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Abstract—Future many-core CMP designs that will integrate tens of processor cores on-chip will be constrained by area and power.

Area constraints make impractical the use of a bus or a crossbar as the on-chip interconnection network, and tiled CMPs organized

around a direct interconnection network will probably be the architecture of choice. Power constraints make impractical to rely on

broadcasts (as, for example, Token-CMP does) or any other brute-force method for keeping cache coherence, and directory-based

cache coherence protocols are currently being employed. Unfortunately, directory protocols introduce indirection to access directory

information, which negatively impacts performance. In this work, we present DiCo-CMP, a novel cache coherence protocol especially

suited to future many-core tiled CMP architectures. In DiCo-CMP, the task of storing up-to-date sharing information and ensuring

ordered accesses for every memory block is assigned to the cache that must provide the block on a miss. Therefore, DiCo-CMP

reduces the miss latency compared to a directory protocol by sending requests directly to the cache that provides the block in a cache

miss. These latency reductions result in improvements in execution time of up to 6 percent, on average, over a directory protocol. In

comparison with Token-CMP, our protocol only sends one request message for each cache miss, as such is able to reduce network

traffic by 43 percent.

Index Terms—Many-core CMP, cache coherence protocol, direct coherence, indirection problem, on-chip network traffic.
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1 INTRODUCTION

THE huge number of transistors that are currently offered
in a single die has made major microprocessor vendors

to shift toward multicore architectures in which several
processor cores are integrated on a single chip, leading to
Chip multiprocessors or CMPs [33].

Most current CMPs (for example, the dual-core IBM
Power6 [23] and the eight-core Sun UltraSPARC T2 [38])
have a relatively small number of cores, every one with at
least one level of private cache. These cores are typically
connected through an on-chip shared bus or crossbar.
However, the interesting new opportunity is now that the
number of cores is expected to be doubled every 18 months
[9], making undesirable elements that could compromise
the scalability of these designs. One of such elements is the
interconnection network. As shown in [22], the area required
by a shared bus or a crossbar as the number of cores grows
has to be increased to the point of becoming impractical.
Tiled CMP architectures [43], which are designed as arrays
of identical or close-to-identical building blocks (tiles)
connected over a point-to-point unordered network, are a
scalable alternative to these small-scale CMP designs and
they help in keeping complexity manageable. In this work,
we focus on tiled CMPs with private L1 caches and shared
L2 caches. Therefore, some accesses to the shared cache will
be sent to the local slice while the rest will be serviced by
remote slices (L2 NUCA architecture [21]). Fig. 1 shows the
organization of a tile (left) and a 16-tile CMP (right).

On the other hand, most CMP systems provide pro-
grammers with the intuitive shared-memory model, which
requires efficient support for cache coherence. Although a
great deal of attention was devoted to cache coherence
protocols in the last decades in the context of shared-
memory multiprocessors, the technological parameters and
constraints entailed by CMPs demand new solutions to the
cache coherence problem [9].

Directory-based cache coherence protocols have been
typically employed in systems with point-to-point unor-
dered networks (as tiled CMPs are). Unfortunately, these
protocols introduce indirection to obtain coherence informa-
tion from the directory (commonly on chip as a directory
cache), thus increasing cache miss latencies. Moreover, the
number of cache misses suffering from indirection increases
with tiled CMPs. This is because the directory information is
commonly distributed among the tiles of the CMP through a
physical address mapping [19], [38], [43], i.e., the tile
wherein the directory information of a block resides (the
home tile) is calculated by taking log2n bits from the block
address, where n is the number of tiles. Since this mapping
distributes directory information among tiles in a round-
robin fashion without considering the cores requesting each
block, the probability of accessing a remote tile increases.

An alternative approach that avoids indirection is Token-
CMP [32]. Token-CMP is based on broadcasting requests to
all last-level private caches. In this way, caches can directly
provide data when they receive a request (no indirection
occurs). Unfortunately, the use of broadcasting increases
network traffic, and therefore, power consumption in the
interconnection network, which has been previously re-
ported to constitute a significant fraction (approaching
50 percent in some cases) of the overall chip power [25],
[40]. Fig. 2 shows the trade-off between Token-CMP and
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directory protocols [28]. An ideal protocol for tiled CMPs
would avoid the indirection of the directory protocols
without relying on broadcasting requests.

In this work, we present direct coherence, a cache
coherence protocol that meets the advantages of directory
and token protocols and avoids their problems. In direct
coherence, the task of storing up-to-date sharing informa-
tion and ensuring ordered accesses for every memory block
is assigned to the cache that provides the block on a cache
miss (the owner cache in an MOESI protocol). In this way,
indirection is avoided by directly sending the requests to the
owner cache instead of to the home tile, where coherence
information resides in a directory protocol. Particularly, we
describe an implementation of direct coherence for tiled
CMPs, named as DiCo-CMP. In DiCo-CMP, the identity of
the owner caches is speculatively recorded in a small
structure called L1 coherence cache associated with each core.
To achieve accurate owner predictions, this structure can be
updated whenever the owner tile changes through control
messages called hints. Additionally, since the owner cache
can change on write misses, another structure called L2
coherence cache keeps up-to-date information about the
identity of the owner cache and it is accessed each time a
request fails to locate that cache.

In this way, DiCo-CMP reduces the latency of cache
misses compared to a directory protocol by sending
coherence messages directly from the requesting caches to
those that must observe them, as it would be done in Token-
CMP, and reduces network traffic compared to Token-CMP
by sending just one request message on every cache miss,
which also translates into improvements in execution time.
Detailed simulations show that DiCo-CMP achieves im-
provements in total execution time of 6 percent, on average,
over a directory protocol and of 3 percent, on average, over
Token-CMP. Moreover, our proposal reduces network
traffic up to 43 percent, on average, compared to Token-
CMP, and consequently, the total power consumed in the
interconnection network.

A first implementation of direct coherence was presented
for distributed shared-memory multiprocessors in [35]. Later
on, a preliminary version of direct coherence optimized for
tiled CMPs (DiCo-CMP) was presented in [36]. Here, we
extend the latter work with the following contributions:

. A new proposal for updating the L1 coherence cache
that employs address signatures to filter some
useless hint messages. Address signatures allow us
to significantly reduce the storage required by the

original hints mechanism (from 4 KB and scalability
of OðnÞ to 0.25 KB for any number of cores) with a
slight increase in network traffic. Additionally, this
scheme constitutes our best alternative in terms of
execution time.

. A more extensive evaluation that includes multi-
media applications from the ALPBench suite [24].

The rest of the paper is organized as follows: In Section 2,
we present a review of the related work and the base
protocols used for the evaluation. Section 3 describes DiCo-
CMP. The different ways of updating the L1 coherence
cache including the use of address signatures are described
in Section 4. Section 5 describes the area and power
requirements of DiCo-CMP. In Section 6, we introduce the
methodology employed in the evaluation. Section 7 shows
the performance results obtained by our proposal, and
finally, Section 8 concludes the paper.

2 RELATED WORK

In this paper, we compare DiCo-CMP against two cache
coherence protocols aimed to be used in CMPs: an
implementation of a directory protocol for CMPs and
Token-CMP. The next two sections give some details
regarding these two cache coherence protocols. First of all,
we comment on some of the related works.

In the shared-memory multiprocessors domain, Acacio
et al. propose to avoid the indirection for cache-to-cache
transfer misses [1] and upgrade misses [2] separately by
predicting the current holders of every cache block.
Predictions must be verified by the corresponding directory
controller, thus increasing the complexity of the protocol on
mispredictions. Hossain et al. propose different optimiza-
tions for each sharing pattern considering a chip multi-
processor architecture [17]. Particularly, they accelerate the
producer-consumer pattern by converting three-hop read
misses into two-hop read misses. Again, communication
between the cache providing the data block and the
directory is necessary, thus introducing more complexity
in the protocol. In contrast, our proposal is applicable to all
types of misses (reads, writes, and upgrades) and just the
identity of the owner tile is predicted. Moreover, the fact
that the directory information is stored along with the
owner of the block simplifies the protocol. Finally, different
from the techniques proposed by Acacio et al., we avoid
predicting the current holders of a block by storing the up-
to-date directory information in the owner tile.

Also in the context of shared-memory multiprocessors,
Cheng et al. [13] have proposed converting three-hop read
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misses into two-hop read misses for memory blocks that
exhibit the producer-consumer sharing pattern by using
extra hardware to detect when a block is being accessed
according to this pattern. In contrast, our proposal obtains
two-hop misses for read, write, and upgrade misses without
the need of detecting sharing patterns.

Enright-Jerger et al. propose Virtual Tree Coherence
(VTC) [16]. In this mechanism, that uses coarse-grain
coherence tracking [10], the sharers of a memory region
are connected by means of a virtual tree. Since the root of
the virtual tree serves as the ordering point in place of the
home tile, and the root tile is one of the sharers of the
region, the indirection can be avoided for some misses. In
contrast, direct coherence protocols keep the coherence
information at block granularity and the ordering point
always has the valid copy of the block, which leads to less
network traffic and lower levels of indirection.

Huh et al. [19] propose to allow replication in an NUCA
cache to reduce the access time to a shared multibanked
cache. More recently, Beckmann et al. [6] present ASR that
replicates cache blocks only when it is estimated that the
benefits of replication (lower L2 hit latency) exceeds its costs
(more L2 misses). In contrast, our protocol reduces miss
latencies by avoiding the access to the L2 cache when it is not
necessary, and no replication is performed. DiCo-CMP
could be also used in conjunction with techniques that try
to make the best use of the limited on-chip cache storage.

Martin et al. present a technique that allows snooping-
based protocols to utilize unordered networks by adding
logical timing to coherence requests and reordering them on
destiny to establish a total order [30]. Likewise, Agarwal et al.
propose In-Network Snoop Ordering (INSO) [3] to allow
snooping over unordered networks. The Intel Quick Path
Interface (QPI) [20] also achieves two-hop misses by broad-
casting requests, but removes most responses by introducing
a new cache state (F ). Since direct coherence protocols do not
rely on broadcasting requests, they generate less traffic, and
therefore, less power consumption when compared to
snooping-based protocols.

Martin et al. propose to use destination-set prediction to
reduce the bandwidth required by a snoopy protocol [28].
Different from DiCo-CMP, this proposal is based on a
totally ordered interconnect (a crossbar switch), which does
not scale with the number of nodes. Destination set
prediction is also used by Token-M in shared-memory
multiprocessors with unordered networks [27]. However,
on mispredictions, requests are solved by resorting on
broadcasting after a time-out period. Differently, in DiCo-
CMP, mispredictions are resent immediately to the owner
cache, thus reducing latency and network traffic.

Finally, some authors evaluated the use of hints with
different objectives [7], [18]. In these works, the authors try to
keep updated directory information to find out where a valid
copy of the block can be obtained in case of a read miss. In
contrast, we use the hints as a policy to update the location of
the owner cache, which servers as ordering point and stores
up-to-date directory information. On the other hand, the use
of signatures has been recently proposed for disambiguating
addresses across threads in transactional memory [12], [42].
In contrast, we use signatures to keep information that
improves the efficiency of the hints mechanism.

2.1 Directory-CMP

Directory-based coherence protocols [11] have been widely
used in shared-memory multiprocessors. Now, several chip
multiprocessors, like Piranha [5], also use directory proto-
cols to keep cache coherence. In this paper, we compare our
proposal against a directory protocol similar to the intrachip
coherence protocol used in Piranha, which is based on
MOESI states. In this implementation, on-chip directory
caches are used for accelerating the accesses to directory
information for blocks stored in the L1 caches. Moreover,
the protocol implements a migratory sharing optimization
[39] in which a cache holding a modified cache block
invalidates its copy when responding with the block, thus
granting the requesting processor read/write access to the
block (even when only read permission was requested).
This optimization has been shown to improve substantially
the performance of many applications.

2.2 Token-CMP

Token coherence [29] is a framework for designing
coherence protocols whose main asset is that it decouples
the correctness substrate from several different performance
policies. Token coherence protocols can avoid both the need
of a totally ordered network and the introduction of
additional indirection caused by the directory in the
common case of cache-to-cache transfers. Token coherence
protocols keep cache coherence by assigning T tokens to
every memory block, where one of the T is the owner token.
Then, a processor can read a block only if it holds at least
one token for that block and has valid data. On the other
hand, a processor can write a block only if it holds all T
tokens for that block and has valid data. Token coherence
avoids starvation by issuing a persistent request when a
processor detects potential starvation. In this paper, we
compare our coherence protocol against Token-CMP [32],
which is a performance policy aimed to achieve low-latency
cache-to-cache transfer misses. Token-CMP targets CMP
systems, and uses a distributed arbitration scheme for
persistent requests, which are issued after a single retry to
optimize the access to contended blocks. Again, the
migratory sharing optimization is implemented.

3 DICO-CMP

In this section, we describe DiCo-CMP in detail. First, we
explain how direct coherence avoids indirection for most
cache misses by changing the distribution of the roles
involved in cache coherence maintenance. We also study
the changes in the structure of the tiles necessary to
implement DiCo-CMP. Then, we describe the cache
coherence protocol for tiled CMPs, and finally, we study
how to avoid the starvation issues that could arise.

3.1 Direct Coherence Basis

Directory protocols introduce indirection in the critical path
of cache misses. Fig. 3a shows a cache miss suffering from
indirection in a directory protocol, a cache-to-cache transfer
for a read miss. When a cache miss takes place, it is necessary
to access the home tile to obtain the directory information
and serialize the requests before performing any coherence
action (1 GetS). In case of a cache-to-cache transfer miss,
the request is subsequently forwarded to the owner cache
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(2 Fwd), where the block is provided (3 Data). As it can be

observed, the miss is performed in three hops. Moreover,

requests for the same block cannot be processed by the

directory until it receives the unblock message (3 Unbl).
To avoid this indirection problem, we propose to directly

send the request to the provider of the block, i.e., the owner

cache. This is the main motivation behind direct coherence.

To allow that, direct coherence stores the sharing informa-

tion along with the owner block, and it also assigns the task

of keeping cache coherence and ensuring ordered accesses

for every memory block to the tile that stores that block. As

shown in Fig. 3b, DiCo-CMP sends the request to the owner

cache (1 GetS) instead of to the home tile. In this way, data

are provided by the owner cache in just two hops (2 Data).
Therefore, direct coherence requires a redistribution of

the roles involved in solving a cache miss. Next, we

describe the tasks performed in cache coherence protocols

and the component responsible for each task in both

directory and direct coherence protocols, which are illu-

strated in Fig. 4:

. Order requests: Cache coherence maintenance re-
quires to serialize the requests issued by different
cores for the same block. In snooping-based cache
coherence protocols, the requests are ordered by the
shared interconnection network (usually, a bus).
However, since tiled CMP architectures implement
an unordered network, this serialization of the
requests must be carried out by another component.
Directory protocols assign this task to the home tile
of each memory block. In direct coherence protocols,
this task is performed by the owner cache.

. Keep coherence information: Coherence information is
used to track blocks stored in private caches. In
protocols that include the O state, like MOESI
protocols, coherence information also identifies the
owner cache. In particular, sharing information is
used to invalidate all cached blocks on write misses,
while owner information is used to know the identity
of the provider of the block on every miss. Directory
protocols store coherence information at the home
tile, where cache coherence is maintained. Instead,
direct coherence requires that sharing information
be stored in the owner cache for keeping coherence
there, while owner information is stored in two
different components. First, the requesting cores
need to know the owner cache to send the requests
to it. Processors can easily keep the identity of the
owner cache, e.g., by recording the last core that
invalidated their copy. However, this information
can become stale, and therefore, it is only used for
avoiding indirection (dashed arrow in Fig. 4). Then,
responsible for tracking the up-to-date identity of
the owner cache is the home tile, which must be
notified on every ownership change.

. Provide the data block: If the valid copy of the block
resides on chip, data are always provided by the
owner cache, since it always holds a valid copy.

. Provide off-chip storage: When the valid copy of a
requested block is not stored on chip, an off-chip
access is required to obtain the block. In both
protocols, the home tile is responsible for detecting
that the owner copy of the block is not stored on
chip, sending the off-chip request and receiving the
data block.

Another example of the advantages of DiCo-CMP is
shown in Fig. 5. The diagram represents an upgrade that
takes place in a tile whose L1 cache is the owner one, which
happens frequently in common applications (e.g., in the
producer-consumer pattern). In a directory protocol,
upgrades are resolved by sending the request to the
directory (1 Upgr), which replies with the number of
acknowledgements that must be received before the block
can be accessed (2 Ack), and sends invalidation messages to
all sharers (2 Inv). Sharers confirm their invalidation to the
requester (3 Ack). Once all the acknowledgements have
been received by the requester, the block can be modified
and the directory is unblocked (4 Unbl). In contrast, in
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DiCo-CMP, only invalidation messages (1 Inv) and
acknowledgements (2 Ack) are required, thus solving the
miss with just two hops.

Additionally, by keeping together the owner block and
the directory information, the control messages between
them are not necessary, thus saving some network traffic
(two messages in Fig. 3 and three in Fig. 5). Moreover, this
allows the O&D node to solve misses without using
transient states, thus reducing the number of states of the
cache controller and making the implementation simpler.
Finally, the elimination of transient states at the directory
reduces the waiting time for the subsequent requests, and
therefore, average miss latency.

3.2 Changes to the Structure of the Tiles of a CMP

The new distribution of roles that characterizes direct
coherence protocols requires some modifications in the
structure of the tiles that build the CMP. First, the identity
of the sharers for every block is stored in the corresponding
owner cache, instead of in the home tile, to allow caches to
keep coherence for the memory blocks that they hold in
owner state. Therefore, DiCo-CMP extends the tags’ part of
the L1 caches with a sharing code field, e.g., a bit-vector (L2
caches already include this field in directory protocols). In
contrast, DiCo-CMP does not need the directory structure in
the home tile that traditional directory protocols require.

Additionally, DiCo-CMP needs two extra hardware
structures that are used to record the identity of the owner
cache for a certain set of blocks:

. L1 coherence cache (L1C$): The pointers stored in this
structure are used by the requesting core to avoid
indirection by directly sending local requests to the
corresponding owner cache. Therefore, this structure
is located close to each processor’s core. DiCo-CMP
can update this information in several ways based
on network usage (see Section 4).

. L2 coherence cache (L2C$): Since the owner cache can
change on write misses, this structure must track
the owner cache for each block allocated in any L1
cache. This structure is accessed each time a
request fails to locate the owner cache. Therefore,
its information must be updated whenever the
owner cache changes through control messages,
which must be processed by the L2C$ in the very
same order in which they were generated (see
Section 3.3.3).

Fig. 6 shows a tile design for directory protocols (Fig. 6a)
and direct coherence protocols (Fig. 6b). A comparison
among the extra storage required by the protocols con-
sidered in this work can be found in Section 5.

3.3 Description of the Cache Coherence Protocol

3.3.1 Requesting Processor

When a processor issues a request that misses in its private
L1 cache, it directly sends the request to the owner cache in
order to avoid indirection. The identity of the potential
owner cache is obtained from the L1C$, which is accessed at
the time that the cache miss is detected. If there is a hit in
the L1C$, the request is sent to the owner cache. Otherwise,
the request is sent to the home tile, where the L2C$ will be
accessed to get the identity of the current owner cache.

3.3.2 Request Received by a Cache That Is Not the

Owner

When a request is received by a cache that is not the
current owner of the block, it simply resends the request.
L1 caches resend requests to the home tile. On the other
hand, if the request is received by the home tile and there
is a hit in the L2C$, it is sent to the current owner cache. In
absence of race conditions, the request will reach the
owner cache. Finally, if there is a miss in the L2C$ and the
L2 cache is not the owner of the block, main memory is
accessed to get the block. In this case, the block is allocated
in the requesting L1 cache, which gets the ownership of the
block, but not in the L2 cache (as occurs in the directory
protocol since we assume noninclusive caches). In addi-
tion, it is necessary to allocate a new entry in the L2C$
pointing to the current L1 owner cache.

The appearance of owner mispredictions could impact
on the minimum number of virtual networks that ensure
the absence of deadlock at the interconnect. However, the
longest message dependency chain (without cycles) in
direct coherence is the same as in directory protocols (five
messages), and therefore, the minimum number of virtual
networks required is the same (five in both protocols)
according to [15].

3.3.3 Request Received by the Owner Cache

Every time a request reaches the owner cache, it is
necessary to check whether this cache is currently proces-
sing a request from a different processor for the same block
(a previous write waiting for acknowledgements). In this
case, the block is in a busy or transient state, and the request
must wait until all the acknowledgements are received.

If the block is not in a transient state, the miss can be
immediately resolved. If the owner is the L2 cache, all
requests (reads and writes) are resolved by deallocating the
block from the L2 cache and allocating it in the private L1
cache of the requester. Again, the identity of the new owner
cache must be stored in the L2C$.

When the owner is an L1 cache, read misses are
completed by sending a copy of the block to the requester
and adding it to the sharing code field. Since our protocol is
also optimized for the migratory sharing pattern, read
misses for migratory blocks invalidate the copy in the
owner cache and send the exclusive data to the L1 cache of
the requesting processor.
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For write misses, the owner cache sends invalidation
messages to all the caches that hold a copy of the block, and
then, it sends the data block to the requester. Acknowl-
edgement messages are collected at the requesting cache. If
the miss is an upgrade, the owner cache checks the sharing
code field to know whether the requester still holds a copy
of the block (note that a previous write miss from a different
processor could have invalidated its copy, and in this case,
the owner cache should also provide a valid copy of the
block). As shown in Fig. 5, upgrade misses that take place in
the owner cache just need to send invalidations and receive
acknowledgements (two hops in the critical path).

Finally, since the L2C$ must store up-to-date information
regarding the owner cache, every time that the owner cache
changes, the old owner cache also sends a control message to
the L2C$ indicating the identity of the new owner. These
messages must be processed by the L2C$ in the very same
order in which they were generated. Otherwise, the L2C$
could fail to store the identity of the current owner. To
enforce this constraint, once the L2C$ processes the message
reporting an ownership change from the old owner, it sends
a confirmation response to the new owner. Until this
confirmation message is received by the new owner, it
could access the data block (if already received), but cannot
give the ownership to another cache. Since these two control
messages are not in the critical path of the cache miss, they
do not introduce extra latency.

As an example, Fig. 7 illustrates a write miss for a
shared block. It assumes that the requester has valid and
correct information about the identity of the current owner
tile in the L1C$, and therefore, it is able to send directly the
request to the owner tile (1 GetX). Then, the owner tile
must perform the following tasks: First, it sends the data
block to the requester (2 Data). Second, it sends invalida-
tion messages to all the sharers (2 Inv), and it also
invalidates its own copy. The information about the sharers
is obtained from the sharing code stored along with every
owner block. Third, it sends the message informing about
the ownership change to the home tile (2 ChOwn). All tiles
that receive an invalidation message respond with an
acknowledgement message to the requester once they have
invalidated their local copies (3 Ack). When the data and all
the acknowledgements arrive to the requesting processor,
the write operation can be performed. However, if another
write request arrives to the tile that previously suffered the
miss (R), it cannot be handled until the acknowledgement
to the ownership change issued by the home tile (3 AckCh)
is received.

3.3.4 Replacements

In our particular implementation, when an owner block is
evicted from an L1 cache, it must be allocated at the L2 cache
along with its sharing code. The replacement is performed
just by sending a writeback message to the home tile, as
happens in Token-CMP. Then, the L2C$ deallocates its entry
for this block because the owner cache is now the L2 cache.
Replacements for blocks in shared state are performed
transparently, i.e., no coherence messages are needed.

Finally, no coherence actions must be performed in case
of an L1C$ replacement. However, when an L2C$ entry is
evicted, the protocol should ask the owner cache to
invalidate all the copies from the L1 caches. Luckily, as
happens to the directory cache in directory protocols, an
L2C$ with the same number of entries and associativity
than the L1 cache could be enough to completely remove
this kind of replacements [37].

3.4 Preventing Starvation

Directory protocols avoid starvation by queuing requests in
FIFO order at the directory buffers. Differently, in DiCo-
CMP, write misses can change the cache that keeps
coherence for a particular block, and therefore, some
requests can take some extra time until this cache is finally
found. If a memory block is repeatedly written by different
cores, a request could take some time to find the owner
cache ready to process it, even when it is sent by the L2C$.
Hence, some cores could be completing their requests while
other requests remain starved.

DiCo-CMP detects and avoids starvation by using a
simple mechanism. In particular, each time a request
accesses the L2C$, a counter is increased. The request is
considered starved when this counter reaches a certain value
(e.g., three accesses to the L2C$, in this work). When the L2C$
detects a starved request, it resends the request to the owner
cache, but it records the address of the requested block. If the
starved request reaches the owner cache, the miss is resolved,
and the L2C$ is notified, ending the starvation situation. If
the starved request does not reach the owner tile, ownership
is moving from a cache to another one, and a message
notifying the change has been issued. When the L2C$
receives this message, it detects the block as suffering from
starvation, and the acknowledgement message is not sent.
This ensures that the identity of the owner cache does not
change until the starved request completes.

4 UPDATING THE L1 COHERENCE CACHE

DiCo-CMP uses the L1C$ to avoid indirection by keeping
pointers that identify the owner cache of certain blocks.
Several policies can be used to update the value of these
pointers. A first option is to record the information about
the last core that invalidated or provided each block, i.e., the
last processor that wrote the block. When a block is
invalidated from an L1 cache, the L1C$ records the identity
of the processor causing the invalidation. In case of a read
miss, the identity of the provider of the block is also stored.
Additionally, when an owner block is evicted from an L1
cache, some control messages are sent to the sharers to
inform about the new location of the owner cache, the home
tile. We call this policy the Base policy.
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Fig. 7. Example of ownership change upon write misses. R ¼ requester,

O ¼ owner, S ¼ sharers, and H ¼ home.



Unfortunately, in most cases, this information is not
enough to obtain accurate owner predictions and it must be
enhanced by sending some hints. Hints are control messages
that inform the L1C$ about owner changes. Since sending
hints to all cores on each change is not efficient in terms of
network traffic, it is necessary to keep track of those cores
that need to receive hints for each memory block.

In our previous work of DiCo-CMP [36], we proposed a
frequent sharers mechanism to send hints. This mechanism
requires the addition of a new field to each cache entry. This
field keeps a bit-vector that identifies the requesting cores
(or frequent sharers) for each owner block. When the owner
changes, hints are sent to these cores to update their L1C$s.
Moreover, the frequent sharers vector is also sent along
with the data message. Since we choose not to store the
frequent sharer information at the L2 cache level in order to
keep storage requirements low, this field is reset whenever
there is an L1 cache eviction of an owner block. We call this
policy Hints FS. This mechanism is not very suitable for
large-scale CMPs since the area required by the bit-vector
could become prohibitive. In addition, it does not filter hint
messages for those blocks in which the Base mechanism
works well, thus consuming precious network bandwidth.

Therefore, in this work, we propose to use address
signatures to design a scalable hints mechanism in terms of
area requirements. We call this policy Hints AS. Address
signatures encode a set of addresses into a register of fixed
size, following the principles of hash encoding with allow-
able errors as described in [8]. An address signature stores a
superset of the addresses that has been encoded in it, so it
only can claim that a particular address has not been included
in it. Therefore, the disadvantage of address signatures is that
false positives can happen. However, this is not a correctness
issue for the hints mechanism but maybe a performance
issue, due to a potential increase in network traffic.

Essentially, each home tile includes an address signature
(L2 Signature) that encodes a certain set of addresses. In
order to filter some useless hints, we only store the
addresses for those cache misses mispredicting the owner
tile, i.e., the home tile receives a request from a core that is
not the requester one (Fig. 8, top). In this way, when the
home tile is informed about the ownership change for a
particular block, it checks the signature and broadcasts
hints to all cores if the address is present (Fig. 8, bottom).
Note that when invalidation messages are required, it is not
necessary to send hints to the cores that receive them.

Since this scheme only uses one signature for all cores, and
hints are broadcast to them in case the address is found, some
cores will receive hints for blocks that they are not actually
requesting, thus overloading the L1C$. To avoid this effect,
we add another address signature (L1 Signature) to each
core. On each cache miss, the address of the block is encoded
in the signature. Then, when a hint is received, it is only
stored in the L1C$ if the address is found in the signature.

Particularly, addresses are encoded using a double-bit-
select signature implementation [42], as Fig. 8 shows. The
signature is divided into two sets. The log2ðbÞ � 1 less
significant bits (n1) are decoded and ORed with the first set,
being b the size in bits of the signature. The log2ðbÞ � 1
subsequent less significant bits (n0) are decoded and ORed

with the second set. An address belongs to the signature if
the corresponding bit is present in both sets.

When we refer to the less significant bits, we do not take
into consideration the block offset. For the L2 signature, we
neither take the home offset, as illustrated in Fig. 8. This
offset comes from assigning an address to a home tile
according to the less significant bits (log2n).

5 AREA AND POWER CONSIDERATIONS

In this section, we compare the memory overhead and the
extra structures needed by the three protocols considered in
this work: Token-CMP, Directory, and DiCo-CMP. More-
over, we discuss how frequently these structures are accessed
to demonstrate that our proposal will not have significant
impact on the power consumed by these structures, and
therefore, significant reductions in total power consumption
can be expected as a result of the savings in terms of network
traffic that DiCo-CMP entails (see Section 7.3).

Token-CMP needs to keep the token count for any block
stored both in the L1 and L2 caches. This information only
requires dlog2ðnþ 1Þe bits (the owner token bit and the
nonowner token count), where n is the number of
processing cores. These additional bits are stored in the
tags’ part of both cache levels.

Directory protocols store the on-chip directory informa-
tion either in the L2 tags when the L2 cache holds a copy of
the block or in a distributed directory cache when the block
is stored in any of the L1 caches but not in the L2 cache. In
our implementation, the number of entries of a directory
bank is the same as the number of entries of an L1 cache,
since this size is enough to always find the directory
information for on-chip misses, i.e., without incurring in
directory misses [37]. The directory must be accessed on
each cache miss.

ROS ET AL.: A DIRECT COHERENCE PROTOCOL FOR MANY-CORE CHIP MULTIPROCESSORS 1785

Fig. 8. Organization of the address signature mechanism proposed to

send hints.



DiCo-CMP stores the directory information for blocks
held in any L1 or L2 cache in the owner cache (L1 or L2).
Moreover, it uses two structures that store a pointer to the
owner cache, the L1 and L2 coherence caches. The L1C$ is
accessed only when it is known that there is a cache miss in
order to keep power consumption low. The L2C$ is
necessary for locating the owner cache whenever the
information in the L1C$ is not correct. This structure is
only accessed for misses affected by indirection (about
22 percent of the cache misses as shown in Section 7.1). As
happens with the on-chip directory cache in the directory
protocol, the L2C$ does not require more entries than the
number of entries of the L1 caches. Different from a
directory cache, just one pointer is stored in each entry. In
this way, the L2C$ required by DiCo-CMP has smaller size
than the directory cache employed in the directory-CMP
protocol. The use of hints improves performance at the cost
of increasing both storage requirements and network traffic.
In particular, the frequent sharers mechanism requires to
store the frequent sharers in the tags of the L1 caches -OðnÞ-.
On the other hand, the address signature mechanism only
uses two signatures per tile (1,024 bits, each one), and
therefore, the storage requirements are reduced and scales
with the number of cores.

For the particular configuration of this work (a 4� 4 tiled
CMP with 128 KB L1 private caches), the number of bits
required for storing the sharing code is 16 (2 bytes), whereas
just log216 ¼ 4 bits are needed for storing a single pointer.
Table 1 summarizes the structures, the size, and the
memory overhead with respect to the size of the data
caches required by Token-CMP, directory-CMP, and the
different implementations of DiCo-CMP evaluated in this
work. Note that the table concentrates on the structures
used for keeping coherence information, and therefore,
does not account for the extra structures required by Token-
CMP and DiCo-CMP to avoid starvation. In general, we can
see that direct coherence has an overhead close to a
directory protocol.

6 SIMULATION ENVIRONMENT

We evaluate our proposal with full-system simulation using
Virtutech Simics [26] extended with Multifacet GEMS 1.3
[31]. GEMS provides a detailed memory system timing
model, which accounts for all protocol messages and state

transitions. In order to model precisely the interconnection
network, and thus, obtain more accurate results, we have
replaced the original (not very detailed) network simulator
offered by GEMS with the SiCoSys detailed interconnection
network simulator [34]. SiCoSys allows to take into account
most of the VLSI implementation details with high
precision but with much lower computational effort than
hardware-level simulators. In addition, we have extended
SiCoSys to allow us to simulate multicast networks.

The simulated system is a tiled CMP organized as a 4� 4
array of replicated tiles. Since we consider CMPs with a
relatively large number of cores, each tile contains an in-
order processor core, thus offering better performance/
power ratio than a small number of complex cores would
obtain. Table 2 shows the values of the main parameters of
the system evaluated in this work.

Finally, we have used a varied selection of 12 scientific
and multimedia applications for the evaluation. Barnes (16K
bodies, 4 time steps), Cholesky (tk15.O), FFT (64K complex
doubles), Ocean (258� 258 ocean), Radix (1 M keys,
1,024 radix), Raytrace (teapot), Volrend (head), and Water-
NSQ (512 molecules, 4 time steps) are from the SPLASH-2
benchmark suite [41]. RaytraceOpt improves the original
Raytrace application by removing a lock acquisition for a
ray ID, which is not used for any actual computation.
Unstructured (Mesh.2K, 5 time steps) is a computational
fluid dynamics application. MPGdec (525_tens_040.m2v)
and MPGenc (output of MPGdec) are multimedia applica-
tions from the APLBench suite [24]. We account for the
variability in multithreaded workloads [4] by doing multi-
ple simulation runs for each benchmark in each configura-
tion and injecting random perturbations in memory
systems timing for each run. The experimental results
reported in this paper correspond to the parallel phase of
each program.

7 EVALUATION RESULTS AND ANALYSIS

We compare the different implementations of DiCo-CMP
proposed in Section 4 (base, hints FS, and hints AS) with both
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Token-CMP and the directory protocol described in Section 2.
In addition, to find out the potential of DiCo-CMP, we have
implemented an oracle policy in which the identity of the
current owner cache is provided on every cache miss.

7.1 Impact on the Number of Hops Needed to Solve
Cache Misses

In general, DiCo-CMP reduces the number of hops needed to
solve a miss by avoiding the indirection introduced by the
access to the home tile. However, some misses can increase
the number of hops compared to a directory protocol due to
owner mispredictions. In order to study how DiCo-CMP
impacts on the number of hops needed to solve cache misses,
we classify each miss into one of the following categories:

. two-hop misses: Misses belonging to this category do
not suffer from indirection since the number of hops
in the critical path of the miss is two. In directory
protocols, misses fall into this category either when
the home tile of the requested block can provide the
copy of the block or when the miss takes place in the
home tile, and in both cases, it is not necessary to
invalidate blocks from other tiles. Token-CMP solves
all misses that do not require persistent requests in
two hops. Finally, DiCo-CMP solves cache misses
using two hops either when the request is directly
sent to the current owner cache and invalidations are
not required, or when the miss takes place in the tile
where the owner block resides (upgrades).

In all protocols, when the miss takes place in the
home tile and this tile holds the owner block in the
L2 cache, the miss is solved without generating
network traffic (zero-hop miss). These misses are
also included in this category because they do not
introduce indirection.

. three-hop misses: A miss belongs to this category
when three hops in the critical path are necessary to
solve it. This never happens in Token-CMP.

. >three-hop misses: We include in this category misses
that need more than three hops in the critical path to
be solved. This only happens in DiCo-CMP when the
identity of the owner cache is mispredicted, or in
Token-CMP when persistent requests are required to
solve the miss.

. Memory misses: Misses that require off-chip access
since the owner block is not stored on chip fall into
this category.

Fig. 9 shows the percentage of cache misses that fall into
each category. As commented in Section 1, in tiled CMP
architectures that implement a directory protocol, it is not
very frequent that the requester be at the home tile of the
block because the distribution of blocks among tiles is
performed in a round-robin fashion. However, the fact that
sometimes the block is found in the L2 cache in owner state
due to L1 cache evictions decreases the number of misses
with indirection. In this way, the first bar in Fig. 9 shows
that most applications have an important fraction of misses
suffering from indirection, like MPGdec, MPGenc, Raytrace,
RaytraceOpt, Unstructured, and Volrend, and other applica-
tions in which most of the misses are solved in two hops,
like Barnes, FFT, Ocean, and Radix. Obviously, DiCo-CMP
will have more impact for the applications that suffer more
indirection, although this impact will also depend on the
cache miss rate of each application. We also can observe
that Token-CMP solves most of the misses (85 percent, on
average) using two hops (second bar).

As shown in the third bar of Fig. 9, DiCo-Base increases
the percentage of cache misses without indirection com-
pared to a directory protocol (from 46 to 63 percent, on
average). On the other hand, 17 percent of cache misses are
solved needing more than three hops. This fact is due to
owner mispredictions that arise for two reasons: 1) staled
owner information was found in the L1C$ or 2) the owner
cache is changing or busy due to race conditions and the
request is sent back to the home tile. The first case can be
removed with a precise hints mechanism, as clearly
happens in Unstructured. In the second case, the extra
number of hops entailed by DiCo-CMP is equivalent to the
cycles that the requests wait at the home tile until they are
processed in the base directory protocol, and consequently,
it does not suppose extra miss latency. This kind of >3-hop
misses mainly appears in applications with high levels of
contention, like MPGdec, MPGenc, and Raytrace, and they
also occur in Token-CMP.

The two hints mechanisms implemented for DiCo-CMP,
DiCo-Hints FS, and DiCo-Hints AS (fourth and fifth bars,
respectively) increase the percentage of misses solved in
two hops with respect to DiCo-Base in 11 and 12 percent, on
average, respectively. The main advantage of DiCo-Hints AS
is its low storage overhead. Although for some applications
the use of hints slightly increases the percentage of two-hop
misses, like in Barnes, Cholesky, and FFT, for others,
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especially Unstructured, hints significantly help to achieve
accurate predictions. Hints are mainly useful for applica-
tions in which the migratory sharing pattern is common
since writes (or migratory reads) for blocks following this
pattern do not send invalidations because the owner cache
has the only valid copy of the block. Therefore, in DiCo-Base,
the cores requesting migratory blocks do not update the
pointer stored in their L1C$.

The DiCo-Oracle implementation (last bar) gives us the
potential of DiCo-CMP. Therefore, the results are similar to
the ones obtained by Token-CMP. In both cases, the misses
falling into the >3-hop category are for contended blocks.
Although DiCo-Hints AS does not obtain the same percen-
tage of two-hop misses than DiCo-Oracle (10 percent less, on
average), it has similar percentage of >3-hop misses that
makes this solution perform close to the oracle case, as we
will see in Section 7.4.

7.2 Impact on Cache Miss Latencies

The avoidance of indirection shown by DiCo-CMP reduces
the average cache miss latency. In addition, DiCo-CMP
removes the transient states at the directory by putting
together the provider of the block and the directory
information. This fact reduces the time that the requests
are waiting at the directory to be processed, which results in
even more latency reductions. Fig. 10 shows L1 cache miss
latency for the applications evaluated in this work normal-
ized with respect to Token-CMP, which is shown as a
horizontal line. It does not consider the overlapping of the
misses, and latency is calculated considering each miss
individually. Latency is broken down into four segments to
understand better in what way DiCo-CMP reduces the
cache miss latency:

. Finding: It is the time elapsed between the issue of a
request and the arrival of the request to the serial-
ization point, i.e., the home tile for directory
protocols and the owner cache for DiCo-CMP.

. Waiting: In directory protocols, it is the time spent
waiting at the home tile because another request for
the same block is being processed. In DiCo-CMP, this
segment represents the period elapsed between the
first time that the owner cache is found and the time
when the owner cache processes the request.

. Memory: It is the time spent getting the data block
from main memory when it is required.

. Solving: It is the time elapsed between the request
leaves the serialization point and the block is accessed
by the requesting processor. This period includes the
need of forwarding the request in a directory protocol,
and the issue of data, invalidation, and acknowl-
edgement messages in both protocols.

We do not consider this classification for Token-CMP
because this protocol does not follow a particular order to
solve cache misses.

In general, we can see that all the polices implemented
for DiCo-CMP reduce the average cache miss latency
compared to a directory protocol (first bar). Both DiCo-
Hints FS and DiCo-Hints AS (third and fourth bars,
respectively) also reduce the latency compared to Token-
CMP. In particular, DiCo-Hints AS obtains reductions of 12
and 7 percent, on average, over a directory protocol and
Token-CMP, respectively. Moreover, its average latency is
close to the obtained for the oracle case (last bar).

Looking at the different segments into which cache miss
latency is split, we can observe that, in general, the finding
time is shorter for the directory protocol. This is because in
a directory protocol, this period always comprises a single
hop. However, DiCo-CMP can take several hops until
the owner cache is found. As we can see, the more accurate
are the owner predictions, the shorter is this segment. For
example, Unstructured has a lot of mispredictions (>3-hop
misses) when the base policy is considered, which doubles
the finding time compared to a directory protocol. Never-
theless, hints significantly help to reduce this extra latency.
Note that for some other applications, the increase in the
number of >3-hop misses is due to race conditions, which do
not increase the latency of the misses. Finally, for other
applications like FFT, Ocean, Radix, and Raytrace, the finding
time in the oracle case is a bit shorter than in a directory
protocol. This is because sometimes the owner cache is
closer to the requesting core than the home tile.

Regarding the waiting time, we can observe that only
some applications (Barnes, MPGdec, MPGenc, Raytrace,
RaytraceOpt, and Volrend) have requests waiting at the
home tile during a meaningful time. Since DiCo-CMP
removes transient states at the directory, this waiting is
shortened for some of these applications. This waiting time
is usually caused by contended locks, and therefore,
reductions in these requests result in a faster acquisition
of locks, and finally, in reductions in the number of memory
requests, as happens in Raytrace and RaytraceOpt.
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The memory time does not vary significantly for the
evaluated protocols. However, the solving time is always
reduced when DiCo-CMP is implemented because for most
misses, it requires just one hop, in contrast to the two hops
(forwarding and data) needed for a directory protocol. This
time is not affected by the policy employed because the
policy only tries to find the owner cache as soon as possible.

7.3 Impact on Network Traffic

Fig. 11 compares the network traffic generated by the
protocols considered in this work. In particular, each bar
plots the number of bytes transmitted through the
interconnection network (the total number of bytes trans-
mitted by all the switches of the interconnect) normalized
with respect to Token-CMP. As stated in Section 6, we
assume an interconnection network with multicast support.
We can see that Token-CMP obtains the highest traffic
levels because it broadcasts requests on every cache miss.
Network traffic can be dramatically reduced when the
directory protocol is employed (51 percent, on average).
This is because requests are only sent to the home tile,
which, in turn, sends coherence messages just to the L1
caches that must receive them.

In Fig. 11 (top), we show the network traffic split into
three categories: data, control, and hints traffic. For some
applications, data traffic is reduced due to the decrease of
cache misses that DiCo-CMP can entail, as commented in the
previous section. Compared to the directory protocol, DiCo-
CMP meaningfully saves the traffic generated by control
messages. This saving is originated by the elimination of
control messages between the home tile and the owner cache

that DiCo-CMP entails. This reduction allows DiCo-Base to
reduce network traffic by 6 percent compared to the
directory protocol. In contrast, DiCo-CMP introduces hint
messages for some configurations in order to achieve more
accurate owner predictions. The hints that appear for DiCo-
Base come as consequence of evictions of owner blocks, as
explained in Section 4. In general, hints increase network
traffic, especially in Unstructured in which they are crucial to
obtain good performance. However, this traffic is always
lower than the reached by Token-CMP because hints are
only sent (if necessary) when the owner cache changes.
DiCo-Hints AS requires more traffic than DiCo-Hints FS at
the cost of reducing considerably the storage requirements
for the hints mechanism. In general, we can observe that
DiCo-Hints AS increases network traffic by 14 percent
compared to the directory protocol, although it still reduces
the traffic compared to Token-CMP up to 43 percent.

Fig. 11 (bottom) shows the network traffic split into
critical and noncritical messages. This classification is
important to know how each protocol can be optimized
under heterogeneous networks [14] in which noncritical
messages can be sent through low-power wires to save
power consumption. In Token-CMP, all broadcast requests
are considered critical because it is unknown which ones
are going to be actually in the critical path. Directory highly
reduces the amount of critical traffic with respect to Token-
CMP. We can also observe that DiCo-CMP reduces even
more this kind of traffic because hints are out of the critical
path of the miss. Therefore, under heterogeneous networks,
DiCo-CMP can save more power consumption and even
other more aggressive hints policies, as broadcasting hints
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on every owner change, can be implemented with small
overhead in terms of power.

7.4 Impact on Execution Time

The ability of avoiding indirection and the low network
traffic requirements that DiCo-CMP shows translates into
applications’ execution time. Fig. 12 plots the average
execution times that are obtained for the applications
evaluated in this paper. All the results have been normalized
with respect to those observed for the directory protocol.

In general, we can see in Fig. 12 that Token-CMP
improves the execution times of the directory protocol by
2 percent, on average. As already discussed, Token-CMP
avoids indirection by broadcasting requests to all caches,
and consequently, the network contention can become
critical, even when a network with multicast support is
assumed. For applications with high level of contention, like
MPGdec, MPGenc, and Raytrace, Token-CMP has to issue
persistent requests for a significant number of cache misses
that make it get worse performance.

DiCo-CMP does not rely on broadcasting but requests
are just sent to the potential owner cache. It is clear that the
performance achieved by DiCo-CMP will depend on its
ability to find the current owner cache. We observe
improvements in execution time for DiCo-Base of 3 percent
compared to the directory protocol, obtaining similar
performance than Token-CMP. On the other hand, the use
of hints increases the fraction of two-hop misses, which
translates into increased gains in terms of execution time.
Both DiCo-Hints FS and DiCo-Hints AS improve execution
time by 6 percent over a directory protocol and 3 percent
over Token-CMP. We also can see that the DiCo-Hints AS
policy obtains average results very close to the unimple-
mentable DiCo-oracle policy. Particularly, for the MPGdec
application, the hints policies achieve lower execution time
than the oracle one. This is because, in case of contention,
always predicting the owner node can be unfair for the
misses that take place in the tiles farther to the owner cache,
thus introducing more starved requests.

8 CONCLUSIONS

Tiled CMP architectures have recently emerged as a
scalable alternative to current small-scale CMP designs,
and will be probably the architecture of choice for future
many-core CMPs. Differences in the technological para-
meters and constraints entailed by CMPs with respect to

traditional shared-memory multiprocessors demand new
solutions to the cache coherence problem.

In this work, we present direct coherence, a cache
coherence protocol for tiled CMP architectures that meets
the advantages of directory and token protocols and avoids
their problems. In direct coherence, the task of storing up-to-
date sharing information and ensuring ordered accesses for
every memory block is assigned to the owner cache.
Compared to a directory protocol, our proposal avoids the
indirection that the access to the directory entails by directly
sending the requests to the owner cache, and therefore, it
also reduces the cache miss latency. Compared to Token-
CMP, our proposal reduces network traffic by sending just
one request message on every cache miss. We name the
implementation of direct coherence for CMPs as DiCo-CMP,
and evaluate different policies of this implementation.

In this way, we show that DiCo-Hints AS, the best policy
for DiCo-CMP, is able to reduce the indirection compared to
a directory protocol from 54 to 26 percent, on average. Both
this reduction in misses with indirection and the decrease in
the waiting time for some applications that DiCo-CMP
achieves result in reductions of 12 percent in the latency of
cache misses, on average. Finally, the improvements
obtained for the cache miss latencies lead to improvements
of 6 percent in execution time. Moreover, DiCo-Hints AS
achieves network traffic reductions of 43 percent compared
to Token-CMP by sending just one request message per miss,
and consequently, the total power consumed in the inter-
connection network will be also reduced. The savings allow
DiCo-Hints AS achieve improvements of 3 percent in terms of
execution time compared to Token-CMP. Additionally, we
show that the structures and complexity required by DiCo-
CMP are comparable to those used in a directory protocol,
which confirms that our proposal is a viable alternative to
current cache coherence protocols for tiled CMPs.
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