Efficient TLB-Based Detection of
Private Pages in Chip Multiprocessors

Albert Esteve, Alberto Ros, Maria E. Gomez, Antonio Robles, Member, IEEE,
and José Duato, Member, IEEE

Abstract—Most of the data referenced by sequential and parallel applications running in current chip multiprocessors are referenced
by a single thread, i.e., private. Recent proposals leverage this observation to improve many aspects of chip multiprocessors, such as
reducing coherence overhead or the access latency to distributed caches. The effectiveness of those proposals depends to a large
extent on the amount of detected private data. However, the mechanisms proposed so far do not consider neither thread migration
nor the private use of data within different application phases. As a result, a considerable amount of private data is not detected. In
order to increase the detection of private data, we propose a TLB-based mechanism that is able to account for both thread migration
and application phases. Simulation results show that the average number of pages detected as private significantly increases from
43% in previous proposals up to 79% in ours while keeping a reasonable TLB miss rate. Furthermore, when our proposal is used
to deactivate the coherence for private data in a directory protocol, it improves execution time by 13.5%, on average, with respect to

previous techniques.

Index Terms—Multiprocessor, cache coherence, directory cache, coherence deactivation, TLB decay

1 INTRODUCTION AND MOTIVATION

URING the last few years, most high-performance
Dprocessors have been built wusing chip-
multiprocessors (CMPs). Core count on these CMPs is
rapidly growing according to Moore’s Law stipulation,
which, along with the implementation of a shared-
memory programming model, leads to the requirement
of efficient coherence maintenance among data in private
caches. These circumstances bring new challenges to
make coherence protocols scalable and to provide
increasing performance.

On small core-count CMPs a snoop protocol can
be used, as the bandwidth requirements for these ap-
proaches grows dramatically with the number of cores.
There are many different approaches whose main goal
is to reduce the traffic generated by broadcast messages
when snooping [1], [2], but scaling to larger systems is
still troublesome.

On the other hand, directory approaches require less
network bandwidth, and are more scalable, but they
introduce a directory structure whose on-chip area and
leakage power grows exponentially with the number of
cores. Due to the limited directory capacity or associa-
tivity, this causes a larger amount of directory-induced
invalidations of cached blocks as a results of directory
replacements. Therefore, conventional directory proto-
cols are not suited for large core-count CMPs and some
alternate proposals addressing the scalability problem
could be used instead [3], [4], [5].

Recently, a different approach relying on classify ac-

e A. Esteve, M.E. Gémez, A. Robles and |. Duato are with Department of
Computer Engineering, Universitat Politecnica de Valencia.
E-mail: alesgar@gap.upv.es, {megomez,arobles,jduato}@disca.upv.es

o A. Ros is with Departamento de Ingenieria y Tecnologia de Computadores,
Universidad de Murcia.
E-mail: aros@ditec.um.es

cessed data into a private-shared scheme has been used
to improve coherence management. Data is classified as
private or shared based on whether it is accessed by
just one thread, or by two or more threads respectively.
This approach benefits from the observation that data
referenced by sequential and parallel applications during
their execution time is mostly private, thus it can be
handled more efficiently in terms of performance and
scalability.

Past proposals used data classification to address
aforementioned shortcomings on CMPs. Specifically,
Kim et al. [6] avoid issuing broadcast messages when
accessing private blocks, thus leading to network traffic
reductions in broadcast-based protocols. Alternatively,
Cuesta et al. [7] propose to deactivate coherence for data
not requiring it, which prevents directory caches from
tracking private blocks, thus reducing both directory
occupancy and access latency.

Additionally, the organization of the last-level cache
(LLC) on a CMP can also be improved through data
classification. Different papers effectively address the
access latency growth caused by the use of a NUCA
(Non-uniform Cache Architecture) organization as core
count increases [8]. Alternatively, Hardavellas et al. [9]
and Li ef al. [10], [11] keep private blocks in the NUCA
bank of the requesting processor to reduce the access
latency to NUCA caches.

This paper, which is an extension of the approach
provided by Ros et al. [12], proposes a mechanism that is
capable of classifying data into a private-shared scheme
while avoiding some of the major problems encountered
on previous outlined techniques. Firstly, our mechanism
relies on the TLB to keep the sharing status informa-
tion, thus reducing storage requirements as it does not
demand extra information in a directory-like structure
[13], [14], [15] or in the page table [6], [7], [9], [16], [17].

Moreover, it exploits proximity of cores in a CMP in

two different ways. Upon a TLB miss, our mechanism
scrutinizes the information related to the use of pages
from the TLBs of other cores, which allows them to get
the sharing information along with the address transla-
tion, which accelerates the page translation process.

Lastly, our mechanism accounts for temporarily pri-
vate pages (e.g., as a consequence of thread migration)
by predicting for each core whether it will use the page
in a near future or not. Since data access patterns change
throughout different phases of the application lifetime
[18], [19], we claim in this work that a temporal-aware
detection mechanism is fundamental to achieve a good
accuracy when detecting private pages. Note that the
more private data detected, the more benefits can be
obtained when using a classification scheme.

This paper extends [12] by proposing a novel access
prediction mechanism to avoid premature page invalida-
tions of TLB entries and cache blocks when applying de-
cay techniques. In [12], low decay values cause so many
invalidations that makes the high detection of private
blocks unattractive. However, in this paper, we force
pages migrating frequently from a core to another to
become shared. Although this slightly decreases the pro-
portion of private pages detected, the reduction in TLB
and cache misses mitigates the performance degradation,
thus making the use of a low decay value appealing
for the first time. On the other hand, the replacement
algorithm on TLBs has been improved, employing a
modified LRU policy where invalidated lines are priori-
tized when evicting a page.

A large variety of scientific and commercial workloads
have been run over a 16-core CMP cycle-accurate sim-
ulator, showing how our proposal effectively increases
the average number of pages classified as private from
43% (with previous OS-based mechanisms) up to 79%.
Additionally, we show how the proposed prediction
mechanism is able to reduce the drawbacks of premature
page invalidations, reducing the TLB misses due to the
use of Decay techniques up to 4.73 times and forced L1
cache misses from up to 23.1% to just 4% on average,
dramatically diminishing the execution time loss with
low decay values. Furthermore, applying it to improve
the efficiency of directory caches, we effectively scale
down directory cache storage requirements up to 50%,
while still reducing the execution time 7% compared to
previous proposals.

The rest of the paper is organized as follows. In
Section 2 we review the private-shared classification
mechanisms. Section 3 shows the potential of an accurate
classification mechanism motivating the techniques de-
veloped in this paper, through the analysis of some key
aspects on TLB entries behavior. Section 4 describes the
TLB-to-TLB technique employed in this paper to detect
private pages and accelerate TLB misses. The proposed
temporal-aware mechanism is presented in Section 5,
and some details of its usage are given. Section 6 intro-
duces our simulation methodology and Section 7 shows
the performance results. Section 8 discusses other system
configurations. Finally, Section 9 reviews the related
work, and Section 10 draws some conclusions.

2 BACKGROUND

Among the different mechanisms used to detect private
accesses, we compare ours against those aided by the
OS [6], [7], [9], [17]. Unlike hardware-based approaches
[13], [14], OS-based mechanisms do not require addi-
tional hardware support because they take advantage of
existing OS structures (i.e., page table and TLBs). On the
other hand, compiler-assisted approaches [10], [11] face
the difficulty of knowing at compile time (1) whether a
variable is going to be shared or not and (2) in which core
the processes and threads will be scheduled and resched-
uled. The OS-based detection avoids these difficulties
and provides a more accurate run-time mechanism.

An OS-based classification considers pages as private
the first time they are accessed after a TLB miss, an-
notating the requesting core in the page table (keeper
[7] or FAC -first accessing core- [17] field). When a page
table entry is accessed, the keeper field is compared with
the current requestor. If the keeper field does not match
on a private page table entry, then it is re-classified as
shared. To this end, each page table entry adds a P/S bit
that indicates the page state (private or shared) and the
aforementioned field containing the identifier of the first
core that accessed the page. The P/S bit is also included
in the TLB entries to allow a fast access to the page state
for those cores that have the page entry in the TLB.

When a page changes from private to shared, the core
having the page as private must be notified in order
to update its TLB accordingly. As we explain in the
following sections, depending on the use of the classifi-
cation technique it may be necessary to perform other
actions such as invalidating every block belonging to
the page cached at the core accessing the page privately.
Otherwise, coherence problems might arise.

2.1

Recent directory-based protocols only keep directory
information for a small fraction of the memory pages
(those having at least one block cached) in small di-
rectory caches with the aim of reducing the memory
overhead [20]. But, due to the lack of a backup direc-
tory, the eviction of an entry from the directory cache
entails the invalidation of every cached copy of the
block tracked by the entry. Since the size of directory
caches is quite limited, they can suffer frequent evictions
and, consequently, data caches may exhibit high miss
rates due to these evictions, which results in serious
performance degradation.

A private-shared classification mechanism can im-
prove the effectiveness of directory caches by not track-
ing private blocks since they do not require coherence
maintenance, as proposed in the Coherence Deactivation
approach [7]. The proposal improves the availability of
directory entries for the blocks that really need coherence
(i.e., shared blocks) and exploits more efficiently the
limited directory capacity.

This mechanism requires restoring the coherence state
when a page transitions from private to shared since
blocks in that page, which are cached by a single core,

Improving directory cache effectiveness

are not tracked by the directory. In particular, all caches
blocks within the page becoming shared must be evicted.

2.2 Reducing NUCA access latency

The organization of the LLC in a many-core CMP can be
either private or shared. A private organization achieves
low access-latency while a shared organization offers
large storage capacity. Although a shared LLC organi-
zation (or NUCA cache) is more common, its average
access latency increases with the number of cores in the
system.

Again, a private-shared classification can reduce the
NUCA access latency, as described in the Reactive NUCA
proposal [9]. Private blocks are placed into the local
NUCA bank of the requesting core, enabling low-latency
accesses for such blocks, while shared blocks are placed
across all tiles at the corresponding address-interleaved
locations.

When a page changes from private to shared, every
block belonging to that page that is cached in the core
accessing the page, either in the L1 cache or in the local
LLC bank, is evicted to avoid duplicated and incoherent
data in the CMP.

2.3 Reducing traffic in broadcast-based protocols

Broadcast-based protocols offer low-cost and simple
coherence for small-scale systems. However, the re-
quired broadcast traffic not only consumes an important
amount of power but also prevents such protocols from
being used in large-scale systems.

The scalability of snooping protocols can also be im-
proved with a private-shared classification, as proposed
by the Subspace Snooping approach for token-based pro-
tocols [6]. Since there are not copies of blocks belonging
to private pages, cache-misses due to accesses to blocks
within private pages can be resolved without broadcast-
ing requests to all the nodes in the system, thus reducing
unnecessary snoops.

In this case, when a page changes from private to
shared, no action is required. Just updating the page
as shared in the page table and in the TLB makes that
successive cache-misses will be broadcast, discovering in
a natural way the existence of other cached copies.

2.4 Building complexity-effective protocols

Cache coherence protocols require a number of base
states to keep coherence of the blocks in cache. In order
to improve efficiency, more states are added, which
cause an explosion in the number of transient states to
transition from a base state to another, and consequently,
in complexity.

The private-shared classification can be used to build
simple while efficient protocols as proposed in VIPS [16].
VIPS employs an efficient write-back policy for private
blocks, which are critical for application performance,
and a simple write-through policy with just two base
states (VI) for shared blocks, thus reducing the number
of race conditions that can occur.

Global live time Global live time

Local live time

Cores

#1 [Dead time | Dead time |
T
#2 | Dead time]
#3 | Dead time
i 5 P I2 P 5 Pl Time

Fig. 1: Generation time idealization

Upon a private-to-shared page change, every block
within the page has to be written-back to the shared
cache.

3 POTENTIAL EXPLOITATION OF THE
TEMPORAL CLASSIFICATION

A page-based data classification mechanism is intended
to classify pages either as Private or as Shared. With the
aim of performing a temporal-aware page classification,
in this paper we rely on looking up the core’s TLBs
to check the presence of a certain page. TLB looking-
up allows us to dynamically classify pages along time
as private or shared depending on whether the page
translation resides in a single TLB or, on the contrary,
it is stored in two or more TLBs at a particular time
instant. As a result, a temporal-aware page classifica-
tion mechanism i.e., the usage in time of the memory
pages, is provided. In order to design this temporal-
aware classification mechanism we first analyze page
sharing patterns along time. For doing this, we define
the concept of page generation time in a core as the time
spent since a page is first accessed (and missed) on a
core’s TLB until the page is finally evicted from that
TLB. A page may have several generation times on the
same core or in different cores. Notice also that the
page generation times of different cores may overlap
or not along time, which will decide whether the page
at a certain point in time is private (do not overlap)
or shared. So, a page could be classified initially as
private, later as shared, then back to private and so on,
depending on the overlapping of its generation times
at different cores. We thus, define the global generation
time as the elapsed time from a page is first cached on
a TLB to the moment it is evicted from the last TLB
in the system. This means that the global generation
time expands along the overlapped local or individual
generation times in cores. For private page generations,
local and global generation times are equivalent.
However, this definition used to classify pages is just
an approximation to the ideal. The sharing condition of a
page in the system should be settled by the simultaneity
of accesses to that page. If a page in a core TLB will
not be longer accessed again, it will count as present
in order to determine its sharing status, and therefore
it will result in an inaccurate classification. As we are
interested in analyzing the potentiality of an ideal page-
based classification mechanism, page dead time (time
from the last access to a page until its eviction in a core
TLB) is excluded, therefore accounting only for the page
live time (elapsed time since the page is fetched until its
last access before being replaced in a core TLB) [21], i.e.

1. Base m Private
2. |deal oShared

Page classification ratio
OO0O0000000o~
O=MNWAUIONOOO

605\“@ 09\‘9‘\6 N0 ,‘\;\u ‘edqe AeC. e“°$®° O3y “‘5«\'&‘3 o® 30“6 % oF
\3

‘«0“\\@@%&\ \q\? k>,«>, d(\e a?dv hgq?, e

(S
Qﬂ%o\z ? qﬁég

Fig. 2: Idealized page classification comparison

oSS

Page classification ratio
OO00O000000~
O=MNWAUIONOOO

'b\ O

6‘%%% -
vg%eo ne

N O, S 1€ g0
%"’“\ o\eﬁ‘\ oA °e 606\ 0‘:&:& V\<><“° o\\“eoe\?\!\g@:\‘%@ 90\\0\%\\ «®
?\

Fig. 3: Shared lives classification

the gray bar on Figure 1. This will allow us to determine
to what extend this classification imprecision could affect
to the effectiveness of the proposed page classification
mechanism.

3.1 Classification Analysis

We compare the page classification provided by the
baseline system, where the OS is used to detect private
and shared pages, against the classification obtained
from the ideal mechanism defined above. As the status
of a page varies along time, to simplify the analysis we
display a page as shared if at some point in time it has
been classified as shared. In its turn, a page displayed as
private has been always classified as private along time.
That means that its live times on different cores never
overlap. In other words, a page could live in different
cores and remain private, as long as there is a strict
exclusion on their live times. Notice that a particular
case would be one in which the different lives of the
page always elapse on the same core. On the contrary,
the page will be classified as shared when its live times
overlap at some point in time, despite the fact that its
status may be private for most of the execution time.
Figure 2 shows the aforementioned comparison for
both classification mechanisms: the Base bar represents
the static classification mechanism performed by the
OS, and the Ideal bar represents the page classification
obtained when idealizing the generation time of a page,
thus excluding the dead time. These results are obtained
from the simulation environment presented in Section 6.
As can be seen, the Ideal mechanism is able to classify
as private, on average, 35% more pages than the Base
classification for a total amount of nearly 80% of pages.
In order to analyze the potential of a dynamic and
temporal-aware classification approach in which pages
could be reclassified as private once after they have been
classified as shared, next we quantify the number of lives

4000000~ T T TT T T T

$ 3500000 | Do {

"9 3000000 . T i

& 2500000} _ | ! _

£ 2000000 | ! T

S 1500000 1 ‘ - Pt

2 1000000 -

8 soooooD & D g D E
05 o9 AN :— e 2e€ 4ol o> y
o ¢ e? oo O 2 c&e YA 0% 0 ‘5 oo°

oo ogd ?\\)\\Q‘@? X V’\? c; o *,LP o C\ e

Fig. 4: Average time (cycles) from last access to a page
in a core to its eviction in the TLB

35000 T
30000
25000 T

1
200001, L
15000 1

Enaalllallaln;

6
2ol L o2 ek ace N Vﬁ“ A
‘3%(\ \& <, \!x & a‘é (‘\)c‘ 2 \1\9

-

1
1

I
| I

1
1

I
I

1
1

-

Hmmmﬂ |

C el &S
68 ?@‘\o\%‘o“ *P’i’ C,\% @Q
S

> I

Page access interval (cycles)

Fig. 5: Average time (cycles) between TLB accesses

of a page (percentage with respect to the total number
of lives of the page) in which the page remains private.
Figure 3 shows this percentage of private lives on shared
pages (SP), and the percentage of shared lives on shared
pages (SS), evidencing that one out of two shared page
lives on average could be recognized as being private.

3.2 Approaching to the ideal scheme

Once analyzed the potential of temporal-aware mecha-
nisms, we are interested in the design of feasible mech-
anisms based on the presence of the page in the TLB,
trying to approach them to the Ideal. Using the TLBs
instead of the page table to detect private pages allows
to perform temporal-aware classification. Moreover, in
order to approach the page generation time in a core to
the ideal, rather than waiting for the TLB entry eviction,
we use a mechanism to predict the last page access and
invalidate it. This early invalidation mechanism needs
to be small enough in time to tightly approximate the
ideal, but sufficiently long as to avoid false evictions of
pages that are going to be accessed again soon, which
could cause severe damage to the system performance.

In this sense, Figure 4 represents the average page
dead time (i.e. the time in cycles spent from the last
access to the page TLB entry to its eviction). As this time
metric is extremely variable through the samples of the
different considered applications, the data is displayed
as a box-and-whiskers plot. Here the focus is put on the
median, which on average is located close to 1 million
cycles. This means that an early eviction done 1 million
cycles after the last access to a page will do successfully
evict all the greater samples, which on average symbol-
izes half of the page lives. Yet this represents at the most
an upper limit to the timer used to an early eviction. In
some applications(e.g. Barnes, Swaptions, etc.) this value
will act in barely a 25% of the page lives, evidencing that
lower values could perform better.

On the other hand, the lower limit of a timer employed
to early evict TLB entries should never be lower than the

1000000
8000001
6000001

400000}
200000—B ! E D Q D
. Lj
N 00 geC \oCqel e
%'%(;\\ & ¢ &"’ e\:‘{mc \‘?’é % \Ae((\ca ‘§0"'§§6&c‘&%\°\q“°‘\ 2" 'od\c\?’e@g
\N A o6
e

---H
==

T
1
1
1
I

ST
-

I
S =

Private intervals (cycles)

Fig. 6: Cycles spent as private on a global live

inter-access time of those entries to ensure no harming
the system performance. Figure 5 shows the average
number of cycles between accesses to the same page TLB
entry in the same core. The number of cycles to evict the
page should at least be approximate to the limit of the
third quartile to avoid affecting negatively the system
(with at least 75% of the samples below), meaning on
average 10,000 cycles approximately. Although in some
applications the limit is close to 25,000 cycles, turning
out to be a safer lower value.

Lastly, as previously seen on Figure 1, there are in-
tervals of a global page live where it becomes private,
either to finally be evicted or to become shared again
after some cycles. In these cases a notification mechanism
able to track and update the sharing status of the page in
the TLB may provide some benefit if those time periods
are sufficiently long. Figure 6 shows how the samples
representing these intervals are distributed. Note that a
shared global page live will always start as private, but
this period is negligible and is not represented on the
graph. The longer the samples the more efficient and
justifiable could be a notification mechanism to discover
these private periods and update the page status accord-
ingly. The median, on average, is placed around 200,000
cycles, although it evidences a high variability among
the different applications.

So, we can conclude that a reasonable choice for a
timeout value detecting the start of a dead time of a
page should never be lower than 10,000 cycles and up
to a threshold of 1 million cycles. This choice is endorsed
by the exhibited results in Section 6. On the other hand,
the high variability of the private intervals of page
generation times discourage the use of a notification
mechanism as it could be detrimental to the system
performance.

4 TLB Miss RESOLUTION THROUGH TLB-
TO-TLB TRANSFERS

This section describes a simple mechanism that allows
cores to retrieve information about the privacy of page
and address translations from another core’s TLB in-
stead of from the page table. This mechanism, although
simpler, has some similarities with the Synergistic TLBs
mechanism proposed in [22]. Upon a TLB miss, getting
the page information from a remote TLB is faster than
from the page table, since “walking” the page table,
often broken down into several levels, may imply several
memory references (e.g., four memory references for the
current 48-bit x86-64 virtual address space [23], or up to

fifteen memory accesses for recent 32-bit ARMv7 virtual
address space [24]).

Our mechanism works as follows. On a TLB miss,
a page table walk process is started in order to get
the address translation from the page table. However,
simultaneously, the core snoops the other TLBs in the
CMP by issuing a page_info request. When a core receives
the page_info request, it checks its TLB and, in case
of finding the page entry, the translation is sent to the
requester by means of a short response message. When
the first positive response is received, the page address
translation is stored on the TLB and the memory request
can proceed, therefore canceling the page table walk.
Although upon every TLB miss the described mecha-
nism snoops other TLBs, TLB misses are not frequent,
thus keeping traffic overhead and energy consumption
low and not jeopardizing its scalability, as shown in
Section 7.3.

5 TEMPORAL-AWARE PRIVATE-SHARED

CLASSIFICATION

This paper deals with the fact that data can be requested
by multiple cores and stored in their private caches dur-
ing the application run time although being actually pri-
vate (due to thread migration) or not shared at the same
time (because of the different phases of applications).
The detection mechanism that we propose (i) is aware
of the temporality in memory references, (ii) can employ
techniques to solve the TLB misses from the other CMP
cores (as the one described in the previous section), and
(iii) does not require extra hardware structures.

Although our detection mechanism can be applied to
caches with any indexing and tagging technique, for
the sake of clarity, in the next sections we assume the
common virtually indexed, physically tagged (VIPT) L1
caches. A discussion about the application to other cache
schemes is given in Section 8.4.

5.1 Basicidea

Our detection mechanism stores the sharing information
along with the address translation in the TLB entries.
Hence, each TLB entry has a Private (P) bit that indicates
whether the page is private (bit set) or shared (bit clear).
The P bit for a page is set when there is just one core TLB
caching the translation. This indicates that it is the only
core that can request such page blocks without causing
a TLB miss. When several TLBs hold simultaneously an
entry for that page, their P bits are clear. Additionally,
a Process Identifier (PID) field is included to adequately
distinguish them when sharing translation through the
TLB-to-TLB translation resolution.

On memory references, before accessing the L1 cache,
a TLB lookup is performed to get the physical address
of the requested block. If a TLB miss takes place, a
page_info request is sent to the other TLBs. The goal
of this request is to get both the address translation and
the information about the use of the page by the other
cores. If any of the receiving cores is presumably going to
access the page, then the TLB entry is marked as shared.
Otherwise, the page will be classified as private.

TABLE 1: Response messages for TLB requests

State (in TLB Address Access

or MSHR) translation | prediction Message type | Next state
Not Present NO Not used Not_Present Not Present
Requested (- or S) | NO Used Requested Requested (S)
Decayed (P or S) | YES Not used | Decayed Not Present
Present (P or S) YES Used Present Present (S)

5.2 Page access prediction

As noted on Section 3.2, ideally the sharing condition of
a page is settled by the simultaneity of the accesses to
that page, and therefore each processor has to predict if
it is going to access a page in a near future in order to
accurately determine the use of data on pages within
different phases of applications. To make predictions
independent from the TLB size, we introduce a TLB
decay technique, similar to the one proposed by Kaxiras
et al. to save power in data caches [25]. The prediction
works as follows. First, if the page entry is not present
in the TLB, the core assumes that it will not access it in
the near future. This situation can happen because the
page has been never referenced by the core or because
the entry has been evicted from the TLB since it has
not been referenced for some time (TLBs employ a least
recently used -LRU- policy). Second, if the page entry
is present in the TLB, a 2-bit saturated counter is kept.
This counter will be increased periodically according
to a certain timeout and will be reset when any block
within the page is accessed by the core (ie.,, on a TLB
hit). If the counter for a given entry saturates, the entry
becomes decayed. Cores will consider decayed entries as
not going to be accessed in a near future. Third, if the
page entry is present and not decayed, the core predict
that it will be accessed again. Table 1 shows the possible
TLB entry states, the response messages provided by the
core’s TLBs to page_info requests, and the information
included in the responses.

5.3 Coherent classification

The information about the private pages must be kept
coherent in all the core TLBs. To keep this information
coherent, we use the transition diagram shown in Fig-
ure 7 (excluding doted lines and forced requests, which
will be explored later). Pages can be in three situations:
(i) the page translation is not paged in any TLB; (ii) only
one TLB holds the entry as private (either present or
decayed); (iii) one or several TLBs hold the entry, all of
them as shared.

Figure 7 shows the TLB state transitions depending
on the incoming requests and responses to guarantee
TLB coherence. When a TLB entry is Not Present in a
given core and a local TLB request is issued by that
core, the entry transitions to the Requested state. On the
reception of remote page_info requests in this state, the
TLB predicts to the others as accessing the page and
the page transitions then to the Requested S state. This
way, when two or more TLBs send page_info requests
at the same time, they will answer to each other as ac-
cessing the page and TLB coherence is guaranteed since
every TLB will see the page as shared. The Requested
S transitions to Present S once all responses have been

remote (forced)
request

remote

A
request
Decayed Not Decayed
3 Present s

local
request remote (forced) 0°3red
request

remote
request Page is
predicted
not to be
accessed

Page is
predicted
to be
accessed

remote (forced)
local request
request

s

all responses
received
no TLB predicts
to access
the page

all responses
received
one or more
TLBs predict
to access
the page

all responses
received

local/

cal
remote (forced) (remote forced)

request

N, decayed
remote N
forced request
\\

localjremote
request

Fig. 7: TLB state transition diagram

received, regardless of their content. On the other hand,
the Requested state transitions to Present S or Present P
depending on the responses received from the other
TLBs. It transitions to Present S if at least one TLB
predicts to use the page, and to Present P otherwise.

When the entry becomes decayed, Present P and
Present S states transition to Decayed P and Decayed S,
respectively. On the other hand, from the Decayed states,
if the core accesses the page, the decay counter is reset,
and the TLB entry holding the page translation goes back
to the Present state (P or S depending on the P bit). Note
that these transitions only imply to saturate or reset the
decay counter.

Finally, from the Decayed states, upon the reception
of a remote TLB request, the TLB will answer with no
intentions of accessing the page. At this point, this TLB
loses the permission to access the page and the page
transitions to the Not Present state. A subsequent access
to that page will incur in a TLB miss. This can increase
the number of TLB misses if the decay timeout is not
chosen appropriately. However, this extra misses will
probably find the entry in the other TLB and the miss
will be resolved with short latency by means of a TLB-
to-TLB transfer. TLB evictions (not shown for the sake
of clarity) cause transitions to the Not Present state, but
remaining TLBs are not notified about the evictions.

5.4 TLB-L1 cache inclusion policy

Since TLBs maintain per-page sharing information that
finally will affect the coherence management of memory
blocks, our proposal prevents data blocks from being
stored in the core’s L1 cache if the translation of their
page is not stored by the TLB, as private pages are not
aware of other cache copies. Hence, no copies of the
blocks belonging to a private page can exist in other
L1 cache. Specifically, a decayed TLB entry becomes Not
Present (i.e. looses its permission to access the decayed
page) on the reception of a TLB request. Furthermore,
when a TLB entry transitions to Not Present, the cached
blocks belonging to the corresponding page are evicted
from L1 cache (and written back to the LLC when dirty).
This will presumably hardly affect performance because
of two reasons. First, a TLB entry transitions to Not
Present when the page has not been accessed for some
time, so most page blocks may have been already evicted

from the cache. Second, it is likely that no block within
this page will be accessed in the near future. However
with a low Decay value (more aggressive approach) it
becomes more likely to evict an entry still alive, clearly
hurting on execution time and network traffic.

When evicting the blocks from the cache, the access
to the corresponding TLB entry is blocked. To do that,
each TLB entry includes a Lock (L) bit. Note that when
the state transitions from Decayed to Not Present, the
corresponding response message is not sent until the
page flushing of all the blocks belonging to the page
is completed to ensure coherence.

5.5 Decay override on premature invalidations

As it will be exposed later, the Decay technique is quite
effective to carry out a greedy classification of pages
as private as a result of the capability to precisely
predict the live time of a page. However, due to the
high variability on the number of cycles of a page live
time or the access interval itself, the decay could, in
some cases, aggressively invalidate an entry that will
presumably be accessed again soon, specially with low
decay values. Furthermore, the cache inclusion policy
between the TLB and the L1 cache will cause these
premature invalidations to be specially harmful to the
overall system performance, as it will evict L1 cache lines
still being exploited, therefore dramatically increasing L1
cache miss rate.

To mitigate this drawback of decay employment it may
be preferred in some cases to ignore it and allow the
page to remain and become shared. To this end, it is
required to have some kind of evidence of the possible
occurrence of premature invalidations, allowing us to
override the decay mechanism. In this context, when a
TLB miss occurs (TLB entry is invalid or Not Present)
but the requested TLB entry is still allocated in the local
TLB, we might suspect that a premature invalidation
occurred, and therefore, it may be advisable to cancel the
decay invalidation on other core’s TLBs for the current
TLB miss resolution.

To carry out the decay override, we propose the use
of a special request, which will be referred to as forced
request, as it indeed forces the classification of a page
as shared that otherwise would have been classified
as private. A forced request is sent on a TLB miss
whenever the TLB entry, despite being in invalid state
(Not Present), continues to be allocated in the TLB. On
the arrival of a forced request to a TLB, if the page is
found decayed, it will be ignored, so the page will be
automatically classified as shared and its invalidation
will be canceled in anticipation of being accessed in the
near future. Figure 7 shows how the TLB behaves when
receiving a remote forced request applying the Forced
Sharing approach. Basically, as soon as an entry is either
on Decayed P or Decayed S states, when receiving a remote
forced request it transitions to Present S, forcing it to
become shared and preventing it from invalidate the TLB
and L1 cache entries pertaining to the same page.

TABLE 2: Actions due to TLB-L1 inclusion and recovery

Application scenario TLB-L1 inclusion Recovery (P—S)
Coherence Deactivation | L1 flushing L1 flushing
Reactive NUCA L1 and LLC flushing | LLC flushing
Subspace Snooping L1 flushing No action

VIPS L1 flushing L1 flushing

5.6 Thread migration

Although the OS is not aware of phase changes of ap-
plications, it is aware of thread migrations. This section
proposes a simple technique to help the page classifi-
cation considering thread migrations. When a migration
happens, all the TLB entries corresponding to pages ac-
cessed by the process of the migrated thread are marked
as decayed. If the thread is then scheduled to run in a
new core, all TLB pages will be found as decayed in the
previous core’s TLB, without going to main memory, and
therefore, will be classified as private.

On the other hand, assuming different threads per-
taining to the same process which are sharing virtual
address space, if in the interim some pages are accessed
by another thread in the previous core after migrating,
the decay counter of the accessed pages will be reset and
the pages will be considered as shared when requested
by other core.

5.7 Actions required upon classification changes

Our temporal-aware page classification mechanism can
be applied to perform different protocol optimizations.
Depending on the optimization, when a page classified
as private becomes shared, it may be needed to trigger a
recovery procedure to restore the coherence state of the
blocks belonging to the page as mentioned in Section 2.
This recovery procedure depends on the optimization for
which the private-shared classification is being applied
to. Also, the TLB-L1 inclusion policy may vary depend-
ing on the purpose of the private-shared classification.
Basically, it is necessary to perform the L1 flushing and
the action required to restore the “normal” status of the
lines, which usually matches with the recovery action.
This actions are summarized in Table 2.

6 SIMULATION ENVIRONMENT

We evaluate our proposal with full-system simulation
using Virtutech Simics [26] along with the Wisconsin
GEMS toolset [27], which enables detailed simulation
of multiprocessor systems. The interconnection network
has been modeled using the GARNET simulator [28].
Interconnect power consumption estimations are done
through ORION [29] power model. We simulate a 16-tile
CMP architecture implementing directory-based cache
coherence and with the parameters shown in Table 3.
TLB miss latency considers four memory references to
walk the page table, as in the 48-bit x86-64 virtual
address space. Cache latencies have been calculated
using the CACTI tool [30] assuming a 32nm process
technology.

We use in our simulations a wide variety of parallel
workloads from several benchmarks suites, covering
different sharing patterns and sharing degrees. Barnes

TABLE 3: Base system parameters

Memory Parameters

Processor frequency 2.8GHz
Cache hierarchy Non-inclusive
Cache block size 64 bytes

Split instr & data L1 caches
L1 cache hit time

Shared unified L2 cache

L2 cache hit time

Directory cache

64KB, 4-way (256 sets)

1 (tag) and 2 (tag+data) cycles
1MB/tile, 8-way (2048 sets)

2 (tag) and 6 (tag+data) cycles
256 sets, 4 ways (same as L1)

Directory cache hit time 1 cycle
Memory access time 160 cycles

Split instr & data TLBs 128 sets, 4 ways
TLB hit time 1 cycle

Page size 4KB (64 blocks)
Network Parameters
Topology 2-dimensional mesh (4x4)
Routing technique Deterministic X-Y
Flit size 16 bytes

5 flits and 1 flit
2,2, and 2 cycles

Data and control message size
Routing, switch, and link time

(8192 bodies, 4 time steps), Cholesky (tk15.0), FFT (64K
complex doubles), Ocean (258 x 258 ocean), Radiosity
(room, -ae 5000.0 -en 0.050 -bf 0.10), Raytrace (teapot),
Volrend (head), and Water-NSQ (512 molecules, 4 time
steps) are from the SPLASH-2 benchmark suite [31].
Tomcatv (256 points, 5 time steps) and Unstructured
(Mesh.2K, 5 time steps) are two scientific benchmarks.
FaceRec (script), MPGdec (525 tens 040.m2v), MPGenc
(output of MPGdec), and SpeechRec (script) belong to the
ALPBenchs suite [32]. Blackscholes (simmedium), Swap-
tions (simmedium), Fluidanimate (simsmall), and x264
(simsmall) come from PARSEC [33]. Finally, Apache (1000
HTTP transactions), and SPEC-JBB (1600 transactions)
are two commercial workloads [34]. Experimental results
correspond to the parallel phase of the benchmarks.

7 EVALUATION RESULTS

We first analyze how the TLB-to-TLB transfers improve
performance with the aim of knowing its contribution to
the improvements obtained by our classification. Then,
we also study the influence of the decay technique for
TLBs, considering both the Base Decay and Forced Sharing
approaches, on performance and classification accuracy.
Finally, we study the benefits entailed by our proposals
when applied to the coherence deactivation technique.

7.1 TLB-to-TLB Miss Resolution

This section analyzes the benefits and overheads of the
TLB-to-TLB miss resolution mechanism by means of a
sensitivity study of TLB sizes ranging from 256 sets to
64 sets (all of them are 4-way associative).!

The TLB-to-TLB miss resolution saves accesses to the
page table, and therefore, reduces the TLB miss latency.
This reduction translates into the improvements in ex-
ecution time shown in Figure 8. Each bar shows the
reduction in the number of cycles when compared to
a configuration with the same TLB size but that does
not implement TLB-to-TLB transfers. As we can observe,
smaller TLBs implies more misses, and consequently,
larger improvements in execution time when using the
TLB-to-TLB transfer mechanism. On average, execution

1. A deeper study can be found in [12].

WrOON®

ITLBs Zsssels 4ways
O TLBs_128sets_4ways
74 TLBs_64sets_4ways
8 N7 RN R

COEO000O0000 0=

Normalized execution time

O el _ae® 2@ ook © o2
A (& eV & \e® > X 2P o
AN o '<>°e \‘\96‘5?632&\ 90“0 g?\\(\ \<<\ & Q'a;@ S s

Fig. 8: Improvements in executlon time when using TLB-
to-TLB transfers

oot €1 oo\ o oc®
g&é e € Oo% 8§ i“% o\e@

239927%%

wJTm

7 77|
ITLBs 256sets_4ways
O TLBs_128sets_4ways
74 TLBs_64sets_4ways
788 N7 /AW AL

é
é
7

0000000000 S

é
é
4]

Network traffic variation

‘T’T'

W) Q NN s O O 00 00 el © A% /oX @ o
P xga (e <€ ey o;: ﬁﬁ’;@x\“\f@&e ";\e ‘f\? Zzox\?\;zox‘_:\iqx\g“ Qe s ;‘(;)‘i o
Fig. 9: Variations in network traffic when using TLB-to-

TLB transfers

time is reduced by 6.5%, 11.9%, and 26.4% for 256-, 128-,
and 64-set TLBs, respectively.

On the other hand, the network traffic can increase due
to the extra page_info requests issued. Figure 9 shows
the normalized network traffic. Since TLB misses are
not frequent, the increase in traffic is low. Only Spec-JBB
and Apache (and for small TLB sizes) reach an overhead
of 20%. This is because commercial applications have a
high TLB-versus-cache miss rate. Overall, the overhead
in traffic of the TLB resolution mechanism is just 2.9%,
3.4%, and 5.2% for 256-, 128-, and 64-set TLBs, respec-
tively. We believe that this low traffic overhead can be
reasonably paid since the reduction in execution time is
significant, as shown in Section 7.3.

7.2 Detection of private pages and decay value

This section shows the trade-off between the number
of private pages detected by our mechanism and the
number of TLB misses depending on the decay value
and the approach chosen: Base Decay or Forced Sharing.
A high value for the decay timeout results into few
page entries decayed, and consequently few extra TLB
misses. On the other hand, more private pages can be
detected by our mechanism when a low timeout value is
employed. This section analyses decay values of 250,000,
50,000, 10,000, and 2,000 cycles and considers 128-set
TLBs.

Figure 10 shows the number of TLB misses directly
derived from the use of Decay technique (which come
as a consequence of invalidating decayed TLB entries)
for configurations with different decay timeouts, all of
them normalized with respect to the maximum decay
value considered. As can be seen, in the Base Decay
approach, lower decay timeouts lead to increase the
number of TLB misses, to a maximum of 69.81 times the
total amount of misses obtained compared to the higher
decay value considered, which will definitely impact
negatively performance. Nonetheless, when using the

[mDecay_2500000Decay_50000zDecay_100000Decay_2000 |

Decay-forced TLB misses

.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0

.0

o
% a“\e o 2 g(‘o & 6\05\\‘! %) \‘ O & \“ 00@(,\“\ 0%

0 \® P 3@ g% @ o P
o <o ‘00‘? "e 0““50““ e e @
o S

S
(a) Base Decay

[mDecay 2500000Decay 500002Decay 100000Decay 2000 |

Ao

ONADPPONAPOON
ocboooobooo0

Decay-forced TLB misses

0
o S e’b‘\ oo o O @ R et 0% 3e°
& ‘ov e F e : o *"\\‘x«e\e‘ “\v°°‘°?%° N\?O\“?G e8°‘\ “0
@

© A% ook NI
Q\\o‘\ . *'7,‘6\\9@02 3?) @
<, <f

(b) Forced Sharmg
Fig. 10: Normalized TLB misses

Forced Sharing approach, this trend is much less harmful,
with 4.73 times less TLB misses on average using the
lower decay value. It is important to notice that the
negative impact of the decay technique will be partly
mitigated because those extra misses will probably find
the address translation in the TLB of the core that caused
the invalidation of the decayed entry.

Due to the TLB-L1 inclusion policy described in Sec-
tion 5.4, when a TLB entry is evicted (FlushTLB) or
invalidated (FlushDecay), all blocks pertaining to the cor-
responding page are evicted from the L1 cache. If either
the decay technique or the LRU mechanism invalidates
or evicts, respectively, a TLB entry that is on his dead
time, there will not feasibly be many blocks present
on the L1 cache, and they will not be likely revisited.
But if the TLB entry is prematurely invalidated, the
L1 cache will miss and thus, this will affect negatively
to the system performance, both in terms of time and
energy consumption. Figure 11 shows that for the Base
Decay (Figure 11(a)), on average, nearly a 23.1% of the
L1 misses are due to the inclusion policy when using
the 2,000 decay, though in some benchmarks, as Barnes
or Raytrace, it grows over 70%, and up to 85.3% in
the case of Radiosity. On the contrary, using the Forced
Sharing approach (Figure 11(b)), on average, a maximum
of 3.87% of L1 misses are attributable to the inclusion
policy.

Keeping an accurate classification entails some per-
formance degradation due to the extra TLB and L1
misses, as shown in Figure 12, which is normalized
to a system using TLB-to-TLB transfers, but without
decay. The Base Decay approach degrades performance
by 2.3% for 250,000 cycles decay, and up to a 30% for
2,000 cycles decay (Figure 12(a)). On the other hand, the
Forced Sharing (Figure 12(b)) technique is able to nearly
eliminate the negative impact of the low decay values.
The degradation in execution time is less than 2.41%
regardless of the employed decay value.

Although a low decay timeout leads to extra TLB and
L1 misses, it also helps to detect more private pages.
Figure 13 shows the pages considered as private and
shared according to each mechanism. Particularly, we

» 3. Decay_50000 5. Decay_2000
2 2 Decay 250000 4. Decay_10000

2
£60.0

mFlushTLB
oFlushDeca

o0 ¢e° o @S 3e° 0‘\5 ,b\e ,Lq,h 6‘@ 9% ge
@ e W 0\0‘206’\? ?6 v 0\\0 Q\-\ 5 s
) \‘w\e (o \‘\\ (22N \J\ (/ W%(«,

e (X‘ a'é‘\ Y o e \\\%“ ™
qu&(‘

() Base Decay

P 3. Decay_50000 5. Decay_2000
2 2 Dscay 250000 4. Decay_10000

mFlushTLB
oFlushDeca

< O O O 3 g e
\eff‘ ?? a: oe\ 0\’ \‘\:‘\e‘&% ‘“db\ ~ %Ga?\ © 0% e ed\\X w\e Q\\o‘\ & *'LQ’ 930‘%0 R e@%
ot N

a0 o ¥ ‘“?w ‘305@? (o

(b) Forced Sharing
Fig. 11: Percentage of L1 misses due to the TLB-L1
inclusion policy

%0‘“9

[=TLBoDecay 250000zDecay 500000 Decay 10000mDecay 2000 |
1.62 1.97 1.86

Normalized execution time

.0

%@(‘\e S ot ‘?(‘ d\oﬁ(d o 9@00&00@0‘@@0@\@ o «\'A\?’ *’L‘bu 30‘%0 @%e«a%
o

?‘

o Qo\:ﬂ a@if\ \‘\,o'\ ?,‘,c, W \,\9 ec P “‘:\\6 %

(a) Base Decay

[=TLBoDecay 250000zDecay 500000 Decay 10000mDecay 2000 |

Normalized execution time
0000000000 =t
SLNLRNON®OO

g’b“\e 2o e

$° 3@ ook xe o
3 "\\% N N’*@Op oo
I3

o o O A (@ aef ae0 © ae® jed
do"v‘ AN “\o EIRENCLS ol c‘\ ©.0
?‘\\ \ﬂa ° €27 WA Q%

(b) Forced Sharing
Fig. 12: Execution time degradation of the decay tech-
nique

show numbers for the OS-based detection (OS), the
idealized page live time introduced in Section 3 (Ideal),
our base proposal without employing decay techniques
(TLB), and a more elaborate detection using the decay
technique. If a page has been considered as shared at
least once during the execution of the application, it will
be plotted as shared in the graph. Note that this is unfair
for our approach since, unlike the OS-based proposal,
we are able to re-classify pages from shared to private.
We can see that the TLB mechanism classifies 15% more
pages as private than OS. Additionally, employing the
Base Decay approach we can improve this detection up
to 40.2% (for a short decay timeout of 2,000 cycles),
reaching a total of 84.69% (5% more private pages than
the Ideal), but at the cost of dramatically increasing TLB
misses, as previously shown. On the other hand, when
using the Forced Sharing (Figure 13(b)) approach a 77.15%
is obtained for the same decay timeout (< 1% deviation
compared to the Ideal). It is important to notice that
thread migration is rare in the evaluated applications
due to its short execution time. As explained in Sec-
tion 5.6, thread migration would have a dramatic impact
for the OS classification, but not for our proposal.

1.08 3. Decay 250000 5. Decay_ 10000 7. Ideal
2.TLB 4.Decay 50000 6. Decay_:

oShared _
| I

Fraction of referenced pages

0.0
© © © B e P
e o &i\\ o \‘zf e 00\0‘666293?061?026 g\“@g\%{‘ e 3 *@W"’m@@ e
o o ST

(a) Base Decay

1.0S 3.Decay_250000 5. Decay_ 10000 7. Ideal L1
2.TLB 4. Decay 50000 6. Decay_:

n of referenced pages

2 o 8 ot o e“ & @ 0 ~o0® e 4e® (® @@ o> e
P ¢ e?‘ &or:\ % 0\‘\; o $ \@Q\&W@‘w@\\?o ‘&\\k n;« 9\1\\0 R aG 03‘5 Je‘aa
oo

(b) Forced Sharmg
Fig. 13: Private/shared pages classification

[mBasenOS=TLBoDecay 2500008 Decay 500008 Decay 10000cDecay 2000 |

ry entries
Soo~

S b i i’ g
805 o i
2 m ol i
$0.3 |]] f
£ i I 1 f
0 A /
50.1 | i
0.0 Al AN AW i
o S . (S @ SR

@ s*‘* q?‘ S 0o N 0 00 8 0 @€ 06 0% (8 g1 B o

2 3@ §0° 2 1082 ot NG o A QT A e s

o g G e § 0o WP AR e e e

W g\ﬂ?\ &
(a) Base Decay

[mBasenOS=TLBoDecay_250000mDecay 500008 Decay _10000cDecay 2000 |

@O 200 <©
6\°"\ C \1%@\2‘\@ < o>°"°‘qa°"":h"eih 026“‘\?\
?\ o N3g R

(b) Forced Sharing
Fig. 14: Average directory entries required

e@‘“’a o ?ﬁ

e oe® 3@ oot o“e @6 o
Vﬁg\\ﬂg‘,\\&@«\ + P*&Q?, o o

7.3 A case of study: coherence deactivation

Previous sections analyze the impact on performance
of the temporal-aware classification mechanism without
taking advantage of possible optimizations. This section
evaluates its impact when applied to the coherence
deactivation scheme proposed for directory caches [7].
Although the percentage of detected private pages is
a good general metric to show the goodness of our
classification mechanism, each optimization has different
requirements (see Section 5.7), and therefore, we need
other metrics. For the coherence deactivation proposal
we are interested in the number of required directory
entries, which is shown in Figure 14. The OS-based
classification can avoid the storage of 24.4% entries
in the directory cache. However, when accounting for
temporality, the number of entries required in the di-
rectory falls dramatically. Particularly, the Base Decay
(Figure 14(a)) requires up to 78.3% less directory stor-
age regarding the traditional TLB miss resolution that
accesses the page table (Base). On the other hand, as the
Forced Sharing (Figure 14(b)) detects less private pages,
it requires more average directory entries. Specifically, it
avoids the storage of up to 57.5% entries, i.e. 20.4% more
storage is required when compared to the same timeout
value for Base Decay. However, it must be taken into
account that Base Decay virtually reduces the required

10

\lBaseDOSTLBDDecav 250000mDecay 50000mDecay 10000oDecay 2000 \
1.61

S VWRINDOO=NL S

Normalized execution time
OOO00000000 - -t-ttmt

& ?’“\; e & o (»oc_,\\‘{

o AR
s \{\ o ‘lo\is ,&e‘$(o@ “\,c\" 603 \J\ \‘\\,o 86\\’\ 50‘\0 69\\ *'L ?930?’0 o7 @
<8 O

(a) Base Decay

\lBaseDOSTLBDDecav 250000mDecay 50000mDecay 10000oDecay 2000 \

Normalized execution time
OO000000000 - -t-tt=t
O NWATID OO W

N O A2 o

W & e o© @e® 38 (o g% @ ¢P o0
gak\ \'s O‘ﬁ@ ﬁ\o\{\ o “o\is ot ‘%c “\@0@@ \y\ ‘&\9 e%;,:\ eo“ \@,\\ + WSJ??'O Neva

(b) Forced Sharing
Fig. 15: Execution time improvements for coherence

deactivation

number of directory entries at the expense of execution
time degradation compared to TLB, in inverse propor-
tion to the decay timeout value. In particular, the 2,000
cycles decay timeout for the Base Decay is prohibitively
time consuming as previously noted (30% degradation
as seen Figure 12(a)), while on the other hand, the same
timeout using the Forced Sharing approach could turn to
be a reasonable choice.

This large improvement of directory usage results in
less directory evictions and consequently less invali-
dations in the private caches. Directory invalidations
cause extra cache misses (named as coverage misses).
Therefore, coherence deactivation reduces the number
of coverage misses, and the execution time can be im-
proved as shown in Figure 15. The figure is normalized
with respect to the baseline configuration that does
not detect private pages, plotting results for both Base
Decay and Forced Sharing configurations. The OS-based
classification can just reduce 4.3% the execution time.
When compared to the base configuration, TLB reduces
the execution time by 13.5% due to both the reduction in
the required directory entries when applying temporal
classification and the TLB miss resolution mechanism.
For most applications the introduction of the decay
technique either hurts performance (case of Base De-
cay) or does not provide additional improvements in
execution time (case of Forced Sharing) with respect to
TLB. FFT is the exception and only on higher decay
timeout values using Base Decay. Forced Sharing approach
(Figure 15(b)) is still capable to reduce the execution time
a 7% using a 2,000 cycles decay. The benefits derived
from the larger number of detected private blocks do
not offset the overhead introduced. These results are
mainly due to the prematurely invalidated TLB entries,
but it is also altered by the “large” size of the directory
(256 sets, 4-way). Since TLB removes 38.3% of entries,
the current directory size is not a bottleneck any more.
Nevertheless, in scenarios with smaller directories, or
with frequent thread migration or with larger TLBs, the
decay mechanism may introduce more improvements in
performance, as shown below.

3. Decay_50000 5. Decay 2000
2 Decay 250000 4. Decay_10000
3.0

mTotal Link Power
oTotal Router Power

0
gt € Oo'éa‘\do@“ 0 0 000 00 @ G (3 0 o8 o‘: S&%e&
o
o
P

\(O Q0% o N
X RS \N"”\e‘ ‘(\);“ \\\)° ?ada R\ N\? eo 50“%«&1

(a) Base Decay

Decay_ 50000 5. Decay_ 2000
2 Decay 250000 4 Decay_10000
3.0

mTotal Link Power
oTotal Router Power

o
N (0 W 7\ N\ \0

(b) Forced Sharmg
Fig. 16: Normalized Network consumption

o A O @0 0O & A8 ook o of
‘b""‘gx\ o\e%w QQ c,'éb 0?\\‘! QQO\(BRESIRTA o\&e «a?\e 0‘\6 Ge“ ‘(\9\8 ‘\o\e o 6@\ 20 ,bcx\ g& Q@Q
o¥

9\‘ o o
R v«%e

As previously noted, coherence deactivation reduces
coverage misses on L1 cache, while, on the other hand,
decay technique application increases the overall num-
ber of misses. Cache misses come with a great impact
on the network traffic, and therefore, on the network
consumption. Figure 16 shows the energy consumption
of the interconnect network for TLB and Decay tech-
niques. As can be observed, the energy consumption is
more relevant on lesser decay values. With Base Decay
(Figure 16(a)) the network energy consumption increase
is inversely proportional to the decay value, consuming
up to 90% more energy in the interconnect than the TLB
approach. However, Forced Sharing (Figure 16(b)) imple-
mentation prevents the network consumption growing
over configurations, consuming up to 2.73% less power
when compared to the TLB.

We may be interested in reducing the directory cache
size to make it more scalable and fast. Reducing the
directory size will increase execution time for all the con-
figurations, but the decay technique allows to mitigate
this increase. Figure 17 shows different configurations
in the y axis and different cache sizes in the z axis.
The value shown in each cell corresponds to the average
execution time of all the applications normalized to the
base configuration. When moving to smaller directory
caches we can see that the use of the decay technique
becomes necessary for a good performance. Particularly,
using a 16-set directory, the Forced Sharing (right table)
approach can outperform the TLB approach by up to
10% of its execution time (68% regarding Base). It also
exceeds the Base Decay (left table) approach, mainly for
lower decay values, by up to 19%. As we can see, the
smaller the directory is, the smaller decay timeout is
recommended, and hence the more suitable the Forced
Sharing approach is when compared to Base Decay.

As a conclusion, we can say that the election of the
decay value will depend on the benefits of performing
a more accurate detection of private pages for the dif-
ferent protocol optimizations. When the improvements
obtained thanks to the private-shared optimizations are
higher, a smaller decay timeout can translate into more
benefits. However, low decay values introduce overhead

11

Base Decay Forced Sharing

Base 1.00 | 1.03 | 1.06 1.31 1.00 | 1.03 | 1.06 1.31

TLB 0.81] 0.84 | 0.92 | 1.05 | 1.32 0.81 | 0.84 | 0.92 | 1.05 | 1.32

& Decay-250000 | 0.81 | 0.84 | 0.91 | 1.04 | 1.24 0.81 | 0.83 | 0.90 | 1.04 | 1.26
g

;‘52 Decay_50000 | 0.82 | 0.85 | 0.91 | 1.04 | 1.24 0.80 | 0.83 | 0.89 | 1.04 | 1.22
=

é Decay-10000 | 0.89 | 0.91 | 0.95 | 1.07 | 1.24 0.81 | 0.83 | 0.89 | 1.02 | 1.23

Decay-2000 | 1.00 | 1.00 | 1.04 | 1.12 | 1.26 0.81 | 0.83 | 0.89 | 1.02 | 1.23

256 128 64 32 16 256 128 64 32 16

Directory sets
Fig. 17: Normalized execution time depending on the
directory size and the decay timeout employed

Directory sets

due to the induced early TLB invalidations. Forced Shar-
ing approach, which slightly modifies the Base Decay
state machine in order to enforce page sharing when
an early TLB invalidation is detected, constrains these
early TLB invalidations. By doing so, it mitigates the
overhead introduced when using low decay values,
avoiding many L1 cache misses produced by the inclu-
sion policy, thus improving both traffic overhead (and
energy consumption related to this traffic) and execution
time. On the other hand, Forced Sharing deteriorates
to some extent the amount of private pages detected
when compared to the Base Decay, resulting on lower
directory storage requirements reduction. Nevertheless,
whereas the lower decay timeouts using Base Decay are
reasonably impractical due to the performance loss, their
usage is plausible under Forced Sharing. It has been
evidenced that using a 16-set directory, Forced Sharing
approach suffices to outperform TLB execution time to
up to 10%.

8 DISCUSSION
8.1 Scalability

The proposed TLB-based private-shared classification
works fairly well for small- or medium-scale systems
due to the reduced number of TLB misses (only up to
1% of the TLB accesses are misses). Large-scale systems
may have excessive traffic when using this classification
mechanism, even considering that TLB misses are much
less frequent than cache misses. Although this paper fo-
cuses on small- or medium-scale systems, for larger sys-
tems our proposal could be adapted to reduce the traffic
generated, for instance by having centralized sharing
TLB information [35] (shared second level TLB structure,
with or without a directory-like organization) to avoid
broadcasts, or by employing a Token-like protocol [36]
to avoid most TLB responses.

8.2 Large or multilevel private caches

Due to the TLB-L1 inclusion policy, after every TLB
eviction, the blocks pertaining to the page are flushed
from the private cache. The number of lines visited
within the cache is not related to the cache size but
to the page size (64 cache lookups for 4KB pages).
However, the number of blocks effectively invalidated

upon a flush operation may increase with the cache size
since more blocks belonging to an evicted page may be
stored in a larger private cache, ultimately increasing
cache misses. In this scenario, the TLB should scale
accordingly to the cache size or use a multi-level TLB
approach in order to dramatically reduce the total flush
operations performed. Also, if applicable, decay timeout
values would have to be modified accordingly to the live
times of blocks in the private cache to avoid premature
invalidations, which could increase inclusion-induced L1
cache misses.

Additionally, it is also applicable to configurations
with two or more levels of private caches. In this case,
performing the page flushing requires the invalidation of
the corresponding page blocks at every private cache in
the hierarchy. This action can be performed in parallel.

8.3 Large pages

Our proposal can also work in systems implementing
large pages (with 2MB being the most common alterna-
tive on x86 architectures). However, the eviction of the
entries for large pages from the TLB will require a more
expensive cache flushing. In order to overcome the la-
tency overhead, diverse approaches could be employed.
For example, a simple counter can be added to the TLB
entry indicating the number of live or cached blocks for
the evicted TLB entry. Alternatively, a presence vector
tracking large memory regions could be used, similar to
the one used in [37], which would set the region limits to
be flushed. Both approaches aim on reducing the amount
of required lookups when flushing. They could even
be combined, provided that the TLB entry size increase
could be afforded.

Alternately, based on the observation that the majority
of pages accessed per core on systems with superpage
support are the smallest pages [38], we could avoid clas-
sifying superpages and consider them as coherent with-
out significantly damaging system performance, while
completely avoiding large pages overhead. Current sys-
tems supporting multiple page sizes implement multiple
TLB structures to do so, thus the TLB actually storing
large pages could classify them as shared without extra
hardware support.

8.4 Virtual caches

Although this work assumes the common case of virtu-
ally indexed, physically tagged (VIPT) L1 caches. Our
proposal is directly applicable to any other cache where
the access to the TLB is required.

On the other hand, virtually indexed, virtually tagged
(VIVT) caches, ak.a. virtual caches, do not require
TLB accesses for cache hits, which can result in faster
lookups and less power consumption than the physical
caches. Fortunately, the address translation is anyway
performed on every cache miss since coherence is kept
for physical addresses. Also, L1 hits do not issue coher-
ence actions. These two characteristics allow our pro-
posal to be completely applicable to virtual caches. We
can still maintain TLB-L1 inclusion and classify every
cache miss into private or shared.

12

9 RELATED WORK

Some works rely on the compiler and/or memory al-
locator to classify memory pages in order to either
remove coherence for private pages [39] or improve data
placement [10], [11]. In [10], a data ownership analysis of
memory regions is performed at compilation time. This
information is transferred to the page table by modifying
the behavior of the memory allocator by means of hooks.
This proposal is further improved in [11] by considering
a new class of data, named as practically-private, which
is mapped to the NUCA cache according to a first-touch
policy. In [39], private data is not stored at the LLC with
the aim of avoiding cache thrashing for private blocks.
Unlike our approach, these works statically mark data
as private either by the memory allocator or at compile
time, when privacy of some data cannot be guaranteed.

SWEL [13] is a novel hardware-based coherence pro-
tocol that uses a private-shared block classification at the
directory to allocate shared read-write blocks only at the
shared LLC, thus avoiding coherence maintenance for
them. The main drawback of that proposal is the la-
tency penalization of accessing shared read-write blocks,
which must be served by the LLC cache. POPS [14]
decouples data and coherence information in the shared
LLC to reduce access latency to this information and to
improve the aggregate NUCA capacity. It also employs
a directory private-shared classification (this time with
the help of a predictor table). Spatiotemporal Coherence
Tracking [15] also classifies private and shared data at the
directory, accounting for temporal private data. It tries to
find large private regions to merge them in the directory
to save directory space. Differently, our approach is not
only aiming directory size reduction, but it has a larger
scope, as described in Section 2. In general, private-
shared classification at the directory has the drawback
of adding extra area requirements. Additionally, it is
not suitable for simple request-response protocols (such
as VIPS [16], [40]), because of the requests sent by the
directory upon private-to-shared changes.

Our proposal discovers the private-shared page status
by benefiting from the resolution of TLB misses through
TLB-to-TLB transfers. Concerning fast resolution of TLB
misses, Synergistic TLBs [22] employs the snooping of
other TLBs to propose a distributed-shared TLB orga-
nization. Also, UNITD Coherence [41] employs the TLB
snooping to integrate the existing cache coherence proto-
col with the TLB coherence maintenance. Differently, we
employ the TLB snooping to account for the temporality
of private accesses and, so, improve the private-shared
classification. In [42], neighbor TLBs are snooped with
the aim of detecting shared pages. However, that pro-
posal requires important modifications in the TLB, such
as making it both physically and virtually indexed or the
addition of a non-scalable full-sharing vector. Differently,
we just add 4 bits to the TLB regardless of system size.
Also we employ a decay technique for TLBs that allows
more accurate access predictions.

Bhattacharjee et al. use inter-core cooperative TLB
prefetchers to reduce the number of TLB misses by
exploiting commonality and predictability in TLB miss

patterns across cores in CMPs [43]. After a core resolves
a TLB miss, it can either push the address translation
into the TLBs of the potential predicted sharers or search
itself in advanced predictable future translations. In both
cases, predictable translations are placed into a prefetch
buffer. Alternatively, the authors propose to use a last-
level TLB shared by all cores to achieve the same goal
[35]. Both can be use in conjunction with our proposal.

A similar approach is made by Y. Li et al., based
on inter-core translation sharing for shared translations
in order to reduce TLB misses through the use of a
partial sharing buffer (PSB) [17]. It relies on the page
table to capture the sharing state of the page and only
when it becomes shared, the translation is stored on
the PSB thus reducing TLB miss penalty with minimal
additional hardware resources. Though, it does not count
for temporality as TLB-to-TLB transfers do.

10 CONCLUSIONS

This paper studies the potential benefits of accurately
predicting the access patterns of a page at the TLB
in order to fully exploit a private/shared classification
mechanism. To do so, we propose a new temporal-aware
mechanism that improves the previously proposed by
Ros et al. [12] for private pages detection, so we can limit
the damage caused by miss predictions. Our mechanism
classifies pages accessed by several cores at different
time instants (e.g., thread migration or program phase
changes) as private. This leads to a bidirectional page
re-classification, from private to shared, and vice versa,
resulting in a significant increase in the number of pages
considered as private compared to an OS-based classifi-
cation (from 43% to 79%). Furthermore, the new classi-
fication mechanism makes more appealing the use of a
decay technique, reducing the TLB misses forced by the
mechanism itself up to 4.73 times on average, and dra-
matically reducing power consumption and execution
time while still providing directory storage requirements
reduction (up to 50% less directory entries, with 7%
execution time cutback compared to OS-classification).

ACKNOWLEDGMENTS

This work has been jointly supported by the MINECO
and European Commission (FEDER funds) under the
project TIN2012-38341-C04-01/03 and the Fundacion
Seneca-Agencia de Ciencia y Tecnologia de la Regién de
Murcia under the project Jévenes Lideres en Investigacion
18956/]JL1/13.

REFERENCES

[1] J. E Cantin, J. E. Smith, M. H. Lipasti, A. Moshovos, and B. Fal-
safi, “Coarse-grain coherence tracking: RegionScout and region
coherence arrays,” IEEE Micro, vol. 26, no. 1, pp. 70-79, Jan. 2006.

[2] N. Agarwal, L.-S. Peh, and N. K. Jha, “In-Network Snoop Order-
ing (INSO): Snoopy coherence on unordered interconnects,” in
15th Int’l Symp. on High-Performance Computer Architecture (HPCA),
Feb. 2009, pp. 67-78.

[3] J. Zebchuk, V. Srinivasan, M. K. Qureshi, and A. Moshovos, “A
tagless coherence directory,” in 42nd IEEE/ACM Int'l Symp. on
Microarchitecture (MICRO), Dec. 2009, pp. 423-434.

(4]

(5]

6]

(71

(8]

(9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

13

M. Ferdman, P. Lotfi-Kamran, K. Balet, and B. Falsafi, “Cuckoo
directory: A scalable directory for many-core systems,” in 17th
Int’l Symp. on High-Performance Computer Architecture (HPCA), Feb.
2011, pp. 169-180.

D. Sanchez and C. Kozyrakis, “SCD: A scalable coherence direc-
tory with flexible sharer set encoding,” in 18th Int’l Symp. on High-
Performance Computer Architecture (HPCA), Feb. 2012.

D. Kim, J. A. J. Kim, and]J. Huh, “Subspace snooping: Filtering
snoops with operating system support,” in 19th Int’l Conf. on
Parallel Architectures and Compilation Techniques (PACT), Sep. 2010,
pp- 111-122.

B. Cuesta, A. Ros, M. E. Gémez, A. Robles, and]. Duato,
“Increasing the effectiveness of directory caches by deactivating
coherence for private memory blocks,” in 38th Int'l Symp. on
Computer Architecture (ISCA), Jun. 2011, pp. 93-103.

S. Cho and L. Jin, “Managing distributed, shared L2 caches
through OS-level page allocation,” in 39th IEEE/ACM Int’l Symp.
on Microarchitecture (MICRO), Dec. 2006, pp. 455-465.

N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Re-
active NUCA: Near-optimal block placement and replication in
distributed caches,” in 36th Int’l Symp. on Computer Architecture
(ISCA), Jun. 2009, pp. 184-195.

Y. Li, A. Abousamra, R. Melhem, and A. K. Jones, “Compiler-
assisted data distribution for chip multiprocessors,” in 19th Int’l
Conf. on Parallel Architectures and Compilation Techniques (PACT),
Sep. 2010, pp. 501-512.

Y. Li, R. G. Melhem, and A. K. Jones, “Practically private: Enabling
high performance cmps through compiler-assisted data classifi-
cation,” in 21st Int’l Conf. on Parallel Architectures and Compilation
Techniques (PACT), Sep. 2012, pp. 231-240.

A. Ros, B. Cuesta, M. E. Gémez, A. Robles, and]. Duato,
“Temporal-aware mechanism to detect private data in chip mul-
tiprocessor,” in 42th Int’l Conf. on Parallel Processing (ICPP), Oct.
2013.

S. H. Pugsley,]J. B. Spjut, D. W. Nellans, and R. Balasubramonian,
“SWEL: Hardware cache coherence protocols to map shared data
onto shared caches,” in 19th Int’l Conf. on Parallel Architectures and
Compilation Techniques (PACT), Sep. 2010, pp. 465-476.

H. Hossain, S. Dwarkadas, and M. C. Huang, “POPS: Coher-
ence protocol optimization for both private and shared data,” in
20th Int’l Conf. on Parallel Architectures and Compilation Techniques
(PACT), Oct. 2011, pp. 45-55.

M. Alisaface, “Spatiotemporal coherence tracking,” in 45th
IEEE/ACM Int’l Symp. on Microarchitecture (MICRO), Dec. 2012,
pp- 341-350.

A. Ros and S. Kaxiras, “Complexity-effective multicore coher-
ence,” in 21st Int’l Conf. on Parallel Architectures and Compilation
Techniques (PACT), Sep. 2012, pp. 241-252.

Y. Li, R. G. Melhem, and A. K. Jones, “PS-TLB: Leveraging page
classification information for fast, scalable and efficient translation
for future cmps,” in TACO, 2013, pp. 28-28.

M. Kambadur, K. Tang, and M. A. Kim, “Harmony: Collection and
analysis of parallel block vectors,” in 39th Int’l Symp. on Computer
Architecture (ISCA), Jun. 2012, pp. 452-463.

T. Sherwood, E. Perelman, and B. Calder, “Basic block distribution
analysis to find periodic behavior and simulation points in appli-
cations,” in 10th Int’l Conf. on Parallel Architectures and Compilation
Techniques (PACT), Sep. 2001, pp. 3-14.

P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and
B. Hughes, “Blade computing with the AMD Opteron™ proces-
sor (“Magny Cours”),” in 21st HotChips Symp., Aug. 2009.

D. A. Wood, M. D. Hill, and R. Kessler, “A model for estimating
trace-sample miss ratios,” in ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, 1991,
pp- 79-89.

S. Srikantaiah and M. Kandemir, “Synergistic TLBs for high
performance address translation in chip multiprocessors,” in 43rd
IEEE/ACM Int’l Symp. on Microarchitecture (MICRO), Dec. 2010, pp.
313-324.

T. W. Barr, A. L. Cox, and S. Rixner, “Translation caching: Skip,
don’t walk (the page table),” in 37th Int’l Symp. on Computer
Architecture (ISCA), Jun. 2010, pp. 48-59.

ARM Architecture Reference Manual ARMv7-A and ARMv7-R, 2012.
S. Kaxiras, Z. Hu, and M. Martonosi, “Cache decay: Exploiting
generational behavior to reduce cache leakage power,” in 28th
Int’l Symp. on Computer Architecture (ISCA), Jun. 2001, pp. 240-
251.

P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,
G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and B. Werner,

[27]

[28]

[29]

[30]
[31]

(32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

“Simics: A full system simulation platform,” IEEE Computer,
vol. 35, no. 2, pp. 50-58, Feb. 2002.

M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,
A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood,
“Multifacet’s general execution-driven multiprocessor simulator
(GEMS) toolset,” Computer Architecture News, vol. 33, no. 4, pp.
92-99, Sep. 2005.

N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “GARNET: A
detailed on-chip network model inside a full-system simulator,”
in IEEE Int’l Symp. on Performance Analysis of Systems and Software
(ISPASS), Apr. 2009, pp. 33-42.

A. Kahng, B. Li, L.-S. Peh, and K. Samadi, “ORION 2.0: A Power-
Area simulator for interconnection networks,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 20, no. 1, pp.
191-196, 2012.

S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi,
“Cacti 5.1,” HP Labs, Tech. Rep. HPL-2008-20, Apr. 2008.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: Characterization and methodological con-
siderations,” in 22nd Int’l Symp. on Computer Architecture (ISCA),
Jun. 1995, pp. 24-36.

M.-L. Li, R. Sasanka, S. V. Adve, Y.-K. Chen, and E. Debes,
“The ALPBench benchmark suite for complex multimedia appli-
cations,” in Int’l Symp. on Workload Characterization, Oct. 2005, pp.
34-45.

C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC bench-
mark suite: Characterization and architectural implications,” in
17th Int’l Conf. on Parallel Architectures and Compilation Techniques
(PACT), Oct. 2008, pp. 72-81.

A. R. Alameldeen, C. J. Mauer, M. Xu, P. J. Harper, M. M.
Martin, D. J. Sorin, M. D. Hill, and D. A. Wood, “Evaluating
non-deterministic multi-threaded commercial workloads,” in 5th
Workshop On Computer Architecture Evaluation using Commercial
Workloads (CAECW), Feb. 2002, pp. 30-38.

A. Bhattacharjee, D. Lustig, and M. Martonosi, “Shared last-
level TLBs for chip multiprocessors,” in 17th Int’l Symp. on High-
Performance Computer Architecture (HPCA), Feb. 2011, pp. 62-73.
M. M. Martin, M. D. Hill, and D. A. Wood, “Token coherence:
Decoupling performance and correctness,” in 30th Int’l Symp. on
Computer Architecture (ISCA), Jun. 2003, pp. 182-193.

J. Zebchuk, B. Falsafi, and A. Moshovos, “Multi-graincoherence
directory,” in 46th IEEE/ACM Int'l Symp. on Microarchitecture
(MICRO), 2013.

M.-M. Papadopoulou, X. Tong, A. Seznec, and A. Moshovos,
“Prediction-based superpage-friendly tlb designs,” in 21th Int'l
Symp on High-Performance Computer Architecture (HPCA), Feb.
201

J. Meng and K. Skadron, “Avoiding cache thrashing due to prlvate
data placement in last-level cache for manycore scaling,” in Int’l
Conf. on Computer Design (ICCD), Oct. 2009, pp. 282-288.

S. Kaxiras and A. Ros, “A new perspective for efficient virtual-
cache coherence,” in 40th Int'l Symp. on Computer Architecture
(ISCA), Jun. 2013, pp. 535-547.

B. F. Romanescu, A. R. Lebeck, D. J. Sorin, and A. Bracy, “UNified
instruction/translation/data (UNITD) coherence: One protocol to
rule them all,” in 16th Int’l Symp. on High-Performance Computer
Architecture (HPCA), Feb. 2010, pp. 1-12.

M. Ekman, F Dahlgren, and P. Stenstrom, “TLB and snoop
energy-reduction using virtual caches,” in Int'l Symp. on Low
Power Electronics and Design (ISLPED), Aug. 2002, pp. 243-246.
A. Bhattacharjee and M. Martonosi, “Inter-core cooperative TLB
for chip multiprocessors,” in 15th Int’l Conf. on Architectural Sup-
port for Programming Language and Operating Systems (ASPLOS),
Mar. 2010, pp. 359-370.

Albert Esteve received the MS degree in com-
puter science from the Universitat Politecnica
de Valéncia, Spain, in 2012. He is currently a
PhD student at the Parallel Architecture Group
(GAP) of the Universitat Politécnica de Valéncia
with a fellowship from the Spanish Government.
His research interests include cache coherence
protocols, and chip multiprocessor architectures.

14

Alberto Ros received the MS and PhD de-
gree in computer science from the University of
Murcia, Spain, in 2004 and 2009, respectively.
In 2005, he joined the Computer Engineering
Department at the same university as a PhD
student with a fellowship from the Spanish gov-
ernment. He has been working as a postdoc-
toral researcher at the Universitat Politécnica de
Valéncia and at Uppsala University. Currently,
he is Associate Professor at the University of
Murcia. His research interests include cache
coherence protocols and memory hierarchy designs for manycore ar-
chitectures.

Maria E. Gomez obtained her MS and PhD
degrees in Computer Science from the Univer-
sitat Politécnica de Valéncia, Spain, in 1996 and
2000, respectively. She joined the Department
of Computer Engineering (DISCA) at Universitat
Politecnica de Valéncia in 1996 where she is
currently an Associate Professor of Computer
Architecture and Technology. Her research inter-
ests are in the field of interconnection networks,
network-on-chips and cache coherence proto-
cols.

Antonio Robles received the MS degree in
physics (electricity and electronics) from the Uni-
versitat de Valéncia, Spain, in 1984 and the PhD
degree in computer engineering from the Univer-
sitat Politécnica de Valéncia in 1995. He is cur-
rently a full professor in the Department of Com-
puter Engineering at the Universitat Politécnica
de Valéncia. He has taught several courses on
computer organization and architecture. His re-
search interests include high-performance inter-

connection networks for multiprocessor systems
and clusters and scalable cache coherence protocols for SMP and CMP.
He has published more than 70 refereed conference and journal papers.
He has served on program committees for several major conferences.
He is a member of the IEEE Computer Society.

José Duato received the MS and PhD degrees
, in electrical engineering from the Universitat
. \ Politecnica de Valéncia, Spain, in 1981 and
f’g 1985, respectively. He is currently a professor
! ’ a’ in the Department of Computer Engineering at
\ ;‘_)1 the Universitat Politécnica de Valéncia. He was
an adjunct professor in the Department of Com-
puter and Information Science at The Ohio State
University, Columbus. His research interests in-
clude interconnection networks and multiproces-
‘ sor architectures. He has published more than
380 referred papers. He proposed a powerful theory of deadlock-free
adaptive routing for wormhole networks. Versions of this have been
used in the design of the routing algorithms for the MIT Reliable Router,
the Cray T3E supercomputer, the internal router of the Alpha 21364
microprocessor, and the IBM BlueGene/L supercomputer. He is the
first author of the Interconnection Networks: An Engineering Approach
(Morgan Kaufmann, 2002). He was a member of the editorial boards
of the IEEE Transactions on Parallel and Distributed Systems, |IEEE
Transactions on Computers, and IEEE Computer Architecture Letters.
He was cochair, member of the steering committee, vice chair, or mem-
ber of the program committee in more than 55 conferences, including
the most prestigious conferences in his area of interest: HPCA, ISCA,
IPPS/SPDP, IPDPS, ICPP, ICDCS, EuroPar, and HiPC. He has been
awarded with the National Research Prize Julio Rey Pastor 2009, in the
area of Mathematics and Information and Communications Technology
and the Rei Jaume | Award on New Technologies 2006.

