos a través de la red de interconexión
sin conservar al menos una copia de los mismos para que puedan ser
recuperados en caso necesario.

Evitar incoherencias: Un protocolo de coherencia tolerante a fallos necesita ase-
gurar que la coherencia de caché no se puede llegar a violar debido a que
un mensaje no llega a su destino. En particular, los mensajes de invalidación
deben requerir el envío de mensajes de reconocimiento, ya sea al peticiona-
rio o al directorio. Estos mensajes de reconocimiento ya son necesarios en la
mayoría de los protocolos de coherencia para evitar condiciones de carrera.

Detectar y recuperar interbloqueos: Cuando un mensaje de coherencia es des-
cartado, esto provoca en la mayoría de las ocasiones un interbloqueo. Es
por tanto necesario incluir mecanismos de detección y resolución de inter-
bloqueos.

Para poder ser útil, en ausencia de fallos, un protocolo de coherencia tolerante
a fallos debe, además de incluir las características arriba mencionadas, ofrecer un
rendimiento muy similar al de un protocolo de coherencia no tolerante a fallos
que usara una red de interconexión fiable.
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Diseño de un protocolo de coherencia de caché
basado en tokens tolerante a fallos

Nuestro primer protocolo de coherencia tolerante a fallos, FtTokenCMP, se basa
en la metodología de conteo de tokens [68,67]. En concreto, se basa en el protocolo
TokenCMP [70]. Decidimos usar esta metodología debido a la mayor simplicidad
proporcionada por la separación entre el substrato de corrección y la política de
rendimiento, y el uso de peticiones transitorias y timeouts por parte de TokenCMP,
ya que esto minimiza las modificaciones necesarias para la detección de fallos.
Las medidas de tolerancia a fallos propuestas para FtTokenCMP son también
aplicables (con ligeras modificaciones) a cualquier otro protocolo de coherencia
basado en tokens.

FtTokenCMP utiliza unas reglas de transferencia de tokens modificadas que
evitan la pérdida de datos en caso de pérdida de mensajes. Las modificaciones
incluyen la adición de un backup token y reglas para su transferencia que aseguran
que siempre hay una copia válida de los datos y un máximo de una copia de
backup. Con estas reglas, se garantiza que siempre existe al menos una copia
de los datos de una línea de memoria además de la copia que viaja por la red
de interconexión. Para ello, en algunos casos se utiliza un par de mensajes de
reconocimiento: el reconocimiento de propiedad y el reconocimiento de eliminación de
backup. Estos mensajes se envían fuera del camino crítico de los fallos de caché.

Se muestra que en TokenCMP todas las pérdidas de mensajes son, o bien
inocuas, o bien causan un interbloqueo (además de una posible pérdida de datos).
Por tanto, FtTokenCMP puede utilizar un conjunto de timeouts para detectar
cualquier fallo. El conjunto de timeouts se resume en la tabla 0.1.

FtTokenCMP posee dos mecanismos para recuperarse tras un fallo transitorio
detectado por alguno de los cuatro timeouts. Estos mecanismos entrarán en acción
de forma muy infrecuente, por lo que su eficiencia no es un objetivo prioritario.

El más sencillo de los mecanismos consiste en el envío de un mensaje de
comprobación (ping) cuando se ha detectado la (posible) pérdida de un mensaje
de desactivación de petición persistente. La recepción de este mensaje provoca el
reenvío del mensaje de desactivación si es necesario.

El segundo mecanismo, y el más frecuentemente utilizado, es la recreación de
tokens. Este mecanismo es utilizado cuando se disparan la mayoría de los timeouts
y es orquestado de forma centralizada por el controlador de memoria. Tras la
ejecución de una recreación de tokens para una línea de memoria, se garantiza
que existe una sola copia de los datos y el número de tokens necesario para el
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Tabla 0.1: Resumen de timeouts usados en FtTokenCMP

Timeout ¿Cuándo se ac-
tiva?

¿Dónde se acti-
va?

¿Cuándo se
desactiva?

¿Qué ocurre
cuando se
dispara?

Token perdido Se activa una pe-
tición persisten-
te.

La caché que la
activa.

Se satisface o
desactiva la peti-
ción persistente.

Se solicita una
recreación de to-
kens.

Datos perdidos Se entra en
estado de
backup (se
envía el token
propietario).

La caché que tie-
ne el backup.

Se abandona el
estado de ba-
ckup (llega el
reconocimiento de
propiedad).

Se solicita una
recreación de to-
kens.

Reconocimiento
de eliminación de
backup perdido

Se entra en es-
tado de propie-
dad bloqueada.

La caché que po-
see el token pro-
pietario.

Se abandona el
estado bloquea-
do (llega el reco-
nocimiento de eli-
minación de ba-
ckup).

Se solicita una
recreación de to-
kens.

Desactivación
persistente
perdida

Se activa una pe-
tición persisten-
te de una caché
distinta.

Todas las cachés
(en la tabla de
peticiones per-
sistentes).

Se desactiva la
petición persis-
tente.

Se envía un ping
de petición persis-
tente.

correcto funcionamiento del protocolo. Los datos se recuperan usando una copia
de backup si es necesario.

Dado que el tiempo necesario para completar una transacción de coherencia no
puede ser acotado de forma estricta, los timeouts pueden dispararse en ocasiones
cuando no ha ocurrido ningún fallo si un mensaje tarda mucho más de lo normal
en alcanzar su destino. Es decir, nuestro sistema de detección de fallos puede
producir falsos positivos. Por tanto, nuestro método de recuperación en caso
de error debe de tener esto en cuenta. Para ello, se introducen los números de
serie de tokens. Cada línea de memoria tiene asociado un número de serie de tokens,
que se incluye en cada mensaje que transfiera tokens de una caché a otra. El
mecanismo de recreación de tokens incrementa el número de serie asociado con
la línea de memoria afectada y los mensajes que se reciben con un número de
serie incorrecto se descartan. Estos números de serie valen inicialmente cero, y
solo es necesario almacenarlos cuando su valor es distinto del inicial. Por tanto,
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una pequeña tabla asociativa en cada caché es suficiente para almacenar aquellos
números de serie distintos de cero.

El hardware extra necesario para implementar FtTokenCMP con respecto
a TokenCMP es pequeño. Es necesario añadir un solo contador por cada tabla
de peticiones persistentes, ya que se reutiliza para la mayoría de los timeouts el
contador ya requerido por el timeout de las peticiones transitorias. El mayor coste
es debido a la tabla de números de serie de tokens que es necesario añadir en cada
caché (en nuestra pruebas utilizamos 2 bits para representar cada número de
serie, y 16 entradas en cada tabla). También es conveniente añadir una pequeña
caché de backups (o un writeback buffer) en cada caché L1 para evitar incrementar el
tiempo de ejecución.

Diseño de un protocolo de coherencia de caché
basado en directorio tolerante a fallos
Mientras que la coherencia basada en tokens no ha sido utilizada todavía en
ningún procesador real, los protocolos de coherencia de caché basados en direc-
torios son una de las opciones más populares en las nuevas propuestas [72]. Por
tanto, hemos estudiado cómo añadir técnicas de tolerancia a fallos similares a las
de FtTokenCMP a un protocolo basado en directorios. El resultado de ello es
FtDirCMP, que añade tolerancia a fallos a un protocolo de coherencia de caché
basado en directorios (DirCMP).

El diseño de FtDirCMP está muy influenciado por el de FtTokenCMP. Ambos
asumen el mismo modelo de fallos, aseguran la transferencia fiable de datos
usando mensajes de reconocimiento solo para unos pocos mensajes, utilizan
timeouts para detectar los fallos y utilizan mensajes de ping para recuperarse de
algunos casos de interbloqueo. El conjunto de timeouts usado por FtDirCMP se
muestra en la tabla 0.2.

Sin embargo, algunos mecanismos de tolerancia a fallos son significativamente
diferentes entre FtDirCMP y FtTokenCMP. Las principales diferencias son las
siguientes:

• FtDirCMP no tiene un mecanismo de recuperación centralizado como la
recreación de tokens. Cuando se detecta un potencial fallo, FtDirCMP usa
mensajes de ping o reenvía la petición afectada.

• FtDirCMP usa números de serie de petición para evitar crear incoherencias
debido a las respuestas viejas a peticiones reenviadas en caso de falsos
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Tabla 0.2: Resumen de timeouts usados en FtDirCMP

Timeout ¿Cuándo se ac-
tiva?

¿Dónde se acti-
va?

¿Cuándo se
desactiva?

¿Qué ocurre
cuando se
dispara?

Petición perdida Se envía una pe-
tición.

En la caché L1
peticionaria.

Se satisface la
petición.

La petición se
reenvía con un
nuevo número
de serie.

Unblock perdido Se contesta una
petición (inclu-
so write-backs).

La caché L2 o
controlador de
memoria que
contesta.

El unblock (o
write-back) se re-
cibe.

Se envía
un Unblock-
Ping/WbPing
a la caché
que debería
haber enviado
el Unblock o
write-back.

Reconocimiento
de eliminación de
backup perdido

Se entra en es-
tado de propie-
dad bloqueada.

La caché que po-
see el token pro-
pietario.

Se abandona el
estado bloquea-
do (llega el reco-
nocimiento de eli-
minación de ba-
ckup).

Se solicita una
recreación de to-
kens.

Datos perdidos Se envía datos
en propiedad a
través de la red.

El nodo que en-
vía los datos.

El mensaje
AckO se recibe.

Se envía un Ow-
nershipPing.

positivos. Su función es análoga a los números de serie de tokens, pero los
números de serie de petición son más escalables y fáciles de implementar, ya
que están asociados a cada petición y solo necesitan ser conocidos por los
nodos que intervienen en la petición y hasta que la petición se resuelve,
mientras que los números de serie de tokens están asociados a cada dirección
de memoria, necesitan ser conocidos por todos los nodos del sistema, y
tienen duración indefinida.

Para evitar la pérdida de datos en caso de pérdida de mensajes, FtDirCMP
usa un mecanismo que es igual en esencia al utilizado por FtTokenCMP. Para
implementarlo, FtDirCMP añade nuevos estados al conjunto básico de estados
MOESI [27]: estado de backup (B) y estados con propiedad bloqueada (Mb, Ob
y Eb). Una línea se conserva en la caché en estado de backup cuando la caché
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cede la propiedad de la línea a otra y se mantiene en dicho estado hasta que se
comprueba, mediante la recepción de un reconocimiento de propiedad, que los datos
se han transferido correctamente. Los estados de propiedad bloqueada sirven
para asegurar que nunca hay más de una copia de backup, lo cual complicaría
significativamente la recuperación en caso de fallo. Una línea de memoria se
mantiene en uno de dichos estados desde que se reciben los datos en propiedad
hasta que se recibe un reconocimiento de eliminación de backup.

FtDirCMP asume que la red de interconexión no es ordenada punto a pun-
to, como la mayoría de los protocolos de directorio. Sin embargo, es posible
simplificar las medidas de tolerancia a fallos si se asume que, como es muy
habitual, la red de interconexión mantiene el orden de mensajes punto a punto
(aunque no mantenga el orden total de los mensajes). En ese caso, no es necesario
implementar el timeout de datos perdidos.

FtDirCMP necesita algo más de hardware que DirCMP. Es necesario añadir
contadores para implementar los timeouts de detección de fallos, añadir campos
en los registros de estado de fallo (MSHR) para almacenar los números de serie de
petición, y se necesita también que el nodo que contesta almacene la identidad
del receptor de los mensajes de datos en propiedad hasta que se reciba un
reconocimiento de propiedad. Aunque el protocolo utiliza hasta cuatro timeouts en
cada transacción de coherencia, nunca hay más de uno activo en el mismo nodo y
para la misma petición. Finalmente, el número de redes virtuales puede que tenga
que ser incrementado para evitar interbloqueos, dependiendo de la topología de
red particular y de la estrategia que use para evitar interbloqueos.

Diseño de un protocolo de coherencia de caché
basado en broadcast tolerante a fallos

El último de los protocolos de coherencia tolerantes a fallos presentado en esta
tesis es FtHammerCMP. Este protocolo extiende con medidas de tolerancia a
fallos a HammerCMP, un protocolo de coherencia basado en el utilizado por
AMD en sus procesadores Opteron [5, 54, 93] y que tiene características de los
protocolos basados en fisgoneo (snoopy) aunque funciona sobre una red punto
a punto, como los protocolos basados en directorios. El protocolo original de
AMD estaba enfocado a sistemas multiprocesadores de pequeño o medio tamaño.
HammerCMP es una adaptación de dicho protocolo a entornos CMP y con
pequeñas optimizaciones.

Estrictamente, HammerCMP se podría clasificar como un protocolo basado
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en directorios, pero sin información de directorio (Dir0B) [2]. Por tanto, las modi-
ficaciones para soportar tolerancia a fallos que introduce FtHammerCMP están
basadas en las de FtDirCMP. FtHammerCMP usa los mismos mecanismos para
recuperarse cuando se detecta un fallo transitorio, para asegurar la transferencia
fiable de datos y para detectar los fallos.

FtHammerCMP usa solo tres de los timeouts empleados por FtDirCMP (ver
tabla 0.2): el timeout de petición perdida, el timeout de unblock perdido y el timeout de
reconocimiento de eliminación de backup perdido. No se requiere el timeout de datos
perdidos, ya que se asume una red ordenada punto a punto.

Debido a que el protocolo HammerCMP es más sencillo que el DirCMP,
la sobrecarga hardware introducida por las medidas de tolerancia a fallos es
relativamente mayor en el caso de FtHammerCMP que en el de FtDirCMP.

Metodología de evaluación

Se ha realizado una evaluación experimental de los protocolos de coherencia
presentados en esta tesis. Los objetivos de esta evaluación han sido:

• Comprobar la efectividad de las medidas de tolerancia a fallos. Es decir,
que las aplicaciones paralelas se ejecutan correctamente en presencia de
fallos transitorios en la red de interconexión.

• Medir la sobrecarga introducida por las medidas de tolerancia a fallos
cuando no ocurren fallos. Hemos medido tanto el incremento en el tiempo
de ejecución como el incremento en el tráfico de red. Estimamos que el
incremento en consumo de energía de nuestros protocolos estará dominado
por el incremento en el tráfico de red.

• Medir la degradación del rendimiento de los programas ejecutándose en
un sistema que use nuestros protocolos de coherencia bajo distintas tasas
de fallos transitorios en la red de interconexión.

• Determinar valores adecuados para los parámetros de configuración intro-
ducidos por nuestros protocolos.

Nuestra metodología se basa en simulación de sistema completo. Hemos
implementado todos los protocolos de coherencia mencionados en una versión
modificada del simulador Multifacet GEMS [69] de la Universidad de Winsconsin.
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GEMS es un entorno de simulación basado en Virtutech Simics [65], al que
complementa con modelos detallados del sistema de memoria y del procesador.

El simulador descrito anteriormente lo utilizamos para simular la ejecución de
un conjunto de aplicaciones paralelas. Debido al no determinismo de la ejecución
paralela, realizamos varias ejecuciones con distintas semillas aleatorias para cada
experimento y calculamos el intervalo con 95 % de confianza de los resultados.
Solo medimos la parte paralela de las aplicaciones.

Nuestro modelo de fallos supone que los fallos transitorios corrompen los
mensajes y estos son descartados cuando se reciben después de comprobar su
código de detección de errores, por lo que desde el punto de vista del protocolo,
los mensajes se entregan correctamente o no se entregan. En estas condiciones,
cuando realizamos inyección de fallos, los mensajes son seleccionados de forma
aleatoria y descartados de manera que se obtenga una tasa media de fallos fija,
medida en mensajes descartados por millón de mensajes que viajan por la red de
interconexión. También se evalúa el efecto de la aparición de ráfagas de fallos
transitorios que afectan a varios mensajes consecutivos.

Además, se ha realizado una validación funcional de los protocolos de cohe-
rencia usando tests aleatorios, para buscar casos muy infrecuentes que no se
presentan en la simulación de las aplicaciones. Estas pruebas incluyen inyección
de fallos.

La configuración de los sistemas simulados se puede ver en la tabla 0.3. Para la
evaluación se han usado las aplicaciones y tamaños de problema que se muestran
en la tabla 0.4.

Resultados de evaluación

Hemos medido el efecto que las medidas de tolerancia a fallos tienen en el tiempo
de ejecución de las aplicaciones en ausencia de fallos transitorios en la red de
interconexión. En la figura 0.1 se muestra el tiempo de ejecución normalizado
de los seis protocolos mencionados en esta tesis. Como se puede observar, el
tiempo de ejecución de las aplicaciones con los protocolos tolerantes a fallos es
prácticamente el mismo que el de sus correspondientes protocolos no tolerantes
a fallos. Esto es así porque, mientras no ocurran fallos, la única diferencia obser-
vable entre el comportamiento de los protocolos tolerantes a fallos con respecto a
los no tolerantes a fallos es el envío de los mensajes de reconocimiento usados
para garantizar la transferencia segura de datos en propiedad, y estos mensajes
se envían fuera del camino crítico de los fallos de cache.
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Tabla 0.3: Características de las arquitecturas simuladas

Sistema tiled CMP de 16 nodos

Parámetros de procesador

Frecuencia del procesador 2 GHz

Parámetros de caché

Tamaño de línea de caché 64 bytes
Caché L1:

Tamaño 32 KB
Asociatividad 4 vías
Tiempo de acierto 3 ciclos

Caché L2 compartida:
Tamaño 1024 KB
Asociatividad 4 vías
Tiempo de acierto (mis-

mo tile)
15 ciclos

Parámetros de memoria

Tiempo de acceso a me-
moria

160 ciclos

Parámetros de red

Topología Malla 2D
Tamaño de mensaje sin
datos

8 bytes

Tamaño de mensaje con
datos

72 bytes

Ancho de banda por enla-
ce

64 GB/s

(a) Parámetros comunes a todas las confi-
guraciones.

Parámetros específicos para FtTokenCMP

Timeout de token perdido 2000 ciclos
Timeout de datos perdidos 2000 ciclos
Timeout de reconocimiento de eli-
minación de backup perdido

2000 ciclos

Timeout de desactivación persis-
tente perdida

2000 ciclos

Tamaño de los números de serie
de token

2 bits

Tamaño de la tabla de números
de serie de token

16 entradas

Tamaño de buffer de backups 2 entradas

Parámetros específicos para FtDirCMP

Timeout de petición perdida 1500 ciclos
Timeout de unblock perdido 1500 ciclos
Timeout de reconocimiento de eli-
minación de backup perdido

1500 ciclos

Timeout de datos perdidos 1500 ciclos
Bits de números de serie de peti-
ción por mensaje

8 bits

Parámetros específicos para FtHammerCMP

Timeout de petición perdida 1500 ciclos
Timeout de unblock perdido 1500 ciclos
Timeout de reconocimiento de eli-
minación de backup perdido

1500 ciclos

Bits de números de serie de peti-
ción por mensaje

8 bits

(b) Parámetros específicos a cada protocolo de
coherencia tolerante a fallos
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Tabla 0.4: Benchmarks y tamaños de problema usados en las simulaciones

Benchmark Tamaño de problema

Benchmarks de servidores

Apache 10 000 transacciones HTTP
SpecJbb 8 000 transacciones

Benchmarks de SPLASH-2

Barnes 8 192 cuerpos, 4 pasos
FFT 64K números complejos de doble precisión
LU Matriz de 512× 512
Ocean Océano de 258× 258
Radix 1M de claves, raíz 1024
Raytrace 10MB, escena teapot.env
WaterNSQ 512 moléculas, 4 pasos

Otros benchmarks científicos

Em3d 38 400 nodos, grado 2, 15 % remotos y 25 pasos
Unstructured Mesh.2K, 5 pasos

Benchmarks de ALPBench

FaceRec Entrada de entrenamiento de ALPBench
MPGdec 525_tens_040.mv2
MPGenc Salida de MPGdec
SpeechRec Entrada por defecto de ALPBench
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Figura 0.1: Incremento en el tiempo de ejecución debida a las medidas de toleran-
cia a fallos en ausencia de fallos (resultados normalizados respecto a DirCMP)
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Figura 0.2: Tráfico en la red para cada tipo de mensaje medido en bytes normali-
zados respecto al protocolo no tolerante a fallos más similar
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Sin embargo, este intercambio de reconocimientos provoca un incremento
en el tráfico que circula por la red de interconexión. Este incremento, que es el
mayor coste de nuestras medidas de tolerancia a fallos, provoca un incremento en
el consumo de energía y podría tener efectos adversos en el tiempo de ejecución
si la red de interconexión no tuviera suficiente ancho de banda disponible. En
la figura 0.2 se muestra esta sobrecarga, medida en bytes, clasificada por tipo
de mensaje y normalizada respecto a los protocolos no tolerantes a fallos. La
sobrecarga media varía para cada protocolo, desde el 17 % de FtHammerCMP al
25 % de FtDirCMP. Cuanto más eficiente fuera el protocolo original en cuanto a
tráfico de red, mayor es la sobrecarga. Esto es debido a que el número extra de
mensajes depende de la frecuencia de los cambios de propiedad de los bloques
de caché, que es un valor que depende mucho más de la aplicación que del
protocolo de coherencia utilizado.

Cuando se presentan fallos transitorios en la red de interconexión, nuestros
protocolos garantizan la correcta ejecución de los programas paralelos. El efecto
de los fallos, en lugar de un bloqueo del sistema, será una cierta degradación de
rendimiento. En la figura 0.3 se muestra la magnitud relativa del incremento en
el tiempo de ejecución. Como se observa, incluso para las mayores tasas de fallo
que hemos probado, la degradación media del rendimiento varía entre menos
del 10 % y el 25 %, dependiendo del protocolo.

Las tasas de fallos que hemos probado son mucho mayores que las tasas
de fallos transitorios que cabe esperar en sistemas reales [23]. Por tanto, cabe
esperar que en condiciones normales la degradación del rendimiento no sería
significativa.

Por último, los resultados mostrados en esta sección dependen del valor de
los parámetros de configuración de los protocolos tolerantes a fallos, mostrados
en la tabla 0.4b. Estos valores pueden ajustarse para soportar mayores tasas de
fallo o reducir la degradación de prestaciones, a costa de una mayor sobrecarga
de hardware.

Conclusiones y vías futuras

Los fallos transitorios serán cada vez más frecuentes según aumente la escala de
integración de los circuitos VLSI. En esta tesis, hemos propuesto una nueva forma
de evitar los problemas causados por dichos fallos en la red de interconexión de
CMPs, que es uno de los componentes propensos a sufrir fallos transitorios. En
lugar de construir una red de interconexión tolerante a fallos, proponemos usar

44



apache
specjbb

barnes
fft

lu
ocean

radix
raytrace

waternsq
em3d

unstructured
facerec

mpgdec
mpgenc

speechrec
Average

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e
w

rt
 F

tT
ok

en
C

M
P

0 8 32 64 125 250

(a) TokenCMP y FtTokenCMP

apache
specjbb

barnes
fft

lu
ocean

radix
raytrace

waternsq
em3d

unstructured
facerec

mpgdec
mpgenc

speechrec
Average

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e
w

rt
 D

irC
M

P

0 8 32 64 125 250

(b) DirCMP y FtDirCMP

apache
specjbb

barnes
fft

lu
ocean

radix
raytrace

waternsq
em3d

unstructured
facerec

mpgdec
mpgenc

speechrec
Average

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e
w

rt
 H

am
m

er
C

M
P

0 8 32 64 125 250
1.95
2.59

(c) HammerCMP y FtHammerCMP

Figura 0.3: Degradación del rendimiento bajo diferentes tasas de fallos (en mensa-
jes corrompidos por millón de mensajes que viajan por la red) para cada protocolo
tolerante a fallos respecto a su correspondiente protocolo base no tolerantes a
fallos
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redes de interconexión no fiables y añadir medidas de tolerancia a fallos a los
protocolos de coherencia de caché que utilizan las redes de interconexión.

Para mostrar la viabilidad de este enfoque, se han diseñado tres protocolos
de coherencia de caché tolerantes a fallos (FtTokenCMP, FtDirCMP y FtHam-
merCMP) basados en diferentes tipos de protocolos de coherencia de caché no
tolerantes a fallos. Hemos mostrado que las medidas de tolerancia a fallos nece-
sarias para garantizar la correcta ejecución de aplicaciones paralelas ante fallos
transitorios en la red de interconexión suponen un coste asumible de hardware y
no incrementan el tiempo de ejecución de los programas en ausencia de fallos. El
mayor coste de nuestras propuestas es un incremento moderado en el tráfico de la
red de interconexión. En caso de fallos, la degradación media de rendimiento es
pequeña incluso para tasas de fallo más altas de lo que cabe esperar en realidad.

De esta forma, nuestras propuestas son una solución con muy baja sobrecarga
para los fallos transitorios en las redes de interconexión de CMPs que pueden ser
combinadas con otras técnicas de tolerancia a fallos para construir CMPs fiables.

Los resultados presentados en esta tesis abren nuevas vías de investigación:

• Explorar la aplicación de medidas de tolerancia a fallos a nuevas propuestas
de coherencia de caché prometedoras [71,107]. Se espera que, en la mayoría
de los casos, las técnicas aquí descritas necesitarán pequeñas modificaciones.

• Diseño de un protocolo de coherencia de caché con soporte para memoria
transaccional [49, 83]. Pensamos que los mecanismos de necesarios para
soportar la memoria transaccional podrían aprovecharse para mejorar la
tolerancia a fallos.

• Pensamos que, en lugar de diseñar protocolos de coherencia tolerantes
a fallos basados en protocolos ya existentes no tolerantes a fallos, sería
conveniente diseñar un protocolo tolerante a fallos desde el principio,
usando los mecanismos de tolerancia a fallos para simplificar otras partes
del diseño.

• El protocolo de coherencia también podría ayudar a tratar los fallos inter-
mitentes y permanentes. Los mismos mecanismos de detección de fallos
transitorios se podrían adaptar para detectar otros tipos de fallos e iniciar
una reconfiguración de la red de interconexión.

• Finalmente, ya que la principal característica de nuestros protocolos es que
son capaces de garantizar la correcta ejecución de los programas paralelos
aunque la red de interconexión no entregue todos los mensajes, se puede

46



utilizar esta propiedad para simplificar el diseño de la red de interconexión,
más allá de la tolerancia a fallos. De esta forma, la red de interconexión
podría descartar algunos mensajes cuando fuera necesario. Por ejemplo, esto
permitiría mecanismos sencillos de recuperación en caso de interbloqueos
o el uso de enrutamiento sin buffers. [47, 48, 86].
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Chapter 1
Introduction

Improvements in semiconductor technology have provided an ever increasing
number of transistors available per chip. Popularly referred to as “Moore’s Law”,
the widely known prediction made by Gordon E. Moore in 1965 [82] is still
regarded as true. It stated that the number of transistors per integrated circuit
doubled every two years approximately. Nowadays, billions of transistors are
available in a single chip [74].

Computer architects are responsible for deciding how to effectively organize
these transistors. Usually, given a number of transistors and a number of other
constraints such as target power consumption, reliability of the components and
time, we try to design computers with the best possible performance, defined as
the speed at which programs execute. Many techniques have been invented since
the first microprocessor was designed to reduce execution time.

However, performance cannot be defined only with respect to the execution
time. Other factors need to be also considered, such as how hard the micropro-
cessor will be to program, or how much power it will need (and hence, how long
its batteries will last in a mobile environment). The relative importance of each of
the different facets of performance depend on the specific goals and constraints
of the project at hand.

In particular, system reliability needs to be considered. In many applications
high availability and reliability are critical requirements, but even for commodity
systems reliability needs to be above a certain level for the system to be useful for
something. Technology trends are making that level harder to achieve without
applying fault tolerance techniques at several levels in the design.
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1.1 Tiled Chip Multiprocessors

Traditionally, computer architects have taken advantage of the increment in
number of transistors to build increasingly complex systems. Performance of
single chip systems has been improved each generation in two ways: increasing
the frequency of the processor and exploiting instruction level parallelism (ILP).
Both approaches have proved useful in the past, but they are no longer profitable
due to physical limits that make increasing the frequency impractical and the
excessive complexity and reduced benefits of exploiting ILP beyond a certain
point.

To date, the best way that has been proposed to use effectively the large
number of transistors available in a single chip is to build several processors
on the same chip instead of a more complex single processor. Compared to
other options, Chip Multiprocessors (CMPs) [11, 50] offer a way to utilize these
resources to increase performance in an energy-efficient way while keeping
complexity manageable.

For execution time performance, CMPs exploit thread level parallelism (TLP)
in addition to ILP (and sometimes in detriment of exploiting ILP), which means
that the execution time of single sequential programs cannot directly benefit from
this approach. On the other hand, like most popular multiprocessor systems,
CMPs provide the traditional shared-memory programming model which is
already familiar to many programmers.

To further reduce complexity, tiled CMPs [127, 128, 14] have been proposed.
Tiled architectures are built by replicating several identical tiles. Usually, each tile
includes a processor core, private cache, part of a shared cache and an intercon-
nection network interface. Tiles are connected among them via a point-to-point
interconnection network. Figure 1.1 shows a diagram of these architectures. Re-
cent proposals include more than one processor core per tile connected amongst
them with a crossbar and sharing part of the tile resources. Although we assume
a single core per tile, the conclusions of this thesis are valid if more cores per tile
are used.

In addition to making complexity more manageable by regularizing the
design, tiled architectures scale well to a larger number of cores and support
families of products with varying number of tiles. In this way, it seems likely that
they will be the choice for future many-core CMP designs.

We consider tiled CMPs as the base architecture for explaining the ideas
in this thesis. However, although tiled CMPs are the motivating architecture
and they are assumed for evaluation purposes, the main ideas of this work can
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(a) Diagram of an individual
tile

(b) 16 way tiled CMP with 2D
mesh interconnection network

Figure 1.1: Tiled Chip Multiprocessors

be also applied to any kind of cache coherent CMP, or even to multiple chip
multiprocessor systems.

1.2 Cache coherence and interconnection
networks

In shared-memory systems, the communication between different processors
(either in different chips or in the same chip) is done implicitly from the point of
view of the programmer through a shared physical address space. All processors
can read and write to the same shared memory pool and all processors will
eventually see changes done by other processors, according to the particular
memory consistency model [1] of the architecture.

This programing model is easy to understand by programmers and is flex-
ible enough to efficiently implement other programming models on top of it,
like message passing programming. We think that it is safe to assume that it
will remain the dominant programming model for a long time. Even if better
programming models emerge in the future, shared memory will still need to
be efficiently supported if only due to the sheer quantity of software already
developed using it.

Unfortunately, the implementation of the shared memory programming model
is complicated by the existence of private caches, which are essential to achieve
good performance. Private caches capture the great majority of data accesses
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reducing the average latency of memory instructions and reducing the number
of messages that need to travel through the network.

Caches are critical in CMPs due to the high latency required to access to
off-chip memory and the limited bandwidth of off-chip pins. Off-chip memory
access latency is due to the growing disparity in speed between processors and
main memory.

Since processors copy data to their cache before reading or modifying it, there
will be several copies of those memory lines which are being used by several
processors at the same time. If any processor modifies its copy of the data while
it is stored in its private cache, the other processors will not notice it. Hence,
different processors will have different ideas about the content of that memory
line, creating an incoherency.

To restore the convenience of the shared memory programming model in
presence of private caches, cache coherence is automatically enforced in hardware
by most shared memory systems. The alternative is to force the programmer to
manually manage the communication between processors by means of carefully
flushing caches as required. This manual cache management is very hard to do
correctly without severely degrading performance.

Cache coherence ensures that writes to shared memory are eventually made
visible to all processors and that writes to the same location appear to be seen
in the same order by all processors [41] even in presence of caches. Cache
coherence is enforced by means of cache coherence protocols [27] which arbitrate
the exchange of data and access permissions between processors, caches and
memories.

In the rest of this work, we will call coherence node or simply node to every
device connected to the on-chip network that can take part in a coherence
transaction. In practice, a coherence node in a CMP can be either a L1 cache, an
L2 cache bank or a memory controller/directory.

There are a number of coherence protocols available to enforce coherence.
Deciding the best coherence protocol for a system depends on the characteristics
of the system. There are three main approaches to designing a cache coherence
protocol:

Snooping-based protocols: All requests are broadcast to all coherence nodes
using an interconnect which guarantees total order1 of messages, like a

1Total order of messages means that messages are received by all destinations in the same
order that they are sent, keeping the relative order even for messages which are sent to different
destinations or from different sources.
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shared bus. The total order property of the interconnect is used to serialize
potentially conflicting requests, since all nodes “snoop” the bus and see all
the requests in the same order.

Directory-based protocols: Requests are sent to a single node (which may be
different for different addresses) which forwards it to all the nodes that
need to be involved because they have data and they need to invalidate it
or send it to the requestor. That single node has the information about the
current sharers of the data in a “directory” and serves as the serialization
point for requests to the same address. Directory-based protocols do
not need a totally ordered network and are appropriate for point-to-point
interconnects2 but the extra indirection introduced by the directory increases
the latency of misses.

Token-based protocols: Token coherence [67] provides a way to avoid the indi-
rection introduced by directory-based protocols while using an interconnect
which does not provide total order of requests. Most requests in a token
coherence protocol are not serialized by any means. Instead, coherence
is ensured by a set of “token counting” rules. Token counting rules are
enough to ensure that coherence is kept but they are not enough to ensure
that requests are actually satisfied. For ensuring this, token-based cache
coherence protocols need to provide additional mechanisms that ensure
forward progress even in presence of request races. Currently proposed
token-based protocols ensure forward progress by means of persistent re-
quests when races are detected. These persistent requests are serialized by a
centralized or distributed arbiter.

Some coherence protocols impose additional requirements to the interconnec-
tion network that they use, like cache coherence protocols that are designed for
point-to-point interconnection networks with ring topology [71].

Of all the above, only directory-based and token-based protocols are suitable
for tiled CMPs in general, since they can be used along with a point-to-point
interconnection network. Hence, this thesis presents fault tolerance measures for
token-based and directory-based cache coherence protocols.

2Although point-to-point interconnects do not guarantee total order of messages, they may
guarantee point-to-point order of messages. That is, two messages are delivered in the same
relative order as they are sent as long as both have the same source and destination. Many
point-to-point interconnects provide point-to-point ordering guarantees, but not all.
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Since cache coherence protocols ensure coherence by exchanging messages
between coherence nodes through an interconnection network, their performance
(and, in the end, the performance of the whole system) depends on the perfor-
mance of the interconnection network. As the number of cores in a CMP increases,
the importance of efficient communication among them increases too. Hence,
the design of the on-chip interconnection network becomes very important in
a many-core CMP. For these reasons, it is desirable to give the interconnection
network designer as much freedom as possible to concentrate on the performance
of the network for the common case, not having to worry too much about other
requirements like message delivery order or fault tolerance.

Due to the nature of cache coherence protocols, communication between
processors in a CMP is very fine-grained (at the level of cache lines), hence small
and frequent messages are used. In order to achieve the best possible performance
it is necessary to use low-latency interconnections and avoid acknowledgment
messages and other control-flow messages as much as possible.

1.3 Reliability of future electronic devices

The reliability of electronic components is never perfect. Electronic components
are subject to several types of faults due to a number of sources like defects,
imperfections or interactions with the environment. Fortunately, many faults
have no user visible effects either because they do not affect the output of the
computation in any significant way or because they are detected and corrected by
some fault tolerance mechanism. When a fault has user visible effects, it produces
an error. In fact, fault tolerance mission is avoiding errors caused by faults.

A common classification of faults attends to their duration and repeatability.
Faults can be either permanent, intermittent or transient. Permanent faults require
the replacement of the component to restore the functionality of the system and,
in the context of semiconductor devices, are caused by electromigration among
other causes. Intermittent faults appear and disappear, are mainly due to voltage
peaks or falls, and partial wearout; and are often forewarns of future permanent
faults. Transient faults occur when a component produces an erroneous output
but it continues working correctly after the event.

The causes of transient faults are multiple and varied. They include transis-
tor variability, thermal cycling due to temperature fluctuations, current noise,
electromagnetic interference (EMI) and radiation from lightning.

Radiation induced transient faults, also known as soft errors [87, 89] or single
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event upsets, are an increasingly common type of transient fault. The most
important sources of soft errors in current semiconductor devices are radiation-
induced faults which are caused by alpha particles from radioactive atoms which
exist in trace amounts in all packaging materials, and by neutrons present in the
atmosphere due to cosmic rays. Neutron flux varies with altitude. It increases
with altitude until 15 km (Pfotzer point) and then decreases due to the rareness
of the atmosphere. For example, a chip in a plane traveling at 10 km of altitude
would have 100 times more chances of suffering a soft error due to a neutron
impact than at sea level.

Transient faults are much more common than permanent faults [119]. Cur-
rently, transient fault rates are already significant for some devices like caches
and memories, where error correction codes are routinely used to deal with them.
However, the same technology trends of increased scale of integration which
make many-core CMPs possible will make transient faults more common. Also,
the lower voltages used for power-efficiency reasons make transient faults even
more frequent. Hence, the importance of transient faults will increase for all
semiconductor devices [66,13,19], and architects need to assume a certain rate
of transient faults for every design and incorporate the adequate fault tolerance
measures to meet the reliability requirements of the final device.

Moreover, since the number of components in a single chip increases so
much, it is no longer economically feasible to assume a worst case scenario when
designing and testing the chips. Instead, new designs will need to target the
common case and assume a certain rate of transient faults. Hence, transient faults
will affect more components and more frequently and will need to be handled
across all the levels of the system to avoid actual errors.

For every system, there is a minimum reliability target that has to be met
to make the system usable. Hence, to enable more useful chip multiprocessors
to be designed, several fault-tolerant techniques must be employed in their
construction.

1.4 Motivation

One of the components in a CMP which will be affected by the transient faults de-
scribed above is the on-chip interconnection network, which is used to exchange
coherence messages between processors, caches and memory controllers.

The interconnection network occupies a significant part of the chip real estate,
so the probability of a particle hitting it and causing a transient fault is high. Also,
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since it is built with longer wires on average than the rest of the components of
the chip, it is more prone to coupling (crosstalk) which increases the chances of
transient faults [34].

At the same time, the performance of the interconnection network is critical
to the performance of the whole system. It handles the communication between
the cores and caches, which is done by means of a cache coherence protocol.
This means that communication is usually very fine-grained (at the level of cache
lines) and requires very small and frequent messages. Hence, to achieve good
performance the interconnection network must provide very low latency and
should avoid acknowledgment messages and other flow-control messages as
much as possible.

Transient faults in the interconnection network will cause corruption of mes-
sages of the cache coherence protocol. If these faults are not detected and
corrected, they will lead to deadlocks or silent data corruption, either because the
fault corrupts a data carrying message or because coherence cannot be correctly
maintained.

One way to deal with transient faults in the interconnection network is to
build a fault-tolerant interconnection network, that is: an interconnection network
that guarantees correct delivery of every message despite any transient fault.
Several proposals on how to do this are mentioned in chapter 2.

Differently from other authors, we propose to deal with transient faults in the
interconnection network of CMPs at the level of the cache coherence protocol.
This approach has three main advantages:

• The cache coherence protocol is in a better position to know which messages
are critical and which ones can be lost with benign consequences. Hence,
it can make smarter choices to achieve fault tolerance with less overhead,
both in term of execution time and network overhead. On the other hand,
fault tolerance measures at the interconnection network level have to treat
all messages as critical, imposing an overhead roughly proportional to the
number of messages.

• Implementing fault tolerance measures at the interconnection network level
limits the design flexibility for the architects that have to design the network
itself. Since the performance of the interconnection network is key to the
performance of the whole chip it is desirable to aggressively optimize the
interconnection network to reduce latency in the common case and increase
bandwidth. Fault tolerance measures make aggressive optimizations harder
to implement.
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• As we will show, most of the time a fault-tolerant cache coherence protocol
behaves almost like a non fault-tolerant one, hence the effect of the fault
tolerance measures in performance when no faults occur is very low. The
fault-tolerant protocol behaves differently only when critical messages need
to be transferred and when a fault is detected and needs to be recovered.
On the other hand, fault tolerance measures at the interconnection network
level affect the behavior of the interconnection network all the time whether
faults actually occur or not.

Of course, handling interconnection network fault tolerance at the level of the
cache coherence protocol has its drawbacks too. The main disadvantage is the
need to modify the coherence protocol itself, whose performance is also key to
the performance of the whole system and which is often regarded as a complex
piece of the design. In this thesis we demonstrate that the added complexity is
assumable and the performance overhead is minimal.

1.5 Contributions
In this work, we propose a way to deal with the transient faults that occur in
the interconnection network of CMPs. In our failure model we assume that,
from the point of view of the cache coherence protocol, the interconnection
network will either deliver a message correctly to its correct destination or not
deliver it at all. This can be easily achieved by means of using an error detection
code (EDC) in each message and discarding corrupted messages upon arrival.
Unexpected messages are assumed to be misrouted and are also discarded. We
also assume that caches and memories are protected by means of ECC or some
other mechanism, so that data stored there is safe.

In this thesis, we assume that messages are discarded due to being corrupted.
However, the techniques described here are also applicable if messages are
discarded for other reasons. For example, messages could be discarded due to
lack of buffering space in switches. This property may be useful for network
designers, but we have not evaluated it.

For simplicity, we only consider traffic due to accesses to coherent memory
and ignore for now accesses to non-coherent memory like memory-mapped I/O.
We expect that enabling fault tolerance for those messages would be easy to do
following the same ideas discussed here.

We can assume that these faults cause the loss of some cache coherence
messages, because either the interconnection network loses them, or the messages
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reach the destination node (or other node) corrupted. Messages corrupted by
a soft error will be discarded upon reception using error detection codes. Our
proposal adds only those acknowledgments which are absolutely required and
does so without affecting the critical path of most operations.

We attack this problem at the cache coherence protocol level. In particular,
we assume that the interconnection network is no longer reliable and extend the
cache coherence protocol to guarantee correct execution in presence of dropped
messages. That is, while traditional cache coherence protocols assume that mes-
sages sent through the network will eventually arrive to their correct destination,
ours just assume that messages will arrive correctly most times, but sometimes
they will not.

Our proposals only modify the coherence protocol and do not add any
requirement to the interconnection network, so they are applicable to current and
future designs. We protect dirty data with acknowledgment messages out of the
critical path of cache misses and provide mechanisms for recovering from lost
data and control messages.

Since the coherence protocol is critical for good performance and correct
execution of any workload in a CMP, it is important to have a fast and reliable
protocol. Our protocols do not add a significant execution time overhead when
compared to similar non fault-tolerant protocols but add a small amount of extra
network traffic.

Up to the best of our knowledge, there has not been any proposal dealing
explicitly with transient faults in the interconnection network of multiprocessors
or CMPs from the point of view of the cache coherence protocol. Also, most
fault tolerance proposals require some kind of checkpointing and rollback, while
ours does not. Our proposals could be used in conjunction with other techniques
which provide fault tolerance to individual cores and caches in the CMP to
achieve full fault tolerance coverage inside the chip.

In summary, the main contributions of this thesis are:

• We have identified the different problems that the use of an unreliable
interconnect poses to cache coherent CMPs.

• We have proposed modifications to the most important types of protocols
which are likely to be used in tiled CMPs to cope with messages dropped
by the interconnection network without adding excessive overhead.

• A cache coherence protocol which extends a token-based cache coherence
protocol with fault tolerance measures; and modifications to the token
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coherence framework to ensure reliable transference of ownership and
owned data.

• A cache coherence protocol which extends a standard directory-based
coherence protocol with fault tolerance measures.

• A cache coherence protocol which extends a broadcast-based snoopy pro-
tocol similar to the protocol used by AMD Hammer processors with fault
tolerance measures.

• We have evaluated our proposals using full-system simulation to measure
their effectiveness and overhead and we have found that although the cache
coherence protocol is critical to the performance of parallel applications, the
fault tolerance measures introduced in our protocols add minimal overhead
in terms of execution time. The main cost of our proposals is a slight
increase in network traffic due to some extra acknowledgments.

Our proposals do not add any requirement to the interconnection network so
they are applicable to current and future designs. Actually, since we remove the
requirement that the network need to guarantee correct delivery of every message,
we expect that network designers can propose more aggressive interconnect
designs to reduce the average latency even at the cost of dropping a few messages,
improving overall performance. In this thesis we concentrate on messages lost
due to transient failures and leave the latter as future work.

Parts of this thesis have been published as articles in international peer
reviewed conferences [36, 39, 38] or peer reviewed journals [37].

1.6 Organization of this thesis
The rest of this document is organised as follows. Chapter 2 makes a survey
of previous work on fault tolerance related with this thesis. In chapter 3 we
present the base non fault-tolerant architecture that we want to protect against
transient faults in its interconnection network and identify the requirements for
doing so at the level of the cache coherence protocol. Chapter 4 presents our first
fault-tolerant cache coherence protocol, that is based on token coherence. Then,
chapter 5 presents another fault-tolerant protocol, this time based on directory
coherence, while chapter 6 presents our last fault-tolerant protocol based on a
broadcasts-based cache coherence protocol inspired by the one used by AMD
Hammer processors. In chapter 7 we present our experimental methodology,
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including details about the simulator that we have used, the applications that we
use as benchmarks and the configurations that we have employed. We evaluate
our protocols in chapter 8, both from the point of view of the overhead introduced
by the fault tolerance measures when no faults occur and from the point of view
of the performance degradation that happens with a number of fault rates. Finally,
in chapter 9 we present the conclusions of this thesis and future lines of work.
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Related work

In this chapter we show a summary of previous work related with this thesis.
Fault tolerance is a vast area, hence we cannot cover all the aspects required to
build reliable CMPs. Instead, we mention the most relevant works related to fault
tolerance in tightly-coupled symmetric multiprocessors (SMP) and CMPs when
regarded as a distributed system of processor cores which communicate with
each other through a shared address space. We do not talk extensively about
how to build reliable processor cores, nor other components of a CMP except the
interconnection network.

2.1 Fault-tolerant multiprocessors

Fault tolerance for multiprocessors has been thoroughly studied in the past,
specially in the context of multiple chip multiprocessors.

Usually, fault recovery mechanisms are classified as either Forward Error
Recovery (FER) or Backward Error Recovery (BER). BER is more commonly
known as rollback recovery or checkpointing.

FER implies adding hardware redundancy to the system is such a way that the
correct result of a computation can be determined even if some of the components
fail. In some cases, cost-effective FER strategies can be designed for individual
devices (like a processor, for example). However, generic FER cost is too high.
The most common FER strategy are Error Correcting Codes (ECC) and Triple
Modular Redundancy (TMR) [99].

ECC adds redundancy to information which is being transmitted or stored
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to be able to recover the original data if some bits of the transmitted or stored
information change their values. ECC is extensively used in memories and caches
to deal with transient faults.

In TMR each operation is performed by three components and the correct
result is determined using majority vote. The area overhead of TMR is usually
too high except for some critical components or in specific situations.

Dual modular redundancy (DMR) is a less costly scheme in which only two
components perform each operation. In case of differing outputs, some recovery
mechanism is invoked. The recovery mechanism can be a rollback to a previous
checkpoint or, if the faulty component can be identified, the system may switch
to a degraded mode without redundancy.

Several high-end commercial systems have been built that provide fault
tolerance through system-level or coarse-grain redundancy and targeting high-
availability needs [12], like systems offered by Stratus [135], Sequoia [16], Tandem
(now HP) NonStop systems [15] or IBM zSeries [112,119]. These systems often
employ high levels of redundancy end even lockstep execution, making them too
expensive for general use.

In checkpointing, the state of a computation is periodically saved to stable
storage (checkpointed) and used to restart the computation in case of a failure.
The checkpoint may be saved incrementally (storing only differences with respect
to a previous checkpoint). BER does not require hardware redundancy per se,
but it requires additional resources and it impacts system performance even in
the common case of fault-free execution due to the need to periodically create
checkpoints.

Checkpointing implemented in software is the most common approach to
building fault-tolerant cache coherent systems using common server hardware.
These approaches require modifications to either the operating system [57,60,109],
virtual machine hypervisor [22], or user applications [21, 64].

The memory hierarchy is often utilized for supporting checkpointing in hard-
ware, making it transparent (or almost transparent) to the operating system and
user programs, and incurring less performance overhead. Since the checkpointing
overhead is lower, checkpoints can be made much more often and this reduces
the mean time to recover when a fault is detected (MTTR). Hunt and Marinos [52]
proposed Cache Aided Rollback Error Recovery (CARER), a checkpointing scheme
for uniprocessors in which checkpoints are updated every time that a write-back
happens.

In the case of a multiprocessor, implementing checkpointing efficiently is
significantly more complicated because it requires coordination among all the
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processors to create a system-wide checkpoint or a set of consistent processor-
local checkpoints. Creating a system wide checkpoint [73,84,85,97] is the simplest
approach, but it has the highest overhead.

Many proposals avoid global checkpoints and propose synchronized local
checkpoints. Ahmed et al. [6] extend CARER for multiprocessors. In their scheme,
all processors synchronize whenever any of them need to take a checkpoint.
Wu et al. [138] also extend CARER, and perform a global checkpoint when the
ownership of any modified memory line changes. Banâtre et al. [10] proposed
Recoverable Shared Memory (RSM) which deals with processor failures on shared-
memory multiprocessors using standard caches and standard snoopy cache
coherence protocols. In RSM, when a processor needs to make a new checkpoint,
only those processors which have communicated with it since the last checkpoint
need to synchronize and make a new checkpoint too.

Differently from other authors, Sunada et al. [123] propose Distributed Recov-
erable Shared Memory with Logs (DRSM-L) that performs unsynchronized check-
points. In DRSM-L, processors establish local checkpoints without communica-
tion with other processors and log the interactions with other processors. In case
of rollback, the logged interactions are used to determine which processors need
to rollback.

More recently, Pruvlovic et al. [100] presented ReVive, which performs check-
pointing, logging and memory-based distributed parity protection with low
overhead in error-free execution and is compatible with off-the-shelf processors,
caches and memory modules. At the same time, Sorin et al. [117] presented Safe-
tyNet which aims at similar objectives but has less overhead, although it requires
custom caches and can only recover from transient faults. In particular, SafetyNet
is shown to be able to recover from transient faults that affect the interconnection
network of a multiprocessor system.

Most checkpointing proposals deal only with the memory state contents of
the system and do not address how to checkpoint and rollback in presence of I/O,
which is a requirement for any realistic system. The common approach to I/O
is to log the input for replaying in case of rollback and delay the actual output
until a new checkpoint is performed, so that committed output never needs to
be undone or repeated [73]. Nakano et al. [91] propose an efficient scheme to be
able to transparently buffer I/O operations that builds on ReVive.

Gold et al. [43] propose the TRUSS architecture. In TRUSS, each component
of the multiprocessor server (processor cores, memory or I/O subsystems) must
detect and recover from errors without involvement of the rest of components.
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Fault containment between components is achieved by the Membrane abstraction.
TRUSS requires a reliable interconnection network.

A multiprocessor can suffer faults in the interconnection network, cache
coherence controllers or other components that would lead to errors in the
execution of a parallel workload that expects a particular consistency model
and cache coherence behavior. Sorin et al. [116] dynamically check end-to-end
invariants of the cache coherence protocol and the interconnection network
applicable to snooping coherence protocols implemented on top of a point-to-
point interconnection network. Meixner and Sorin proposed error detection
techniques [77, 78, 79] applicable to any cache coherence protocol which can
detect faults that lead to incorrect ordering of memory accesses (both consistency
or coherence violations) assuming sequential consistency, including transient
errors in the interconnection network. However, they do not provide any recovery
mechanism. The work of Meixner and Sorin is based on checking conservative
system invariants and may report false positives. Chen et al. [25] propose a
different approach based on constraint graph checking [24] which is more precise.

2.2 Fault tolerance in CMPs

Many of the techniques used for building fault-tolerant general multiprocessor
systems can be easily adapted for building fault-tolerant chip multiprocessors
(CMPs). However, from the point of view of fault tolerance, CMPs present
new problems like the increased complexity in achieving isolation, and new
opportunities like the greater availability of on-chip resources for redundancy.

At the core processor level, a CMP can use the same techniques used by
commercial high availability processors [112], processor level error checking or
avoidance techniques [8, 104, 115,132, 101], redundant process execution imple-
mented using SMT [108,105,131,115] or separate cores [124,88,44,114,113,59,103],
or redundancy in the core internal structures [80, 111, 20, 121, 18, 81, 75], both
adding redundancy for the explicit purpose of fault tolerance and leveraging the
inherent redundancy present in superscalar out-of-order processors. However,
since CMP designs tend toward simpler cores than previous superscalar proces-
sors, there is less inherent redundancy inside the core and hence the relative cost
of previously proposed fault tolerance measures is higher. In [76], Meixner et al.
propose Argus as a high-level error detection method applicable to any processor
core and suitable for simple in-order cores.

Sylvester et al. [126] propose ElastIC as an architecture that continuously
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monitors the performance, power and reliability of each core and adaptively
throttles or disables failing cores.

Aggarwal et al. [4] analyze five commodity CMP architectures from the point
of view of their reliability. They find that transient fault detection is limited
to storage arrays (using ECC or parity checking and retries in caches, register
files and memories) and that the major shortcoming of these architectures is the
lack of proper fault isolation. The lack of isolation reduces the effectiveness of
fault tolerance techniques like running programs in DMR or TMR configurations.
In [3], they propose configurable isolation, a mechanism to provide dynamic re-
configuration of CMPs which enables fault containment to deal with errors, and
show how to use that support to implement a DMR configuration similar to a
NonStop system [15].

Gupta et al. [45] propose StageNet, another reconfigurable CMP architecture.
However, in contrast with previous authors who proposed tile-level or core-level
reconfigurability, StageNet proposes reconfigurability at a much finer granularity
of pipeline stages connected through a reconfigurable interconnection network.
StageNet tries to minimize the redundancy added exclusively for fault tolerance
purposes and could be used in single cores as well [46]. Romanescu and Sorin
[106] propose the Core Cannibalization Architecture (CCA), which also allows
reconfigurability at the pipeline stages but has a much less radical design. In
CCA, only a subset of the pipeline stages can be reconfigured, and has a set of
cannibalizable cores which lend their functional units when an error is detected in
other cores.

In [133] Wells et al. argue that using an overcommitted system with a thin
firmware layer (an hypervisor) is more effective to adapt to intermittent faults
than pausing the execution of the thread scheduled in the affected core, using
spare cores or asking the operating system to temporarily avoid using the affected
core. In [134], they study the implications of running several applications in
a CMP with reliability support where some applications require redundancy
and use Reunion [113] for DMR execution alongside with applications that do
not require redundancy, and also propose using an hypervisor to abstract the
management of reliability features from system software.
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2.3 Fault tolerance at the interconnection network
level

The main proposal of this thesis is dealing with transient faults in the inter-
connection network of CMPs at the level of the cache coherence protocol that
uses such interconnections networks. On the other hand, a more traditional and
arguably more straightforward way to achieve protection against transient faults
in the on-chip interconnection network is making the network itself fault-tolerant.
There are several proposals exploring reliable networks on chip (NoC).

Soft faults that affect an interconnection network can be grouped in two main
categories: link errors that occur during the traversal of flits from router to router,
and errors that occur within the router.

Link errors can happen due to coupling noise and transient faults [120]. They
are usually considered the predominant source of transmission errors in intercon-
nection networks and error correcting codes (ECC) or error detecting codes (EDC)
plus retransmission are being used extensively in on-chip communication links
as a form of protection against link errors [141, 129]. Bertozzi et al. [17] report
that retransmission strategies are more effective than correction ones, although
the latency penalty of retransmission schemes is higher. Error correction can be
done either at message level or flit level.

ECC can be also complemented with retransmission [90], since many coding
techniques can detect errors in a greater number of bits than those that they can
correct, like the popular Single Error Correction and Double Error Correction
codes (SECDED). In this case, faults that affect only one bit are corrected and
retransmission is requested only in case of faults that affect two bits.

Retransmission can be either end-to-end or switch-to-switch (also known as
hop-to-hop). Both schemes require adding EDC to messages (or flits) and require
dedicated buffers to hold the messages (or flits) until the receiver or the next
switch acknowledges their reception. The acknowledgment can be done using
a new message, a dedicated line or piggybacked with other messages. In some
cases, only negative acknowledgments (NACK) are necessary [94]. The messages
can be retransmitted when a negative acknowledgment signal is received or when
a timeout triggers at the sender. If timeouts are used, messages require sequence
numbers to detect duplicates.

In an end-to-end scheme, retransmission buffers are added to the network
interfaces and error checking and acknowledgment is done by the receiver node.
On the other hand, in a switch-to-switch scheme buffering needs to be added
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to each switch and error checking and acknowledgment is done by each switch.
Hence, upon a fault the latency to detect it and retransmit the message is higher
in the case of end-to-end schemes.

For example, [30] and [29] describe simple switch-to-switch retransmission
schemes. The Unique Token Protocol is used in [30] to achieve link-level re-
transmission without requiring acknowledgment packets. Ali et al. [7] propose a
fault-tolerant mechanism to deal with packet corruption due to transient faults
using error detection codes and end-to-end retransmission and a dynamic routing
mechanism to deal with permanent link or router failures.

Murali et al. [90] present a general design methodology and compare several
error recovery schemes in an interconnection network with static routing and
wormhole flow control. Lehtonen et al. [61] propose a link-level transient fault
detection scheme and interleaving.

In addition to link errors, transient faults can also affect the router logic. The
effect of these errors include data corruption which can be recovered using ECC
as in the case of link errors. However, soft errors in the router logic can also
cause other problems like misrouted packets, deadlocks or packet duplication. A
fault-tolerant router can deal with link-level faults, faults in its internal logic, or
both.

Kim et al. [55] propose a router architecture that can tolerate transient faults
within the router’s individual components. Park et al. [94] generalize the previous
work and provide solutions relevant to generic router architectures. Constan-
tinides et al. [26] introduce an on-chip router capable of tolerating silicon defects,
transient faults and transistor wearout using domain specific fault tolerance
techniques. Pereira et al. [40] propose fault tolerance techniques to protect NoC
routers against the occurrence of soft errors and crosstalk.

Another way to provide fault tolerance at the interconnection network level is
using fault-tolerant routing techniques. These methods rely on probabilistic flood
(gossip algorithms) [33, 95] or redundant random walks [96]. These techniques
trade increased network traffic and power consumption for reliability. Their
main drawbacks are that they are not deterministic and the high network traffic
overhead.

Other techniques try to mitigate the probability of transient faults. Since the
low voltages that are required for low-power devices reduce the noise margins
and increase the probability of transient faults, it is necessary to seek a trade-
off between power consumption and reliability [51, 139, 125]. Worm et al. [137]
propose dynamically varying the supply voltage according to the error rate on
the links in a low-power interconnect system which also includes error detection
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codes and retransmission. Li et al. [62] propose to dynamically choose the most
energy efficient error protection scheme that maintains the error rate below a
preset threshold. Ejlali and Al-Hashimi [35] propose the use of energy recovery
techniques to construct low-power and reliable on-chip interconnects.

Capacitive crosstalk on global system-on-chip buses increases power con-
sumption, propagation delay and the probability of transient errors due to
noise [110,51], specially when low power codes (LPC) [122,102] are used. Several
coding schemes have been proposed that mitigate these effects [31,56,130,140,118]
avoiding adversarial switching patterns to decrease crosstalk between wires.

Level-encoded Dual-rail has been the dominant encoding scheme for intercon-
nection networks that connect different clock domains. Since dual-rail encoding
is vulnerable to single-error upsets, phase-encoding communication schemes
have been proposed [28, 92] which are resilient to transient faults. Also, Halak
and Yakovlev propose fault-tolerant techniques to mitigate the effect of crosstalk
in phase-encoding communication channels.

In addition to the specific techniques, most interconnection network fault
tolerance proposals rely on adding a certain amount of fault resiliency to the
network interfaces and/or network switches by means of hardware redundancy,
relaxed scaling rules or other VLSI transient fault mitigation techniques to avoid
single points of failure.

Many of the proposals mentioned in this section could be complemented with
a fault-tolerant cache coherence protocol to achieve greater protection against
transient faults. Since no fault tolerance technique can guarantee full coverage
against all faults and since a fault-tolerant interconnection network is bound to be
more expensive, slower or more power-hungry than a less reliable one, by using
a fault-tolerant cache coherence protocol architects can trade-off some of the fault
tolerance of the interconnection network for a reduced cost, better performance
or better power efficiency.

In addition, ensuring the reliable transmission of all messages through the
network limits the flexibility of the network design. In contrast, ensuring fault
tolerance at the higher lever of the cache coherence protocol allows for more
flexibility to design a high-performance on-chip interconnection network which
can be not totally reliable, but has better latency and power consumption in the
common case. The protocol itself ensures the reliable retransmission of those few
messages that carry owned data and could cause data loss; and provides better
performance as long as enough messages are transmitted correctly through the
network.
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General assumptions and fault

tolerance requirements for cache
coherence protocols

In this chapter, we describe in more detail the general assumptions that we make
about the base architecture and what are the possible errors that can appear due
to transient faults in the interconnection network of such architecture.

3.1 Base system assumptions
As mentioned above, we target tiled CMP architectures (see figure 1.1) since we
expect that future many-core CMP designs will be based on that philosophy in
order to keep complexity manageable.

We assume that the chip is comprised by a number of tiles laid out in a grid.
Each tile will include at least the following components:

• A processor core.

• A private L1 cache split in a data cache and a read-only instruction cache.
A cache line can be in either of them, but not on both at the same time.

• A slice of a shared L2 cache (both for instructions and data). Hence, the L2
cache is logically shared by the tiles but it is physically distributed among
them. Each cache line has a home tile that is the tile which includes the
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bank of L2 cache where that line can be cached. We assume that the L2
cache is not inclusive with respect to the L1 cache: a memory line may be
present in L1, L2 or both, although our proposal is equally applicable to
other inclusion policies (exclusive or inclusive).

• A network interface, which connects the tile to the on-chip interconnection
network.

The L1 cache and the L2 cache are protected using error correction codes
(ECC) or some other technique, as well as off-chip memory. Hence, our cache
coherence protocols assume that the data stored in them is safe from corruption.
In other words, only the data traveling through the network has to be protected
by the fault-tolerant protocols.

The tiles which are part of the chip are connected among them by means
of a point-to-point interconnection network. For evaluation purposes, we use
a 2D-mesh topology with deterministic dimension-order routing. However,
the protocols presented in this thesis do not make any assumptions about the
particular characteristics of the network, and can be used with adaptive routing
or with other network topologies. That is, no assumption is made about the order
in which messages are delivered, even for two messages with the same source
and destination.

In the architecture described above, cache coherence is maintained at the level
of the L1 caches. That is, the L2 cache could be seen as filling the role of the
memory in a cache coherence protocol designed for SMPs, since such protocols
keep coherence at the level of the L2 cache.

Several CMPs like the one described above can be connected among them
to build a multiple CMP (M-CMP). In a M-CMP, coherence has to be kept both
at the level of the L1 caches within the chips and at the level of the chips
themselves (L2 caches). For this task, one could use a hierarchical cache coherence
protocol or a protocol specifically designed for this situation [70]. The protocols
presented in this work have not been designed with a M-CMP system in mind,
but the modifications required for fault tolerance are mostly orthogonal to the
implementation of hierarchical coherence. The protocol presented in chapter 4 is
based on a protocol designed for M-CMPs and has been verified to work in that
scenario, although we have not performed an exhaustive evaluation.

We have focused on transient failures that occur on the on-chip interconnection
network and have not explored failures in the off-chip interconnection network
because the first ones are more likely to appear due to current technology trends.
However, our techniques can be applied to coherence among several chips too.
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Abstracting the interconnection network we can assume that, from the point
of view of the coherence protocol, a coherence message either arrives correctly
to its destination or it does not arrive at all. In other words, we assume that
no incorrectly delivered or corrupted message is ever processed by a coherence
controller. To guarantee this, error detection codes (EDC) are used to detect and
discard corrupted messages. There are a number of coding schemes which can
be used for this purpose [58, 89].

Upon arrival, the EDC is checked using specialized hardware and the message
is discarded if it is wrong. To avoid any negative impact on performance, the
message is assumed to be correct because this is by far the most common case
and the EDC check is done in parallel to the initial processing of the message
(like accessing to the cache tags and to the MSHR to check the line state).

In summary, from now on we consider tiled CMP systems whose interconnec-
tion network is not reliable due to the potential presence of transient faults. We
assume that these faults cause the loss of messages (either an isolated message or
a burst of them) since they directly disappear from the interconnection network
or arrive to their destination corrupted and then they are discarded after checking
their error detection code.

Instead of detecting faults and returning to a consistent state previous to
the occurrence of the fault using a previously saved checkpoint, our aim is to
design a coherence protocol that can guarantee the correct semantics of program
execution over an unreliable interconnection network without ever having to
perform a rollback due to a fault in the interconnection network.

The most obvious solution to the problems depicted above is to ensure that
no message is lost while traveling through the interconnection network by means
of reliable end-to-end message delivery using acknowledgment messages and
sequence numbers in a similar way to TCP [98], like several of the proposals
discussed in section 2. However, this solution has several drawbacks:

• Adding acknowledgments to every message would increase the latency of
cache misses, since a cache would not be able to send a message to another
cache until it has received the acknowledgment for the previous message.

• That solution would significantly increase network traffic. The number
of messages would be at least doubled (one acknowledgment for each
message). Since the interconnection network does not have as much insight
about the meaning of the messages as the cache coherence protocol, it
cannot protect only those messages that are critical for correctness.
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• Extra message buffers would be needed to store the messages until an
acknowledgment is received in case they need to be resent.

• The flexibility of the network designer would be reduced, since fault tol-
erance would have to be considered. This reduced flexibility would make
harder to design a high performance interconnection network.

We do not try to address the full range of faults that can occur in a CMP
system. We only concentrate on those faults that affect directly the interconnection
network. Hence, other mechanisms should be used to complement our proposal
to achieve full fault tolerance for the whole CMP.

3.2 Requirements for a fault-tolerant cache
coherence protocol

Loss of coherence messages can cause a number of problems in a tiled CMP like
the one described in section 3.1. Some of the problems depend on the particular
cache coherence protocol that is being used. The following list includes all the
problems identified in the base non fault-tolerant protocols presented in this
thesis:

Silent data corruption: A corrupted data carrying message, if accepted, could
cause silent data corruption (SDC) if the header of the message is not
affected by the corruption. This can be avoided augmenting the coherence
messages with error detection codes or error correction codes.

Undetected memory incoherence: In some protocols, a lost message can lead to
cache incoherence. A cache coherence violation occurs when some node has
write permission to a cache line while at least another has read permission
for the same line. This can happen, for example, in a directory protocol
that does not require acknowledgments for invalidation messages [42,53].
In such a protocol, if an invalidation message is lost, a sharer node will
continue having read permission after write permission is granted to a
different node that has requested it since neither the directory nor the
requestor would notice that the invalidation message has been lost.

All the base protocols described in this thesis require acknowledgments
for invalidation messages to avoid race conditions. In these protocols, no
message loss can lead to cache incoherence.
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Deadlock: The most frequent effect of a message loss in most cache coherence
protocols is a protocol deadlock. The deadlock can happen in the same
transaction that suffered the message loss or in a subsequent coherence
transaction. Deadlocks happen easily because when a requestor sends a
request message, it will wait until the response arrives. If either the response
message, the request message itself or any intermediate message are lost,
the requestor will wait indefinitely for the response.

Detected unrecoverable error (deadlock, data loss, or data corruption): Some
systems may be able to detect some faults but have no means of recovering
from the situation. In that case, a detected fault would be signalled
allowing the OS to crash the application or resort to some higher level
recovery mechanism. If the OS has no recovery mechanism in place, the
final result would be a detected but unrecoverable error (DUE).

DUEs can happen in systems which employ error detection codes to avoid
SDC even if their cache coherence protocol is not fault-tolerant. Also, in
case of a deadlock, a fault can be detected by means of a watchdog timer
even if it is unrecoverable.

Even if the fault is detected, it may not be possible to recover from it without
loss of data if it was caused by a discarded message which contained data
and there was no other updated copy of that cache line.

Harmless performance degradation: Some protocols include messages which
can be discarded without serious consequences. This is the case of hint
messages, messages used to update soft-state in protocols that use pre-
diction [107] or transient requests in token based [68] cache coherence
protocols. Losing any of these messages will not have any impact in the
correctness of the execution of the program, although it could have a very
minor effect in the execution time. In fact, is it very unlikely that losing a
moderate number of any of these messages could have a measurable effect
in any cache coherence protocol.

To avoid the problems mentioned above, a fault-tolerant protocol needs to
have the following features to be able to ensure correct operation using a faulty
interconnection network:

Avoid data corruption: The system needs to be able to detect corrupted mes-
sages and discard them. For this purpose, error detection codes (EDC) need

73



3. General assumptions and fault tolerance requirements for. . .

to be used. Only error detection is necessary, since the fault-tolerant proto-
col can provide recovery mechanisms that handle the loss of any message.
As mentioned previously, some systems use EDC to avoid SDC despite not
having a fault-tolerant cache coherence protocol.

Avoid data loss: Since messages can be corrupted and discarded, it is necessary
to avoid sending data through the interconnection network without keeping
a backup copy of it if there is no other updated copy of the data which can
be used for recovery.

Avoid cache incoherence: The fault-tolerant cache coherence protocol needs to
ensure that no cache incoherence can happen even if the network fails to
deliver a message. In particular, invalidation messages need to be acknowl-
edged (by sending an acknowledgment message either to the directory that
sent the invalidation or to the original requestor). Many cache coherence
protocols already require these acknowledgments since they are needed to
avoid race conditions in unordered interconnection networks.

Detect and recover from deadlocks: When a coherence message is dropped by
the interconnection network, it results almost in all cases in a deadlock.
Fault-tolerant cache coherence protocols need to be able to detect these
deadlocks and be able to recover from them, or avoid them altogether
(although this is not practical most times). When a deadlock is detected,
some recovery mechanism has to be invoked. Deadlocks are the easier
symptom of faults to identify and usually the other problems mentioned
above are accompanied by them, hence the recovery mechanism invoked
when a deadlock is detected can be used to deal with most other problems
if necessary.

To be useful at all, in addition to these properties, a fault-tolerant cache
coherence protocol must provide a performance very similar to the performance
of a comparable non fault-tolerant cache coherence protocol. The overhead
introduced by the fault tolerance measures must be no higher than the overhead
of increasing the reliability of the interconnection network used by the protocol.

The fault-tolerant cache coherence protocols described in this thesis implement
solutions to the requirements exposed above which are adequate to add fault
tolerance to the base protocols without impacting their performance too much.
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Chapter 4
A token-based fault-tolerant cache

coherence protocol

In this chapter we present our first fault-tolerant cache coherence protocol, which
we have called call FtTokenCMP. This protocol is based on the token coherence
framework [67] (we assume familiarity with token-coherence in this chapter, see
appendix A for a short introduction to token coherence). We based our first
fault-tolerant cache coherence protocol on token coherence due to several reasons:

• Token coherence is a framework for designing coherence protocols which
provides a separation between the mechanisms used to enforce coher-
ence and the mechanisms used to perform the exchange of data and access
permissions between processors. The correctness substrate ensures that coher-
ence is not violated by means of token counting rules, while the performance
policy governs the communication between nodes optimizing the perfor-
mance of the common case. This separation eases the development of cache
coherence protocols since it simplifies the handling of corner cases [68]. In
particular, to add fault tolerance measures to a token based cache coherence
protocol we only have to modify the correctness substrate while impacting
the performance policy as little as possible to reduce the overhead in terms
of execution time.

• Token coherence protocols make use of transient requests. These requests
are issued by the nodes when they require data or additional access per-
missions to a cache line, but they can fail sometimes due to race conditions.
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The coherence protocol has to provide a mechanism to handle this situation,
either reissuing the transient request or issuing a persistent requests (which
are guaranteed to success). The provisions for transient requests already
provide a basis for minimal support for fault tolerance.

• Most importantly, token coherence protocols already rely on timeouts to de-
tect unsatisfied transient requests. Since we use timeouts for fault detection,
this reduces the extra hardware modifications required to implement fault
tolerance.

Although we have based our fault-tolerant cache coherence protocol on To-
kenCMP [70], a token based coherence protocol for Multiple-CMPs, we expect
that these ideas will be applicable to any token based protocol with only minor
modifications.

4.1 Problems caused by an unreliable
interconnection network in TOKENCMP

There are several types of coherence messages in a token based cache coherence
protocol that can be lost, which translate into a different problem or problems
of those mentioned in section 3.2. Table 4.1 shows a summary of the problems
caused by the loss of each type of message in TokenCMP.

Table 4.1: Summary of the problems caused by loss of messages in TokenCMP

Fault / Type of lost message Effect

Transient read/write request Harmless
Response with tokens Deadlock
Response with tokens and data Deadlock
Response with the owner token and data Deadlock and data loss
Persistent read/write requests Deadlock
Persistent request deactivations Deadlock

Differently than in a traditional directory-based protocol, in a token-based
cache coherence protocol there are no invalidation messages. Their role is filled
by transient and persistent requests to write, which in TokenCMP are broadcast
to every coherence node. Every coherence node that receives one of these requests
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will send every token that it holds (and data if it holds the owner token) to the
requestor. Nodes that do not hold tokens will ignore these requests. Since these
invalidation messages (which are actually persistent or transient requests) in the
base protocol require acknowledgments (the caches holding tokens must respond
to the requester), losing a message cannot lead to incoherence, as stated in section
3.2.

Also, losing transient requests is harmless. Even when we state that losing
the message is harmless (we mean that no data loss, deadlock, or incorrect
execution would be caused), some minor performance degradation may happen.
In TokenCMP, if a transient request is not received by any of the nodes that
would have had to respond with a token or data, the requester will issue a
persistent request after a short timeout expires. Other token based protocols
may reissue the transient request one or more times before issuing the persistent
request.

However, losing any other type of message will lead to deadlock, and if the
owner token was being carried in that message it will cause data loss too.

Particularly, losing coherence messages containing one or more tokens would
lead to a deadlock because the total number of tokens in the whole system must
remain constant to ensure correctness. Since a coherence node needs to hold
all the tokens associated to a particular cache line to be able to write to that
line, if a token disappears no node will be able to write anymore to the cache
line associated with that token. This will cause a deadlock for this coherence
transaction or the next time that any node tries to write to that memory line.

The same thing happens when a message carrying data and one or several
tokens is lost, as long as it does not carry the owner token. However, no data loss
can happen in this case because there is always a valid copy of the data at the
coherence node which has the owner token.

Another different case occurs if the lost coherence message carries the owner
token, since it must also carry the memory line and this may be the only currently
valid copy of it. In the TokenCMP protocol, like in most cache coherence
protocols, the data in memory is not updated on each write, but only when it is
evicted from the owner node (that is, the node that currently holds the owner
token). Also, the rules governing the owner token ensure that there is always at
least a valid copy of the memory line which travels along with it every time that
the owner token is transmitted.

If the owner token being carried in a lost message is dirty (that is, if some
node has modified the data of the cache line since the last time that it was written
back to memory) then that message may be carrying the only valid copy of the
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data currently in the system. Hence, if the owner token is lost, no processor (or
memory module) would send the data and a deadlock and possibly data loss
would occur.

Finally, in TokenCMP, starvation avoidance is provided by means of dis-
tributed persistent requests (see section A). A persistent request is initiated by a
persistent request activation message which is sent by the requester to every other
coherence node (using broadcast). Only a single persistent request can be active
for each node at the same time and the persistent request will be active until the
requestor node deactivates it broadcasting a persistent deactivation message, which
it will send once it receives the data and collects all the tokens that it requires.

The loss of either the activation or deactivation messages of a persistent
request will lead to deadlock: if the activation message is not received by all the
nodes which hold tokens, the requestor will not be able to collect them and will
wait indefinitely; and if the deactivation message is not received by some node,
that node will not be able to perform any request for that cache line, causing a
deadlock if it later needs to read or write to that line.

4.2 Fault tolerance measures introduced by
FTTOKENCMP

Once we have seen the problems arising in TokenCMP due to the use of an
unreliable interconnection network, we introduce a fault-tolerant coherence
protocol intended to cope with these problems. The new coherence protocol,
FtTokenCMP, detects and recovers from deadlock situations and avoids data
loss.

Instead of ensuring reliable end-to-end message delivery, we have extended
the TokenCMP protocol with fault tolerance measures.

The main principle that has guided the protocol development has been to pre-
vent adding significant overhead to the fault-free case and to keep the flexibility
of choosing any particular performance policy. Therefore, we should try to avoid
modifying the usual behavior of transient requests. For example, we should
avoid placing point-to-point acknowledgments in the critical path as much as
possible.
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Token counting rules for reliable data transference

The defining observation of the token framework is that simple token counting
rules can ensure that the memory system behaves in a coherent manner. The
token counting rules used by TokenCMP were created by Martin [67] and, along
with the starvation avoidance mechanism provided by persistent requests, they
define the correctness substrate of the coherence protocol. See appendix A for an
explanation of the original rules.

To implement fault tolerance, we have modified the token counting rules
to ensure that data cannot be lost when some message fails to arrive to its
destination. The following fault-tolerant token counting rules are based of
those introduced by Martin [67], and extend them to ensure reliable ownership
transference (modifications with respect to the original rules are emphasized):

• Conservation of Tokens: Each line of shared memory has a fixed number
of T + 1 tokens associated with it. Once the system is initialized, tokens
may not be created or destroyed. One token for each block is the owner
token. The owner token may be either clean or dirty. Another token is the
backup token.

• Write Rule: A component can write a block only if it holds T tokens for
that block, none of them is the backup token and has valid data. After writing
the block, the owner token is set to dirty.

• Read Rule: A component can read a block only if it holds at least one token
different than the backup token for that block and has valid data.

• Data Transfer Rule: If a coherence message carries a dirty owner token, it
must contain data.

• Owner Token Transfer Rule: If a coherence message carries the owner token, it
cannot also carry the backup token.

• Backup Token Transfer Rule: The backup token can only be sent to another
component that already holds the owner token.

• Blocked Ownership Rule: The owner token cannot be sent to another component
until the backup token has been received.

• Valid-Data Bit Rule: A component sets its valid-data bit for a block when
a message arrives with data and at least one token different from the backup
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token. A component clears the valid-data bit when it no longer holds any
tokens or when it holds only the backup token. The home memory sets the
valid-data bit whenever it receives a clean owner token, even if the message
does not contain data.

• Clean Rule: Whenever the memory receives the owner token, the memory
sets the owner token to clean.

The above token counting rules along with the starvation and deadlock
avoidance measures implemented by persistent requests and the token recreation
process compose the correctness substrate of FtTokenCMP. These rules enforce
the same global invariants than the original rules and additionally they enforce
the following invariant: “For any given line of shared memory at any given
point in time, there will be at least one component holding a valid copy of the
data, or one and only one component holding a backup copy of it, or both”. In
other words: when the data is sent through the unreliable network (where it is
vulnerable to corruption), it is guaranteed to be stored also in some component
(where it is assumed to be safe) either as a valid and readable cache block or as a
backup block to be used for recovery if necessary.

We have modified the conservation of tokens rule to add a special backup token.
We have also modified the write rule and the read rule so that, unlike the rest of
the tokens, this token does not grant any permission to its holder. Instead, a
cache holding this token will keep the data only for recovery purposes. The
new owner token transfer rule ensures that whenever a cache has to transfer the
ownership to another cache, it will keep the backup token (and the associated
data as a backup). The new backup token transfer rule ensures that the backup
token is not transferred until the owner token (and hence the data) has been
received by another cache. Of course, this implies that the component holding
the owner token has to communicate that fact to the component that holds the
backup token, usually by means of an ownership acknowledgment (see section 4.2).
It also implies that a cache receiving the backup token has always received the
data before. Finally, the new blocked ownership rule ensures that there is at most
one backup copy of the data, since there is only one backup token. Section 4.2
explains the actual mechanism for ownership transference used by FtTokenCMP,
which complies with the above rules.
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Fault detection

As discussed in section 4.1, only the messages carrying transient read/write
requests can be lost without negative consequences. For the rest of the cases,
losing a message results in a problematic situation. However, all of these cases
have in common that they lead to deadlock. Hence, a possible way to detect
faults is by using timeouts for transactions. We use four timeouts for detecting
message losses: the “lost token timeout” (see section 4.2), the “lost data timeout”,
the “lost backup deletion acknowledgment timeout” (see section 4.2) and the “lost
persistent deactivation timeout” (see section 4.2). Notice that the first three of these
timeouts along with the usual retry timeout of the token protocol (all timeouts
except the lost persistent deactivation timeout) can be implemented using just one
hardware counter, since they do not need to be activated simultaneously. For
the lost persistent deactivation timeout, an additional counter per processor at each
cache or memory module is required. A summary of the timeouts used by our
proposal can be found in table 4.2.

Since the time to complete a transaction cannot be bounded reliably with a
reasonable timeout due to the interaction with other requests and the possibility of
network congestion, our fault detection mechanism may produce false positives,
although this should be very infrequent. Hence, we must ensure that our
corrective measures are safe even if no fault really occurred.

Once a problematic situation has been detected, the main recovery mechanism
used by our protocol is the token recreation process described later in section 4.2.
That process resolves a deadlock ensuring both that there is the correct number
of tokens and one and only one valid copy of the data.

We present a summary of all the problems that can arise due to loss of
messages and their proposed solutions in table 4.3. In the rest of this section,
we explain how our proposal prevents or solves each one of these situations in
detail.

Avoiding data loss

In TokenCMP, the node that holds the owner token associated with a memory
line is considered the owner node of that line and is responsible of sending
the data to any other node that needs it, and writing it back to memory when
necessary. Hence, transferring the owner token means transferring ownership,
and this happens whenever a write request has to be answered since all the
tokens need to be transferred to the requestor. It also happens at some other
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Table 4.2: Summary of timeouts used in FtTokenCMP

Timeout When is it acti-
vated?

Where is it acti-
vated?

When is it deac-
tivated?

What hap-
pens when it
triggers?

Lost Token A persistent re-
quest becomes
active.

The starver
cache.

The persistent
request is satis-
fied or deacti-
vated.

Request a token
recreation.

Lost Data A backup state
is entered (the
owner token is
sent).

The cache
that holds the
backup.

The backup
state is aban-
doned (the
ownership ac-
knowledgment
arrives).

Request a token
recreation.

Lost Backup Dele-
tion Acknowledg-
ment

A line enters the
blocked state.

The cache that
holds the owner
token.

The blocked
state is aban-
doned (the
Backup Dele-
tion Acknowl-
edgment ar-
rives).

Request a token
recreation.

Lost Persistent
Deactivation

A persistent re-
quest from an-
other cache is
activated.

Every cache (by
the persistent re-
quest table).

The persistent
request is deac-
tivated.

Send a persis-
tent request
ping.

times, like when doing a write-back (the ownership is transferred from a L1 cache
to L2 or from L2 to memory), when the first read request is answered by memory
or when answering some read requests if a migratory-sharing optimization is
used.

In both TokenCMP and FtTokenCMP, the owner token always travels along
with data (see the token counting rules explained in appendix A and the fault-
tolerant token counting rules in section 4.2) and many times the data included in
such a message is the only up-to-date copy of the data available in the system.
This does not happen when data travels in a message which does not contain the
owner token, since in that case it is guaranteed that the owner node still has the
owner token and a valid copy of the data.

To avoid losing data in our fault-tolerant coherence protocol, a component
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Table 4.3: Summary of the problems caused by loss of messages in FtTokenCMP
and the detection and recovery mechanisms employed

Fault / Lost message Effect Detection Recovery

Transient read/write
request

Harmless

Response with to-
kens

Deadlock Lost token timeout Token recreation

Response with to-
kens and data

Deadlock Lost token timeout Token recreation

Response with a
dirty owner token
and data

Deadlock and data
loss

Lost data timeout Token recreation us-
ing backup data

Persistent
read/write requests

Deadlock Lost token timeout Token recreation

Persistent request de-
activations

Deadlock Lost persistent deac-
tivation timeout

Persistent request
ping

Ownership acknowl-
edgment

Deadlock and cannot
evict line from cache

Lost data timeout Token recreation

Backup deletion ac-
knowledgment

Deadlock Lost backup deletion
acknowledgment
timeout

Token recreation

(cache or memory controller) that has to send the owner token will keep the data
line in a backup state. This is required by the owner token transfer rule of section
4.2 which states that the sender must keep the backup token.

A line holding the backup token and no other token is considered to be in a
backup state. A line in backup state will not be evicted from the component until
an ownership acknowledgment is received, even if every other token is sent to other
components. This acknowledgment is sent by every component in response to
a message carrying the owner token. When the ownership acknowledgment is
received, the backup token will be sent to the new owner and the backup data
will be discarded. This is the only way that the backup token can be transferred
due to the backup token transfer rule. The blocked ownership rule ensures that once
an ownership acknowledgment has been sent, the owner token will stay at the
same component until the backup token is received by that component. The
message carrying the backup token is called a backup deletion acknowledgment
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because it acknowledges to the new owner that the old backup data has been
discarded.

While a line is in backup state its data is considered invalid and will be used
only if required for recovery. Hence, the cache will not be able to read from that
line.

Notice that it is possible for a cache to receive valid data and a non-backup
token before abandoning a backup state, only if the data message was not
actually lost. In that case, the cache will be able to read from that line, since it
will be transitioned to an intermediate backup and valid state until the ownership
acknowledgment is received.

C1 C2

I M

I→IM
store

M→B
GetX

IM→Mb
DataO

B→I
AckO

Mb→M
AckBD

Cache C1 receives a store request from its processor while having no tokens (I state), so it
broadcasts a transient exclusive request (GetX). C2, which has all the tokens and hence is in
modified state (M), answers to C1 with a message (DataO) carrying the data and all the tokens
except the backup token and including the owner token. Other caches will receive the GetX
message, but they will ignore it since they have no tokens. Since C2 needs to send the owner
token, it goes to the backup state (B) and starts the lost data timeout. When C1 receives the DataO
message, it satisfies the miss and enters the modified and blocked state (Mb), sending an ownership
acknowledgment (AckO) to C2. When C2 receives it, it discards the backup, goes to invalid state
(I), stops the lost data timeout and sends a backup deletion acknowledgment caryying the backup
token (AckBD) to C1. Once C1 receives it, it transitions to the normal modified state (M).

Figure 4.1: Message exchange example of a cache-to-cache transfer using owned
data loss avoidance in FtTokenCMP

A cache line in a backup state (that is, holding the backup token) will be used
for recovery if no valid copy is available when a message carrying the owner
token is lost. To be able to do this in an effective way, it is necessary to ensure
that there is a valid copy of the data or one and only one backup copy at all times,
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or both. Having more than one backup copy would make recovery impossible,
since it could not be known which backup copy is the most recent one.

Hence, to avoid having several backup copies, a cache which has received
the owner token recently cannot transmit it again until it is sure that the backup
copy for that line has been deleted. In this situation, the line enters the blocked
ownership state, following the blocked ownership rule. A line will leave this state
when the cache receives a backup deletion acknowledgment which is sent by any
cache when it deletes a backup copy after receiving an ownership acknowledgment.
Figure 4.1 shows an example of how the owner token is transmitted with our
protocol.

The two acknowledgments necessary to finalize the ownership transference
transaction are out of the critical path of the miss, hence the miss latency is
unaffected by this mechanism (ignoring the extra network traffic that could
arguably increase the latency).

However, there is a period after receiving the owner token until the backup
deletion acknowledgment with the backup token arrives during which a cache
cannot answer to write requests because it would have to transmit the owner
token, which is blocked. This blocking also affects persistent requests, which
are serviced immediately after receiving the backup deletion acknowledgment. This
blocked period could increase the latency of some cache-to-cache transfer misses,
however we have found that it does not have any measurable impact on perfor-
mance, as most writes to the same line by different processors are sufficiently
separated in time. The blocked period lasts as long as the round-trip delay for
control messages between the new owner and the old owner.

Even for highly contended cache lines, the blocking period is unlikely to affect
performance. For example, for a highly contended lock, when the new owner
receives the data message and enough tokens, it can already acquire the lock
(writing to the cache line) and perform whatever work it has to do that required
acquiring the lock. Except for very small critical sections, the backup deletion
acknowledgment will likely arrive before the lock is released (writing again to
the cache line, but without needing another ownership transference). This way,
the lock can be immediately acquired by another processor.

The safe ownership transference mechanism also affects replacements (from
L1 to L2 and from L2 to memory). We have found that the effect on replacements
is much more harmful for performance than the effect on cache-to-cache transfer
misses mentioned above. This is because the cache line cannot be actually
evicted from the cache that needs to perform the replacement until the ownership
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acknowledgment is received. Of course, this also affects the latency of the cache
miss that initiated the replacement, as shown in figure 4.2.

L1 L2

aM, bI aI, bM

aM→B
bstore

aI→Mb

aWbData

aB→I, bI→IM
aAckO

aMb→I

bAckBD

bM→B

bGetX

bIM→Mb
bDataO

aB→I, bI→IM

aAckO

bMb→I
bAckBD

ex
tr

a
la
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nc

y

Initially, we have memory line a with all the tokens in the L1 cache, and memory line b with all
the tokens in the L2 cache. The L1 cache receives a store event for line b, but before it can issue a
GetX request it needs to replace line a (to make room). For doing so, it sends the data and all
the tokens, except the backup token, to L2 using a WbData message. It has to keep the data in
the cache in B state until it receives an AckO message. When the AckO message is received by
the L1 cache, it can send the backup token to L2 using an AckBD message, change the tag of the
cache line to that of line b, and then issue the GetX message for line b. The rest of the transaction
is handled as in figure 4.1. There is some extra latency with respect to TokenCMP because the
replacement cannot be finished and (and the tag of the cache line updated) until the ownership
acknowledgment is received. This extra latency can be avoided by moving the data of line a to a
backup buffer as soon as the write-back starts.

Figure 4.2: Message exchange in FtTokenCMP without backup buffer for a miss
including the required previous write-back

To alleviate the effect in the latency of replacements, we propose using a small
backup buffer to store the backup copies. In particular, we add a backup buffer
to each L1 cache. A line is moved to the backup buffer when it is in a backup
state, it needs to be replaced and there is enough room in the backup buffer1.
The backup buffer acts as a small victim cache, except that only lines in backup

1We do not move the line to the backup buffer immediately after it enters a backup state to
avoid wasting energy in many cases and avoid wasting backup buffer space unnecessarily.
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states are moved to it. We have found that a small backup buffer with just 1 or
2 entries is enough to virtually remove the negative effect of backup states (see
section 8.3). Alternatively, a write-back buffer could achieve the same effect.

Handling the loss of an owned data carrying message or an ownership
acknowledgment

In TokenCMP, losing a message which carries the owner token means that
possibly the only valid copy of the data is lost. However, with the mechanism
described above there would still be an up to date backup copy at the cache
which sent the data carrying message and still holds the backup token.

If the data carrying message does not arrive to its destination, no correspond-
ing ownership acknowledgment will be received by the component holding the
backup token (former owner), leading to a deadlock.

To detect this deadlock, we use the lost data timeout. It will start when the
owner token is sent and stop once the ownership acknowledgment arrives. In
other words, it is active while the line is in backup state.

The lost data timeout will also trigger if an ownership acknowledgment is lost.
In that case, the backup copy will not be discarded and no backup deletion ac-
knowledgment will be sent. Hence, the backup copy will remain in one of the
caches and the data will remain blocked in the other. The lost backup deletion
acknowledgment timeout (see section 4.2) may trigger too in that case.

When either timeout triggers, the cache requests a token recreation process
to recover the fault (see section 4.2). The process can solve both situations: if
the ownership acknowledgment was lost, the memory controller will send the data
which had arrived to the other cache; if the data carrying message was lost, the
cache will use the backup copy as valid data after the recreation process ensures
that all other copies have been invalidated.

The loss of an owner token carrying message can be detected by the lost token
timeout (see section 4.2) since the number of tokens decreases. However, that
timeout is not enough to detect the loss of an ownership acknowledgment.

Handling the loss of the backup token

During the reliable ownership transference process described in section 4.2, the
backup token is sent using a backup deletion acknowledgment in response to an
ownership acknowledgment to signal that the backup has been discarded and to
allow the new owner of the cache line to finish the blocking period and to be
able to transfer ownership again if necessary.
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When a backup deletion acknowledgment is lost, a line will stay indefinitely in a
blocked ownership state. This will prevent it from being replaced or to answer
any write request by another cache. Both things would eventually lead to a
deadlock.

The first problem is detected by lost backup deletion acknowledgment timeout. To
be able to replace a line in a blocked state when the backup deletion acknowledgment
is lost, the lost backup deletion acknowledgment timeout is activated when the re-
placement is necessary, and deactivated when the backup deletion acknowledgment
arrives. If it triggers, a token recreation process will be requested. Alternatively, the
lost backup deletion acknowledgment timeout could be activated immediately after
sending the ownership acknowledgment, but activating it only when a replacement
is required allows us to deallocate the MSHR entry as soon as the miss has been
satisfied.

For the second problem, if a miss cannot be resolved because the line is
blocked in some other cache waiting for a backup token which has been lost,
eventually a persistent request will be activated for it and after some time the lost
token timeout will trigger too (see section 4.2). Hence, the token recreation process
will be used to solve this case.

The token recreation process will solve the fault in both cases, since even lines
in blocked states are invalidated and must transfer their data to the memory
controller (see section 4.2).

Dealing with token loss

As explained in appendix A, in a token based cache coherence protocol every
memory line has an associated number of tokens which should remain always
constant. To be able to write to a memory line, a processor needs to collect all
these tokens to ensure that no other processor can read from that line.

In TokenCMP all response messages carry at least one token. Hence, when a
response message is lost, the total number of available tokens associated to that
memory line will decrease. In that case, when a processor tries to write to that
line either in the same coherence transaction or in a later one, it will eventually
timeout after sending a transient request (or several of them depending on the
particular implementation of token coherence) and issue a persistent request.

In the end, after the persistent request gets activated, all the available tokens
in the whole system for the memory line will be received by the starving cache.
Also, if the owner token was not lost and is not blocked (see section 4.2 for what
happens otherwise), the cache will receive it too together with data. However,
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since the cache will not receive all the tokens that it expects, it will not be able to
complete the write miss, and finally the processor will be deadlocked.

We use the “lost token timeout” to detect this deadlock situation. It will start
when a persistent request is activated and will stop once the miss is satisfied and
the persistent request is deactivated. The value of the timeout should be long
enough so that, in normal circumstances, every transaction will be finished before
triggering this timeout. Using a value too short for any of the timeouts used to
detect faults would lead to many false positives which would hurt performance,
and would increase network traffic. In section 8.3 we explain how to determine
optimal values for the timeouts.

Hence, if the starving cache fails to acquire the necessary tokens within certain
time after the persistent request has been activated, the lost token timeout will
trigger. In that case, we will assume that some token carrying message has been
lost and we will request a token recreation process for recovery to the memory
module. By means of the token serial number (see section 4.2), this process will
also take care of false positives of the lost token timeout which could lead to an
increase in the total number of tokens and to coherence violations. Notice that
the lost token timeout may be triggered for the same coherence transaction that
loses the message or for a subsequent transaction for the same line. Once the
token recreation has been done, the miss can be satisfied immediately.

Dealing with faults in persistent requests

Assuming a distributed arbitration policy as the one used by TokenCMP and
FtTokenCMP, persistent request messages (both requests and deactivations) are
always broadcast to keep the persistent request tables at each cache synchronized.

These persistent request tables have an entry for each processor that records
whether that processor has an active persistent request and which memory line
it is requesting. Each processor can have only one active persistent request at
any given time and there is a priority mechanism in place to ensure fairness (see
appendix A for details).

Losing either a persistent activation or deactivation message will lead to
inconsistency among the tables in different processors. If the persistent request
tables are inconsistent, some persistent requests may not be activated by some
caches or some persistent requests may be kept activated indefinitely. In the first
case, the cache would not forward any tokens that it had to the starver and in the
second case the cache would not be able to make any request for that memory
line itself. These situations could lead to starvation or deadlock.
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In a system with three tokens per line plus the backup token, cache C1 currently holds all the
tokens and hence is in M state. C2 receives a load event from its processor and then broadcasts a
transient GetS request. C1 answers with a data message carrying also one token, but that message
gets corrupted and never arrives to C2. After a short interval, the token protocol timeout triggers
at C2 and C2 broadcasts a persistent request which is answered by C1 with another data message
and another token. Afterwards, C3 receives an store event from its processor and broadcasts a
GetX request which is answered by C2 with one token and by C1 with a DataO message that
carries the data and the owner token, which is the only non-backup token left in C1. C3 sends an
AckO message to C1 which answers with an AckBD carrying the backup token. Although C3 has
now all the tokens in the system for the memory line, it cannot write to the line since it expects
three non-backup tokens for doing so. Hence, C3 will issue a persistent request that will not be
answered by anyone, and eventually the lost token timeout will trigger detecting the missing token.

Figure 4.3: Message exchange example of a token loss detected using the lost
token timeout
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Dealing with the loss of a persistent request activation

Firstly, it is important to note that the cache which issues the persistent request
(also known as the starver) will always activate it as soon as any higher priority
persistent request for the same line is deactivated, since it does not need to send
any message through the interconnection network to update its own persistent
request table.

If a cache holding at least one token for the requested line which is necessary
to satisfy the miss does not receive the persistent request, it will not activate it in
its local table and will not send the tokens and data to the starver. Hence, the
miss will not be resolved and the starver will deadlock.

Since the persistent request has been activated at the starver cache, the lost
token timeout (see section 4.2) will trigger eventually and the token recreation
process will solve this case too.

On the other hand, if the cache that does not receive the persistent request
did not have tokens necessary to satisfy the miss, it will eventually receive an
unexpected deactivation message which should ignore, but there would not be
any negative effect. This means that in FtTokenCMP the persistent request table
needs to be able to receive unexpected persistent request deactivation messages.

Dealing with the loss of a deactivation message

If a persistent request deactivation message is lost, the request will be perma-
nently activated at some caches. This would make it impossible for those caches
to issue any request for that memory line.

To avoid this problem, caches start the lost persistent deactivation timeout when
a persistent request is activated and stop it when it is deactivated. In other words,
this timeout is active while the persistent request is active. Note that the timeout
is active at every cache except the one that issued the persistent request. Also,
this timeout cannot use the same counter as the rest of timeouts (including the
usual starvation timeout of TokenCMP), instead we need to add a counter for
each entry in the persistent request table.

When this timeout triggers, the cache will send a persistent request ping to the
starver. A cache receiving a persistent request ping will answer with a persistent
request activation or deactivation message whether it has a pending persistent
request for that line or not, respectively.

The lost persistent deactivation timeout is restarted after sending the persistent
request ping to cope with the potential loss of this message.
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Note that since the timeout is active at several caches at the same time, several
persistent request ping messages may be sent almost simultaneously. There are
two ways to deal with this without overloading the interconnection network with
the responses:

• The response (which is either a persistent request activation or deactivation)
can be sent only to the cache that sent the ping, instead of broadcast as
these messages usually are. This is what our implementation does.

• Do not answer to persistent request pings received shortly after another
persistent request ping for the same line has been received.

Additionally, if a cache receives a persistent request from a starver which
already has an active persistent request in the persistent request table before the
lost persistent deactivation timeout triggers, it should assume that the deactivation
message has been lost and deactivate the old request, because each cache can
have only one pending persistent request and a cache will not send a persistent
request activation message before sending the persistent request deactivation
message for the previous request.

Token recreation process

FtTokenCMP provides two fault recovery mechanisms: the token recreation process
and the persistent request ping described in section 4.2. The token recreation process
is the main fault recovery mechanism provided by our proposal and is requested
by any coherence node when either the lost token, lost data or lost backup deletion
acknowledgment timeouts triggers.

This process needs to be effective, but since it should happen very infrequently,
it does not need to be particularly efficient. In order to avoid any race and keep
the process simple, the memory controller will serialize the token recreation
process, attending token recreation requests for the same line in FIFO order.

The process will work as long as there is at least a valid copy of the data in
some cache or one and only one backup copy of the data or both things (the valid
data or backup can be at the memory too).

The protocol guarantees that the above conditions are true at every moment
despite any message loss by means of the fault-tolerant token counting rules (see
sections 4.2 and 4.2). In particular, these conditions are true if no message has
been lost, hence the token recreation process is safe for false positives and can be
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requested at any moment. If there is at least a valid copy of the data, it will be
used for recovery. Otherwise, the backup copy will be used for recovery.

At the end of the process, there will be one and only one copy of the data
with all the tokens (recreating any token which may have been lost) at the cache
which requested the token recreation process.

Token serial numbers

When recreating tokens, we must ensure the Conservation of Tokens invariant
defined in token coherence (see appendix A). In particular, if the number of
tokens increases, a processor would be able to write to the memory line while
other caches hold readable copies of the line, violating the memory coherence
rules. So, to avoid increasing the total number of tokens for a memory line
even in the case of a false positive, we need to ensure that all the old tokens are
discarded after the recreation process. To achieve this we define a token serial
number conceptually associated with each token and each memory line.

All the valid tokens for the same memory line should have the same serial
number. The serial number will be transmitted within every coherence response.
Every cache in the system must know the current serial number associated
with each memory line and must discard every message received containing an
incorrect serial number. The token recreation process modifies the current token
serial number associated with a line to ensure that all the old tokens are discarded.
Hence, if there was no real fault but a token carrying message was delayed on the
network due to congestion (a false positive), it will be discarded when received
by any cache because the token serial number in the message will be identified as
obsolete.

To store the token serial number of each line we propose a small associative
table present at each cache and at the memory controller. Only lines with an
associated serial number different than zero must keep an entry in that table.
The overhead of the token serial number is small. In the first place, we will need
to increase serial numbers very infrequently, so a counter with a small number
of bits should be enough (for example, we use a two-bit wrapping counter in
our implementation). Secondly, most memory lines will keep the initial serial
number unchanged, so we only need to store those ones which have changed it
and assume the initial value for the rest. Thirdly, the comparisons required to
check the validity of received messages can be done out of the critical path of
cache misses.

Since the token serial number table is finite, serial numbers are reset using the
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owner token recreation mechanism itself whenever the table is full and a new
entry is needed, since setting the token serial number to 0 actually frees up its
entry in the table. The entry to be evicted can be chosen at random.

Additionally, when a token serial number needs to be reset (either to replace
it from the token serial number table or because it has reached the maximum
value and needs to be incremented again) the interconnect could be drained to
ensure that there is not any old token still in the network.

Token recreation protocol

The token recreation process is orchestrated by the memory controller. It updates
the token serial number of the memory line which is stored in the table of each
cache, gathers the valid data or backup data and copies it to memory, invalidates
all tokens and evicts the line from all caches, and finally, the memory sends
the data to the node that requested the token recreation process, sends it to the
current higher priority starver or keeps it if no node needs it currently.

The information of the tables must be identical in all the caches except while
it is being updated by the token recreation process. The process works as follows:

1. When a cache decides that it is necessary to start a token recreation process,
it sends a recreate tokens request to the memory controller responsible for
that line. The memory can also decide to start a token recreation process, in
which case no message needs to be sent. The memory will queue token
recreation requests for the same line and service them in order of arrival.

The token recreation request message includes a bit indicating whether the
requestor needs the data after the recreation or not. The first case is the
most common, and the memory will send the data and all the tokens to the
requestor with the last message of the recreation process. The second case
happens when the recreation is detected by a cache that holds the backup
token (because the lost data timeout has triggered), and the memory will
either keep the data itself or send it to the current higher priority starver
after the recreation process.

2. When servicing a token recreation request, the memory will increase the
token serial number associated to the line and send a set token serial number
message to every cache (and to itself since it is also a coherence node,
although no real message travels through the interconnection network for
this purpose).
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3. When receiving the set token serial number message, each cache updates the
token serial number in its table and sends an acknowledgment to the memory.
The set token serial number acknowledgment will also include data if the cache
had valid data (even if it was in a blocked owner state) or a backup. A bit
indicates whether the data sent is valid or a backup state.

4. When the memory receives a set token serial number acknowledgment it will
decrease a counter of pending acknowledgments and take one of the fol-
lowing actions:

• If the message does not contain data, no further action is required.

• If the message contains backup data, no message containing valid data
has been already received and the memory did not have valid data
either, then the backup data is stored in memory and assumed to be
valid, at least until a message with actual valid data arrives. Only one
message with backup data can arrive, because the protocol guarantees
that there is at most one backup copy of the data, as said above.

• If the message contains valid data (and no previous message with valid
data has been received) the data will be stored in memory, possibly
overwriting backup data received in a previous message. Further
messages with either valid data or backup data will be treated like
dataless messages.

5. Once the memory has received valid data or once it has received all the
acknowledgments (and hence, also the backup copy of the data), it will
send a forced backup and data invalidation message to all other nodes.

6. When any cache receives the forced backup and data invalidation, it discards
any token and any data or backup data that it could have.

Since all the tokens held by a cache are destroyed, the state of the line
will become invalid (or the appropriate intermediate state if there is any
pending request), even if the line was in a blocked owner state or backup.

7. When the memory receives all the acknowledgments for both the set token
serial number and the forced backup and data invalidation message, it will send
a token recreation done message to the node that requested the recreation.

At this point, the memory must have received one or more copies of the
valid data of the memory line or, at least, a backup copy of the data which
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it can use for recovery. Also, due to the forced backup and data invalidation
messages, no other node has any data or token.

If the requestor of the recreation process indicated that it wanted to receive
data, the data (and all the tokens) will be sent to it after the token recreation
done message using the safe ownership transference mechanism described
in section 4.2.

Otherwise, either the data and tokens will be kept at the memory or they
will be sent to the current higher priority starver, if it exists, also using the
safe ownership transference process described in section 4.2.

At the end of the process, either the memory or one of the caches has the only
valid copy of the data and all the tokens.

Handling faults in the token recreation process

As said above, the efficiency of the token recreation process is not of great concern,
since it should happen only when one of the fault detection timeouts triggers
(hopefully only after a fault actually occurs). Hence, we can use unsophisticated
(brute force) methods to avoid problems due to losing the messages involved.

For this reason, we could use point to point acknowledgments for all the
messages involved in the token recreation process. These acknowledgments should
not be confused with the acknowledgments mentioned in section 4.2 (which
actually would need these acknowledgments too). These messages are repeatedly
sent every certain number of cycles (2000 in one of our implementations) until an
acknowledgment is received. Serial numbers can be used to detect and ignore
duplicates unnecessarily sent. The acknowledgments are sent as soon as the
message is received, not when it is actually responded.

A simpler way to recover errors in the token recreation process is to restart
the process when it takes too much time to complete. This requires the addition
of only one timeout counter in each memory controller which is started when the
recreation process begins and is stopped when the last acknowledgment arrives.
To cover for the loss of the token recreation request, the cache that sends the request
should restart the timeout that detected the (potential) fault instead of stopping
it so that it will send a second token recreation request if the first one is lost. If the
memory receives two token recreation requests for the same memory line and
from the same node, it should ignore the second one.
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4.3 Hardware overhead of FTTOKENCMP

The fault tolerance measures that FtTokenCMP adds to TokenCMP incur a
certain overhead, both in terms of performance and extra hardware required to
keep coherence. Performance overheads are measured in chapter 8. In this section
we make an approximation to the hardware overheads required to implement
the proposed fault tolerance measures.

Firstly, FtTokenCMP uses a number of timeouts for fault detection. However,
most of the timeouts employed to detect faults can be implemented using the
same hardware already employed by TokenCMP to implement the starvation
timeout required by token coherence protocols, although the counters may need
more bits since the new timeouts are longer. Only for the lost persistent deactivation
timeout it is necessary to add a new counter per processor at each cache and at
the memory controller (one counter per persistent table entry).

Probably the highest overhead in terms of additional hardware is caused
by the token serial number tables. To implement them, we have added a small
associative table at each cache (each L1 and L2 bank) and at the memory controller
to store those serial numbers whose value is not zero. In this work, we have
assumed that each serial number requires a small number of bits (two bits were
used in our tests) and that the number of lines whose token serial number is
different than 0 is usually small. Hence, to implement each token serial number
table we have used a small (16 entries) associative table which has an entry for
every line whose token serial number is different than zero. If the tokens of any
line need to be recreated more than 4 times, its counter will wrap and the serial
number of the line will become 0 again effectively freeing an entry from the
table. If the token serial number table fills up because more than 16 lines need
to have their tokens recreated, the least recently modified entry will be chosen
for eviction. To evict the entry, it is enough to reset to 0 the token serial number
associated with that line using the token recreation process.

Additionally, some hardware is needed to calculate and check the error
detection code used to detect and discard corrupt messages. Both the check for
the token serial number and the error detection code can and should be done in
parallel with the access to the cache tags or to the MSHR to avoid increasing the
response latency in the common case.

Due to the exchange of acknowledgments required to ensure reliable owner-
ship transference, the worst case message dependence chain of FtTokenCMP is
two messages longer that in the case of TokenCMP. Hence, FtTokenCMP may
require up to two more virtual networks than TokenCMP to be implemented,
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depending on the particular topology of the interconnection network and the
deadlock avoidance mechanism employed by the network (see appendix C).

Finally, to avoid a performance penalty in replacements due to the need of
keeping the backup data in the cache until the ownership acknowledgment has
been received, we have proposed to add a small backup buffer at each L1 cache.
The backup buffer can be effective having just one entry, as will be shown in
section 8.3.
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In a transaction like the one of figure 4.1 the AckO gets lost. Hence, C2 keeps the line in backup
state (B) and, after some time, the lost data timeout triggers (LDto) and C2 sends a token recreation
request message (TrR) to the memory controller and enters the backup and recreating state (Br).
Since C2 does not have any pending miss for that line, it will indicate that it does not need the
data after the recreation process is done (using a bit in the TrR message). When the memory
controller receives that message, it goes to a token recreation state (R) and sends a set token serial
number message (TrS) to each node. C3 receives it and answers with an acknowledgment (TrSAck).
C2 is in backup state (B), and, when it receives the TrS, it answers with an acknowledgment
message which carries the backup data too (TrSAck+Backup). C1 is in modified and blocked state,
hence it returns an acknowledgment with data (TrSAck+Data). When the memory receives the
TrSAck+Backup message, it writes the data to memory and transitions to a token recreation with
backup data (RB) state. Later, when it receives the TrSAck+Data, it overwrites the backup data
with the newly received data and transitions to a token recreation with valid data state (RD). If the
TrSAck+Backup had arrived after the TrSAck+Data, it would have been ignored. When the memory
receives the data, it sends a backup and data invalidation message (TrInv) to each cache. C3
receives it and answers with an acknowledgment (TrInvAck) without changing its state, since it has
no tokens. C1 and C2 discard their tokens and valid and backup data respectively and transition
to invalid (I) before sending the TrInvAck. Once the memory receives all the acknowledgments, it
transitions to M state (that is, the memory will recreate a new set of tokens and hold all of them
itself) and sends a TrDone message to C2.

Figure 4.4: Message exchange in a token recreation process (used in this case to
recover from the loss of an ownership acknowledgment)
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Chapter 5
A directory-based fault-tolerant

cache coherence protocol

In the previous chapter we have described how a token-based cache coherence
protocol can be extended with fault-tolerant measures so that it can be guaranteed
correct executions even when the on-chip interconnection network loses some
messages. Unfortunately, token coherence is not the cache coherence protocol of
choice in current CMP proposals. However, we can adapt the techniques used
in chapter 4 to most types of protocols. In this chapter, we will adapt them for
directory-based cache coherence, which is a widely used and well understood
class of protocols which is often proposed as the cache coherence mechanism of
choice for future many-core CMPs [72].

Tiled CMPs implement a point-to-point interconnection network which is best
suited for directory-based cache coherence protocols. Furthermore, compared
with snoopy-based or token-based [68] protocols which usually require frequent
broadcasts, directory-based ones are more scalable and energy-efficient.

In this chapter we explain the design of a fault-tolerant directory-based cache
coherence protocol which we call FtDirCMP and that is based on DirCMP, a
directory-based cache coherence protocol that we describe in appendix B.

The design of FtDirCMP was heavily influenced by the lessons learned while
designing FtTokenCMP. Both share several fault tolerance characteristics:

• Messages are assumed to either arrive correctly to their destination or not
arrive at all. If a corrupted message arrives to any node, the corruption will
be detected using error detection codes and the message will be discarded.
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• The integrity of data when cache lines travel through the network is ensured
by means of explicit acknowledgments out of the critical path of cache
misses. These acknowledgments are used only for a few selected messages
which cannot be discarded without losing data.

• A number of timeouts are used to detect deadlocks and trigger fault recovery
mechanisms. However, the number of timeouts which are necessary and
the function of each timeout depend on the particular coherence protocol.

• Ping messages are used in some cases for deadlock recovery. However, both
protocols have another recovery mechanism which is different in each case.

However, the implementation of the above measures is different for FtDirCMP
and FtTokenCMP. Moreover, some mechanisms are significantly different be-
tween both protocols:

• FtDirCMP does not have a centralized recovery mechanism like the to-
ken recreation process (see section 4.2). When a potential fault is detected,
FtDirCMP either uses ping messages or reissues requests for recovery.

• FtDirCMP uses request serial numbers (see section 5.2) to avoid creating
incoherences due to stale responses to reissued requests in case of false
positives. Their function is analogous to token serial numbers (see section
4.2), but request serial numbers are more scalable and easier to implement.

5.1 Problems caused by an unreliable
interconnection network in DIRCMP

Table 5.1 shows a summary of the message types used by DirCMP, their function,
and the effect that losing them has in the execution of a parallel program.

As can be seen in the table, losing a message in DirCMP will always lead
to a deadlock situation, since either the sender will be waiting indefinitely for a
response or the receiver was already waiting for the lost response. Hence, we
will be able to use timeouts to detect all faults.

Additionally, losing some data carrying messages can lead to loss of data if
the corresponding memory line is not in any other cache and it has been modified
since the last time that it was written to memory. Data messages can be lost
without losing data because the node that sends them in response to a read
request will always keep a copy of the data in owned state.
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Table 5.1: Message types used by DirCMP and the effect of losing them

Type Description Effect if lost

GetX Request data and permission to write. Deadlock
GetS Request data and permission to read. Deadlock
Put Sent by the L1 or L2 to initiate a write-back. Deadlock
WbAck Sent by the L2 or memory to let the L1 or L2 actually

perform the write-back. The L1 will not need to send
the data.

Deadlock

WbAckData Sent by the L2 or memory to let the L1 or L2 actually
perform the write-back. The L1 will need to send
the data.

Deadlock

WbNack Sent by the L2 or memory when the write-back
cannot be attended (probably due to some race) and
needs to be reissued.

Deadlock

Inv Invalidation request sent to invalidate sharers be-
fore granting exclusive access. Requires an ACK
response.

Deadlock

Ack Invalidation acknowledgment. Deadlock
Data Message carrying data and granting read permis-

sion.
Deadlock

DataEx Message carrying data and granting write permis-
sion (although invalidation acknowledgments may
still be pending).

Deadlock and
data loss

Unblock Informs the L2 or directory that the data has been
received and the sender is now a sharer.

Deadlock

UnblockEx Informs the L2 or directory that the data has been
received and the sender has now exclusive access to
the line.

Deadlock

WbData Write-back containing data. Deadlock and
data loss

WbNoData Write-back containing no data. Deadlock

Differently than TokenCMP, there are no messages in DirCMP which could
be lost without causing any problem.

Since write access to a line is only granted after all the necessary invalidation
acknowledgments have been actually received, losing any message cannot lead
to a cache incoherence, as stated in section 3.2.
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5.2 Fault tolerance measures introduced by
FTDIRCMP

FtDirCMP is an extension of DirCMP which assumes an unreliable intercon-
nection network. It will guarantee the correct execution of a program even if
coherence messages are lost or discarded by the interconnection network due to
transient errors. It will detect and recover from deadlocks and avoid data loss.

To avoid data loss, FtDirCMP uses extra messages to acknowledge the
reception of a few critical data messages. When possible, those messages are kept
out of the critical path of any cache miss so that the miss latency is unaffected.
Also, they are piggybacked in other messages in the most frequent cases to reduce
the network traffic overhead. This mechanism is explained in section 5.2.

To implement fault tolerance, FtDirCMP adds a few new message types to
those shown in table 5.1. Table 5.2 shows the new message types and a summary
of their function. The following sections explain their roles in more detail.

Table 5.2: Additional message types used by FtDirCMP

Type Description

AckO Ownership acknowledgment.
AckBD Backup deletion acknowledgment.
UnblockPing Requests confirmation whether a cache miss is still in progress.
WbPing Requests confirmation whether a write-back is still in progress.
WbCancel Confirms that a previous write-back has already finished.
OwnershipPing Requests confirmation of ownership.
NackO Not ownership acknowledgment in response to an Ownership-

Ping.

As previously said, thanks to the fact that every message lost in DirCMP
leads to a deadlock, FtDirCMP can use timeouts to detect potentially lost
messages. FtDirCMP uses a number of timeouts to detect faults and start
corrective measures. Table 5.3 shows a summary of these timeouts, table 5.4
shows which timeout detects the loss of each message type, and sections 5.2, 5.2,
5.2 and 5.2 explain each timeout in more detail.

As can be seen in table 5.3, FtDirCMP provides two types of recovery mech-
anisms: issuing ping messages and reissuing some requests. The recovery
mechanism used in each case depends on the timeout which detects the possible
fault.
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Table 5.3: Summary of timeouts used in FtDirCMP

Timeout When is it acti-
vated?

Where is it acti-
vated?

When is it deac-
tivated?

What hap-
pens when it
triggers?

Lost Request A request is is-
sued.

At the request-
ing L1 cache.

The request is
satisfied.

The request is
reissued with a
new serial num-
ber.

Lost Unblock A request is
answered (even
write-back
requests).

The responding
L2 or memory.

The unblock (or
write-back) mes-
sage is received.

An Unblock-
Ping/WbPing
is sent to the
cache that
should have
sent the Unblock
or write-back
message.

Lost backup dele-
tion acknowledg-
ment

The AckO mes-
sage is sent.

The node that
sends the AckO.

The AckBD mes-
sage is received.

The AckO is reis-
sued with a new
serial number.

Lost data Owned data is
sent through the
network.

The node that
sends owned
data.

The AckO mes-
sage is received.

An Ownership-
Ping is sent.

Ping messages are used in situations where some component is waiting for
some message from other component to be able to finalize a transaction. For
example, this happens when an Unblock message is lost, since these messages
are used to inform the directory (or memory controller) that a transaction has
finished and the next pending transaction can be attended.

Most often, when a fault occurs and a timeout triggers, FtDirCMP reissues
the request using a different serial number. The protocol assumes that some
message involved in the transaction has been lost due to a transient fault and that
trying the transaction a second time will work correctly. The need for request
serial numbers is explained in section 5.2. These reissued requests need to be
identified as such by the node that answers to them and not be treated like an
usual request. In particular, a reissued request should not wait in the incoming
request buffer to be attended by the L2 or the memory controller until a previous
request for the same line is satisfied, because that previous request may be
precisely the older instance of the request that is being reissued. Hence, the L2
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Table 5.4: Timeout which detects the loss of each type of message in FtDirCMP

Type Timeout which detects its loss

GetX Lost request timeout.
GetS Lost request timeout.
Put Lost request timeout.
WbAck Lost request timeout.
WbAckData Lost request timeout.
WbNack Lost request timeout.
Inv Lost request timeout.
Ack Lost request timeout.
Data Lost request timeout.
DataEx Lost request timeout or lost data timeout.
Unblock Lost unblock timeout.
UnblockEx Lost unblock timeout.
WbData Lost unblock timeout or lost data timeout.
WbNoData Lost unblock timeout.
AckO Lost backup deletion acknowledgment timeout.
AckBD Lost backup deletion acknowledgment timeout.
UnblockPing Lost unblock timeout.
WbPing Lost unblock timeout.
WbCancel Lost unblock timeout.
OwnershipPing Lost data timeout.
NackO Lost data timeout.

directory needs to remember the blocker (last requester) of each line to be able
to detect reissued requests. This information can be stored in the Miss Status
Holding Register (MSHR) table or in a dedicated structure for the cases when it
is not necessary to allocate a full MSHR entry.

Reliable data transmission

As mentioned in section 3.2, a fault-tolerant cache coherence protocol needs to
ensure that there is always at least one updated copy of the data of each line off
the network and that such copy can be readily used for recovery in case of a fault
that corrupts the data while it travels through the network.

In a MOESI protocol, there is always one owner node for each line. This
owner node is responsible of sending data to other nodes to satisfy read or write
requests and of performing write-back when the data is modified. Hence, the
owner will always have an up-to-date copy of the data of the memory line.
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Due to the fact that the owner always has a copy of the data, data transmission
is required to be reliable only when ownership is transferred. If a message
transferring data but not ownership is lost while it travels through the network, it
can always be resent by the owner node. But when ownership is being transferred,
the message transferring the owned data cannot be resent if lost because it may
be the only up-to-date copy of the data.

In DirCMP and FtDirCMP, ownership can be transferred either with an
exclusive data response or a write-back response; and it is initiated either due to
a request from a lower level cache, a forwarded request from a higher level cache
or because a node needs to write the data back due to a replacement.

Exclusive data responses are sent in response to an exclusive access request
(GetX), or in response to a shared access request (GetS) if there are no current
sharers when the request is received by the directory, or due to the migratory
sharing optimization.

In order to ensure reliable data transmission of owned data, FtDirCMP keeps
a backup of the data when transferring ownership until it receives confirmation
from the new owner that the data has been received correctly.

To this end, FtDirCMP adds some additional states to the usual set of MOESI
states1 used by the non fault-tolerant protocol:

• Backup (B): This state is similar to the Invalid (I) state with respect to the
permissions granted to the local node, but the data line is kept in the cache
to be used for potential recovery if necessary.

A line will enter a Backup state when the ownership needs to be transferred
to a different cache (that is, when leaving the Modified, Owned or Exclusive
states) and will abandon it once an ownership acknowledgment message is
received, either as an AckO message by itself or piggybacked with an
UnblockEx message.

• Blocked ownership (Mb, Eb and Ob): These states are similar to the
standard Modified, Exclusive and Owned (M, E and O), respectively. The
difference is that a node cannot transfer the ownership of a line in one of
these states to another node.

The purpose of these states is to prevent having more than one backup for
a line at any given point in time, which is important to be able to recover

1In the actual implementation there are also many intermediate states which are not consid-
ered in this explanation for simplicity, both in the non fault-tolerant and in the fault-tolerant
protocols.
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in case of a fault. A cache that acquires ownership (entering the blocked
Modified, Owned or Exclusive states) will avoid transmitting the ownership
to another cache until it receives a backup deletion acknowledgment message
from the previous owner.

While a line is in one of these states, the cache will not attend external
requests to that line which require ownership transference, but the cache
can read and write to the line just like in the corresponding unblocked state.

The requests received while in these states will be queued to be attended
once the backup deletion acknowledgment has been received. However, note
that they could also be discarded since the protocol has provisions for
reissuing lost requests. This property can be useful to avoid having to
increase any buffer size, specially in the L1 cache controllers.

The states described above mimic the effect of the token counting rules for
reliable data transference described in section 4.2. With them, the transmission of
owned data between two nodes works as follows:

1. When a node sends owned data to another node (leaving the M, O or E
state), it does not transition to an Invalid state like in a standard directory
protocol. Instead, it enters a Backup (B) state in which the data is still kept
for recovery, although no read or write permission on the line is retained.

Depending on the particular case, the data may be kept in the same cache
block, in a backup buffer or in a write-back buffer, as explained for the
FtTokenCMP protocol in section 4.2. The cache will keep the data until it
receives an ownership acknowledgment, which can be received as a message
by itself or piggybacked along with an UnblockEx message.

2. When the data message is received by the new owner, it sends an ownership
acknowledgment to the node that sent the data. Also, it does not transition
directly to an M, O or E state like an usual directory protocol would do.
Instead it enters one of the blocked ownership states (Mb, Eb or Ob) until it
receives the backup deletion acknowledgment. While in these states, the node
will not be allowed to transfer ownership to another node. This ensures
that there is never more than one backup copy of the data. However, at this
point the node has received the data (and possibly write permission to it)
and the miss is already satisfied.

The ownership acknowledgment can be interpreted as a “request to delete the
old backup”. Hence, to be able to reissue it in case that it is lost (see sections
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5.2 and 5.2), it will carry a request serial number also, which can be the
same than the data carrying message just received.

3. When the node that sent the data receives the ownership acknowledgment,
it transitions to an Invalid state and sends a backup deletion acknowledgment
to the other node with the same serial number as the received ownership
acknowledgment.

4. Finally, once the backup deletion acknowledgment is received, the node that
received the data transitions to an M, O or E state and can now transfer the
ownership to another node if necessary.

Figure 5.1 shows an example of how a cache-to-cache transfer miss which
requires ownership change is handled in FtDirCMP and compares it with
DirCMP.

As will be shown in chapter 8, the main overhead introduced by FtDirCMP
when compared to DirCMP is the extra network traffic incurred during the
reliable ownership transference due to the pair of acknowledgments that it entails.
To reduce this overhead, the ownership acknowledgment can be piggybacked in
the UnblockEx message when the data is sent to the requesting L1 by the L2 (or
to L2 by the memory). In that case, only an extra message (the backup deletion
acknowledgment) needs to be sent. An example of this situation can be seen in
figure 5.2.

The ownership transference procedure described in this section ensures that
for every memory line there is always either an owner node that has the data, a
backup node which has a backup copy of the data or both. They also ensure that
there is never more than one owner or one backup node.

Optimizing ownership transference from memory to L1 caches

The rules explained above ensure the reliable transmission of owned data in all
cases without adding any message to the critical path of cache misses in most
cases. However, those rules still create potential performance problems due to
the blocked ownership states, since a node (L1 cache, L2 cache bank or memory
controller) cannot transfer the recently received owned data until the backup
deletion acknowledgment message is received.

2In owned state, additional invalidation messages and their corresponding acknowledgments
would be needed.

109



5. A directory-based fault-tolerant cache coherence protocol

L1a L2 L1b

MI→IM
store

GetX

M→I
GetX

IM→M
DataEx

UnblockEx

(a) DirCMP

L1a L2 L1b

MI→IM
store

GetX

M→B
GetX

IM→Mb
DataEx

UnblockEx

B→I
AckO

Mb→M
AckBD

(b) FtDirCMP

Initially, for both protocols, L1b has the data in modifiable (M), exclusive (E) or owned2 (O)
state and L1a receives a store request from its processor and requests write access to L2 which
forwards the request to L1b. In DirCMP, L1b sends the data to L1a and transitions to invalid
state. Subsequently, when L1a receives the data, it transitions to a modifiable (M) state and sends
an UnblockEx message to L2. In FtDirCMP, when L1b receives the forwarded GetX, it sends
the data to L1a and transitions to the backup state. When L1a receives the data, it transitions
to the blocked ownership and modifiable (Mb) state and sends the UnblockEx message to L2
and an AckO message to L1b. Notice that L1a can use the data as soon as it arrives (at the same
moment than in DirCMP and that L2 start attending the next pending miss for that memory line
as soon as the UnblockEx message arrives (like in DirCMP too). When L1b receives the AckO,
it discards the backup data, transitions to invalid (I) state and sends a AckBD message to L1a,
which transitions to the usual modifiable (M) state when receives it.

Figure 5.1: Message exchange for a cache-to-cache write miss

As discussed for FtTokenCMP, this is not a problem when the data is received
by an L1 cache since the node that requested the data can already use it while it
waits for such acknowledgment. Only later requests to the same address from
other nodes could be affected: in the worst case the second request would see its
latency increased by as much time as the round-trip time of the acknowledgments
between the new owner to the former owner. We have not been able to measure
any slowdown in applications due to this problem.

In any case, that worst case is highly unlikely except for highly contended
memory lines, like locks. In the particular case of locks, the negative effect is
further reduced because when a node requests exclusive access to a memory line
where a lock is stored, it does it usually in order to acquire the lock. Usually
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L1 L2

MI→IM
store

M→I’
GetX

IM→M
DataEx

I’→I
UnblockEx

(a) DirCMP

L1 L2

MI→IM
store

M→B’
GetX

IM→Mb
DataEx

B’→I

UnblockEx+AckO

Mb→M
AckBD

(b) FtDirCMP

In both protocols, the L1 cache sends a GetX message to the L2, which has the data in an exclusive
state (M or E). In DirCMP, when the L2 receives the request, it sends the data to L1 which, once
it receives it, transitions to modificable (M) state and answers to L2 with an UnblockEx message.
In FtDirCMP, when the L2 receives the request, it sends the data to the L1 but it also keeps a
backup copy of the data. When the L1 receives the data, it transitions to blocked ownership and
modifiable (Mb) state, performs the store, and answers with a message which serves both as the
UnblockEx and as the AckO messages used in figure 5.1. The backup copy in L2 will be kept until
the UnblockEx+AckO message send by L1 is received and the AckBD message is sent to the L1,
which transitions to the modifiable (M) state when receives it.

Figure 5.2: Message exchange for an L1 write miss that hits in L2

that node needs to do some work before it releases the lock (writing again to the
memory line) and another node can acquire it. Hence, slightly increasing the
latency of the coherence miss that happens when a second node tries to acquire
the lock has no actual effect as long as that increase is less than the time required
by the first node to perform work inside of the critical region protected by the
lock.

However, in the case of L2 misses, the L2 cannot forward the data to the L1
cache to answer the request immediately after receiving the data from memory
because, according to the rules described above, it first needs to send an ownership
acknowledgment to memory and wait for the backup deletion acknowledgment. Only
then, it would send the data to L1 (keeping a backup), wait for another ownership
acknowledgment from L1 and then send another backup deletion acknowledgment.
Hence, in the case of L2 misses, the rules above would add two messages in the
critical path of cache misses.

To avoid increasing the latency of L2 misses, we relax the rules in these cases
while still ensuring that recovery is possible. As an optimization, we allow the
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L2 to send the data directly to the requesting L1 just after receiving it, keeping a
backup until it receives the ownership acknowledgment from the L1. In fact, the L2
does not send the ownership acknowledgment to memory until it receives it from
the L1 (most times piggybacked on an unblock message) since this way we can
piggyback it with an UnblockEx message. Figure 5.3 shows an example of how
an L2 miss would be resolved without and with this optimization.

L1 L2 Mem

MI→IM
store

GetX

M→B’
GetX

DataEx

B’→I’
AckO

AckBD

IM→Mb
DataEx

UnblockEx+AckO

I’→I
UnblockEx

Mb→M
AckBD

(a) Unoptimized

L1 L2 Mem

MI→IM
store

GetX

M→B’
GetX

DataEx

IM→Mb
DataEx

UnblockEx+AckO

I’ →I

UnblockEx+AckO

AckBD

Mb→M
AckBD

(b) Optimized

In both cases, the L1 sends a GetX message to L2 which, since it does not have the data, forwards
it to the memory controller. The memory controller fetches the data and sends it to L2 using a
DataEx message. Now, in the unoptimized case, when the L2 receives the owned data, it sends
an ownership acknowledgment to the memory controller and waits for the backup deletion
acknowledgment before answering to L1 with the data. Once L1 receives the data, it sends a
message to L2 carrying the ownership acknowledgment and the unblock. When the L2 receives
this message, it will send a backup deletion acknowledgment to L1 and an unblock message
to the memory controller. On the other hand, in the optimized version, when the L2 receives
the DataEx message from memory, it sends another DataEx message to L1. Notice that now the
critical path of the miss requires only 4 hops instead of 6. Once the L1 has received the data,
it will send a message with the unblock and the ownership acknowledgment to L2 which will
then send the unblock to memory and the backup deletion acknowledgment to L1. Finally, when
the memory controller receives the ownership acknowledgment, it will answer with a backup
deletion acknowledgment message.

Figure 5.3: L2 miss optimization of ownership transference
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To implement this behavior, we modify the set of states for the L2 cache so
that a line can be either internally blocked or externally blocked, or both (which
would correspond to the blocked states already described).

A line enters an externally blocked state when the L2 receives data from
memory and leaves it when it receives the backup deletion acknowledgment from
memory. While in one of those states, the L2 cannot send the data to the memory
again, but it can send it to an L1 cache keeping a backup until the respective
ownership acknowledgment is received.

Additionally, in a multiple CMP setting, it would not be able to send it to
other L2 in different chips either. In other words, the ownership of the line cannot
leave the chip, although it can move from one cache of the chip to another cache
of the same chip.

This ensures that there is at most one backup of the data out of the chip,
although there may be another in the chip. This is enough to guarantee correct
recovery in case of faults.

Conversely, a line enters an internally blocked state when the L2 cache receives
data from an L1 cache and leaves it when the corresponding backup deletion
acknowledgment is received. While in an internally blocked state, ownership
cannot be transferred to another L1 cache, but it could be transferred to memory
for write-back purposes, although FtDirCMP does not currently do that in any
case, making the internally blocked states equivalent to the full blocked states.
The internally blocked states would be more useful in a multiple CMP setting,
since in that scenario the L2 could transfer ownership to another chip before it
receives the backup deletion acknowledgment from the L1 cache.

Faults detected by the lost request timeout

The purpose of the lost request timeout is to allow the requester to detect when
a request is taking too long to be fully satisfied. As can be seen in table 5.4, it
detects the loss of most messages, and hence is the fault detection timeout that
most frequently triggers.

This timeout starts at the L1 cache when a request (GetX, GetS or Put message)
is issued to the L2 and stops once it is satisfied, that is, when the L1 cache
acquires the data and the requested access rights for it or when the L1 receives a
write-back acknowledgment (WbAck or WbAckData messages) from L2. Hence, it
will trigger whenever a request takes too much time to be satisfied or cannot be
satisfied because any of the involved messages has been lost, causing a deadlock.

This timeout is also used for write-back requests from the L2 to the memory
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controller (Put messages). In this case, the timeout starts when the Put message
is sent and stops once the write-back acknowledgment (WbAckData message) is
received. When it triggers, the Put message will be reissued with a different
serial number.

In the case of write-backs (both from L1 to L2 or from L2 to memory), this
timeout can detect the loss of Put, WbAck and WbAckData messages but not
the loss of WbData or WbNoData messages which is handled by the lost unblock
timeout (see section 5.2).

It is maintained by the L1 for each pending miss and by L1 and L2 for each
pending replacement. Hence, the extra hardware required to implement it is one
extra counter for each MSHR entry.

When the lost request timeout triggers, FtDirCMP assumes that some message
which was necessary to finish the transaction has been lost due to a transient
fault and retries the request. The particular message that may have been lost is
not very important: it can be the request itself (GetX, GetS or Put), an invalidation
request sent by the L2 or the memory controller (Inv), a response to the request
(Data, DataEx, WbAck or WbAckData) or an invalidation acknowledgment (Ack).
The timeout is restarted after the request is reissued to be able to detect additional
faults.

To retry the request, the L1 chooses a new request serial number and will
ignore any response arriving with the old serial number after the lost request
timeout triggers in case of a false positive. See section 5.2 for more details.

Faults detected by the lost unblock timeout

FtDirCMP uses the on-chip directory to serialize requests to the same memory
line. When the L2 receives a request (GetS or GetX) from the L1, it will answer it
and block the affected memory line until it receives a notification from the L1 that
the request has been satisfied. Unblock messages (Unblock or UnblockEx) are sent
by the L1 once it receives the data and all required invalidation acknowledgments
to notify the L2 that the miss has been satisfied. When the L2 receives one of
these messages, it proceeds to attend the next miss for that memory line, if any.

Hence, when an unblock message is lost, the L2 will be blocked indefinitely
and will not be able to attend further requests for the same memory line. Lost
unblock messages cannot be detected by the lost requests timeout because that
timeout is deactivated once the request is satisfied, just before sending the unblock
message.

To avoid a deadlock due to a lost unblock message, the L2 starts the lost
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unblock timeout when it answers to a request and waits for an unblock message to
finalize the transaction. The timeout will be stopped when the unblock message
arrives. When this timeout triggers, the L2 will send an UnblockPing message to
the L1. See section 5.2 for more details about this recovery mechanism.

Unblock messages are also exchanged between the L2 and the memory con-
troller in an analogous way, which is useful for multiple CMPs. Hence, Ft-
DirCMP uses an unblock timeout and UnblockPing in the memory controller
too.

Write-Backs are serialized with the rest of requests by the L2 directory (using
three-phase write-backs), but in this case the message which is expected by the
L2 to proceed with the next requests is the write-back message itself (WbData or
WbNoData). Hence, this timeout is also used to detect lost write-back messages
in a similar manner.

When a Put is received by the L2 (or the memory), the timeout is started and
a WbAck or WbAckData is sent to L1 (or L2) to indicate that it can perform the
eviction and whether data must be sent or not. Upon receiving this message,
the L1 stops its lost request timeout, sends the appropriate write-back message
and assumes that the write-back is already done. Once the write-back message
arrives to L2, the lost unblock timeout is deactivated.

If the write-back message is lost (or it just takes too long to arrive), the timeout
will trigger and the L2 will send a WbPing message to L1. See section 5.2 for
details about how these messages are handled.

Faults detected by the lost backup deletion acknowledgment
timeout

As explained in section 5.2, when ownership has to be transferred from one node
to another, FtDirCMP uses a pair of acknowledgments (AckO and AckBD) to
ensure the reliable transmission of the data. These acknowledgments are sent
out of the critical path of a miss and are often piggybacked with the unblock
message.

Losing any of these acknowledgments would lead to a deadlock which will
not be detected by the lost request or lost unblock timeouts (unless the owner-
ship acknowledgment was lost along with an unblock message) because these
timeouts are deactivated once the miss has been satisfied. If the backup deletion
acknowledgment (AckBD) is lost, the memory line will remain indefinitely in a
blocked ownership state and it will not be possible to write the line back to mem-
ory nor answer any further write request for that line. On the other hand, if the
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ownership acknowledgment (AckO) is lost the same will happen and, additionally,
the former owner will not be able to discard its backup cache which will waste
space in the cache or in the write-back buffer.

To detect the deadlock situations described above, we intoduce the lost backup
deletion acknowledgment timeout whose purpose is to detect when the exchange
of acknowledgments takes too much time. It is started when an ownership
acknowledgment is sent and is stopped when the backup deletion acknowledgment
arrives. This way, it will trigger if any of these acknowledgments is lost or arrives
too late.

When it triggers, a new AckO message will be sent with a newly assigned
serial number (see section 5.2). To ensure that ownership acknowledgments can
be reissued even in case of false positives of this timeout, a node which receives
one AckO must discard its backup copy if it had any and answer with a backup
deletion acknowledgment whether it actually had a backup copy or not.

Reissued ownership acknowledgments will always be sent as independent
AckO messages, never piggybacked with UnblockEx messages.

Faults detected with the lost data timeout

The rules described in section 5.2 guarantee that when an owned data carrying
message is corrupted and discarded due to its CRC or discarded due to a
wrong serial number, the data will always be in backup state in the former
owner. Ownership transference starts when an owner node receives either a
GetX message (which may be forwarded from L2 to an owner L1 cache) or a
WbAckData message received from L2 by an L1 cache after the L1 cache requests
a write-back (or received by L2 from the memory controller).

Hence, usually when a message carrying owned data is lost, the node that
requested the data in the first place will reissue the request after its lost request
timeout triggers and the data will be resent using the backup copy. Alternatively,
if the data ownership transference was due to a write-back, the lost unblock timeout
will trigger in the L2 (or memory), and the data will be resent when the WbPing
message is received.

In the previous situations, the fault was detected (either with the lost request
timeout or the lost backup deletion acknowledgment timeout) because there was still
some node which expected the data to arrive and for that reason had a timeout
enabled to detect the situation. This will be always the case in FtDirCMP as long
as the network guarantees point-to-point ordering of messages. That is, as long
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as two messages sent from one node to another are guaranteed to arrive in the
same relative order as they were sent (if both of them arrive uncorrupted).

Interconnection networks with point-to-point ordered message delivery are
very common and useful. However, not all interconnection networks have this
property. In particular, any network that provides adaptive routing (which is
itself useful for fault tolerance among other things) will not be able to provide
point-to-point ordering guarantees.

In absence of faults, DirCMP will work correctly either over an ordered or
an unordered point-to-point interconnection network. However, FtDirCMP may
not work correctly over an unordered point-to-point network even in absence of
faults due to the possibility of a reissued request arriving to its destination even
after the original request and several other requests have been satisfied.

This is because if request messages can be reordered while traveling through
the network, it can happen that the owned data is sent to some node which does
not expect the data and hence will discard it. Since in that case the data will be
kept only in backup state in the sender node, no node will be able to access it
and this will lead to a deadlock the next time that the memory line is accessed.

For this to happen, one GetX request has to arrive to an owner after it has
been reissued and satisfied, and other request has returned the ownership to the
same owner. Hence, it is a very unlikely event which requires a very congested
network, a short request timeout and a particular sequence of requests.

To be able to detect this situation, we have added the lost data timeout which is
started whenever an owned data carrying message is sent and stopped once the
ownership acknowledgment is received. Its purpose is to detect when the owned
data has been unnecessarily discarded. The lost data timeout is not activated
when the unblock timeout is activated in the same node, since the latter can detect
the same faults too. This timeout is necessary only if the network guarantees
point-to-point ordering of messages (see section 5.2).

Figure 5.4 shows a case where a message carrying owned data is discarded
by a node which receives it unexpectedly and the lost data timeout is needed to
detect the situation.

When the lost data timeout triggers, an OwnershipPing message with a new
serial number is sent to the node that was sent the data before. See section 5.2
for more details.
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L1a makes a request to L2 which forwards it to L1b. The forwarded message gets delayed in the
network and hence the lost request timeout triggers in L1a. When this happens, L1a reissues the
request which is forwarded again by L2. This time, the request arrives to L1b which sends the
data to L1a. When L1a receives the data, it sends an unblock message to L2 and an ownership
acknowledgment to L1b which responds with a backup deletion acknowledgment to L1a. Later,
L1b makes a new request which is handled in a similar way (second miss). So at the end, L1b has
the only copy of the data again with exclusive access. When the first forwarded request from the
first miss arrives now to L1b, it will send the data to L1a which will discard it (since it does not
expect a response with that serial number anymore). In this situation no node will have the data
nor expect it, so future accesses to the memory line would cause a deadlock (unless L1a requests
the data again before anyone else).

Figure 5.4: Transaction where the lost data timeout detects data which has been
wrongly discarded

Reissuing requests and request serial numbers

The most often used recovery mechanism in FtDirCMP is to reissue a message
which has been potentially lost. This is done with requests (GetX, GetS and Put)
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when the lost request timeout triggers, ownership acknowledgments (AckO) when
the lost backup deletion timeout triggers, and reissued OwnershipPing messages
when the lost data timeout triggers more than once.

Message loss detection is done by means of a number of timeouts. This
cannot be done with absolute exactness because, in general, the time to receive a
response for any message in unbounded. Moreover, it is not desirable to choose a
value too large for any of these timeouts because that would increase the latency
for fault detection. In other words, it will be inevitable to have false positives.
Sometimes the timeout may trigger before the response has been received due to
unusual network congestion or any other reason that causes an extraordinarily
long latency for solving a miss. Hence, the fault recovery measures taken after
the timeouts trigger must be safe even if no message had been actually lost.

For example, when a lost request timeout triggers FtDirCMP assumes that the
request message or some response message has been lost due to a transient fault
and then reissues the request hoping that no fault will occur this time. However,
we cannot know for sure which of the messages involved in the transaction
(request, response, invalidations, acknowledgments, etc) has been lost, if any.

Hence, in case of a false positive, two or more duplicate response messages
would arrive to the requestor and, in some cases, the extra messages could lead
to incoherence. For this reason, FtDirCMP uses request serial numbers to discard
responses which arrive too late, when the request has already been reissued.

Figures 5.5 and 5.6 show cases where not using request serial numbers to
discard a message that arrives too late would lead to incoherency or to using
stale data.

Note that most times late responses are actually harmless because, even in
the case of invalidation acknowledgments, which are the most obvious source of
risk, when no faults occur it is very hard to arrive to an incoherency. However,
an unlucky series of requests issued at the wrong time can cause problems even
on a point-to-point ordered interconnection network, as shown in figure 5.5.

An unordered point-to-point interconnection network makes these problems
more likely. For example, the situation depicted in figure 5.6 can only happen
when an unordered point-to-point interconnection network is assumed.

For these reasons, FtDirCMP uses request serial numbers. Every request and
every response message carries a serial number. These request serial numbers are
chosen by the node which starts the transaction. That is, the L1 cache that issues
the request, the L2 in case of write-backs from L2 to memory, or the current
owner in an ownership transference (who has to choose a serial number for the
ownership acknowledgment, see section 5.2).
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Responses or forwarded requests will carry the serial number of the request
that they are answering to. This way, when a request is reissued, it will be
assigned a different serial number which will allow the requester to distinguish
between responses to the old request and responses to the new one.

The L1 cache, L2 cache and memory controller must remember the serial
number of the requests that they are currently handling and discard any message
which arrives with an unexpected serial number or from an unexpected sender.
This information needs to be updated when a reissued request arrives.

Discarding any message in FtDirCMP is always safe, even if it could be
not strictly necessary in some cases, since the protocol already has provisions
for lost messages of any type. For this reason, it is preferable to discard any
kind of message when it has an unexpected serial number even if it would be
mostly harmless accepting them anyway. For example, unblock messages could
be accepted even if they have a wrong serial number without compromising
correctness.

This way, when the lost request timeout triggers, the requesting node will reis-
sue its request with a new serial number and will discard any acknowledgment
that it had already received (if any). Then the protocol will behave as follows:

• If the request message itself was lost, the new message will (most likely)
arrive to its destination and the request will be eventually serviced as usual.

• If some response message was lost, the new request will arrive to the L2
directory, who will notice that this is a reissued request and will answer
it again, without waiting for the current request to finish. Any third node
involved in the transaction will receive a reissued invalidation or forwarded
request again and react like it did when it received the message for the
first time (if it was not lost). In particular, the owner node may receive
a reissued forwarded request and, if it had received the first forwarded
request, it must detect that it is a reissued request and send the data again
using its backup copy. Depending on which messages were lost, one or
several responses (Data, DataEx, Ack, etc) will arrive several times to the
requestor who will discard those that do not carry the serial number of the
last request.

• If no message had actually been lost, all the involved nodes will receive
reissued requests, invalidation or forwarded requests and all responses will
be reissued. Only the responses to the last request will be considered by
the requestor.
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As mentioned before, the L2 and the memory controller need to be able to
detect reissued requests and replace the original request in the MSHR (assuming
it was not lost) with the new one. The L2 or memory controller will identify
an incoming request as reissued if it has the same requestor and address than
another request currently in the MSHR but a different request serial number.

A node which holds a memory line in backup state should also detect reissued
requests to be able to resend the data using the new serial number. Hence, every
cache that transmits owned data needs to remember the destination node of that
data at least until the ownership acknowledgment is received. This information can
be stored in the MSHR or in a small associative structure. This way, if a DataEx
response is lost, it will be detected using the lost request timeout and corrected by
resending the request.

Serial numbers are also used to be able to discard late unblock messages, late
write-back messages or late backup deletion acknowledgments. These duplicated
messages can appear due to unnecessary UnblockPing or WbPing messages sent
in the case of false positives of the lost unblock timeout.

As mentioned in section 5.2, the ownership acknowledgment (AckO) can be seen
as a request sent by a node that has just received the data and acquired the
ownership of a memory line to the former owner node requesting it to discard its
backup copy of the data. This request may need to be reissued if the lost backup
deletion acknowledgment timeout triggers (see section 5.2).

When an ownership acknowledgment is reissued after the lost backup deletion
acknowledgment timeout triggers, the original ownership acknowledgment may or
may not have been lost.

If the first ownership acknowledgment was actually lost, the new message
will hopefully arrive to the node that is holding a backup of the line and that
backup will be discarded and an AckBD message with the new serial number
will be returned.

On the other hand, if the first ownership acknowledgment arrived to its
destination (false positive), the new message will arrive to a node which no
longer has a backup and which already responded with an AckBD message.
Anyway, a new AckBD message will be sent using the serial number of the new
message. The old AckBD message will be discarded (if it was not actually lost)
because it carries an old serial number.

Not discarding backup deletion acknowledgments with unexpected serial num-
bers would cause problems if an old backup deletion acknowledgment arrives to a
new owner and the ownership acknowledgment which has just been sent by it is
lost, since then the new owner would abandon the blocked ownership state while
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the backup has not been discarded, making possible to have two backup copies
of the same memory line. However, this situation is very unlikely.

OwnershipPing messages which are sent when the lost data timeout triggers
(see section 5.2) can be seen as “request to confirm (or reject) ownership”3 too.
They also carry serial numbers to be able to discard late NackO messages.

Choosing serial numbers and serial number sizes

Serial numbers are used to discard duplicated responses to reissued requests4.
They need to allow the requestor to differentiate among responses to the last
attempt to reissue a request and responses to previous attempts to the same
request.

This means that they need to be different for requests to the same address
and by the same node but it does not matter if the same serial number is used
for requests to different addresses or by different requestors.

Ideally, we should chose serial numbers in a way that minimizes the probabil-
ity of picking the same serial number for two requests from the same node for
the same address, since otherwise, if the first request was reissued at least once,
it could be possible to accept a late response to the first request as a response to
the second one. However, in practice two requests from the same node for the
same address are usually spaced enough in time to make this possibility very
remote, except in the case of a request for write access shortly after a request for
read access (an upgrade).

Since the initial serial number of a request is not very important, we can
choose it “randomly”. For example, in our implementation, each node has a
wrapping counter which is used to choose serial numbers for new requests.

On the other hand, the number of available serial numbers is finite. In our
implementation, we use a small number of bits to encode the serial number in
messages and MSHRs to minimize the overhead. This means that, if a request is
reissued enough times, it will have to eventually reuse a serial number.

On the other hand, when reissuing a request, it is desirable to minimize
the chances of using the serial number of any response to the former request
still traveling through the interconnection network. For this, serial numbers
for reissued requests are chosen sequentially increasing the serial number of

3More precisely, it is a request to confirm whether the node has ownership of the memory
line, is currently requesting ownership, or neither.

4In this context, we can consider UnblockPing, WbPing, OwnershipPing, AckO and WbAck
messages as requests too.
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the previous attempt (wrapping to 0 if necessary). This way, when using n
bits to encode the serial number, we would have to reissue the same request 2n

times before having any possibility of receiving a response to an old request and
accepting it, which could cause problems in some situations as shown in figure
5.6.

As the fault rate increases, requests will have to be reissued more frequently,
so it will be necessary to use more bits to encode request serial numbers and
ensure that late responses are always discarded. Hence, the number of bits used
for serial numbers will limit the ability of the protocol to work correctly with
higher fault rates.

Ping messages

Some faults cannot be solved by means of reissuing a request as described in
section 5.2. This is the case when the fault is detected by a responding node and
not by the requestor, as happens when either the lost unblock timeout or the lost
data timeout trigger.

In the case of the lost unblock timeout, an UnblockPing or WbPing is sent when
it triggers (see section 5.2). UnblockPing messages are sent for GetS and GetX
requests and include a bit indicating whether the pending request is a read or a
write access request.

When an L1 cache receives an UnblockPing message from L2 it will either
answer with an unblock message or ignore the ping, depending on whether it
has a pending request for that address of the corresponding type (either read or
write access request).

If the cache has already satisfied that miss (hence it has already sent a cor-
responding unblock message which may have been lost or not), it will not find
a corresponding request. It will assume that the unblock message got lost and
will answer with a reissued Unblock or UnblockEx message with the same serial
number as the received ping, depending on whether it has exclusive or shared
access to the line5.

If the L1 cache does have a pending miss of the correct type for the involved

5As a consequence of some very uncommon races, it may be the case that the cache does not
only not have a matching pending miss, it may not even have the data (it would be in an stable
I state). It is safe if it answers with an Unblock message even in those cases: this will make the
directory information less exact because the directory will add the node as a sharer, but this is
not a problem because the protocol will work correctly as long as the set of sharers recorded in
the directory is a non-strict superset of the real set of sharers.
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address, it will assume that the UnblockPing refers to that miss6. If the miss has
not been resolved yet, no unblock message could have been lost because it was
not sent in the first place and, hence, the UnblockPing message will be ignored.
Sooner or later either the response will arrive to the L1 and then it will send the
unblock message or, if the response was lost, the lost request timeout will trigger.

The UnblockPing message can carry the same request serial number as the
expected unblock message. This way, if the message was not actually lost the
line will be unblocked as soon as it arrives and only two extra control messages
will travel through the network (the ping message and its answer, which will be
discarded once it arrives to L2).

On the other hand, the lost unblock timeout can also trigger for a Put request.
In that case, the L2 will assume that the write-back message has been lost and
will send a WbPing message to the L1.

The L1 will answer with a new write-back message (in case it still has the
data) or a WbCancel message which tells the L2 that the write-back has already
been performed and the data (which was previously in shared state) has been
discarded. Note that modified data cannot be lost thanks to the rules described
in section 5.2, although clean data may be lost from the chip and would have to
be requested to memory again.

Finally, pings are also used when the lost data timeout triggers. This timeout
triggers during an ownership transference when the former owner detects that
the owned data may have been discarded because the receiver did not expect
it. When this timeout triggers, an OwnershipPing message is sent to the receiver,
with a newly chosen serial number.

Upon receiving this message, a node will react as described below:

• If the node does not have the ownership of the line, it will answer with a
NackO message with the same serial number than the received ping message.
Additionally, if it has a pending request for that address, it should reissue
it with a new serial number to avoid gaining ownership after sending the
NackO due to some data message currently delayed in the network.

• If the node has the ownership of the line in a blocked ownership state
(i.e., it already sent an ownership acknowledgment and is waiting for
the corresponding backup deletion acknowledgment) it will reissue the

6Although it may not necessarily be the case, there are race conditions which may have
invalidated the data acquired with the request related with the UnblockPing message and then a
new request may have been issued. But if this is the case, the new request will eventually arrive
to L2, which will treat it as a reissue of the previous one.
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ownership acknowledgment with a new serial number. Basically, it will act
as if the lost backup deletion acknowledgment timeout had triggered.

• In other cases (the node has ownership but it is not blocked), the ownership
ping should be ignored. This can happen if an OwnershipPing message gets
delayed in the network.

The node that has the backup will regain ownership if it receives a NackO
message with the expected serial number, avoiding the potential deadlock if
owned data had actually been discarded. It will forget the serial number of the
issued NackO (hence canceling the ping) if it receives an AckO or a new reissued
request.

Taking advantage of a point-to-point ordered network

Until now, we have assumed in this work that our protocols use an unordered
point-to-point interconnection network, which is the most general kind of network
from the point of view of the coherence protocol since it does not provide any
guarantee regarding the order in which messages arrive to their destinations.
In particular, it provides no guarantee about the relative order in which two
messages sent from the same source node to the same destination node will
actually arrive.

This freedom at the network level makes possible to implement adaptive
routing which can be useful for fault tolerance and for other purposes.

However, this kind of networks, although useful in some situations, is not
always used. Most times, the network does provide at least ordering guarantee
between each pair of nodes. That is, two messages sent from a node to another
will arrive in the same order that they were sent.

Assuming that messages between two nodes arrive in the same order that they
were sent significantly reduces the number of race conditions that can happen
and allows for some simplifications for both DirCMP and FtDirCMP. Most of
these simplifications are common to both protocols and are not discussed here.

In FtDirCMP, one simplification in particular has significant impact in the
hardware overhead of fault tolerance. When point-to-point order is guaranteed,
the lost data timeout, the OwnershipPing and NackO message types become unnec-
essary, since owned data would never be sent to a node that does not expect it
(hence, it will never be discarded unless the request had already been reissued).
That is, the cases described in section 5.2 become impossible. This way, the lost
request timeout would be able to detect all cases of lost owned data.
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5.3 Hardware overhead of FTDIRCMP

FtDirCMP fault tolerance measures add some hardware overhead with respect
to DirCMP. Chapter 8 presents an evaluation of this overhead in terms of perfor-
mance, while in this section we enumerate the main hardware overheads incurred
by an implementation of FtDirCMP in comparison with an implementation of
DirCMP.

The main hardware overheads in FtDirCMP are due to the timeouts used to
detect faults, the need for the requestor to store the request serial numbers of the
current request to be able to discard late responses, and the need of the responder
to store the identity of the requestor to be able to detect reissued requests.

Differently to FtTokenCMP, FtDirCMP cannot take advantage of preexisting
hardware to implement the timeouts used for fault detection. Hence, some coun-
ters have to be added to implement the different timeouts. These counters could
be added to the MSHRs or using a separate pool of timeout counters for cases
where no MSHR would need to be allocated otherwise. Notice that, although
there are up to four different timeouts involved in a coherence transaction, no
more than one counter is required at any time in the same node for a single
coherence transaction.

Request serial numbers need to be stored by the requestor to be able to
discard late responses. This requires a few extra bits per entry in each MSHR.
The particular number of bits that need to be added depends on the rate of
faults that needs to be supported by the protocol, as it is evaluated in section
8.3. Request serial numbers need to be remembered in some situations where
usually no MSHR would be allocated, like when an OwnershipPing is sent. For
those cases, the protocol would need to allocate an MSHR or, alternatively, a
smaller pool of registers could be provided for this purpose.

The identity of the requester currently being serviced needs to be stored by
the L2 cache and the memory controller to be able to detect reissued requests
of the request being serviced and to be able to attend them immediately. This
information needs to be stored anyway in most cases in non fault-tolerant proto-
cols like DirCMP, but FtDirCMP additionally requires that any L1 cache stores
the identity of the receiver of owned data when transferring ownership to make
possible to detect reissued forwarded requests and be able to resent the data
which is being kept in backup state.

A less obvious hardware requirement added by the fault tolerance measures
of FtDirCMP is that the number of virtual networks provided by the intercon-
nection network to avoid deadlock may need to be increased, depending on the
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particular network topology and deadlock avoidance strategy which is used. The
dependency chanins that we have considered for DirCMP and FtDirCMP are
shown in appendix C.

A less important source of overhead is the increased pressure in caches and
write-back buffers due to the blocked ownership and backup states. When a
write-back buffer is used, we have not been able to detect any effect in the
execution time due to these reasons. The size of the write-back buffer may need
to be increased, but as mentioned in section 4.2 for the case of the FtTokenCMP,
one extra entry would be enough to avoid any slowdown.
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Initially, the data is at L2 in O state and at L1b in S state. L1a makes a write request to L2 which
sends an invalidation to L1b and a DataEx message to L1a. The DataEx also tells L1a that it needs
to wait for one invalidation acknowledgment before entering the M state. When L1b receives
the invalidation, it sends an acknowledgment to L1a. Due to network congestion, this message
takes a long time to arrive to L1a, so the lost request timeout triggers and L1a reissues the write
request. The reissued request arrives to L2, which resends the data and the invalidation. When
the invalidation arrives to L1b, it resends an acknowledgment to L1a. Let’s assume that the first
acknowledgment arrives to L1a before the second one, as in a point-to-point ordered network. If
request serial numbers are not used, it will be accepted (otherwise it would be discarded and L1a
would wait for the second one) and an UnblockEx+AckO message will be sent to L2 which will
answer with an AckBD. Now, due to the stale acknowledgment traveling through the network,
the system can arrive to an incoherent state: another cache L1c issues a read request which is
forwarded by L2 to L1a. L1a answers it and transitions to O state. L1c receives it, sends an
unblock and transitions to S state. Next, L1a issues a new write request to L2 which sends an
invalidation to L1c and an acknowledgment to L1a which tells it that it needs to wait for one
invalidation acknowledgment. The invalidation request gets lost due to corruption. When the
stale acknowledgment from the first transaction arrives now to L1a, it will assume that it can
transition to M state despite the fact that L1c is still in S state, thus violating coherency.

Figure 5.5: Transaction where request serial numbers are needed to avoid inco-
herency in a point-to-point ordered network
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L1a makes a request to L2 which forwards it to L1b. L1b sends the data to L1a, but this message
gets delayed in the network for such a long time that the request timeout triggers and L1a reissues
the request which is forwarded again to L1b which has a backup copy of the data and resends it.
This time, the message arrives to L1a which sends an unblock message to L2 and an ownership
acknowledgment to L1b. L1b answers with a backup deletion acknowledgment to L1a. After
modifying the data, L1a performs a write-back to L2 and after that, it issues another request.
When the first data message arrives at this moment and is not discarded using its serial number,
it would allow L1a to use the old data.

Figure 5.6: Transaction where request serial numbers avoid using stale data in a
point-to-point unordered network
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Chapter 6
A broadcast-based fault-tolerant

cache coherence protocol

We have presented two fault-tolerant cache coherence protocols in the previous
two chapters: one based in token coherence and another based in directory
coherence. We think that these two approaches to the design of cache coherence
protocols are the most reasonable and the most likely candidates to be used in
future many-core CMPs with point-to-point unordered networks and generic
topology. Other attractive approaches to coherence impose additional constraints
on the interconnection networks, like ring based coherence [71].

However, to date no real system has been implemented using a cache co-
herence protocol based on the token coherence framework. Snoopy-based and
directory-based protocols have been used in several systems, but many of the
cache coherence protocols which are used in widespread systems cannot be
precisely categorized as snoopy-based nor directory-based. There are several
cache coherence protocols which have been designed ad-hoc considering a set
of requirements and priorities that did not coincide with either snoopy or di-
rectory protocols1. The protocol used by systems built using AMD Opteron
processors [5, 54, 93] is one of these protocols.

In this chapter, we will show how the techniques developed for FtTokenCMP
and FtDirCMP can be applied to other more specific protocols like AMD’s
Hammer protocol.

1Often, the most important requirement was to keep backward compatibility with supporting
hardware for a previous chip or to adhere to a particular specification.
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6.1 A cache coherence protocol for CMPs based
on AMD’s Hammer protocol

In this section we describe the protocol used by AMD in their Opteron systems.
It targets systems with a small number of processors using a tightly-coupled
point-to-point interconnection network. We will call it Hammer which is the
name of the design project that brought Opteron [54]. It was designed for
systems which use HyperTransport for the interconnection network among chips.
Besides being used in a recent and widespread system, the Hammer protocol is
interesting because it presents a mixture of properties from both snoopy-based
and directory-based protocols. Our understanding of Hammer is based on the
information published by AMD [54, 93] and in the reverse engineering of the
protocol performed by the Multifacet Project of the University of Winsconsin [67].

Since it targets a system with a point-to-point interconnection network, there
is no shared bus that can be used by the protocol for serialization like in snoopy
protocols. Hammer uses the home node of each memory line as the serialization
point, similarly to directory-based protocols.

On the other hand, Hammer relies on frequent broadcasts, like snoopy-based
protocols. This is acceptable because the number of total nodes of the target
systems is small enough, and in this way the protocol can spare the memory
overhead of directory information and the extra miss latency due to the access to
that information.

Strictly speaking, this protocol could be classified as a directory-based protocol
without directory information, also known as Dir0B [2].

The advantage of Hammer with respect to a snoopy-based protocol is that
it does not rely on a totally ordered interconnection network. The advantage
with respect to a directory-based protocol is that it does not need to store any
directory information, hence reducing the memory overhead and the latency due
to accessing to this information.

Hammer avoids the overhead of directory information and the latency of
accessing the directory structure at the cost of much more interconnection net-
work traffic. While it avoids the latency of accessing to the directory information,
it still needs to send all requests to the home node for serialization. Also, the
cache controllers of all processors need to intervene in all misses, like in a snoopy
protocol.

The original Hammer protocol was designed to be used in multiprocessors
built with several chips, not in CMPs. We have implemented HammerCMP,
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which is an adaptation of AMD’s Hammer protocol to the tiled CMP environment
described in section 3.1, and we have used it as a base for FtHammerCMP,
which is a new fault-tolerant protocol that could be used for small scale CMPs.
HammerCMP assumes that the network is not totally ordered but point-to-point
ordered.

Differently from Hammer, HammerCMP has been optimized by including
at each home tile a copy of the tag of the blocks that are held in the private L1
caches. In this way, the home knows whether the owner of the block is one of
the caches on-chip (the L2 cache or one of the L1 caches) or is off-chip. These
tags avoid both off-chip accesses when the owner block is on-chip (thus reducing
both latency and memory bandwidth consumption) and broadcasting requests
for blocks that are not stored on-chip (thus saving network traffic).

Like DirCMP, HammerCMP sends requests to a home L2 bank which acts
as the serialization point for requests to its cache lines. There is no directory
information, and all requests are forwarded using broadcast to all other caches.
The L2 only has enough information to know which memory lines are on-chip
(present either in at least one L1 cache or one L2 cache bank).

In a typical miss, a requester sends a message to the home L2 bank. If the
memory line is present on-chip, the L2 always forwards the request to all other
nodes and sends the data if it has it. Otherwise, the data is requested to the
memory controller.

All processors answer to the forwarded requests sending either an acknowl-
edgment or a data message to the requestor. The requestor needs to wait until it
receives an acknowledgment from each other node. When the requestor receives
all the acknowledgments, it informs to the home L2 controller that the miss has
been satisfied with an unblock message.

For replacements, HammerCMP uses three-phase write-backs like DirCMP.

Problems caused by an unreliable interconnection network in
HAMMERCMP

HammerCMP behaves very similarly to DirCMP in presence of faults. Like in
DirCMP, every lost message will lead to a deadlock and data can only be lost
if a data carrying message is corrupted while ownership of the memory line is
being transferred from one node to a different one.

The only difference is due to the different properties of the assumed inter-
connection network. While DirCMP does not assume any ordering guarantees,
HammerCMP assumes at least point-to-point ordering. Hence, a (very infre-
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quent) class of errors than may happen in DirCMP (see section 5.2) become
impossible in HammerCMP. As a result, FtHammerCMP requires one timeout
less than FtDirCMP for fault detection.

6.2 Fault tolerance measures introduced by
FTHAMMERCMP

Using the principles described in section 3.2, FtHammerCMP adds fault tolerance
measures to HammerCMP as the ones described for FtDirCMP.

FtHammerCMP shares many characteristics with FtDirCMP and FtTo-
kenCMP. Like the two previous cache coherence protocols, it assumes that
every message either arrives correctly to its intended destination or is discarded
due to corruption detected using error detection codes. It also protects critical
data with a pair of acknowledgments out of the critical path and uses a number
of timeouts for fault detection.

Since, as mentioned before, HammerCMP can be described as a directory-
based protocol without directory information (Dir0B), FtHammerCMP shares
most features with FtDirCMP. However, HammerCMP and FtHammerCMP are
somehow simpler than DirCMP and FtDirCMP respectively.

FtHammerCMP uses the same pairs of acknowledgments as FtDirCMP for
reliable transference of owned data, just as described in section 5.2. FtHammer-
CMP piggybacks ownership acknowledgments in unblock messages too.

Every message lost in HammerCMP leads to a deadlock, so fault detection can
be accomplished using timeouts. The set of timeouts used by FtHammerCMP is
a subset of those used by FtDirCMP. Table 6.1 shows a summary of each of the
timeouts used. FtHammerCMP does not require the lost data timeout (see section
5.2) because it assumes a point-to-point ordered interconnection network, hence
owned data messages cannot be received by a node that does not expect them.

The recovery mechanisms are like in FtDirCMP: faults detected by the re-
questor are recovered by means of reissuing the request and faults detected
by the responder (the L2 bank or memory controller) are recovered using ping
messages.

FtHammerCMP reissues requests when the lost request timeout triggers and
reissues AckO messages when the lost backup deletion timeout triggers. It also uses
request serial numbers for discarding old responses to reissued requests and to
avoid creating incoherences (see section 5.2).
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Table 6.1: Summary of timeouts used in FtHammerCMP

Timeout When is it acti-
vated?

Where is it acti-
vated?

When is it deac-
tivated?

What happens
when it trig-
gers?

Lost Request When a request
is issued.

At the request-
ing L1 cache.

When the re-
quest is satisfied.

The request is
reissued with a
new serial num-
ber.

Lost Unblock When a request
is answered
(even write-back
requests).

At the respond-
ing L2 or mem-
ory.

When the un-
block (or write-
back) message is
received.

An Unblock-
Ping/WbPing is
sent to the cache
that should have
sent the Unblock
or write-back
message.

Lost backup dele-
tion acknowledg-
ment

When the AckO
message is sent.

At the node that
sends the AckO.

When the AckBD
message is re-
ceived.

The AckO is reis-
sued with a new
serial number.

Summary of differences of the fault tolerance measures of
FTHAMMERCMP and FTDIRCMP

As seen above, the fault tolerance measures of FtHammerCMP are very similar
to those of FtDirCMP. The main differences are:

• Due to assuming an ordered point-to-point network no owned data message
can be sent to a node that does not expect it, hence no lost data timeout is
required (see section 5.2).

• FtHammerCMP does not have OwnershipPing messages nor NackO mes-
sages.

It is also worth mentioning that since HammerCMP is simpler and uses less
hardware to keep coherence than DirCMP, the overhead of the fault tolerance
measures of FtHammerCMP is higher than in the case of FtDirCMP in relative
terms. This is true for both the overhead in terms of protocol complexity and the
overhead in terms of hardware.
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Chapter 7
Evaluation methodology

In this chapter we explain the experimental methodology that we have used to
evaluate the fault-tolerant protocols proposed in this thesis. The main aims of
our evaluation are:

• To ensure that the fault tolerance measures of our protocols actually work.
That is, programs running in a tiled CMP system using our protocols
terminate and produce correct results even if not all messages are correctly
delivered by the on-chip interconnection network.

• To measure the overhead introduced by the fault tolerance features of the
cache coherence protocols when no faults occur. We focus on the execution
time overhead and the network traffic overhead. We expect that since
the amount of extra hardware required to implement the proposed fault
tolerance measures is small, so will be the power overhead due to that
hardware. Hence, we expect the power overhead of the fault tolerance
measures to be caused mainly by the extra network traffic.

• To measure the performance degradation of programs running in a system
using our fault-tolerant protocols when the interconnection network is
subject to several fault rates.

• To determine appropriate values for the configuration parameters provided
by our protocols, like the value of the fault-detection timeouts.

The methodology chosen for this evaluation is based on full-system simulation.
We have prototyped all the evaluated cache coherence protocols in a modified
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version of Multifacet GEMS [69] from the University of Winsconsin and we
have used the resulting simulation environment to execute a number of parallel
applications.

GEMS is a simulation environment which is based on Virtutech Simics [65].
Simics is a functional full-system simulator capable of simulating several types of
hardware including multiprocessor systems. At the implementation level, GEMS
is a set of modules that plug into Simics and add timing abilities to the simulator.

GEMS provides several modules for modelling different aspects of the archi-
tecture. For example, Opal models an out-of-order processor core, Ruby models a
detailed memory hierarchy and Tourmaline is a functional transactional memory
simulator. For the evaluation presented in this thesis, we only use Ruby.

Ruby provides an event-driven framework to simulate a memory hierarchy
with sufficient detail to be able to measure the effects of changes to the coherence
protocols. One of the key pieces of Ruby is SLICC (Specification Language for
Implementing Cache Coherence): a domain-specific language to specify cache
coherence protocols which has been used to implement the cache controllers for
the protocols discussed in this thesis.

The memory model provided by Ruby is made of a number of components
that model the L1 and L2 caches, memory controllers and directory controllers.
These components model the timing calculating the delay since a request is
received until a response is generated and injected into the network. All the
components are connected using a simple network model that calculates the
delay required to deliver a message from one component to another.

The models of the L1 caches interact with models of processors. For this
thesis, we use a simple in-order processor model provided by Simics that assumes
that all instructions execute in a single cycle except memory accesses (which
are simulated by Ruby). Since we are simulating a 16-way CMP, we think that
assuming in-order cores is the most realistic choice. We have performed some
simulations using out-of-order cores in a previous work [37] and we have found
that the performance overhead of the fault-tolerant protocol is similar with both
in-order and out-of-order cores. In any case, the correctness of the fault tolerance
measures of our protocols is unaffected if out-of-order processors are used.

The interconnection network model provided by GEMS is very idealized. The
network is specified as a graph connecting the cache controllers and internal
switches. Each link has a fixed latency and bandwidth parameters. These parame-
ters are used to calculate the latency incurred by each message taking into acount
any queueing delay due to insufficient bandwidth. With this interconnection
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network model, to inject faults we just randomly discard as many messages as
necessary depending on the desired fault rate (see section 7.1).

Since we are simulating multithreaded workloads, the results of our simula-
tions are not deterministic. The order in which threads arrive to synchronization
points and their interactions in general can cause some variability not only in the
final execution time but also in the execution path due to, for example, different
operating system scheduler decisions. To account for this variability we add
non-determinism to our simulator by slightly modifying the memory access time
at random1. Then, we execute the same simulation several times using different
random seeds and calculate the 95% confidence interval for our results, which
is shown in our plots with error bars. Each data point is the result of at least 6
simulations, or more in the case of applications that show more variability.

When simulating, we only measure the parallel parts of the applications. Our
benchmark checkpoints have been prepared so that the application is already
running and loaded in memory to avoid page faults during the measurement.
That is, we perform memory warm up before saving the checkpoint. Also, to
avoid cold cache effects, we run our simulations with full detail for a significant
time before starting the actual measurements. That is, we warm up the cache
before each simulation.

We have implemented the proposed fault-tolerant coherence protocols using
the detailed memory model provided by Ruby. The base non fault-tolerant
protocols used were provided with the GEMS distribution and had already been
used in published works [70], except the HammerCMP protocol which has been
developed from scratch.

We have also performed an extensive functional validation of the fault-tolerant
protocols using randomized testing. This randomized testing stresses protocol
corner cases by issuing requests that simulate very contended accesses to a few
memory lines and using random latencies for message delivery. The tester also
issues many concurrent requests, like a very aggressive out-of-order processor
would do. To ensure that the fault-tolerant measures actually work, the tester
also performs fault injection with very high fault rates.

7.1 Failure model

As mentioned in section 1.3, a transient fault in the interconnection network
of a CMP can have a number of causes. For example, any event that changes

1The latency varies up to two cycles plus or minus with uniform probability.
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the value stored in a flip-flop which is part of a buffer or that affects the signal
transmitted through a wire would cause a transient error. The actual effect of
these errors is hard to predict, but we can assume that one or more messages are
either corrupted or misrouted as the final consequence.

However, from the point of view of the coherence protocol we assume that all
errors cause the loss of any affected messages. That is, in our failure model we
assume that the interconnection network will either deliver a message correctly
or not at all. This can be achieved by means of using an error detection code
(EDC) in each message and discarding corrupted messages upon arrival. We
have not specified the particular error detection code employed for this purpose.
Nodes should also discard misrouted messages.

We also assume that caches and memories are protected by means of ECC,
so that data corruption can happen only when data is traveling through the
interconnection network.

Transient faults are usually modeled with a bit-error rate (BER, ratio of bits
incorrectly received to total bits transmitted). It is quite difficult to get the precise
frequency of soft errors as it depends on many factors, including the location in
which the system is placed. However, a study of literature about fault tolerance
reveals that it usually remains in the range of 10−9 and 10−20 [23].

In our evaluation we consider several fault rates expressed as “number of
corrupted messages per million of messages that travel through the network”.
This rate measures the probability that every message has of being affected by a
transient fault while it is in the network. We consider two ways of distributing
faults in time: in the first one faults are distributed uniformly among messages,
while in the second one faults affect messages in bursts of a constant size. The
first case can be considered a particular case of the second one with bursts of one
message in length.

When performing fault injection of bursts of length L, we randomly determine
for each message whether it has been corrupted or not on arrival based on the
probability given by the fault rate divided by L. If the message is determined to
have been corrupted, it and the next L− 1 messages to arrive will be discarded.
This ensures that the total number of corrupted messages is the same for the
same amount of traffic and fault rate, independently of the burst size or even
if there are no bursts. See section 8.2 for an evaluation of the effect of bursts of
transient faults.
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7.2 Configuration of the simulated systems

We have simulated a tiled CMP as described in section 3.1. Table 7.1 shows the
most relevant configuration parameters of the modeled system.

In particular, the values chosen for the fault-detection timeouts have been
fixed experimentally to minimize the performance degradation in presence of
faults while avoiding false positives which would reduce performance in the
fault-free case (see section 8.3). Using even shorter timeout values would reduce
the performance degradation in presence of faults only moderately, but would
significantly increase the risk of false positives.

Using out-of-order execution does not affect the correctness of the protocol at
all and does not have an important effect in the overhead introduced by the fault
tolerance measures compared to the non fault-tolerant protocol, as can be seen in
our previous work [37]. For brevity, we do not include results for out-of-order
processors in this evaluation.

7.3 Applications

Our results have been obtained by simulating a mix of scientific, multimedia
and server applications. Apache and SpecJbb are well known server applications.
Barnes, FFT, LU, Ocean, Radix, Raytrace and WaterNSQ are from the SPLASH-
2 benchmark suite [136]. Em3d models the propagation of electromagnetic
waves through objects in three dimensions and Unstructured is a computational
fluid dynamics application. And FaceRec, MPGdec, MPGenc and SpeechRec are
multimedia applications from the ALPBench benchmark suite [63].

Table 7.2 shows the input sizes used in the simulations. Due to the long
simulation times required for full-system simulation, we are constrained to scaled
down problem sizes for many applications. For others, the execution has been
divided in arbitrary units of work that we call transactions, and we measure
the execution of a fixed number of such transactions. More details about each
application are given in the next section.

Server applications

Apache

This is a static web serving benchmark using Apache version 2.2.4. Requests
are made by a Surge client running on the same machine, simulating 500 clients
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Table 7.1: Characteristics of simulated architectures

16-Way Tiled CMP System

Processor parameters

Processor frequency 2 GHz

Cache parameters

Cache line size 64 bytes
L1 cache:

Size 32 KB
Associativity 4 ways
Hit time 3 cycles

Shared L2 cache:
Size 1024 KB
Associativity 4 ways
Hit time (same tile) 15 cycles

Memory parameters

Memory access time 160 cycles
Memory interleaving 4-way

Network parameters

Topology 2D Mesh
Non-data message size 8 bytes
Data message size 72 bytes
Channel bandwidth 64 GB/s

(a) Parameters common to all configu-
rations

FtTokenCMP specific parameters

Lost token timeout 2000 cycles
Lost data timeout 2000 cycles
Lost backup deletion acknowl-
edgment timeout

2000 cycles

Lost persistent deactivation time-
out

2000 cycles

Token serial number size 2 bits
Token serial number table size 16 entries
Backup buffer size 2 entries

FtDirCMP specific parameters

Lost request timeout 1500 cycles
Lost unblock timeout 1500 cycles
Lost backup deletion acknowl-
edgment timeout

1500 cycles

Lost data timeout 1500 cycles
Request serial number bits per
message

8 bits

FtHammerCMP specific parameters

Lost request timeout 1500 cycles
Lost unblock timeout 1500 cycles
Lost backup deletion acknowl-
edgment timeout

1500 cycles

Request serial number bits per
message

8 bits

(b) Parameters specific for each fault-tolerant
cache coherence protocol
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Table 7.2: Benchmarks and input sizes used in the simulations

Benchmark Input Size

Server benchmarks

Apache 10 000 HTTP transactions
SpecJbb 8 000 transactions

SPLASH-2 benchmarks

Barnes 8 192 bodies, 4 time steps
FFT 64K complex doubles
LU 512× 512 matrix
Ocean 258× 258 ocean
Radix 1M keys, 1024 radix
Raytrace 10MB, teapot.env scene
WaterNSQ 512 molecules, 4 time steps

Other scientific benchmarks

Em3d 38 400 nodes, degree 2, 15% remote and 25 time steps
Unstructured Mesh.2K, 5 time steps

ALPBench benchmarks

FaceRec ALPBench training input
MPGdec 525_tens_040.mv2
MPGenc MPGdec output
SpeechRec ALPBench default input
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making random requests to 2 000 different HTML files. Each client waits 10ms
between requests (think time). The server uses 16 processes and 25 threads per
process. It also has all logging functionality disabled.

This benchmark is divided in transactions, where each transaction is an HTTP
request. We simulate 100 000 transactions without the detailed timing model to
warm up main memory, 500 transactions with the timing model enabled to warm
up the caches and 10 000 transactions to obtain results.

SpecJbb

SpecJbb is based on SPEC JBB2000. It is a Java based server workload that emulates
a 3-tier system. In this benchmark, the work of the middle tier predominates,
which is the business logic and object manipulation. We use Sun’s HotSpot Java
virtual machine version 1.5.0 for Solaris. Our benchmark uses 24 warehouses.

This benchmark is divided in transactions. We simulate 1 000 000 transactions
without the detailed timing model to warm up main memory, 300 transactions
with the timing model enabled to warm up the caches and 8 000 transactions to
obtain the results.

Applications from SPLASH-2

Barnes

The Barnes application simulates the interaction of a system of bodies (galaxies or
particles, for example) in three dimensions over a number of time steps, using the
Barnes-Hut hierarchical N-body method. Each body is modelled as a point mass
and exerts forces on all other bodies in the system. To speed up the interbody
force calculations, groups of bodies that are sufficiently far away are abstracted
as point masses. In order to facilitate this clustering, physical space is divided
recursively, forming an octree. Bodies are assigned to processors at the beginning
of each time step in a partitioning phase. Each processor calculates the forces
exerted on its own subset of bodies. The tree representation of space has to be
traversed once for each body and rebuilt after each time step to account for the
movement of bodies.

There are several barriers for separating different phases of the computation
and successive time steps. Some phases require exclusive access to tree cells and
a set of distributed locks is used for this purpose. The communication patterns
are dependent on the particle distribution and are very irregular.
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FFT

The FFT kernel implements a radix-
√

n six-step Fast Fourier Transform algorithm
as described in [9], which is optimized to minimize interprocessor communication.
The data set consists of n complex data points to be transformed, and another
n complex data points referred to as the roots of unity. Both sets of data are
organized as

√
n×
√

n matrices partitioned so that every processor is assigned a
contiguous set of rows. All-to-all interprocessor communication occurs in three
matrix transpose steps. Synchronization in this application is accomplished by
using barriers.

LU

The LU kernel factors a dense matrix into the product of a lower triangular and
an upper triangular matrix. The algorithm uses blocking techniques and blocks
are assigned to processors using a 2D scatter decomposition and each block is
updated by the processor that owns it. Synchronization is done using barriers.

Ocean

The Ocean application studies large-scale ocean movements based on eddy and
boundary currents. The algorithm simulates a cuboidal basin using discretized
circulation model that takes into account wind stress from atmospheric effects and
the friction with ocean floor and walls. The algorithm performs the simulation for
many time steps until the eddies and mean ocean flow attain a mutual balance.
The work performed every time step involves setting up and solving a set of
spatial partial differential equations. For this purpose, the algorithm discretizes
the continuous functions by second-order finite-differencing, sets up the resulting
difference equations on two-dimensional fixed-size grids representing horizontal
cross-sections of the ocean basin, and solves these equations using a red-back
Gauss-Seidel multigrid equation solver. Each task performs the computational
steps on the section of the grids that it owns, regularly communicating with other
processes. Synchronization is done using barriers and locks.

Radix

The Radix kernel sorts a series of integers using the radix sorting method. Each
processor is assigned a subset of the numbers. In each iteration, a processor passes
over its assigned keys and generates a local histogram. These local histograms
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are then accumulated into a global histogram which is used by each processor to
permute its keys into a new global array for the next iteration. This permutation
step requires all-to-all communication. Synchronization in this application is
accomplished by using barriers.

Raytrace

This application renders a three-dimensional scene using ray tracing. A ray
is traced through each pixel in the image plane and it produces other rays as
it strikes the objects of the scene, resulting in a tree of rays per pixel. The
image is partitioned among processors in contiguous blocks of pixel groups, and
distributed task queues are used with task stealing. The data accesses are highly
unpredictable in this application.

Synchronization in Raytrace is done using locks. This benchmark is charac-
terised by having very short critical sections and very high contention.

WaterNSQ

WaterNSQ performs an N-body molecular dynamics simulation of the forces and
potentials over time in a system of water molecules. It is used to predict some of
the physical properties of water in liquid state.

Molecules are statically split among the processors. At each time step, the
processors calculate the interaction of the atoms within each molecule and the
interaction of the molecules with one another. Most synchronization is done
using barriers, although there are also several variables holding global properties
that are updated continuously and are protected using locks.

Applications from ALTPBench

FaceRec

FaceRec is a benchmark based on the Colorado State University face recognizer.
Face recognition can be used for authentication, security and screening. similar
algorithms can be used in other image recognition applications. The ALPBench
version has been modified to compare a separate input image with all the images
contained in a database. The application has an offline training phase, but only
the recognition phase is considered in our evaluation.
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MPGdec

The MPGdec benchmark is based on the MSSG MPEG decoder. It decompresses
a compressed MPEG-2 bit-stream. Many recent video decoders use similar algo-
rithms. The execution comprises four phases: variable length decoding, inverse
quantization, inverse discrete cosine transform (IDCT) and motion compensation.

In this application threads are created and finished in a staggered fashion
as contiguous rows of blocks are identified by the main thread. This affects
scalability.

We have divided this benchmark in transactions, where each transaction is
the decoding of one video frame.

MPGenc

This benchmark is based on the MSSG MPEG-2 encoder. It converts video frames
into a compressed bit-stream. The ALPBench version has been modified to
use an intelligent three-step motion search algorithm instead of the original
exhaustive search algorithm and to use a fast integer discrete cosine transform
(DCT) butterfly algorithm instead of the original floating point matrix based DCT.
Also, the rate control logic has been removed to avoid a serial bottleneck. This
application is divided in the same phases as MPGdec, but they are performed in
the reverse order.

We have divided this benchmark in transactions, where each transaction is
the encoding of one video frame.

MPGdec and MPGenc perform complementary functions. In fact, we use the
output of MPGdec as the input of MPGenc.

SpeechRec

The SpeechRec benchmark uses the CMU SPHINX speech recognizer version
3.3. Speech recognizers are used with communication, authentication and word
processing software and are expected to become a primary component of the
human-computer interface.

The application has three phases: feature extraction, Gaussian scoring and
searching in the language dictionary. The feature extraction phase is not par-
allelized. Thread barriers are used for synchronization between phases and
fine-grain locking is used during the search phase.
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Other scientific applications

Em3d

Em3d models the propagation of electromagnetic waves through objects in three
dimensions. The problem is framed as a computation on a bipartite graph with
directed edges from nodes, representing electric fields to nodes representing
magnetic fields and conversely. The sharing patterns found in this application
are static and repetitive.

Unstructured

Unstructured is a computational fluid dynamics application that uses an unstruc-
tured mesh to model a physical structure, such as an airplane wing or body.
The mesh is represented by nodes, edges that connect two nodes, and faces that
connect three or four nodes. The mesh is static, so its connectivity does not
change. The mesh is partitioned spatially among different processors using a
recursive coordinate bisection partitioner. The computation contains a series of
loops that iterate over nodes, edges and faces. Most communication occurs along
the edges and faces of the mesh.
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Chapter 8
Evaluation results

In this chapter we show the results of the evaluation of the fault-tolerant cache
coherence protocols that we have performed using the methodology described
in the previous chapter. We have checked that the fault tolerance measures of
the protocols perform correctly by means of randomized testing as mentioned in
chapter 7, so the results presented in this chapter concern the overheads intro-
duced by these measures in the fault-free case and the performance degradation
due to faults when they occur.

The behavior of our protocols depends on a few parameters which determine
the latency of fault-detection and the maximum fault rate that can be effectively
supported by the protocols. We explain these parameters and the values chosen
for them in section 8.3.

8.1 Overhead without faults

The fault tolerance measures introduced in our protocols try to minimize the
overhead in terms of execution time or network traffic. Specially, we would like
to have as little overhead as possible when no transient faults actually occur since
that should be, by far, the most frequent case.

The protocols can have two main types of overhead: increased execution time
and increased network traffic.
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Execution time overhead

Adding fault tolerance measures to the cache coherence protocols may increase
the execution time, as it is the case with most fault tolerance designs. In our case,
the increased execution time, if any, would be due to several reasons, including:

Increased number of messages in the critical path: Since increasing the num-
ber of messages in the critical path of any type of miss would increase the
latency of such misses, we have avoided adding messages in the critical
path of most memory transactions in all our protocols. Unfortunately, there
are situations where this has not been possible.

In particular, when writing data back from the L1 cache to the L2 cache or
from the L2 cache to memory, an ownership acknowledgment has to be
received before the data can be evicted from the cache. This message will
be in the critical path of the cache miss that caused the replacement if no
write-back buffer or backup buffer is used (see section 4.2 and figure 4.2).

FtDirCMP and FtHammerCMP use a write-back buffer (like DirCMP and
HammerCMP), and FtTokenCMP has a two-entry backup buffer.

Increased cache pressure due to the storage of backups: Our protocols keep a
backup copy of owned data while transferring ownership until an ownership
acknowledgment is received. This backup copy is kept in the cache that loses
the ownership, hence it increases cache pressure with respect to the non
fault-tolerant protocols. Fortunately, this backup copy is kept during a very
short period (the round-trip time between the cache that loses ownership
and the cache that acquires it).

Increased latency due to the blocked ownership states: Our fault-tolerant pro-
tocols create a backup copy every time that ownership needs to be trans-
ferred. So, to avoid having more than one backup copy at a given time,
the node that receives ownership of a block cannot transfer it again until it
receives a backup deletion acknowledgment. During this blocked ownership
period, the new owner cannot respond to requests which would require
ownership transference. This may increase the latency of those requests.

Calculation of the error detection code: Our protocols rely on having error de-
tection codes in the messages so that they can be discarded at reception
when corrupted. We have not specified the error detection scheme em-
ployed for this purpose, hence we cannot measure its impact on execution
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time either. In any case, we think that this should not have a very noticeable
impact. The calculation of the error detection code can be pipelined with
the reception or emission of the message, and the processing of the message
can be started upon reception even before the error detection code has been
checked because the message can be speculatively assumed to be correct
(which, as mentioned, is expected to be the common case).

We have measured the execution time of our set of benchmarks with the three
fault-tolerant protocols and the three non fault-tolerant protocols. The results
can be seen in figure 8.1. Figure 8.1a shows the relative execution time of each
protocol with respect to its non fault-tolerant counterpart, while figure 8.1b shows
the relative execution times with respect to DirCMP to show the differences in
execution time among the different families of protocols.

As can be seen in figure 8.1a, there is no statistically significant difference
between each fault-tolerant protocol and its standard counterpart for most bench-
marks. Some benchmarks with high variability in their results show small dif-
ferences (less than 2%): Raytrace executes faster with the fault-tolerant protocols,
while Em3d and MPGenc execute slower in some cases.

This means that we have not been able to measure any impact on average
from any of the potential sources of execution time overhead that we mentioned
above. We think that this result can be explained due to the following reasons:

• Although there are a few extra messages in the critical path of dirty write-
backs, they are not harmful for performance because write-backs are out of
the critical path of misses in our fault-tolerant protocols. This is the case
also for DirCMP and HammerCMP since they use a write-back buffer1. It
is not the case for TokenCMP, hence FtTokenCMP uses a two entry backup
buffer (see section 4.2).

• The increased pressure due to the storage of backups in the cache is minimal
because backups are kept only for very short periods of time. Moreover, in
the case of FtTokenCMP the backup is moved to the backup buffer if the
space is needed.

• The periods of blocked ownership are very short too (the round-trip time
between the new owner node and the former owner node). Only those

1In the actual implementation of the simulator, the data is moved to the MSHR and the block
is deallocated from the cache when a write-back is needed. Hence, the write-back buffer has as
many entries as available MSHRs.
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Figure 8.1: Execution time overhead of the fault-tolerant cache coherence proto-
cols in absence of faults
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requests that arrive to the new owner node during this short period will
have their latency increased by as much as the remaining blocked ownership
period, or until a persistent request is issued in the case of FtTokenCMP.

Network traffic overhead

As we have shown in the previous section, in absence of faults the execution time
of the applications is unaffected by the fault tolerance measures. However, these
measures do have a cost even when no faults occur: the acknowledgments used to
ensure reliable transference increase the number of messages that travel through
the network2 (see sections 4.2 and 5.2). This exchange of acknowledgments is
the main difference in the behavior of our protocols with respect to their non
fault-tolerant counterparts.

We have measured the network traffic of our set of benchmarks classifying
each message by its type. We have grouped these types in the following categories:

Control: All control messages including: transient and persistent requests in the
token based protocols, invalidation requests, dataless responses and every
other dataless message which is not included in the ownership category.

Data: All data carrying messages (responses with data and write-back messages).

Ownership: Ownership acknowledgment and backup deletion acknowledgment
messages.

Figure 8.2 shows the network overhead measured as relative increase in the
number messages of each category transmitted through the network for our set of
benchmarks. As can be seen, the overhead varies for each protocol. On average, it
is less than 10% in the case of FtHammerCMP, 15% in the case of FtTokenCMP
and 40% in the case of FtDirCMP. That is, the most network efficient protocols
have a higher overhead than other protocols that usually require more bandwidth.
This is because the overhead per ownership transference is similar in all the
protocols (2 messages or 1 message in some cases), hence it will be relatively
smaller when the total traffic is higher. Figure 8.3 compares the network traffic of
all the protocols in terms of number of messages.

Figure 8.2 also shows that the overhead comes entirely from the extra acknowl-
edgment messages used to ensure reliable transference of data (“ownership” part
of each bar).

2Arguably, this extra network traffic could increase the execution time too if the interconnec-
tion network does not provide enough excess bandwidth.
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(b) DirCMP and FtDirCMP
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(c) HammerCMP and FtHammerCMP

Figure 8.2: Network overhead for each category of message in terms of number
of messages. Results are normalized with respect to the total number of messages
of the most similar non fault-tolerant protocol
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apache
specjbb

barnes
fft

lu
ocean

radix
raytrace

waternsq
em3d

unstructured
facerec

mpgdec
mpgenc

speechrec
Average

0.00

1.00

2.00

3.00

4.00

5.00

N
or

m
al

iz
ed

 n
et

w
or

k 
tr

af
fic

 in
 m

es
sa

ge
s 

w
rt

 D
irC

M
P

TokenCMP FtTokenCMP DirCMP FtDirCMP HammerCMP FtHammerCMP

Figure 8.3: Relative network traffic in terms of messages for each protocol
normalized with respect to DirCMP
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(b) DirCMP and FtDirCMP
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Figure 8.4: Network overhead for each type of message in terms of number of
bytes. Results are normalized with respect to the total number of bytes of the
most similar non fault-tolerant protocol

156



Performance degradation under faults

Moreover, since these messages are small (like the rest of control messages),
the overhead drops considerably in the case of FtDirCMP if we measure it in
terms of bytes that travel through the network (that is, in terms of bandwidth)
even considering that every message is one byte longer in the fault-tolerant
protocols. These results can be seen in figure 8.4. We have increased in one byte
the message sizes of the fault-tolerant protocols to accommodate the requests
serial numbers and token serial numbers. This means 1.14% increase in size for data
messages and 12.5% increase for control messages. In terms of bandwidth, the
overhead is less than 25% for FtDirCMP, less than 20% for FtTokenCMP and
approximately 17% for FtHammerCMP.

8.2 Performance degradation under faults

We have already shown the overhead introduced by the fault tolerance measures
of our cache coherence protocols. However, the purpose of our protocols is to
allow the correct execution of parallel programs in presence of transient faults in
the interconnection network. To be useful, the protocols need to provide good
performance even when faults occur.

Faults will degrade performance in two ways: the execution time will increase
(because the fault needs to be detected using a timeout and dealt with with
messages which are in the critical path of some misses) and the network traffic
will increase (because of the extra messages used to deal with the fault).

Execution slowdown

When a fault happens, it is detected in our three protocols after a certain amount
of time by means of one of the fault-detection timeouts. We will show how we
adjusted these timeouts in section 8.3. Figure 8.11 shows that, for a fixed fault
rate, the performance degradation depends on the values chosen for the timeouts.

On the other hand, figure 8.5 shows how the execution time of each fault-
tolerant protocol increases as the fault rate increases. For the three protocols, the
execution time increases almost linearly with the fault rate, as can be seen more
clearly in figure 8.6.

In all cases, the protocols can support very high rates with only a small per-
formance degradation. On average, a performance degradation of 10% requires
a fault rate of more than 250 corrupted messages per million in the cases of
FtDirCMP and FtTokenCMP and more than 100 corrupted messages per million
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(a) TokenCMP and FtTokenCMP
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(b) DirCMP and FtDirCMP
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(c) HammerCMP and FtHammerCMP

Figure 8.5: Performance degradation with different fault rates (in messages
corrupted per million of messages that travel through the network) for each
fault-tolerant protocol with respect to its non fault-tolerant counterpart
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Figure 8.6: Average performance degradation with different fault rates (in mes-
sages corrupted per million of messages that travel through the network) for each
fault-tolerant protocol with respect to its non fault-tolerant counterpart
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8. Evaluation results

in the case of FtHammerCMP. We think that these fault rates are much higher
than what should be expected in a realistic scenario.

With the fault rates tested, only one benchmark suffers a slowdown of more
than 10% in FtDirCMP, 20% in FtTokenCMP or 40% in FtHammerCMP. The
benchmark with the highest performance degradation under faults with our three
protocols is Raytrace. A possible explanation of this fact is the high contention
observer in this benchmark. The second program with more contention in our
benchmark set is Unstructured, which is also the second one most affected by
faults in FtHammerCMP.

As said above, the performance degradation depends mainly on the latency
of the error detection mechanism. Hence, shortening the fault detection timeouts
can reduce performance degradation when faults happen but at the cost of
requiring more bits to encode the request serial numbers of FtDirCMP and
FtHammerCMP (due to the more frequent request reissues) and at the risk
of increasing the number of false positives which could lead to performance
degradation in the fault-free case.

Network traffic increase

When a fault happens, extra messages are required to deal with it (either the
request has to be reissued or a token recreation process has to be requested).
These extra messages consume extra network bandwidth and this contributes to
the execution time increase described in the previous section.

Figure 8.7 shows how the interconnection network traffic increases as the
fault rate increases. The extra traffic is (mostly) due to the recovery process
required when a fault is detected. For this reason, the network overhead of
FtTokenCMP increases more rapidly than that of FtHammerCMP and the
overhead of FtHammerCMP increases more rapidly than that of FtDirCMP, as
can be seen more clearly in figure 8.8.

Each time a fault is detected in FtTokenCMP a new token recreation process
needs to be initiated (see section 4.2). This process requires four messages per
node plus the message for requesting it and the message to indicate that it has
finished. In contrast, fault recovery in FtHammerCMP requires only two mes-
sages per node (an invalidation and its acknowledgment or a forwarded request
and its response) plus the reissued request and unblock messages. Furthermore,
FtDirCMP requires at most as many messages as FtHammerCMP but usually
much fewer messages because only the current sharers of the memory line need
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(a) FtTokenCMP
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(b) FtDirCMP
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(c) FtHammerCMP

Figure 8.7: Network usage increase with different fault rates (in messages cor-
rupted per million of messages that travel through the network) for each fault-
tolerant protocol with respect to its non fault-tolerant counterpart
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Figure 8.8: Average network usage increase with different fault rates (in messages
corrupted per million of messages that travel through the network) for each
fault-tolerant protocol with respect to its non fault-tolerant counterpart
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Performance degradation under faults

to be involved, so although its overhead is higher for small fault rates, it is lower
for higher fault rates.

As shown in this section, the total amount of network traffic increases with
faults. However, since the execution time also increases and does it more rapidly,
the amount of traffic per cycle actually decreases sightly in most cases. This is
because the processors are stalled while faults are being recovered waiting for the
corresponding cache misses to be resolved and hence cannot issue new requests.

Effect of bursts of faults

Until now, we have assumed that all faults are distributed evenly and that each
fault only affects one message. However, it is possible for a single fault to affect
more than one message. For example, a fault may hit a buffer holding several
messages and make it discard all of them. That is, several messages may be
discarded in a burst. Note that, most likely, each of those messages will be part
of different coherence transactions involving different addresses.

In this section, we assume that each fault affects several messages that pass
consecutively through some point in the network, depending on the burst size.
For consistency with the rest of the evaluation and as explained in section 7.1, we
will express the fault rates in total number of corrupted messages per million of
messages that travel through the network. In other words: for the same fault rate,
a higher burst size means that less fault events have occurred, but each event
has affected more messages. In our protocols, each affected memory transaction
needs to be recovered independently, which means approximately one recovery
process per discarded message.

Figure 8.9 shows how the execution time and network overhead vary as the
length of bursts increases with a fixed fault rate of 125 messages per million of
messages that travel through the network.

As can be seen in figure 8.9, on average and for most applications, increasing
the length of the burst of dropped messages has no negative effect on the
execution time of applications. Only some applications like Em3d and Ocean have
a longer execution time under longer bursts of faults in some cases.

Actually, most applications seem to benefit from longer bursts. This can be
explained due to the fact that although the total number of messages that get
corrupted is approximately the same, and hence the protocols need to perform
approximately the same number of recovery processes, the total overhead of all
these recovery processes is lower.

Since the recovery of each message usually happens in parallel to the recovery
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(a) FtTokenCMP
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(b) FtDirCMP

apache
specjbb

barnes
fft

lu
ocean

radix
raytrace

waternsq
em3d

unstructured
facerec

mpgdec
mpgenc

speechrec
Average

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e
w

rt
 H

am
m

er
C

M
P

1 2 4 8 16 256
1.95
1.69

(c) FtHammerCMP

Figure 8.9: Performance degradation with burst faults of several lengths for each
fault-tolerant protocol with respect to its non fault-tolerant counterpart. The total
fault rate is fixed to 125 corrupted messages per million of messages that travel
through the network
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Adjusting fault tolerance parameters

of other messages, the overhead of the recovery process may actually be reduced
over the whole execution of the program. Raytrace is the application that benefits
the most from this effect, and is also the application which is most affected by
single message faults, as can be seen in figure 8.5.

8.3 Adjusting fault tolerance parameters

Our fault-tolerant cache coherence protocols introduce a number of parameters
whose values affect the overhead introduced by the fault tolerance measures
in terms of hardware required to implement them, the performance overhead
without faults, the performance degradation when faults occur and the maximum
fault rate that can be supported by the protocols while still guaranteeing correct
execution of the parallel programs. In this section we will show how to adjust
each of these parameters.

The optimal values for the fault tolerance parameters depend on the values of
the rest of the configuration parameters of the system. The results presented in
these section assume the configuration values shown in table 7.2a and we will
derive the values shown in table 7.2b.

Adjusting the backup buffer size in FTTOKENCMP

In section 8.1 we have shown that the execution time of our fault-tolerant cache
coherence protocols is virtually the same than the execution time of the base
protocols. These results assumed that FtDirCMP and FtHammerCMP used
the write-back buffer to store backups when replacing owner data, and that
FtTokenCMP moved backups to a backup buffer of 2 entries when required as
explained in section 4.2. In this section we show the execution time overhead
of implementing FtTokenCMP with a variety of sizes for its backup buffer,
including not having a backup buffer at all, and justify our decision of using only
two entries in our experiments.

Without a backup buffer or a write-back buffer, the latency of those L1 misses
which need a previous replacement of an owned memory line to make room for
the data increases, since the replacement cannot be immediate because it has to
wait until an ownership acknowledgment is received from the L2 cache.

Figure 8.10 shows the execution time overhead of FtTokenCMP with several
backup buffer sizes.
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Figure 8.10: Execution time of FtTokenCMP normalized with respect to To-
kenCMP when no faults occur and using different backup buffer sizes
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Adjusting fault tolerance parameters

As derived from figure 8.10, without a backup buffer the overhead in terms
of execution time is almost 10% on average and more than 35% in the worst case
(SpecJbb). Benchmarks with fewer replacements of owned data from L1 to L2
suffer lower slowdowns. Fortunately, when we add a backup buffer with just one
entry the overhead is reduced dramatically to almost 0 on average and less than
3% in the worst case. Larger numbers of entries for the backup buffer reduce the
overhead to unmeasurable levels for all benchmarks.

Hence, we have decided to use two entries for the backup buffer of Ft-
TokenCMP. In the case of FtDirCMP and FtHammerCMP, the size of the
write-back buffer does not need to be increased with respect to the base protocol
(the only difference is that some entries are occupied for a few more cycles,
until the ownership acknowledgment arrives). Since DirCMP and HammerCMP
use three-phase write-backs, they already require a write-back buffer for good
performance.

Adjusting the fault detection timeouts

The second set of parameters is the value of each of the timeouts used by the fault-
tolerant protocols to detect potential deadlocks and start the recovery process.

As explained before, all our fault-tolerant protocols rely on the fact that every
message loss which is not harmless will eventually lead to a deadlock, so timeouts
can be used to detect all faults. Each protocol requires up to four timeouts which
are active at different places and times during a memory transaction or cache
replacement. A brief description of each timeout can be seen in table 4.2 for
FtTokenCMP, table 5.3 for FtDirCMP and table 6.1 for FtHammerCMP.

This way, the values of these timeouts determine the latency of fault detection
and, hence, choosing their values appropriately helps to achieve lesser perfor-
mance degradation since in the case of a transient fault, recovery would start
earlier and no false positives would arise. For example, figure 8.11 shows for
each of fault-tolerant protocol how the performance degradation with respect to
the similar base non fault-tolerant protocol increases as the value of the timeouts
increases while keeping the fault rate constant at 250 lost messages per million
of messages that travel through the interconnection network. This fault rate is
much higher than what we would expect in a real scenario.

In figure 8.11, we have used the same values for all the timeouts of each fault-
tolerant protocol. In principle, each timeout could be adjusted independently of
the others, but we have decided to use the same value for all of them for simplicity.
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(b) FtDirCMP
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(c) FtHammerCMP

Figure 8.11: Performance degradation of the fault-tolerant protocols with a
constant fault rate of 250 lost messages per million of messages travelling through
the network and with different values for the fault detection timeouts, using the
same value for all the timeouts of each protocol
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Adjusting fault tolerance parameters

We considered using different values for each timeout, but our experiments did
not show any significant advantage on doing so.

We would like to make the values as small as possible to minimize perfor-
mance degradation when faults occur. However, using excessively small values
can be detrimental for performance in the fault-free case and may even prevent
forward progress. This is because there is always risk of false positives with this
deadlock detection mechanism since, occasionally, a timeout may trigger before
a miss can be resolved. If the false positive rate is too high, the fault recovery
mechanism will be invoked too often. A good value should avoid false positives
while being as short as possible so that actual faults are detected as soon as
possible to avoid excessive performance degradation.

In order to determine a minimum value for the fault detection timeouts, we
have performed simulations of all the protocols considered in this thesis with
virtually infinite timeouts (in the case of the fault-tolerant protocols) and no
faults. Since false positives occur when a timeout triggers before a miss has had
enough time to be satisfied, we have measured the maximum miss latency for
each protocol to use it as a lower bound for the timeout values. We show the
results in figure 8.12.
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Figure 8.12: Maximum miss latency (in cycles) of each cache coherence protocol
without faults

Looking at figure 8.12, we can see that, for each pair of base and fault-tolerant
protocol, both have the same maximum miss latency on average. Only a few
cases show a statistically significant difference, like WaterNSQ in FtTokenCMP.
This is expected, since in absence of faults our fault-tolerant protocols should
behave very similarly to their non fault-tolerant counterparts.
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We can see than the maximum latency in case of FtDirCMP is just over 1000
cycles, and it is less than 1400 for all benchmarks. In the case of FtTokenCMP,
the average maximum latency is almost 1600 cycles and it is never reaches 1900
cycles except in the case of MPGenc. And in the case of FtHammerCMP, the
average maximum miss latency is just over 1150 cycles and never over 1400
cycles. It is important to remember that the values shown in figure 8.12 are the
worst case latencies of misses for each protocol, which means that they do not
have a huge impact in the execution time of applications with each protocol (see
figure 8.1b). Since the exchange of messages of DirCMP and HammerCMP are
identical in the worst case except that HammerCMP sends more invalidation
messages, both protocols have similar maximum latencies (the same can be said
with respect to FtDirCMP and FtHammerCMP respectively). TokenCMP and
FtTokenCMP have higher maximum latencies because their worst case happens
when a persistent request has to be issued because the token protocol timeout
triggers after an unsuccessful transient request.

Considering this data, we have chosen a value of 1500 cycles for all the fault
detection timeouts in FtDirCMP and FtHammerCMP, and a value of 2000
cycles in the case of FtTokenCMP. These values are large enough to avoid false
positives in almost every case and, as shown in figure 8.11, keep the performance
degradation low in most cases when faults actually occur. Making this value
smaller achieves very little benefit while significantly increasing the risk of false
positives.

Adjusting request serial number sizes for FTDIRCMP and
FTHAMMERCMP

FtDirCMP and FtHammerCMP rely on the ability to detect and discard stale
responses to reissued requests (for example, to be able to discard old acknowl-
edgments to reissued invalidation requests which could lead to incoherence in
some cases). This ability ensures that the fault recovery mechanism works even
in case of false positives. As explained in section 5.2, these two protocols use
request serial numbers to do this.

Most times, when a node reissues a request due to a false positive of one
of the timeouts, it will receive the stale responses shortly after and will discard
them because the serial number will be different. More precisely, due to the way
that serial numbers are chosen for the reissued requests (that is, increasing the
serial number of the original request and wrapping to zero if necessary), the
lower order bit will be different if the request has been reissued only once.
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However, in situations of unusually high network traffic or high fault rates,
a request may be reissued several times before the stale responses are received.
Since the number of different serial numbers is finite, if the serial numbers are
encoded with a small number of bits and the request is reissued many times in
a row, the expected serial number for a reissued request may match the serial
number of a stale response. This would prevent discarding the stale response
and could cause an error.

Since, assuming fixed timeouts, the number of reissued messages increases
as the fault rate increases, the number of bits used to encode the request serial
numbers determines the maximum fault rate supported by each protocol. Ideally,
this number should be as low as possible to reduce overhead in terms of increased
message size and hardware resources to store it while still being sufficient to
ensure that the protocol will be able to work correctly under the target fault rate
and with the chosen timeout values.

To decide a good value for the size of request serial numbers, we have
measured how many bits would be necessary to support each of a set of fault rates.
To do this, we have performed simulations of FtDirCMP and FtHammerCMP
using the timeouts decided in the previous section. In these simulations, we have
used 32 bit request serial numbers but we have recorded how many bits were
required to distinguish all the request serial numbers that needed to be compared.
For doing this, every time that two request serial numbers are compared, we
record the position of the least significant bit which is different in both numbers.
Then, we assume that the maximum of all these measures is the number of bits
required to ensure correctness. These results are shown in figure 8.13, and they
include several (at least 8) simulations for each case.

As seen in figure 8.13a, in the case of FtDirCMP 9 bits are enough for all the
tested fault rates, and 8 bits suffice for fault rates up to 250 corrupted messages
per million. In the case of FtHammerCMP, up to 14 bits are required for the
highest fault rate tested, but 8 bits are enough for fault rates up to 250 corrupted
messages per million too.

Hence, we have used 8 bits to encode the request serial numbers for our
experiments. With this configuration, our protocols should be able to support
fault rates up to 250 corrupted messages per million (and we will show results
only up to such fault rate from now on). We think that this fault rate is already
much higher than what should be expected in any case, but adjusting the number
of bits used to encode request serial numbers or increasing the timeouts would
allow the protocols to support even higher fault rates.
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Figure 8.13: Required request serial number bits to be able to discard every old
response to a reissued message when faults occur. In the fault-free case, no bits
are required at all in any of our tests
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8.4 Hardware implementation overheads
In this section, we make a brief list of the main sources of overhead in terms
of extra hardware required to implement the fault tolerance measures of our
protocols.

• The token serial number table used in TokenCMP (see section 4.2) can be
implemented with a small associative table at each cache and at the memory
controller to store those serial numbers whose value is not zero. All these
tables always hold the same information (they are updated using the token
recreation process).

Since the token serial number of a memory line is initially zero and only
changes when a token recreation process is invoked on that line, only a few
entries are needed and each entry only requires a few bits.

When using n bits to encode the token serial numbers, if the tokens of any
memory line need to be recreated more than 2n− 1 times the counter wraps
to zero (effectively freeing an entry in the table).

The number of bits per entry should be enough so that all messages carry-
ing an old token serial number can be discarded before the counter wraps
around, even when several token recreation processes are requested consec-
utively for the same memory line. Due to the long latency of this process,
the number of required bits is very low because usually all stale tokens
have arrived to some node even before the token recreation process starts.

If the token recreation process is performed in a number of different memory
lines larger than the number of entries in the token serial number table, the
least recently modified entry (or any entry at random) is evicted from the
table by means of using the token recreation process to set its serial number
to zero.

The results presented in the previous sections have been obtained using
two bits to encode the token serial numbers3 and having 16 entries at each
token serial number table.

• The request serial numbers used by FtDirCMP and FtHammerCMP (see
section 5.2) do not need to be kept once the memory transaction has
completed, hence they do not need any additional structure or any extra

3Of all the simulations performed, only two of them actually required more than one bit for
ensuring successful recovery from all faults.
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bits in the caches. They need to be kept until the memory transaction has
been resolved.

They can be stored in the MSHR or in a small associative structure in cases
where a full MSHR is not needed. As shown in section 8.3, using 8 bits to
encode request serial numbers is enough to achieve tolerance to very high
fault rates, and even less bits are required to support more realistic but still
very high fault rates.

• To be able to detect reissued requests in FtDirCMP and FtHammerCMP,
the identity of the requester currently being serviced by the L2 or the
memory controller needs to be recorded, as well as the identity of the
receiver when transferring ownership from one L1 cache to another to be
able to detect reissued forwarded requests.

• The timeouts used for fault detection in the three fault-tolerant protocols
require the addition of counters to the MSHRs or a separate pool of timeout
counters.

Although there are up to four different timeouts involved in any coherence
transaction of each protocol, no more than one counter is required at any
time in the same node for a single coherence transaction.

Moreover, in the case of FtTokenCMP, all but one timeout can be imple-
mented using the same hardware already used to implement the starvation
timeout required by token protocols.

• We have analyzed FtDirCMP from the point of view of its implementation
using deterministic routing on a 2D-mesh. Due to the exchange of owner-
ship acknowledgments to ensure reliable data transmission, the worst case
message dependence chains of FtDirCMP are one message longer than
those of DirCMP (see appendix C for additional details). Hence, a correct
implementation requires an additional virtual network to ensure deadlock
free operation. See appendix C for more details.

• To deal with the increased pressure in caches due to the blocked ownership
and backup states and the effect of the reliable ownership transference
mechanism in replacements, either a write-back buffer or a backup buffer
has to be added (see section 4.2). All the results for the FtTokenCMP pro-
tocols use a 2-entry backup buffer, while FtDirCMP and FtHammerCMP
use a write-back buffer like DirCMP and HammerCMP.
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We think that the hardware overheads for the fault tolerance measures of
our cache coherence protocols are assumable given the level of fault tolerance
that they provide for faults in the interconnection network. Achieving this fault
tolerance at the interconnection network level instead of at the protocol network
level would have also its own hardware overhead.

From a hardware design point of view, the greatest cost of our proposals is the
increased complexity. Cache coherence protocols are already complex and our
fault tolerance measures significantly increase this complexity. However, these
fault tolerance measures also add some resiliency to design errors in the protocols
and may help to simplify other parts of the system, notably the interconnection
network.
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Chapter 9
Conclusions and future ways

9.1 Conclusions

Reliability of electronic components is already a major concern in computer
architecture, and its importance is expected to grow as the scale of integration
increases. Transient faults in particular are becoming a common event that needs
to be considered when designing any chip using deep-submicron technologies.
We expect that future systems will employ many techniques at several levels to
deal with them, from mitigation techniques like using new materials (for example,
silicon on sapphire or silicon on insulator) and careful layouts in critical parts of
circuits to system-level fault tolerance like checkpointing support in operating
systems or hypervisors. Architecture-level techniques will become increasingly
common, and they will be included in commodity designs to make them cost
effective.

Speed, power-efficiency and reliability are three variables that every computer
architect wants to maximize, but unfortunately none of them can be improved
without negatively affecting the other two. In addition, transient faults will affect
most of the components of a CMP. To achieve good reliability for the whole chip,
each component will have to be as resilient to transient faults as possible while
still keeping good performance, and as much power-efficiency as possible too.

In this thesis, we have proposed a new approach to deal with transient failures
in the interconnection network of a CMP. The interconnection network of future
many-core CMPs is expected to be one of the components most vulnerable to
transient faults due to the significant on-chip area that it occupies, which makes
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it prone to particle impacts, and the relatively long wires that are needed to
build it, which make it prone to crosstalk noise. Previous proposals to deal with
these problems involved redesigning the interconnection network to make it fault-
tolerant. Instead, we have shown how to modify the coherence protocol, which
sits in the layer immediately over the interconnection network, so that it does
not assume that all messages will be correctly delivered by the interconnection
network. Our protocols only assume that most messages are indeed delivered,
and that those messages which are delivered are correct, which can be easily
ensured using error detection codes.

We have identified the problems that an unreliable interconnection network
poses to a cache coherence protocol. We have found that, for those protocols
where every request requires a response and every invalidation requires an
acknowledgment message, a lost message cannot lead to a coherence violation
and all faults eventually lead to a deadlock. Hence, we can detect faults using
timeouts at the protocol level.

We have shown that fault tolerance measures can be added to cache coherence
protocols without increasing the execution time of parallel programs running
on the CMP when no faults occur and that the main cost of this approach is a
moderate increase in network traffic. For this, we have developed three fault-
tolerant cache coherence protocols (FtTokenCMP, FtDirCMP and FtHammer-
CMP) based on different base cache coherence protocols (TokenCMP, DirCMP
and HammerCMP, respectively) and have evaluated them using full-system
simulation of several server, scientific and multimedia parallel applications.

The relative increase in interconnection network traffic due to our fault toler-
ance measures depends on the cache coherence protocol. The highest overhead in
network traffic that we have measured is approximately 30% (in terms of bytes)
for FtDirCMP with respect to DirCMP, which is the most efficient base protocol
in terms of interconnection network traffic that we have used. Fault-tolerant
cache coherence protocols based on less traffic efficient base protocols have lower
interconnection traffic overhead, since the amount of extra traffic generated by
the fault tolerance measures is proportional to the number of transfers of owner-
ship of memory lines between coherence nodes. This quantity depends on the
particular application as is roughly the same for different coherence protocols.

Since transient faults should be infrequent, we can use simple recovery mech-
anisms to deal with them when they happen. These mechanisms need to be
effective, but their efficiency is not a major concern since the performance degra-
dation when faults happen is dominated by the latency of the fault detection
mechanism (that is, the value of the fault detection timeouts). We have proposed
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two recovery mechanisms: the token recreation process and reissuing requests. The
first one is centralized and requires a serial number for each memory line1, while
the second one is distributed and requires a serial number for each request.

We have measured the performance degradation for our protocols in presence
of faults happen using the mechanisms mentioned above, and we have found
that, on average, it is moderate even for the highest fault rates that we have tested
(less than 25% of slowdown with 250 messages lost per million of messages that
travel through the network for FtHammerCMP, which is the protocol whose
performance degrades most rapidly). We have also shown how to adjust the
maximum fault rate supported and the performance degradation of the fault-
tolerant cache coherence protocols. The message loss rates used for our tests are
much higher than the rates expected in the real world, hence under real world
circumstances no important slowdown should be observed even in the presence
of transient faults in the interconnection network.

Dealing with transient faults in the interconnection network at the cache
coherence protocol level has two key advantages with respect to building a
fault-tolerant interconnection network:

• The cache coherence protocol has more information about the meaning (and
hence, criticality) of each message that travels through the interconnection
network. This way, it can spare efforts for those messages whose loss is not
very important. For example, our protocols only add acknowledgments
for the few messages that may carry the only valid copy of a memory line
(messages carrying owned data). Hence, the total traffic overhead can be
reduced.

• By freeing the interconnection network of the responsibility of ensuring
reliability, the interconnection network designer has much more flexibility to
design it and can spend more effort in improving its performance. Since the
performance of the interconnection network is critical to the performance
of the whole system, we expect that a system with an unreliable and fast
interconnection network will perform better than a system with a reliable
network, even if the cache coherence protocol of the first one needs to
recover from lost messages occasionally.

Our fault-tolerant cache coherence protocols can also benefit if the reliabil-
ity of the interconnection network increases, since this way the fault recovery

1Although only a small number of these serial numbers need to be actually stored (see section
4.2).
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mechanisms need to be invoked less often. This means that reliability in the
interconnection network can be traded for performance, but still ensuring correct
operation when faults happen. Our evaluation results show that, if the fault rate
is kept low enough (up to 32 lost messages per million of messages that travel
through the network for FtTokenCMP and FtDirCMP or 8 lost messages per
million of messages that travel through the network for FtHammerCMP), the
average performance degradation is almost unmeasurable.

In this thesis we have designed three fault tolerant cache coherence protocols
based on three coherence protocols which were already proposed. We expect
that the same principles can be applied to many other protocols with only minor
adjustments. In particular, we have extended the generic token counting rules to
ensure that, in addition to guaranteeing memory coherence, they also guarantee
no data loss even when not all messages are delivered by the interconnection
network.

In this way, fault-tolerant cache coherence protocols provide a solution to
transient faults in the interconnection network of CMPs with very low overhead
which can be combined with other fault tolerance measures to build reliable
CMPs.

9.2 Future ways

The results presented in this thesis open a number of interesting new research
paths. Amongst them, we have identified the following:

• We want to explore the application of these fault tolerant measures in new
promising cache coherence protocols [71,107]. We expect that, in most cases,
the same techniques will be easily applicable to a wide range of protocols
with only small modifications.

• Similarly, we can build a fault-tolerant cache coherence protocol with sup-
port for transactional memory [49, 83] based on one of the several recent
proposals. By assuming a transactional memory programming model, we
think that fault recovery may be done in alternative ways to those proposed
here. We also think that it is worth investigating how the mechanisms that
support transactional memory can be leveraged for fault tolerance.

• The fault-tolerant cache coherence protocols presented in this thesis are
based on previously existing non fault-tolerant protocols. We think that
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building a cache coherence protocol with support for fault tolerance from
the ground up can be simpler and may even simplify the design of the
protocol overall. For example, race conditions that would lead to deadlocks
in other protocols if they are not carefully considered could be dealt with
using the same recovery mechanism than transient faults.

• We think that the coherence protocol can also help to deal with perma-
nent and intermittent faults in the interconnection network, in addition to
transient faults. The same fault detection mechanisms presented in this
thesis can be adapted to detect intermittent and hard faults and trigger a
reconfiguration of the interconnection network to avoid faulty links and
routers.

• Finally, since the main feature of our protocol is that it does not assume that
every coherence message arrives to its destination while still guaranteeing
correct program execution, we want to try to take advantage of this ability
to allow the design of interconnection networks that are simpler or that have
better performance. These new interconnection networks may not deliver
all messages correctly, but may still have good performance as long as most
messages actually arrive to their destination when used in conjunction with
a fault-tolerant protocol. By not having to guarantee the delivery of all
messages, the interconnection network may use fewer resources, improve
its performance or both.

For example, deadlock situations in one of these interconnection networks
could be recovered by discarding some of the messages involved in the
cycles that cause the deadlock. Since our protocols can tolerate the loss of
any message, the interconnection network can decide to drop any message
when a potential deadlock is detected as long as this is done infrequently
enough so that all messages are eventually delivered without livelock.

Also, our fault-tolerant cache coherence protocols enable the use of buffer-
less interconnection networks (also known as “hot-potato” routing or de-
flection routing) [47,48,86] which have to resort to packet dropping when
a packet arrives to a switch that has all its output ports busy. Bufferless
interconnection networks provide significant benefits in area and power
consumption.
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Appendix A
Base token-based protocol

Our fist proposal for a fault-tolerant cache coherence protocol is based on the
token coherence framework [68, 67]. In particular, we used TokenCMP [70], a
token-based cache coherence protocol suitable for CMPs and multiple CMPs
(M-CMPs, a system built using several chips, each one with several cores).

Token coherence [67] is a framework for designing cache coherence proto-
cols whose main asset is that it decouples the correctness substrate from the
performance policy. The correctness substrate ensures that coherence cannot be
violated and ensures forward progress, while the performance substrate dictates
how requests are handled in the common cases.

This allows great flexibility, making it possible to adapt the protocol for
different purposes easily because the performance policy can be modified without
worrying about correctness (specially for infrequent corner cases). Correctness is
guaranteed by the correctness substrate which uses token counting rules to ensure
coherence and persistent requests to avoid starvation.

The main observation of the token framework is that simple token counting
rules can ensure that the memory system behaves in a coherent manner. The
following token counting rules are introduced in [67]:

• Conservation of Tokens: Each line of shared memory has a fixed number
of T tokens associated with it. Once the system is initialized, tokens may
not be created or destroyed. One token for each block is the owner token.
The owner token may be either clean or dirty.

• Write Rule: A component can write a block only if it holds all T tokens for
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that block and has valid data. After writing the block, the owner token is
set to dirty.

• Read Rule: A component can read a block only if it holds at least one token
for that block and has valid data.

• Data Transfer Rule: If a coherence message carries a dirty owner token, it
must contain data.

• Valid-Data Bit Rule: A component sets its valid-data bit for a block when
a message arrives with data and at least one token. A component clears
the valid-data bit when it no longer holds any tokens. The home memory
sets the valid-data bit whenever it receives a clean owner token, even if the
message does not contain data.

• Clean Rule: Whenever the memory receives the owner token, the memory
sets the owner token to clean.

Each line of the shared memory has a fixed number of tokens and the system
is not allowed to create or destroy tokens. A processor can read a line only when
it holds at least one of the line’s tokens and has valid data, and a processor
is allowed to write a line only when it holds all of its tokens and valid data.
One of the tokens is distinguished as the owner token. The processor or memory
module which has this token is responsible for providing the data when another
processor needs it or write it back to memory when necessary. The owner token
can be either clean or dirty, depending on whether the contents of the cache
line are the same as in main memory or not, respectively. In order to allow
processors to receive tokens without data, a valid-data bit is added to each cache
line (independently of the usual valid-tag bit). These simple rules prevent a
processor from reading the line while another processor is writing it, ensuring
coherent behavior at all times.

Considering these rules, we can relate token protocols with traditional MOESI
protocols and define each of the states depending on the number of tokens that a
processor has, as shown in table A.1.

The rules above ensure that cache coherence is maintained, but do not ensure
forward progress. The performance policy of each particular token-based protocol
defines how transient requests are used to exchange tokens. Transient requests
are used to resolve most cache misses, but they are not guaranteed to succeed
(for example, if transient requests are received in a different order by different
coherence nodes).
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Table A.1: Correspondence of token counting states with MOESI states

Tokens held MOESI state

0 tokens Invalid
1 to T − 1 tokens, but not the owner token Shared
1 to T − 1 tokens, including the owner token Owned
T tokens, dirty bit inactive Exclusive
T tokens, dirty bit active Modified

Token coherence avoids starvation by issuing a persistent request whenever a
processor detects potential starvation, using a timeout. Persistent requests, unlike
transient requests which are issued most times, are guaranteed to eventually
succeed. To ensure this, each token protocol must define how it deals with
several pending persistent requests. The two best known approaches for this are
using a centralized persistent arbiter [68] or using distributed persistent requests
tables [70].

Token coherence can avoid both the need of a totally ordered network and
the introduction of additional indirection caused by the directory in the common
case of cache-to-cache transfers.

Token coherence provides the framework for designing several particular
coherence protocols. The performance policy of a token based protocol is used
to instruct the correctness substrate how to move tokens and data through the
system. A few performance policies have been designed, amongst them Token-
using-broadcast (TokenB) is a performance policy to achieve low-latency cache-
to-cache transfer misses, although it requires more bandwidth than traditional
protocols [68]. TokenD [67] uses the token coherence framework to emulate a
directory protocol, and TokenM [67] uses destination-set prediction to multicast
requests to a subset of coherence nodes that likely need to observe the request. In
TokenM, the correctness substrate ensures forward progress when the prediction
fails. Other examples of token-based protocols can be found in [71] and [72].

TokenCMP [70] is the token-based cache coherence protocol that we have used
as a basis for FtTokenCMP (see chapter 4). TokenCMP has a performance policy
similar to TokenB but targets hierarchical multiple CMP systems (M-CMPs). It
uses a distributed arbitration scheme for persistent requests, which are issued
after a single try using transient requests, to optimize the access to contended
lines.

The distributed persistent request scheme employed by TokenCMP uses a
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persistent request table at each coherence node. Each processor will be able to
activate at most one persistent request at a time by broadcasting a persistent read
request activation or a persistent write request activation. Once the request has
been satisfied, the processor will broadcast a persistent request deactivation. To
avoid livelock, a processor will not be able to issue a persistent request again until
all the persistent requests issued by other processors before its last persistent
request was deactivated have been deactivated too.

In TokenCMP, write-backs are done by simply sending the data and tokens
to the L2 cache. If the L2 cache does not have an entry available for the data, it
will forward the message to memory.
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Base directory-based protocol

This chapter describes DirCMP, the directory-based cache coherence protocol
that we have used as the basis for developing FtDirCMP (see chapter 5). DirCMP
is one of the protocols included in the default distribution of Multifacet GEMS
(see section 7).

In this thesis, we assume a single-chip CMP system built using a number
of tiles (see section 3.1). Each tile contains a processor, private L1 data and
instruction caches, a bank of L2 cache, and a network interface. The L2 cache
is logically shared by all cores but it is physically distributed among all tiles.
DirCMP also supports a multiple CMP (M-CMP) by means of hierarchical
directories, although we have not considered such configuration because it is
orthogonal to the fault tolerance measures that we propose.

DirCMP is a MOESI-based cache coherence protocol which uses an on-chip
directory to maintain coherence between several private L1 caches and a shared
non-inclusive L2 cache. Although the L2 cache is non-inclusive, the directory
information kept at the L2 level is strictly inclusive. It also uses a directory cache
in L2 for off-chip accesses.

Table B.1 shows a simplified list of the main types of messages used by
DirCMP and a short explanation of their main function.

This cache coherence protocol uses per line busy states to defer requests to
memory lines with outstanding requests. The L2 directory will attend only one
request for each memory line at the same time for on-chip accesses, although
several off-chip non-exclusive (GetS) requests can be processed in parallel.

A typical request in DirCMP works as follows: the L1 cache sends the request
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Table B.1: Message types used by DirCMP

Type Description

GetX Request data and permission to write.
GetS Request data and permission to read.
Put Sent by the L1 to initiate a write-back.
WbAck Sent by the L2 to let the L1 actually perform the write-back. The

L1 will not need to send the data.
WbAckData Sent by the L2 to let the L1 actually perform the write-back. The

L1 will need to send the data.
WbNack Sent by the L2 when the write-back cannot be attended (probably

due to some race) and needs to be reissued.
Inv Invalidation request sent to invalidate sharers before granting

exclusive access. Requires an ACK response.
Ack Invalidation acknowledgment.
Data Message carrying data and granting read permission.
DataEx Message carrying data and granting write permission (although

invalidation acknowledgments may still be pending).
Unblock Informs the L2 or directory that the data has been received and

the sender is now a sharer.
UnblockEx Informs the L2 or directory that the data has been received and

the sender has now exclusive access to the line.
WbData Write-back containing data.
WbNoData Write-back containing no data.

to the tile which has the L2 bank that corresponds to the address of the memory
line. When the L2 controller handles the request, it either responds with the
data, forwards it to the current owner L1 cache or forwards it to the inter-chip
directory. In the case of exclusive requests (GetX) it also sends invalidation
messages (Inv) to the current sharers (if any). Invalidation acknowledgments
(Ack messages) are received by the requestor, and the L2 informs it about the
number of sharers in the response message (or in an additional Ack message in
case of forwarded responses). Once the requestor receives the data and all the
expected acknowledgments, it sends an Unblock or UnblockEx message to the L2
which then proceeds to handle the next pending request for that memory line (if
any).

Also, it uses three-phase write-backs to coordinate write-backs and prevent
races with the rest of requests. In this way, the L1 cache issues a Put message to
the L2 directory which also indicates the current state of the block at L1 (shared,
owned or exclusive). When the L2 directory handles the requests, it sends a
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WbAck or WbAckData (depending on whether it already has valid data or not,
respectively) which is then answered by the L1 with a WbData or WbNoData.
If the memory line to be replaced was in owned or exclusive state but it is
invalidated after the Put message is sent due to a request from another node that
is handled before by the directory, it will send a WbNack message and the L1
directory will have to reissue the write-back request. Write-backs between L2
and memory are handled in the same way.

DirCMP implements a migratory sharing optimization in which a cache
holding a modified cache line invalidates its copy when responding to a request
to read that line (GetS), thus granting write permission to the requesting cache.
This optimization substantially improves performance of many workloads with
read-modify-write sharing behavior.

DirCMP uses a full-map sharing code both at the level of the L2 directory and
the main memory directory. Other (inexact) sharing codes could be employed
with little changes to the protocol, but we have not considered them since it does
not affect the impact of our fault tolerance measures.

DirCMP, as most directory-based protocols, assumes that the interconnection
network is point-to-point unordered. That is, two messages sent from a node to
another can arrive in a different order than they were sent.
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Appendix C
Message dependency chains of our

directory-based protocols

One of the potentially most onerous additional hardware requirements imposed
by our protocols is that they may need additional virtual networks for their
correct implementation, as noted in sections 4.3 and 5.3.

The additional virtual networks (which are implemented by means of virtual
channels) are used to prevent deadlocks in the interconnection network [32].
The particular details of how many virtual networks are required and how they
are used depend on the particular topology, switching technique and routing
technique employed and are outside of the scope of this work.

Deadlocks in the interconnection network appear when a message cannot
advance because it requires a resource (buffer) which is currently held by an-
other message which itself requires (directly or indirectly) a resource held by
another stopped message. That is, deadlocks require cyclic dependencies between
resources.

These cyclic dependencies can be avoided by means of ensuring that there
are not cyclic dependencies between the messages that travel through the inter-
connection network and that a message that depends on another message1 will
never require a resource required by the first message. This can be achieved
using different virtual networks to send each of the dependent messages. This
dependency relation among messages is transitive, hence we need as many vir-

1That is, a message that cannot be sent until the first message has been received.
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tual networks as the length of the longest message dependency chain that the
coherence protocol can introduce.

Having as many virtual networks as stated in the above paragraph is a
sufficient condition for preventing deadlock, but it may not be necessary if other
conditions are met [32].

As an example, we have analyzed DirCMP and FtDirCMP from the point of
view of their implementation using deterministic routing on a 2D-mesh. Figures
C.1 and C.2 show the dependencies between messages in each protocol (some
trivial or redundant dependency chains have been omitted for brevity). Message
types also include the sender (as MessageTypeSender) since the exact role of most
message types depends on the kind of node that sends it.

First thing that can be seen in both figures is that there are no cyclic depen-
dencies between message types. Second, we can see that the longest message
dependency chain for each protocol is the following:

DirCMP: GetsL1 → GetsL2 → DataExMem → DataExL2 → UnblockExL1 →
UnblockExL2.

Length: 6 messages.

FtDirCMP: GetsL1 → GetsL2 → DataExMem → DataExL2 → UnblockEx+AckOL1
→ UnblockEx+AckOL2 → AckBDMem.

Length: 7 messages.

Hence, FtDirCMP may require one additional virtual network than DirCMP
to be implemented correctly.

On the other hand, while our protocols may make deadlock prevention at
the interconnection network harder to achieve, they can also be used to simplify
deadlock recovery, hence making deadlock prevention less critical. This is because
deadlock situations can be recovered by discarding some of the messages involved
in the cycles that cause the deadlock. Since our protocols can tolerate the loss of
any message, the interconnection network can decide to drop any message when
a potential deadlock is detected as long as this is done infrequently enough so
that all messages are eventually delivered without livelock.
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Figure C.1: Message dependency chains for the DirCMP protocol

193



C. Message dependency chains of our directory-based protocols

GetXL2

DataExL1

UnblockExL1

GetSL1

DataL2

GetSL2

DataExMem

DataExL2

GetXL1

InvL2

PutXL2 WbAckNDMem

PutOL1 WbAckNDL2

PutSL1

WbNackL2PutXL1

AckL1

AckL2

UnblockExL2

UnblockEx+AckOL1 UnblockEx+AckOL2

WbAckL2

WbDataL2

DataL1

WbDataL1

WbNoDataL1

UnblockL1

AckOL1 AckBDL1

AckBDL2

AckBDMem

AckOMem

AckOL2

OwnershipPingL1 NackOL1

UnblockSPingMem

UnblockL2

UnblockPartialL2

UnblockXPingMem

UnblockSPingL2 UnblockPartialL1

UnblockXPingL2

WbPingMem WbCancelL2

WbPingL2

WbCancelL1
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194



Bibliography

[1] Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency
models: A tutorial. Computer, 29(12):66–76, 1996.

[2] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz. An evaluation of
directory schemes for cache coherence. In Proceedings of the 15th Annual
International Symposium on Computer Architecture (ISCA-15), pages 280–298,
June 1988.

[3] Nidhi Aggarwal, Parthasarathy Ranganathan, Norman P. Jouppi, and
James E. Smith. Configurable isolation: building high availability systems
with commodity multi-core processors. In Proceedings of the 34th Annual
International Symposium on Computer Architecture (ISCA-34), June 2007.

[4] Nidhi Aggarwal, Kewal Saluja, James E. Smith, Partha Ranganathan, Nor-
man P. Jouppi, and George Krejci. Motivating commodity multi-core
processor design for System-Level error protection. In Proceedings of the 3rd
Workshop on Silicon Errors in Logic System Effects (SELSE-3), April 2007.

[5] A. Ahmed, P. Conway, B. Hughes, and F. Weber. AMD Opteron™
shared-memory MP systems. In Proceedings of the 14th HotChips Sympo-
sium (HotChips-14), August 2002.

[6] Rana E. Ahmed, Robert C. Frazier, and Peter N. Marinos. Cache-aided roll-
back error recovery (CARER) algorithm for shared-memory multiprocessor
systems. In Proceedings of the 20th International Symposium on Fault-Tolerant
Computing Systems (FTCS-20), pages 82–88, June 1990.

[7] Muhammad Ali, Michael Welzl, and Sven Hessler. A fault tolerant mecha-
nism for handling permanent and transient failures in a network on chip.

195



Bibliography

In Proceedings of the 4th International Conference on Information Technology
(ITNG 2007), pages 1027–1032, 2007.

[8] Todd M. Austin. DIVA: a reliable substrate for deep submicron microar-
chitecture design. In Proceedings of the 32nd Annual ACM/IEEE International
Symposium on Microarchitecture (MICRO-32), pages 196–207, 1999.

[9] David H. Bailey. FFTs in external or hierarchical memory. The Journal of
Supercomputing, 4(1):23–35, March 1990.

[10] Michel Banâtre, Alain Gefflaut, Philippe Joubert, Christine Morin, and
Peter A. Lee. An architecture for tolerating processor failures in shared-
memory multiprocessors. IEEE Transactions on Computers, 45(10):1101–1115,
October 1996.

[11] L. A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer,
B. Sano, S. Smith, R. Stets, and B. Verghese. Piranha: a scalable architecture
based on single-chip multiprocessing. In Proceedings of the 27th Annual
International Symposium on Computer Architecture (ISCA-27), pages 282–293,
June 2000.

[12] W. Bartlett and L. Spainhower. Commercial fault tolerance: a tale of two
systems. IEEE Transactions on Dependable and Secure Computing, 1(1):87–96,
2004.

[13] Robert Baumann. Soft errors in advanced computer systems. IEEE Design
and Test of Computers, 22(3):258–266, 2005.

[14] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay,
M. Reif, Liewei Bao, J. Brown, M. Mattina, Chyi-Chang Miao, C. Ramey,
D. Wentzlaff, W. Anderson, E. Berger, N. Fairbanks, D. Khan, F. Montenegro,
J. Stickney, and J. Zook. TILE64 processor: a 64-core SoC with mesh
interconnect. In Proceedings of the Solid-State Circuits Conference (Digest of
Technical Papers) (ISSCC 2008), pages 88–98, 2008.

[15] David Bernick, Bill Bruckert, Paul Del Vigna, David Garcia, Robert Jardine,
Jim Klecka, and Jim Smullen. Nonstop advanced architecture. In Proceedings
of the 2005 International Conference on Dependable Systems and Networks (DSN
2005), pages 12–21, 2005.

[16] Philip A. Bernstein. Sequoia: a fault-tolerant tightly coupled multiprocessor
for transaction processing. Computer, 21(2):37–45, 1988.

196



[17] D. Bertozzi, L. Benini, and G. de Micheli. Low power error resilient
encoding for on-chip data buses. In Proceedings of the Conference on Design,
Automation and Test in Europe (DATE 2002), page 102, 2002.

[18] Jason A. Blome, Shantanu Gupta, Shuguang Feng, and Scott Mahlke. Cost-
efficient soft error protection for embedded microprocessors. In Proceedings
of the 2006 International Conference on Compilers, Architecture and Synthesis
for Embedded Systems (CASES 2006), pages 421–431, 2006.

[19] Shekhar Borkar. Designing reliable systems from unreliable components:
the challenges of transistor variability and degradation. IEEE Micro,
25(6):10–16, 2005.

[20] Fred A. Bower, Paul G. Shealy, Sule Ozev, and Daniel J. Sorin. Toler-
ating hard faults in microprocessor array structures. In Proceedings of
the 2004 International Conference on Dependable Systems and Networks (DSN
2004), page 51, 2004.

[21] M. Bozyigit and M. Wasiq. User-level process checkpoint and restore for
migration. SIGOPS Operating Systems Review, 35(2):86–96, 2001.

[22] T. C. Bressoud and F. B. Schneider. Hypervisor-based fault tolerance.
SIGOPS Operating Systems Review, 29(5):1–11, 1995.

[23] Michael L. Bushnell and Vishwani D. Agrawal. Essentials of Electronic Testing
for Digital, Memory, and Mixed-Signal VLSI Circuits. Springer, November
2000.

[24] Harold W. Cain, Mikko H. Lipasti, and Ravi Nair. Constraint graph analysis
of multithreaded programs. In Proceedings of the 12th International Conference
on Parallel Architectures and Compilation Techniques (PACT-12), pages 4–14,
2003.

[25] Kaiyu Chen, Sharad Malik, and Priyadarsan Patra. Runtime validation
of memory ordering using constraint graph checking. In Proceedings of
the 14th International Symposium on High-Performance Computer Architecture
(HPCA-14), pages 415–426, 2008.

[26] K. Constantinides, S. Plaza, J. Blome, B. Zhang, V. Bertacco, S. Mahlke,
Todd Austin, and M. Orshansky. BulletProof: a defect-tolerant CMP switch
architecture. In Proceedings of the 12th International Symposium on High-
Performance Computer Architecture (HPCA-12), pages 3–14, February 2006.

197



Bibliography

[27] D. J. Culler, J. P. Singh, and A. Gupta. Parallel Computer Architecture: A
Hardware/Software Approach. Morgan Kaufmann Publishers, 1999.

[28] Crescenzo D’Alessandro, Delong Shang, Alex Bystrov, Alex Yakovlev, and
Oleg Maevsky. Multiple-Rail Phase-Encoding for NoC. In Proceedings of
the 12th IEEE International Symposium on Asynchronous Circuits and Systems,
page 107, 2006.

[29] Matteo Dall’Osso, Gianluca Biccari, Luca Giovannini, Davide Bertozzi, and
Luca Benini. ×pipes: a latency insensitive parameterized network-on-chip
architecture for multi-processor SoCs. In Proceedings of the 21st International
Conference on Computer Design, page 536, 2003.

[30] William J. Dally, Larry R. Dennison, David Harris, Kinhong Kan, and
Thucydides Xanthopoulos. Architecture and implementation of the reliable
router. In Proceedings of the Hot Interconnects Symposium II, pages 122—133,
1994.

[31] Chunjie Duan and Anup Tirumala. Analysis and avoidance of cross-talk in
on-chip buses. In Proceedings of the the 9th Symposium on High Performance
Interconnects, page 133, 2001.

[32] J. Duato, S. Yalamanchili, and L. Ni. Interconnection Networks: An Engineer-
ing Approach. Morgan Kaufmann Publishers, Inc., 2002.

[33] Tudor Dumitras, Sam Kerner, and Radu Mărculescu. Towards on-chip
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