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ABSTRACT

The network-on-chip (NoC) has become an integral part

of multicore systems and multiprocessor systems-on-chip

(MPSoCs). Detailed simulation models are one of the most

common techniques to evaluate the performance of a NoC.

Most of these models only include a subset of the complete

architecture and use only synthetic traffic. However, there

is usually a combined effect of other components of the ar-

chitecture that can impact the obtained results. Thus, an

alternative consists in modeling a full-system to obtain a

complete architecture that allows us to simulate real work-

loads with high accuracy. In this paper, we first present the

INetwork interface which allows us to include any network

simulator inside the Simics-GEMS system. For testing the

simulator, we present a simple case of study for a baseline

NoC model running real applications. We also present a

trace-driven model based on self-related traces which al-

lows using just the NoC simulator. With this model, we are

able to obtain simulation results with high accuracy in a

lower simulation time (reduction up to 75%).

KEYWORDS: Network-on-Chip, Multicore, Simula-
tion, Full-System, Trace-Driven.

1. INTRODUCTION

Simulation is one of the most important techniques used by

computer architects to evaluate their innovations. Network

simulators allow designers to quickly implement and test

their own designs by allowing them to model the most im-

portant aspects involved in a NoC with high accuracy. Usu-

ally, most studies assume that the traffic of the applications

can be modeled as synthetic traffic. Traffic patterns, uni-

form distributions and/or constant message generation rate

are frequently used. In contrast, the workload of the sim-

ulator should be as realistic as the application that will run

in the real system. For instance, a different order of mes-

sage arrival caused by the interconnection network can im-

pact the memory system behavior and may affect the perfor-

mance of the CMP. This interaction is not simulated when

synthetic traffic is used and might have negative effects on

the accuracy of evaluation results of a given proposal.

A full-system simulator is a very accurate way of evaluat-

ing the behavior of a complete architecture. Full-system

simulators consider both most components of the simulated

architecture and the impact of the operating system on the

execution of the applications. One of these platforms is the

system composed by Simics and GEMS [1]. In order to

obtain accurate results when designing new approaches for

the interconnection network, we have developed an inter-

face, named as INetwork, that allows to include any net-

work simulator replacing the original network implemented

in GEMS. Particularly, we have added Noxim [2], our target

NoC simulator, to the Simics-GEMS infrastructure.

Unfortunately, a full-system simulator requires important

computation requirements because of the high number of

detailed components that are simulated. In order to deal

with the lack of accuracy of synthetic traffic and the large

execution times of a simulation, we propose a trace model

called self-related traces that are independent of the timing



parameters of the network, since every message in the trace

file contains some fields that indicate the dependency with

respect to other previous messages. Thus, accurate simula-

tions can be obtained with a reduced simulation time.

The structure of this paper is as follows: Section 2 presents

the related work. Section 3 describes our full-system sim-

ulator and the INetwork interface. In Section 4 we present

a case study to show the usefulness for researching archi-

tectures targeted to the use of NoCs. Section 5 presents the

trace-driven model proposed in this work. Finally, Section 6

presents the conclusions.

2. RELATEDWORK

Traditionally, researchers have used custom simulators that

can simulate traffic for being used in NoC research. Nos-

trum [3] is a flexible NoC simulator focused on communi-

cation primitives along loss-less switches that implements

protocol stack for link, network, and session layers.

Nirgam [4], Noxim [2], and Sicosys [5] are general-purpose

interconnection network simulators for multiprocessor sys-

tems that allow the modeling of a wide variety of message

routers in a precise way. These tools offer a lower com-

putational cost having in mind modularity, versatility and

connectivity with other systems.

Unfortunately, these simulators obtain results by using syn-

thetic traffic or traditional trace files. In fact, the main short-

coming of all the simulators discussed above is that they do

not simulate other components involved in a CMP archi-

tecture as the memory system, the processing elements, or

their interactions with the NoC.

On the other hand, Garnet [6] is a NoC simulator which has

been recently included in the Simics-GEMS infrastructure.

It provides different operation modes that differ in micro-

architectural details of the on-chip router that is modeled.

Although Garnet is an excellent tool due to its accuracy

and inter-operability with Simics-GEMS, it does not pro-

vide full end-to-end models of the NoC (e.g., core network

interface, other IP infrastructure) within a single frame-

work. Additionally, only 2D-mesh topologies can be mod-

eled with the Garnet simulator.

Finally, Netrace [7] uses a communication library that cap-

tures dependencies at system memory level into a trace-file.

However, in this case the NoC is not simulated when the

trace-file is generated and, therefore, the dependencies do

not include all interactions among the different components

of the CMP system. Moreover, these trace-files are very

limited to a particular processor and memory system config-

uration. In order to obtain a more precise evaluation study,

we still need a system simulation and benchmarking plat-

form equipped with all the architecture components. We

can solve this drawback by using our INetwork interface.

These network simulators can be easily integrated with the

Simics-GEMS system in order to obtain a full-system simu-

lator. In this paper, we provide an example with the Noxim

simulator.

3. FULL-SYSTEM SIMULATION TOOL

In this section we briefly describe each tool involved in the

full-system simulator. Simics [8] is a platform for full-

system simulation which attempts to strike a balance be-

tween accuracy and performance by modeling the com-

plete final application and providing a unified framework

for hardware and software design. The General Execution-

driven Multiprocessor Simulator (GEMS) [1] is a simula-

tion toolset to evaluate multiprocessor architectures using

Simics that models the system memory hierarchy and the

system interconnect. GEMS is composed of two main sim-

ulation modules: Ruby and Opal. Ruby is the module that

implements the cache hierarchy and Opal allows simulating

out of order processors.

Ruby uses an interconnection network model to simulate all

communication in a simulated system. As such, all intra-

chip and inter-chip communication is handled as part of the

interconnection network, although each individual link can

have different latency and bandwidth parameters. We have

replaced this design by the Noxim NoC simulator by us-

ing the interface detailed in Section 3.1. The Noxim kernel

is based on SystemC and simulates a NoC in detail up to

the micro-architecture level. Noxim provides flexibility to

specify many different properties of a NoC such as the rout-

ing algorithm (deterministic or adaptive), arbitration poli-

cies, buffer size, etc. Additionally, a wormhole switching

router with virtual channel flow control is implemented.

On the other hand, power estimation is extremely important

in this context in order to verify that power budgets are ap-

proximately met by the different components of a certain

design, and evaluate the effect of the different proposals.

For this reason, we have integrated the Orion 2.0 [9] power

model inside the Noxim simulator to estimate the energy

and area consumption of the simulated NoCs.

Figure 1 shows a global scheme of all the simulation tools

running together. The top of the figure represents the Sim-

ics simulator. Simics is extended by the GEMS simula-

tor to evaluate multiprocessor architectures. In GEMS, the

most important module is Ruby where the memory system

is modeled (in the middle). Finally, the interconnection net-

work implemented in Ruby is extended through the INet-



work interface. This interface allows us to include any NoC

simulator. In our case, we use the Noxim simulator where

the Orion 2.0 tool has been integrated.

Figure 1. GEMS Simulator Extended by Noxim-Orion

NoCs Simulator Through the INetwork Interface.

3.1. The INetwork Interface

We have developed the INetwork interface that allows us to

include any network simulator in a simple way. This inter-

face is highly independent of the network simulator. Ruby

uses a queue-driven event model to simulate timing. Al-

though many buffers are used in a strictly FIFO manner,

the buffers are not only restricted to FIFO behavior. The

simulation proceeds by invoking the wakeup() method for

the next scheduled event on the event queue. The INetwork

class produces events that are injected in the queue-driven

event of the Ruby module, and these events implement the

wakeup() method for our purpose.

In a global view, the transactions are produced as a con-

sequence of the execution of an application in Simics. To

satisfy a load/store that misses in the private cache of the

processor that issues the request, a memory transaction be-

gins. These transactions are composed by several network

messages. When a transaction occurs, the driver sends a

wait signal to Simics. The next step consists in simulat-

ing the messages crossing the Noxim network from a Ruby

component to another one. After that, the obtained latency

(due to memory and network) must be returned to Simics.

The process continues with other transaction and so on.

The wakeup() routine is described in Algorithm 1. For each

input port and for each message that needs to be simulated

in the network, this routine is responsible from extracting

the message (line 3), and transforming the Ruby message

to a Noxim packet (line 4). Then, the packet is injected in

the Noxim network (line 6), previously storing the packet

id in the system (line 5). This packet id is used to identify

the packet while it is crossing the Noxim network.

Then, one cycle of the Noxim network is executed and, sub-

sequently, the wakeup() method performs the inverse pro-

cess described above. That is, for each node of the sim-

ulated system, and for each received packet from Noxim,

the wakeup() method extracts the id of the received packet

from the corresponding node (line 12 and line 13), and in-

forms to Ruby of its reception in the simulated network.

Finally, the noximNetwork event is injected in the global

Ruby queue in order to be triggered again one cycle later.

Algorithm 1 wakeup(noximNetwork) pseudocode.

1: for all input ports do

2: for all message in the port do

3: message← get message from Ruby

4: packet← transform(message)

5: stored packet id

6: inject into noxim network (packet)

7: end for

8: end for

9: put on noxim signal clock (1 cycle)

10: for all node of the CMP do

11: for all received packet do

12: packet← get packet from noxim

13: id← get id (message)

14: inject into Ruby (id)

15: end for

16: end for

17: Ruby event queue← noximNetwork event

Finally, we have extended the Noxim simulator with the

Orion 2.0 model [9]. The integration consists in merging

both simulators aided by the INetwork interface. On the

one hand, Noxim simulator must account for all the actions

involving energy consumption, for instance, to transmit a

flit over the links, to forward a flit in one router, to store

a flit in the input/output ports, etc. On the other hand, the

Orion simulator estimates the energy and the area consump-

tion depending of the configurable parameters such as the

technology, operating frequency, operating voltage, etc.

4. CASE OF STUDY

Our full-system simulator consists of the Simics-GEMS

system plus the Noxim-Orion simulator, and the interface

that integrates both systems. Thus, we are able to simulate

real world benchmark applications for evaluating the per-

formance of NoCs.

To carry out the case of study, we model a homogeneous

CMP with in-order cores. The CMP is structured in a

number of nodes, each with a processing element (Ultra-

Sparc III), a private 32KBytes L1 cache, a portion of the

shared L2 cache (1MByte), a directory cache bank, a mem-



ory controller, and a router. The L2 cache and the direc-

tory are physically distributed but logically shared at the

chip level. Coherence between L1 and L2 caches is kept

using a directory-based MOESI protocol. We assume 3D-

stacking [11], and therefore, each node in the CMP has a

memory controller. Regarding the on-chip network, we use

a mesh topology which has all the links among nodes of the

same size and width. The flit size is equal to the network

link width, and we use a 8Bytes flit size. Finally, we use

the XY routing algorithm in order to easily prevent cyclic

dependencies in the network.

Regarding the Orion 2.0 tool we assume the configurable

parameters most commonly used. For instance, we assume

32nm technology, the transistor type LVT for high perfor-

mance networks, the operating voltage is 1.2v, the wire

layer type is intermediate and the layer length is 100µm

according to the 32nm technology.

As workload we have used the PARSEC v2.1 [10] bench-

mark suite, which consists of 9 applications and 3 kernels

where each one has been parallelized and focused on emerg-

ing workloads. Due to the lack of space, we have only

selected the Blackscholes (BC), Bodytrack (BT), Stream-

cluster (ST), and Swaptions (SW) applications. In the next

section, we analyze the impact on the number of cores as an

example of what the platform can provide.

4.3. Impact on the Number of Cores

In this section we analyze the performance impact when the

number of cores varies. For illustration purpose, we use the

baseline NoC configuration and the workloads previously

proposed. We have tested a CMP having 4, 8, and 16 nodes

arranged in a 2x2, 2x4 and 4x4 2D meshes. Applications

have been parallelized for the number of cores used in each

test. We have collected statistics since the applications start

until the end. Moreover, each value shown in the figures

is the average of 30 different simulations varying the initial

seed, and the confidence interval has been set to 95%. In or-

der to illustrate the variation of performance, all the results

in Figures 2 and 3 are shown in normalized terms compared

with those obtained from the 2x2 mesh size case.

Figure 2.(a) represents the normalized execution time. As

we can see, the applications obtain a good performance and

scalability, with a reduction of 15% from 4 to 8 cores and of

30% from 4 to 16 cores. In general, these applications have

a good scalability degree up to 16 cores.

Figure 2.(b) shows the network latency for the selected ap-

plications. For all the cases as the mesh size increases, the

latency obtained also increases (approximately 150% from

2x2 to 4x4 mesh sizes). As expected, for the 2x2 mesh
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Figure 2. Normalized (a) Execution Time, and (b)

Network Latency.

size the average message distance is significantly reduced

compared to the 4x4 mesh size. Thus, the traffic of each

application has a very low latency. When source and des-

tination nodes are not placed adjacent to each other on the

network, a packet needs to travel several intermediate nodes

until reaching the destination. Although with a wormhole

switching technique the message distance has not a direct

influence on the latency, when the number of hops a mes-

sage needs to arrive at its destination increases because the

distance increases, the probability of interference with other

packets grows, which turns in an increase of the latency.
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Figure 3. Normalized (a) Network Energy

Consumption, and (b) Network Area Consumption.

Finally, we also show results of power and area consump-

tion obtained from the Orion simulator. As expected in the

Figure 3.(a), the 4x4 mesh size has a higher energy con-

sumption because there are more network components run-

ning at the same time (routers and links). Finally, the net-

work area is also higher as we increase the mesh size. In

fact, the total amount of network resources increases pro-

portionately over the mesh size, and its area consumption

also increases (Figure 3.(b)).

5. SELF-RELATED TRACES

The full-system simulator has great computation require-

ments and one simulation could take days or even weeks.

This is the main drawback of the full-system tool. In this

section, we describe a trace-driven simulator that is able to

obtain accurate results for the Noxim-Orion network by us-

ing self-related traces.



In contrast of traditional traces, self-related traces contain

network messages which are independent of the timing pa-

rameter of the network. In contrast, each trace is only de-

pendent on a previous message. To do this, every network

message includes a field that indicates its dependency with

the reception of another message. Additionally, each sys-

tem component processing a network packet needs some

time to perform certain operations (e.g., to write data in

cache or main memory, executing other instructions, etc.).

Our trace-based model should also account for this process-

ing time. To this end, messages in the trace files are also

extended with a new field that indicates the time elapsed

from the reception of the previous message to the issue of

the new dependent one.

Essentially, each message in the self-related trace has the

following fields: the message ID (unique identifier), the

source node memory component (SC), destination node

memory component (DC), the message type of the coher-

ence protocol (T), the size in flits (S), the computation time

of the system component that receives a message in cycles

(CT), and the id of the message that must be received before

issuing the corresponding message (D). The two later fields

are the key of the self-related traces. The CT field indicates

the computation time that the simulated component needs

for processing the received message and executing its cor-

responding actions before sending the next message. The D

field indicates a message dependency. A message m1 is de-

pendent on another message m2 when a system component

c receives the message m2, performs some computations

during a certain CT time, and then sends message m1. This

dependency arises either because the message m1 uses the

information contained in the message m2, or because the

component c has no way to reach the instruction that sends

the message m1 until it receives the message m2, even if

m1 does not use the information in m2.

Table 1 shows the first messages of a self-related trace file.

In this example, the message with ID 2 has a dependency

with message 0. Also, message 4 has a dependency with

message 2; message 5 depends on message 4, and so on. A

value of -1 in the D field indicates no dependency. Notice

that these messages only appear at the beginning of the trace

and the remaining ones depend on previous messages.

We have modified the source code in Ruby for recording

into a trace file the set of messages that are sent through

the network. In this way, we can generate a trace file with

the full-system simulator as a result of the simulation of a

particular benchmark. Then, this trace can be used to feed

the Noxim-Orion simulator as a real workload, and thus,

this allows us to quickly run a set of simulations for testing

a certain design. This mode offers a significant reduction in

terms of simulation time while maintaining the accuracy of

the obtained results, as we will see in Section 6.

Table 1. Example of a Self-Related Trace.

ID SC DC T S CT D

0 0-L1Cache 0-L2Cache Gets 8 3 -1

1 1-L1Cache 1-L2Cache Gets 8 3 -1

2 0-L2Cache 2-Directory Gets 8 2 0

3 1-L2Cache 2-Directory Gets 8 2 1

4 2-Directory 0-L2Cache Data 72 158 2

5 0-L2Cache 0-L1Cache Data 72 4 4

5.1. Efficiency and Accuracy of Self-Related Traces

In this section, we show the improvements in simulation

time of using self-related traces, as well as its validation

compared to the full-system simulation.

In Figure 4.(a) we can see the simulation time employed by

each component of the full-system simulator. About 75%

of the simulation time is employed by the Simics-GEMS

component. Therefore, the self-related traces can help to

reduce significantly the simulation time. Figure 4.(b) shows

the improvements in simulation time of using self-related

traces. We can see that the simulation time is reduced by

75% approximately. As can be seen, the benefits of using

our trace model are significant.
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Figure 4. Simulation Time of (a) each Full-System

Component, and (b) each Simulation Model.

Finally, we test the trace-driven model in order to ensure

that the results are valid compared to the full-system model

by using a statistical hypothesis test. The first step is to

state the hypotheses to be tested. Our hypotheses are: H0

represents “trace-driven model is valid” and H1 represents

“trace-driven model is invalid”. The second step is to com-

pute the relevant statistic test with the experimental results.

In our case, we have selected the HotellingsT2 test because

is widely used to test the multivariate models equality [12].

We have run the BT application, varying the parameters

of the on-chip network, with the trace-driven model and

comparing the results with the full-system simulator results.

The aim of the experiment is to conclude whether the full-

system simulator and the trace-driven model show signif-

icant differences in the evaluation results under the same



configuration parameters. The test will obtain the probabil-

ity of observing a result at least as extreme as the test statis-

tic: the p-value. To understand this value in a correct way,

the direct interpretation is that if the p-value is less than the

required significance level, then we say the H0 hypothesis

is rejected. We have selected a level of significance of 0.05,

that is, there is a 5% of probability of rejecting it because of

random variation.

As result of the test, the p-value is 0.1441 which is more

than 0.05. Therefore, the H0 hypothesis is accepted at the

given level of significance and we can conclude that the

trace-driven model is valid under the given experimental

frame. Therefore, the trace-driven model could be used to

perform fast simulations and obtain experimental results.

However, to get more accurate evaluation results the full-

system simulator is needed.

6. CONCLUSION

In NoCs, new proposals are constantly appearing, but in the

literature most of these proposals are tested with synthetic

workloads. Consequently, not including real workloads can

alter the final results. According to this fact, we have pre-

sented a simulation tool for evaluating the performance of

NoCs that allows us to use workload of real applications.

Thus, it is necessary to consider a simulation environment

that allows to model a complete architecture.

In this paper, we have presented the INetwork interface that

allows to include any network simulator inside the Simics-

GEMS full-system platform. However, the main disadvan-

tage is the high simulation time required to simulate a full-

system with high level of accuracy. Therefore, we have also

presented a trace-driven model that allows a great reduction

of the computational time needed by the simulations (about

75%).

Finally, we have tested the equivalence of the results ob-

tained with both models, and we have concluded that

there are no significant differences between the trace-driven

model and the full-system simulator. For testing the simula-

tor, we have evaluated several mesh sizes running different

applications from the PARSEC v2.1 benchmark suite.
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