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Abstract—Transactional Memory is currently being advo-
cated as a promising alternative to lock-based synchronization
because it simplifies multithreaded programming. In this way,
future many-core CMP architectures may need to provide
hardware support for transactional memory. On the other
hand, power dissipation constitutes a first class consideration
in multicore processor design. In this work, we characterize
the performance and energy consumption of two well-known
Hardware Transactional Memory systems that employ opposite
policies for data versioning and conflict management. More
specifically, we compare the LogTM-SE Eager-Eager system
and a version of the Scalable TCC Lazy-Lazy system that
enables parallel commits. To the best of our knowledge, this
is the first characterization in terms of energy consumption
of hardware transactional memory systems. To do that, we
extended the GEMS simulator to estimate the energy consumed
in the on-chip caches according to CACTI, and used the
interconnection network energy model given by Orion 2.
Results show that the energy consumption of the Eager-Eager
system is 60% higher on average than in the Lazy-Lazy case,
whereas performance differences between the two systems are
42% on average. Finally, we found that although on average
Lazy-Lazy beats Eager-Eager there are considerable deviations
in performance depending on the particular characteristics of
each application.

Keywords-Hardware Transactional Memory (HTM); version
management; conflict detection; lazy-lazy; eager-eager.

I. INTRODUCTION AND MOTIVATION

In recent years we have witnessed the replacement of
single-core processors by multi-core ones, which has made
parallel computing resources commonplace. Whereas it is
expected that the number of cores will grow, reaching
dozens or even hundreds of them in the next years [1],
multithreaded programming remains a challenging endeavor,
even for experienced programmers. On the other hand,
power consumption constitutes nowadays a first class consid-
eration in multicore processor designs, and energy-efficient
architectures are a must.

Transactional Memory (TM) is currently considered as a
promising parallel programming paradigm, and processors
implementing transactional memory support in hardware
have already been announced [2]. TM borrows the concept
of transaction from the database world and brings it into the
shared-memory programming model [3]. Transactions are no
more than blocks of code whose execution must satisfy the
serializability and atomicity properties. Programmers simply

declare the transaction boundaries leaving the burden of how
to guarantee such properties to the underlying TM system
thereafter. Next, the TM system executes the transactions in
parallel, as if they were not to perform conflicting memory
accesses that could violate the serializability property. If
so, this optimistic behavior pays off over the pessimistic
lock approach. Otherwise, one of the offending transactions
must be aborted. In this case, the TM must guarantee
that there are no side effects left behind by the aborted
transaction in order to satisfy the atomicity property. In
this way, the benefits derived from transactional memory
are twofold. Transactions are speculatively executed which
hides to programmers the main pathologies associated with
locking techniques, such as priority inversion, convoying and
deadlocks. As a consequence, programmers are armed with
an intuitive synchronization abstraction that can greatly help
to simplify the development of multithreaded programs.

A TM system can be implemented in either software
or hardware, or as a combination of both [4]. Hardware
Transactional Memory (HTM) systems usually work at the
word or cache line level. Conceptually, each transaction
is associated two initially-empty read and write sets that
are populated every time a transactional load or store is
issued. To comply with the serializability property, both the
old values and the transactional ones must coexist until the
transaction is allowed to commit. A transaction can commit
only after the HTM system can assure that there are no other
running transactions whose write sets collide with its read
or write sets. The commit process makes the read and write
sets of the winner transaction visible to the whole system. In
this general scheme, there are two opposite ways to tackle
data version management (VM) and conflict detection (CD).
Eagerly-versioned systems perform updates in place, i.e.
transactional stores overwrite old values residing in cache
memory after storing them in an undo log. In lazy version
management, transactional stores are performed aside, i.e.
produced values are kept on a private write buffer until the
transaction is granted permission to commit. In turn, eager
conflict detection checks dependency violations on the fly
during the transaction lifetime for each transactional load
and store, as opposed to lazy conflict detection that leaves
this task until the last phase of the transaction execution.

This classification raises the question of which combina-

2010 22nd International Symposium on Computer Architecture and High Performance Computing

1550-6533/10 $26.00 © 2010 IEEE

DOI 10.1109/SBAC-PAD.2010.11

9



tion constitutes the best trade-off between cost and perfor-
mance. The answer has no clear winner because all of them
pose some drawbacks. On transaction success, eager VM is
faster than lazy VM because transactional values are already
in place. On the contrary, if a transaction aborts, lazy VM is
a better choice since the original values remain unmodified
in cache memory. On the other hand, while eager CD incurs
a bigger overhead due to the persistent checking process,
lazy CD usually wastes a larger amount of work every time
a transaction aborts. The comparison gets more complicated
when energy consumption comes into play. Note that the
diverse VM and CD management policies have distinct
hardware requirements and may lead to different behaviors
depending on the transaction interaction pattern. At the
end, this translates into quite different energy consumption
figures depending on the particular implementation of the
HTM system and the characteristics of the workload.

To the best of our knowledge, even though Lazy-Lazy
systems are considered as the the best choice in the general
case [5], no previous work can be found in the literature
that performs a direct comparison of the most popular
HTM implementations, namely Lazy-Lazy HTM systems an
Eager-Eager HTM systems for general purpose systems.
Ferri et al. [6] perform an analysis of both HTM systems
but only for embedded architectures. Because of the specific
conditions of this architecture and their inherent harder
hardware constraints, their proposals strongly focus on the
energy efficiency issue at the expense of getting worse
performance. In this work, we conduct a fair compari-
son of two well-known HTM systems. In particular, we
compare LogTM-SE [7], as an example of a Eager-Eager
system, with Scalable TCC [8], a Lazy-Lazy HTM system.
To do this, we rely on well-known simulators, tools and
transactional benchmarks widely accepted by the scientific
community. In particular, we extended the GEMS simulator
to estimate the energy consumed in the on-chip caches
according to CACTI, and used the interconnection network
energy model given by Orion 2. Results show that the energy
consumption of the Eager-Eager system is 60% higher on
average than in the Lazy-Lazy case, whereas performance
differences between the two systems are 42% on average. We
found that although on average Lazy-Lazy beats Eager-Eager
there are considerable deviations in performance depending
on the particular characteristics of each application. Our
main contribution in this work is a comprehensive analysis of
both systems in terms of performance, energy consumption
and network traffic.

The rest of the paper is organized as follows. Section II
fully describes the two HTM systems targeted by our
study. In Section III, we detail the implementation of both
systems, the configuration of the simulation environment
and the workload used to generate the results. Performance,
energy consumption and network traffic figures are analyzed
in Section IV. Finally, conclusions are given in Section V.

II. CHARACTERIZED HTM SYSTEMS

This section summarizes the main characteristics of the
two HTM systems evaluated in this work: LogTM-SE and
Scalable TCC.

A. LogTM

LogTM [9] is a widely-known Eager-Eager system that
makes use of eager version management, storing new values
directly in the memory location of the variable (or “in
place”), while preserving old values “on the side”. Before
the completion of a write access, the hardware automatically
backs up the old value of the cache block in a per-thread
undo log allocated in cacheable virtual memory. This eager
versioning policy makes commits fast, while aborts are
slower since the system must trap to a software handler to
unroll the log in order to restore pre-transactional state. Each
undo log entry contains the virtual address of the stored
block and the block’s old value. LogTM performs eager
(or pessimistic) conflict detection leveraging the coherence
protocol to detect conflicts by observing forwarded requests
and invalidations for blocks that belong to a transaction’s
read and write sets. LogTM augments each L1 cache block
with a read (R) and a write (W) bit, used to track the blocks
that belong to the transaction read and write sets. When a
transaction detects a conflicting remote request, it responds
with a negative acknowledgment (NACK), indicating that
the requester transaction must stall its execution until the
offended transaction releases isolation over the requested
data upon commit/abort. This scheme can result in cycles, so
LogTM uses a conservative deadlock avoidance mechanism
based on timestamps, always giving priority to the eldest
transaction. LogTM-SE [7] is a refinement of LogTM that
replaces RW bits with hash signatures (bloom filters) that
conservatively summarize a transaction’s read and write
sets, decoupling transactional book-keeping from the caches
and enabling virtualization of transactions (as signatures are
accessible by software and the operating system). LogTM-
SE is the version implemented in GEMS simulator [10], and
the Eager-Eager system we characterize in this work.

B. Scalable TCC

Scalable-TCC [8] (STCC) is a popular, scalable, non-
blocking implementation of TM that is tuned for continuous
use of transactions within parallel programs. STCC provides
non-blocking synchronization and an easy-to-understand
consistency model. STCC is based on a directory-based
implementation of the Transactional Coherence and Con-
sistency (TCC) [11] model, which defines coherence and
consistency in a shared memory system at transaction bound-
aries. Transactional stores are performed “on the side” using
a write buffer that keeps the speculative new values. The
lazy approach to data versioning of STCC requires that
transactional data is writebacked into coherent memory only
when a transaction commits. STCC uses a two-phase parallel
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commit algorithm which is supported by an central arbiter. In
the validation phase, a transaction checks if it has conflicts
with others. The central arbiter gives numbers in upward
order (TID) to transactions to prioritize them in case of
conflicts. Transactions with higher TID must abort in case
of conflicts with a transaction with smaller TID. Once in
the second commit phase, a transaction cannot be violated
by other transactions. In this phase, a transaction makes
visible its changes to the rest of the system. Sequential
Commit (SEQ) and its optimized flavor SEQ with Parallel
Reader Optimization (SEQ-PRO) [12] enhance the STCC
system to improve the performance of the commit phase.
SEQ allows parallel commits using a distributed mechanism
that entails less message overhead than the original STCC
commit algorithm. In SEQ (and SEQ-PRO), the physically-
distributed banks of the L2 cache act as a distributed arbiter.
Each bank has a waiting queue. When a transaction reaches
the (commit) phase, it sends a book directory message –
COMMIT XACT– (in case of a directory based protocol)
to each bank in its write set in increasing order. A trans-
action cannot send the subsequent book message until the
previously requested directory bank have acknowledge the
booking request –XACT ACK–. This confirmation is sent
by the directory when the requester transaction reaches the
head of the waiting queue in that bank, acquiring the needed
permissions. When a transaction gets all permissions, it
proceeds with the commit itself, making visible its writes,
aborting other conflicting transactions (if any) and dumping
the values of its write buffer into memory. At the end of
the commit, the committing transaction at the head of the
queue is evicted in each bank previously booked by the same
(release subprocess), and new transactions (which have not
been aborted by previous commits) can proceed with the
directory booking process if they reach the new head of the
queue. From here on, we will call the phase of booking di-
rectories as precommit. Our implementation of SEQ involves
a multicast release petition –XACT RELEASE– and its
corresponding confirmation –RELEASE ACK–. When all
confirmations have been received, the transaction completes
successfully. A more advanced version of the algorithm,
known as SEQ-PRO [12] differentiates between transactions
that want to book a directory for reading from those that
intend to write, allowing the promotion to the final stage of
commit of all readers as long as there are no writers waiting.

III. EVALUATION ENVIRONMENT

In this section, we describe the evaluation environment
used in this paper. We start by giving the details about how
the Eager-Eager and Lazy-Lazy HTM systems considered
in this work have been implemented in the simulator. Addi-
tionally, we list the consumption models used to characterize
energy consumption. In particular, we focus on the energy
consumed in the on-chip memory hierarchy. Finally, we end

with a description of the benchmarks used to conduct the
simulations.

A. System Settings

We use a full-system execution-driven simulation based
on the Wisconsin GEMS toolset [10], in conjunction with
Virtutech Simics [13]. We rely on the detailed timing model
for the memory subsystem provided by GEMS’s Ruby
module, with the Simics in-order processor model. Simics
provides functional correctness for the SPARC ISA and
boots an unmodied Solaris 10. We perform our experiments
on a tiled CMP system, as described in Table II. We assume
a 16-core configuration with private L1 I&D caches and a
shared, multibanked L2 cache consisting of 16 banks of
512KB each. The L1 caches maintain inclusion with the
L2. The private L1 data caches are kept coherent through
an on-chip directory (at L2 cache banks), which maintains
bit-vectors of sharers (which are included in the tags’ part
of the L2 cache banks) and implements the MESI protocol.
The tiles are connected through a 2D-mesh network. Each
tile contains a router where the private L1, the slice of L2
and the memory controller are connected to, plus the links
to the neighboring tiles. In this 4x4 2D-network, each router
has between 5 and 7 ports, with an average of 6 ports per
router.

To compute energy consumption in the on-chip mem-
ory hierarchy we consider both the caches and the inter-
connection network. The amount of energy consumed by
the interconnection network has been measured based on
Orion 2.0 [14]. In particular, we have extended the network
simulator provided by GEMS with the consumption model
included in Orion. Table I shows the values of some of
the parameters assumed for the interconnection network. For
those not listed in the table, we use the default values given
in Orion. On the other hand, the energy spent in the memory
structures (L1, L2, Write Buffer) were measured based on
the consumption model of CACTI 5.3 rev 174 [15]. In the
case of the L2 cache, we distinguish the accesses that return
cache blocks from those that only involve the tags’ part of
the L2 cache (i.e. those that would be performed by the
directory controller to retrieve just the sharing information
for a particular memory block). Obviously, the latter entails
less energy.

The Ruby module contains an implementation of LogTM-
SE, an Eager-Eager system that uses signatures for trans-
actional book-keeping. Additionally, Ruby provides a naive
version of a Lazy-Lazy system that employs a commit token
to serialize transactions commits, and whose arbitration
takes places through an idealized zero-latency broadcast
bus. This sequential commit process with the presence of
a centralized referee is similar to that proposed in [8],
although it does not use the interconnection network to
coordinate the entire process. Thus, the Lazy-Lazy imple-
mentation provided in GEMS is not only non-scalable,
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since the central referee would become a bottleneck, but
also unrealistic since a zero-latency bus is being assumed.
For this reason, we have modified Ruby to implement the
more efficient and scalable commit algorithms described in
Section II that uses the 2D-mesh network. More specifically,
we have evaluated in this work the SEQ-PRO algorithm
proposed by Pugsley et al. in [12]. SEQ-PRO allows for
parallel commits (as the SEQ algorithm) and implements
the parallel reader optimization. In order to implement SEQ-
PRO, we had to add three new request messages involved in
the commit process: XACT COMMIT, XACT RELEASE
and XACT EXIT, and their confirmations: COMMIT ACK,
RELEASE ACK and EXIT ACK, respectively. In this way,
the Lazy-Lazy system evaluated in this work resembles to
that presented in [12].

The undo log of the Eager-Eager system is a data
structure mapped in virtual memory and thus, its size is
not limited by any hardware structure. On the contrary, the
write buffer required for the Lazy-Lazy system has fixed size,
which has been limited to 128 entries. Overflows of these
write buffers will entail accessing main memory for storing
the data. The waiting buffers (queues) of the directories in
the Lazy-Lazy system contain 16 positions (as many as cores
in the architecture), which means that there will not be any
NACK due to lack of space in the queues during the process
of precommit. Finally, the read and write sets of transactions
in the Lazy-Lazy system are handled via memory addresses.
For the Eager-Eager system we assume perfect signatures.

B. Benchmarks Settings

For the evaluation, we use eight transactional benchmarks
extracted from the STAMP suite [16] on its version 0.9.10.
These applications allow to stress a TM system in several
ways. To show a wide range of cases, we evaluate all
STAMP applications using the most significant input size
in each case (in general, what is called medium size).
Table III describes the benchmarks and the values of the
input parameters used in this work.

IV. EVALUATION

In this section, we present the results obtained for the
Eager-Eager LogTM-SE system and the Lazy-Lazy Scalable
TCC system with the SEQ-PRO commit algorithm (STCC-
SP from now on). We start with a comparison between

Parameter Value
in port 6

tech point 45
Vdd 1.0

transistor type NVT
flit width 128 (bits)

Table I
PARAMETERS OF ORION 2.0.

MESI Directory-based CMP
Cores 16, simple issue, in

order, non-memory IPC=1
Memory and Directory settings

L1 Cache I&D Private, 32 KB, split
2 way, 1-cycle latency

L2 Cache Shared, 8 MB
unified 4 way, 12-cycle latency

L2 Directory Bit Vector, 6-cycle latency
Memory 4 GB, 300-cycle latency

Network settings
Topology 2D mesh

Link latency 1 cycle
Link bandwidth 16 Bytes/cycle

Table II
SYSTEM PARAMETERS.

Benchmark Input
Bayes -v32 -r4096 -n2 -p20 -i2 -e2

Genome -g512 -s32 -n32768
Intruder -a10 -l16 -n4096 -s1
Kmeans -m40 -n40 -t0.05

-i random-n16384-d24-c16
Ssca2 -s13 -i1.0 -u1.0 -l3 -p3

Labyrinth -i random-x32-y32-z3-n96
Vacation -n4 -q60 -u90 -r1048576 -t4096

Yada -a10 -i ttimeu10000.2

Table III
WORKLOADS AND INPUTS.

these two HTM systems in terms of execution time. Next,
we will study the energy consumption of each system
when executing the transactional workloads. Finally, we also
compare the traffic that both HTM systems generate.

A. Performance

For the eight transactional benchmarks pointed out in
Section III, Figure 1 shows the execution times that are
obtained for both LogTM-SE and STCC-SP. In all cases,
execution times have been normalized with respect to the
STCC-SP system. Moreover, to have clear understanding
of the results Figure 2 divides the execution times into
the following categories: Abort (time spent during aborts),
Back-off, Barrier (time spent in barriers), Commit (time
needed to propagate the write sets), Non xact (time spent
in non-transactional execution), Precommiting (time taken
by the process of booking directories in STCC-SP), Stall
(time waiting until another transaction ends), Xact useful
(useful transactional time), Xact wasted (transactional time
wasted because of aborts). The Back-off fraction represents
the time spent before restarting transactions. The use of
back-offs aims to avoid contention situations that arise when
several transactions are being aborted repeatedly. Its upper
bound raises according to the number of retries of the
current aborting transaction. We have observed that without
this back-off mechanism, the wasted time (Xact wasted)
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Figure 1. Normalized execution times.

drastically increases in some cases as the number of aborts
grows.

As it can be derived from Figure 1, there is no clear
winner when LogTM-SE and STCC-SP are compared in
terms of performance. In particular, LogTM-SE outperforms
STCC-SP for genome, ssca2, and vacation. In turn, STCC-
SP beats LogTM-SE for bayes, intruder, labyrinth, and
yada. For kmeans there is no noticeable difference between
the performance of LogTM-SE and STCC-SP. However, the
extents of the differences are quite small when LogTM-SE
is the winner (except for ssca2) and very significant when
STCC-SP beats LogTM-SE (even reaching a difference of
300% more for intruder). In this way, on average, the
Lazy-Lazy STCC-SP system improves performance (about
42%) when compared with the Eager-Eager LogTM-SE
system. Below, we try to explain the differences observed for
each benchmark taking into account the breakdown of the
execution times presented in Figure 2, and the characteristics
of each application along with its data access patterns.

The algorithm implemented in bayes is not deterministic.
In particular, its behavior depends on how the branches of
the Bayes network are carried out, which can change be-
tween executions. As a consequence, there is great variance
between executions. Its large contention, transactional time
and write sets [16] also lead to a non negligible number
of conflicts, which is detrimental to LogTM-SE. STCC-SP
does not have to deal with the contention until the commit
phase, and there will be always one committer (transaction
that performs commit) at least.

High contention and short transactions are the main
characteristics of intruder. As before, LogTM-SE has to
deal with lots of conflicts what makes difficult forward
progress of its transactions. Besides, this high degree of
contention provokes many aborts. This is what causes the
bad behavior of LogTM-SE. The back-off time needed
grows hugely because of the exponential implementation
of the back-off upper bound used in LogTM-SE. As a
consequence, LogTM-SE degrades the performance by a
factor of 4 according to STCC-SP. On the other hand,
STCC-SP leverages on its optimistic concurrency control
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Figure 2. Breakdown of the execution times.

to perform a more fluent behavior, leading to both fast
transactional executions and fast abort processes.

For ssca2, LogTM-SE halves the execution time of STCC-
SP. The reason can be appreciated in Figure 2. Almost
half of the time of STCC-SP is spent in the precommit
phase. As already commented, in this phase transactions are
waiting for each other in the queues of the directories. In a
normal execution, if two transactions do not present conflicts
between their read and write sets, they will be able to make
parallel “fast commits” if their consumed data are mapped in
different directories banks. Otherwise, an “induced conflict”
for acquiring the directory is produced. Furthermore, there is
no significant wasted time due to the absent of real conflicts.
We will call this behavior as “directory aliasing” that entails
the well-known “Serialized Commits” pathology [17] of the
Lazy-Lazy systems.

As bayes, yada has significant transactional time and write
sets and medium contention [16], what entails a significant
number of conflicts. The behavior of LogTM-SE with yada
is characterized by the importance of the stall time together
with a mix of back-off and wasted time. Most of the
transactions spend 30% of its time in an active waiting
(stall) trying to solve conflicts. Though aborts are frequent,
the back-off time is much smaller than with bayes because
the number of retries per transaction is smaller too. As
opposed to LogTM-SE, STCC-SP time is characterized by
the fraction of the time wasted by aborting transactions.
There is barely precommit time, what means that conflicts
are not “induced” by the directory aliasing phenomenon
found in ssca2. Conflicts arise in this benchmark since most
transactions want to have access to the same addresses. This
behavior leads to an important number of aborts, which in
turn results into a significant fraction of wasted time in Lazy-
Lazy systems (47% approximately).

Time patterns in labyrinth are quite similar to those found
in yada. The differences are in wasted time allocation with
LogTM-SE. The abort takes place before, resulting in shorter
stalls but increasing the wasted time due to aborting trans-
actions. Labyrinth’s characteristics are the same as bayes.

The rest of the benchmarks show similar results with
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Figure 3. Normalized energy consumption (Power Delay Product).

both systems. On the one hand, taking into account the
average breakdown execution time, the bottleneck found for
STCC-SP is its precommit phase, especially when directory
aliasing takes place. On the other hand, LogTM-SE and
its pessimistic concurrency control involve a worse general
behavior with larger stall and back-off times than in STCC-
SP. Allowing LogTM-SE and STCC-SP to use a lineal back-
off function and a more refined precommit stage respectively
could improve their performance.

B. Energy

Figure 3 shows the dynamic energy consumption or
more commonly known as dynamic Power Delay Product
(PDP) of LogTM-SE and STCC-SP. As before, results have
been normalized with respect to STCC-SP. Additionally,
in Figure 4 we split the energy consumed in each case
for LogTM-SE and STCC-SP into the following categories:
energy spent accessing the L1 and L2 caches (L1 and L2
respectively), the write buffer in STCC-SP (Write Buffer),
and the network routers and links (Router and Link, re-
spectively). Again, for most applications STCC-SP beats
LogTM-SE when energy consumption is considered. Only
for ssca2 LogTM-SE shows better results. For genome,
kmeans and vacation there are no noticeable differences
between both systems. Note that while the average difference
in performance among the two systems was 42% in favor
of STCC-SP, the latter outperforms about 60% LogTM-SE
when energy is considered.

The differences in terms of energy consumption found in
bayes, genome, kmeans, labyrinth and vacation for LogTM-
SE and STCC-SP are almost identical to the ones previously
reported in terms of execution time. For genome, kmeans and
vacation, the compared systems neither show any noticeable
difference in execution time nor in energy consumption.
For bayes and labyrinth, the improvement of 40% and 24%
respectively found for STCC-SP in execution time directly
translates into a reduction of almost the same extent in the
Power Delay Product.
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Figure 4. Breakdown of energy consumption.

For intruder, we can see that LogTM-SE consumes much
more energy than STCC-SP. In this case, the differences
can not be justified by just taking into account the execution
times. Labyrinth algorithm tries to write a road in a 32x32x3
matrix. Each thread first locks the entire matrix to read
data; next it operates with the data locally until a road is
found; after this, it tries to write the road, which potentially
brings modifications into the cells that form the road that
other transaction is processing; finally, if any of the cells
have been previously modified by other transaction, the
transaction must abort and restart from the beginning. With
16 cores, the probability of collision between roads is high,
entailing a significant number of conflicts being detected and
therefore aborts. An Eager-Eager system would have more
difficulties in these situations to commit transactions because
it is possible that one road that was colliding with another
has also collisions with a third one and so on, leading to long
chains of dependencies between transactions. Transaction
with STCC-SP will commit more easily since when they
acquire the commit permission (reserve all directories in our
case) no other transactions can abort them. Additionally,
the fact that there are 16 elements of one row per cache
block in labyrinth creates a high degree of false sharing,
which leads to a noticeable number of “false” conflicts
between transactions. All these conflicts (“true” and “false”
conflicts) provoke in LogTM-SE a big number of messages
on the interconnection network (to check conflicts) and
cache accesses, which drastically increases energy consump-
tion. Something similar happens with intruder: significant
contention and a large fraction of aborts leads to much
more energy consumption and execution time in Eager-
Eager systems than in Lazy-Lazy systems.

Although STCC-SE is more energy-efficient than LogTM-
SE in yada, the difference is about 38% whereas the
performance gap reaches 48%. This is because STCC-SP
experiences a great amount of aborts, increasing significantly
the energy consumed in the L1 caches. On the contrary,
LogTM-SE spends much of its time in the stall phase, what
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is translated into request messages and their corresponding
NACK responses, which increases the amount of energy
consumed in the interconnection network.

Finally, ssca2 is the only application that exhibits no-
ticeable differences in terms of energy consumption in
favor of LogTM-SE (improvements of 30% are obtained).
In this case, the difference is concentrated on the energy
consumed in the interconnection network (in particular in
the routers). As already discussed, STCC-SP spends half
of its time in ssca2 in the precommit phase. During this
phase, messages for booking directories are being exchanged
between processors and L2 cache banks.

The breakdown of energy consumption presented by Fig-
ure 4 shows that the interconnection network takes the most
important part of the consumed dynamic energy, with 60% in
STCC-SE and 55% in LogTM-SE. It is worth noting that the
energy consumed in the L2 cache, the links of the network
and the write buffer (only for STCC-SP) is almost negligible
(8% of total energy). Consumption in L1 caches, however,
can be between 22% and 60% of the total energetic expense.
The fraction of the energy consumed in the network is more
evident for applications with high contention as intruder.
Some issues that motivate the increased energy consumption
found in LogTM-SE are:

• Cache coherence protocol: assume the case of a request
for a data block in an exclusive mode that is in SS
state in the L2 (0 or more sharers). In this case, the
directory must first send invalidations to the sharers (if
any) and then provide the data block to the requester.
Acknowledgments for the invalidations are collected by
the requester. If any of the the shares answers with a
NACK message, the received data must be discarded
by the requester. In these cases, the L1 cache, the L2
cache bank and the interconnection network have been
used and because the data has to be discarded, all this
energy is wasted. Something similar happens when the
data is in Mt state (data in L2 and so it is sent to the
requester, but this operation must be checked with the
current owner, which can invalidate the action).

• Use of retries: the Eager-Eager system retries continu-
ously memory requests (see stall state in the figure 2)
in case of conflicts until the corresponding transaction
aborts or achieves its goal. This supposes a considerable
energetic expense.

Regarding the energy consumed in the interconnection net-
work, we have found that the most important fraction is
due to the routers (52% on average), while the links only
consume an 8%. Obviously, the amount and the distribution
of energy consumed in the interconnection network will
depend on its particular characteristics. In this work, we are
assuming a relatively small flit size (16 bytes) and six-input
ports routers, which makes the routers be the most important
source of energy consumption.
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Figure 5. Normalized network traffic.

C. Network traffic

Finally, Figure 5 shows the amount of traffic in the
interconnection network for both LogTM-SE and STCC-
SP. As before, results have been normalized with respect to
the last one. In general, LogTM-SE entails approximately
70% more network traffic than STCC-SE. The reason can
be found in the high number of retries that are needed
in LogTM-SE to achieve data in case of conflicts. This
fact is highlighted because sometimes the received data are
not valid and must be discarded (see section IV-B). The
difference in network traffic is considerable in the case of
bayes, intruder, labyrinth and yada. These benchmarks are
characterized by exhibiting high contention and/or by the
large size of their transactions [16]. During the stall phase of
LogTM-SE’s execution, intensive usage of interconnection
network is made, because a transaction retries continuously
the access to the corresponding memory address until the
owner stops sending the NACK response, or the transaction
aborts. In STCC-SE, the precommit phase does not make
such an intensive use of the interconnection network since
the number of messages required to book directories is
limited [12].

V. CONCLUSION

This paper presents a comprehensive analysis of two well-
known HTM systems, namely LogTM-SE and Scalable-
TCC, that represent the Eager-Eager and Lazy-Lazy ap-
proaches for VM and CD, respectively. Our experiments,
conducted on a widely-accepted simulation platform, com-
pare both HTM systems in terms of execution time, energy
consumption and network traffic. Results show that even
though the Lazy-Lazy system outperforms the Eager-Eager
system on average, the are considerable deviations depend-
ing on the particular characteristics of each application. In
addition, we also found that reductions in the execution
time are not directly proportional to equivalent reductions
in either energy consumption or network traffic mainly due
to their particular implementations or the pathologies they
suffer.
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In general, contention with LogTM-SE leads to a large
number of either stalled or aborted transactions depending
on their write sets interactions. This behavior generates a
lot of network traffic due to the persistent stall process.
In the meanwhile, the optimistic concurrency control of
Scalable-TCC guarantees that at least one transaction will
be able to commit in the presence of contention. Never-
theless, the mapping of cache lines to cache banks may
cause the appearance of the “directory aliasing” problem in
some applications which artificially induces the ”Serialized
Commits” pathology.

Future work includes a smarter mapping of cache lines
to cache banks and a possibly larger number of bookable
directories to avoid the “directory aliasing“ problem in
STCC-SP, and a lineal back-off implementation along with
a more energy-efficient protocol to get better results in
LogTM-SE.
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