
Low-Overhead Organizations for the Directory in Future

Many-Core CMPs⋆

Alberto Ros1 and Manuel E. Acacio2

1Dpto. de Informática de Sistemas y Computadores
Universidad Politécnica de Valencia, 46022 Valencia (Spain)

2Dpto. de Ingenieŕıa y Tecnoloǵıa de Computadores
Universidad de Murcia, 30100 Murcia (Spain)

aros@gap.upv.es, meacacio@ditec.um.es

Abstract. If current trends continue, today’s small-scale general-purpose CMPs will soon
be replaced by multi-core architectures integrating tens or even hundreds of cores on-chip.
These many-core CMPs will implement the hardware-managed, implicitly-addressed, co-
herent caches memory model. Cache coherence in these designs will be maintained through
a directory-based cache coherence protocol implemented in hardware. The organization of
the directory structure will be a key design point due to the requirements in area that it
will pose. In this work we study the effects on performance, network traffic and area that
the use of compressed sharing codes for the directory will have in many-core CMPs. In
particular, we select two compressed sharing codes previously proposed by us in the con-
text of large-scale shared-memory multiprocessors that have very small area requirements.
Simulation results of 32-core CMPs show that degradations of up to 32% in performance
and 350% in network traffic are experienced. Additionally, since some proposals for effi-
cient multicast support in on-chip networks have recently appeared, we also consider the
case of using this kind of support in combination with the compressed sharing codes. Un-
fortunately, we found that multicast support is not enough to remove all the performance
degradation that the compressed sharing codes introduce and barely can reduce network
traffic.

1 Introduction

In the last years we have witnessed the substitution of single-core processors by multi-core ones.
Following the Moore’s Law that establishes that the number of transistors doubles every 18
months, it is expected that current small-scale general-purpose chip-multiprocessors (CMPs)
will soon be followed by multi-core architectures integrating tens or even hundreds of cores on-
chip [3]. Architectures of this type are usually known as many-core CMPs.

Many-core CMPs will be probably designed as arrays of identical or close-to-identical building
blocks (tiles) connected over a switched direct network [12, 16]. Tiled architectures provide a
scalable solution for supporting families of products with varying computational power, managing
the design complexity, and effectively using the resources available in advanced VLSI technologies.
As an example, Intel has recently announced the 48-core Single-chip Cloud Computer [1], an
experimental research microprocessor that has been developed in the context of the Tera-scale
Computing Research Program. More specifically, the Single-chip Cloud Computer consists of 24
tiles with two IA cores per tile, which are interconnected by means of a 24-router mesh network
providing 256 GB/s bisection bandwidth.

⋆ This research was supported by the Spanish MEC and MICINN, as well as European Commission
FEDER funds, under Grants CSD2006-00046 and TIN2009-14475-C04, and PROMETEO from Gen-
eralitat Valenciana (GVA) under Grant PROMETEO/2008/060.



2 4 8 16 32 64 128 256

Number of cores

0.0

10.0

20.0

30.0

40.0

A
re

a 
re

q
u

ir
ed

 (
m

m
2)

Bit-vector

Fig. 1: Area (mm2) required for a 1MB cache module when the bit-vector sharing code is used

On the other hand, if current trends continue, future many-core CMP architectures will
implement the hardware-managed, implicitly-addressed, coherent caches memory model [6]. With
this memory model, all on-chip storage is used for private and shared caches that are kept coherent
in hardware by using a cache coherence protocol. In this way, each tile contains at least one level
of cache memory that is private to the local core (the L1 in this work), and the first level of
shared cache (commonly, the L2 cache) is physically distributed between the tiles of the system.

The cache coherence protocol will be a key design issue in these architectures since it will add
requirements of area and energy consumption to the final design, and therefore, could restrict
severely its scalability. When the number of cores is large, as is the case of many-core CMPs, the
best way of keeping cache coherence is by implementing a directory-based protocol, which reduces
energy consumption compared to broadcast-based protocols by keeping track of the caches that
hold copies of each block in a directory structure. In tiled CMPs, the directory structure is
distributed between the L2 cache banks, usually included into the L2 tags’ portion [16]. In this
way, each tile keeps the sharing information of the blocks mapped to the L2 cache bank that
it contains. This sharing information comprises two main components1: the state bits used to
codify one of the three possible states the directory can assign to the line (Uncached, Shared and
Private), and the sharing code, that holds the list of current sharers. Most of the bits of each
directory entry are devoted to codifying the sharing code. Since the directory must be stored as
part of the on-chip L2 cache, it is desirable that its size be kept as low as possible. Moreover, a
hard to scale directory organization could require to re-design the L2 cache to adapt the tile to
the range of cores that is expected for the CMP.

In a traditional directory organization, each directory entry keeps track of the sharers of the
corresponding memory block through a simple bit-vector (one bit per private cache). In Figure 1,
we plot the area (in mm2) that one 1MB 4-way L2 module would take as the number of cores
grows from 2 to 256 (area estimations are based on CACTI. Refer to Section 4 for more details).
As it can be seen, while the number of cores keeps below 16 the bit-vector sharing code barely
impacts area requirements. However, from 16 cores on, the use of bit-vectors would entail too
much area overhead and more area efficient sharing codes would be required.

One approach for reducing directory area requirements in the context of traditional shared-
memory multiprocessors is the use of compressed sharing codes. Compressed sharing codes store
the full directory information in a compressed way to use fewer number of bits, introducing a loss
of precision compared to exact ones2. This means that when this information is reconstructed,
some of the cores codified in the sharing code are real sharers and must receive the coherence

1 Apart from other implementation-dependent bits.
2 Bit-vector is an example of exact sharing code.



R
ou

ter

L2$ (Tags)

L2$ (Tags)L1D$

L1I$

L2$ (Data)

L2$ (Data)

CPU Core

Fig. 2: Organization of the tile assumed in this work and a 4×8 tiled CMP

messages, whereas some other cores are not sharers actually and unnecessary coherence messages
will be sent to them. Unnecessary coherence messages lead to increased miss latencies, since more
messages are required to resolve caches misses. Moreover, unnecessary coherence messages also
entail extra traffic in the interconnection network and useless cache accesses, which will increase
energy consumption. Conversely, a bit-vector directory does not generate unnecessary coherence
messages and thus shows the best results in terms of both performance and energy consumption.

In this work we study the effects on performance, network traffic and area required by the
directory structure that the use of compressed sharing codes will have in many-core CMPs. In
particular, we select two compressed sharing codes previously proposed by us in the context of
large-scale shared-memory multiprocessors, Binary Tree (BT) and Binary Tree with Symmetric
Nodes (BT-SN) [2], and that have very small area requirements. Simulation results of 32-core
CMPs show that degradations of up to 32% in performance and 350% in network traffic are
experienced. Additionally, since some proposals for efficient multicast support in on-chip net-
works have recently appeared [11], we also consider the case of using this kind of support in
combination with the compressed sharing codes. Unfortunately, multicast support is not enough
to remove completely the performance degradation that the compressed sharing codes introduce
(performance degradations of 10% on average are still observed when BT is used) and barely can
reduce network traffic.

The rest of the paper is organized as follows. First of all, we will give more details regarding
the target CMP architecture in Section 2. Subsequently, in Section 3 we will present a couple of
compressed sharing codes based on the concept of multilayer clustering that have small overhead
in terms of area. Next, in Section 4, we will describe the evaluation environment that we are
assuming, and the results of the evaluation will be shown in Section 5. Finally, Section 6 closes
the work and points future directions to be explored.

2 Base Architecture

A tiled CMP architecture consists of a number of replicated tiles connected over a switched
direct network. Each tile contains a processing core with primary caches (both instruction and
data caches), a slice of the L2 cache, and a connection to the on-chip network. Cache coherence
is maintained at the L1 caches. In particular, it is employed a directory-based cache coherence
protocol, with directory information stored in the tags’ part of the L2 cache modules. The L2
cache is shared among the different processing cores, but it is physically distributed between
them. Therefore, some accesses to the L2 cache will be sent to the local slice while the rest will
be serviced by remote slices (L2 NUCA architecture [5]). Moreover, for simplicity the L1 and L2
caches are inclusive, that is to say, all the blocks included in any L1 cache keep an entry in the
L2 cache. Figure 2 shows the organization of a tile (left) and a 16-tile CMP (right). From now
on, we will use the terms tile and node interchangeably.



3 Multi-layer Clustering Concept

This section presents two compressed sharing code organizations based on the multi-layer clus-

tering approach previously proposed in [2].
Multi-layer clustering assumes that nodes are recursively grouped into clusters of equal size

until all nodes are grouped into a single cluster. Compression is achieved by specifying the
smallest cluster containing all the sharers (instead of indicating all the sharers). Compression
can be increased even more by indicating only the level of the cluster in the hierarchy. In this
case, it is assumed that the cluster is the one containing the home node for the memory block.
This approach is valid for any network topology.

Although clusters can be formed by grouping any integer number of clusters in the immedi-
ately lower layer of the hierarchy, we analyze the case of using a value equal to two. That is to
say, each cluster contains two clusters from the immediately lower level. By doing so, we simplify
binary representation and obtain better granularity to specify the set of sharers. This recursive
grouping into layer clusters leads to a logical binary tree with the nodes located at the leaves.

Node
3

6 7

8 11

14 15

4

0

5

Node Node
12 13

Node

Node NodeNode

Node Node

Node

Node
1

Node
9

Node
10

2
NodeNode

Node

(a) Physical system

Node
0 1

Node
2 3

Node
4

Node
5

Node
6

Node
7

Node Node
9

Node
12

Node
10

Node
11

Node
13

Node
14

Node
15

Node
8

Node Level 0

Level 1

Level 2

Level 4

Level 3

(b) Logical system

Fig. 3: Multi-layer clustering approach example

As an application of this approach, two compressed sharing codes were previously proposed
in [2]. The sharing codes can be shown graphically by considering the distinction between the
logical and the physical organizations. For example, we have a 16-tile CMP with a mesh as the
interconnection network, as shown in Figure 3(a), and we can imagine the same system as a
binary tree (multi-layer system) with the nodes located at the leaves of this tree, as shown in
Figure 3(b). Note that this tree only represents the grouping of nodes, not the interconnection
between them. In this representation, each subtree is a cluster. Clusters are also shown in Figure
3(a) by using dotted lines. It can be observed that the binary tree is composed of 5 layers or
levels (log

2
N + 1, where N is a power of 2). From this, the following two compressed sharing

codes were derived in [2]: Binary tree (BT) and Binary tree with symmetric nodes (BT-SN).

3.1 Binary Tree (BT)

Since nodes are located at the leaves of a tree, the set of nodes (sharers) holding a copy of a
particular memory block can be expressed as the minimal subtree that includes the home node



Table 1: System parameters

32-core CMP

GEMS Parameters SICOSYS Parameters

Processor frequency 4 GHz Network frequency 2 GHz
Cache hierarchy Inclusive Topology 8x4 Mesh
Cache block size 64 bytes Switching technique Wormhole, Multicast
Split L1 I & D caches 128KB, 4 ways, Routing technique Deterministic X-Y

4 hit cycles Message size 4 flits data, 1 flit control
Shared unified L2 cache 1MB/tile, 4 ways, Routing time 2 cycles

7 hit cycles Link latency (one hop) 2 cycles
Memory access time 300 cycles Link bandwidth 1 flit/cycle

and all the sharers. This minimal subtree is codified using the level of its root (which can be
expressed using just ⌈log

2
(log

2
N + 1)⌉ bits). Intuitively, the set of sharers is obtained from the

home node identifier by changing the value of some of its least significant bits to don’t care. The
number of modified bits is equal to the level of the above mentioned subtree. It constitutes a
very compact sharing code (observe that, for a 128-node system, only 3 bits per directory entry
are needed). For example, consider a 16-node system such as the one shown in Figure 3(a), and
assume that nodes 1, 4 and 5 hold a copy of a certain memory block whose home node is 0. In
this case, node 0 would store 3 as the tree level value, which is the one covering all sharers (see
Figure 3(b)). Unfortunately, this would include as well nodes 0, 2, 3, 6 and 7 that do not have
copy of such memory block and that, thus, would receive unnecessary coherence messages on a
subsequent coherence event.

3.2 Binary Tree with Symmetric Nodes (BT-SN )

We also introduce the concept of symmetric nodes of a particular home node. Assuming that
3 additional symmetric nodes are assigned to each home node, they are codified by different
combinations of the two most-significant bits of the home node identifier (note that one of these
combinations represents the home node itself). In other words, symmetric nodes only differ from
the corresponding home node in the two most significant bits. For instance, if 0 were the home
node, its corresponding symmetric nodes would be 4, 8 and 12. Now, the process of choosing
the minimal subtree that includes all the sharers is repeated for the symmetric nodes. Then, the
minimum of these subtrees is chosen to represent the sharers. The intuitive idea is the same as
before but, in this case, the two most significant bits of the home identifier are changed to the
symmetric node used. Therefore, the size of the sharing code of a directory entry is the same as
before plus the number of bits needed to codify the symmetric nodes (for 3 sym-nodes, 2 bits).
In the previous example, nodes 4, 8 and 12 are the symmetric nodes of node 0. The tree level
could now be computed from node 0 or from any of its symmetric nodes. In this way, the one
which encodes the smallest number of nodes and includes nodes 1, 4 and 5 is selected. In this
particular example, the tree level 3 must be used to cover all sharers, computed from node 0 or
node 4.

4 Evaluation environment

We perform the evaluation using the full-system simulator Virtutech Simics [8] extended with
Multifacet GEMS 1.3 [9], that provides a detailed memory system timing model. Since the



2 4 8 16 32 64 128 256

Number of cores

6.0

6.2

6.4

6.6

6.8

7.0

7.2

7.4

7.6

A
re

a 
re

q
u

ir
ed

 (
m

m
2)

Bit-vector
BT-SN
BT

Fig. 4: Area (mm2) required for a 1MB cache module when bit-vector, BT or BT-SN are used

network modeled by GEMS 1.3 is not very precise, we have extended it with SICOSYS [10], a
detailed interconnection network simulator. We simulate a 32-tile CMP architecture as the one
described in Section 2. The values of the main parameters used for the evaluation are shown in
Table 1. Cache latencies have been calculated using the CACTI 5.3 tool [13] for 45nm technology.
We also have used CACTI to measure the area of a 1MB 4-way L2 cache bank that includes
the different sharing codes assumed in this work. In this study, we assume that the length of the
physical address is 44 bits, like in the SUN UltraSPARC-III architecture [4].

The ten applications used in our simulations cover a variety of computation and commu-
nication patterns. Barnes (8192 bodies, 4 time steps), FFT (256K points), Ocean (258x258
ocean), Radix (1M keys, 1024 radix), Raytrace (teapot), Volrend (head) and Water-Sp (512
molecules, 4 time steps) are scientific applications from the SPLASH-2 benchmark suite [15].
Unstructured (Mesh.2K, 5 time steps) is a computational fluid dynamics application. MPGdec

(525 tens 040.m2v) and MPGenc (output of MPGdec), are multimedia applications from the
APLBench suite [7]. We account for the variability in multithreaded workloads by doing multi-
ple simulation runs for each benchmark in each configuration and injecting random perturbations
in memory systems timing for each run.

5 Evaluation results

We start this section by comparing the area overhead introduced by the different organizations
for the sharing code considered in this work (i.e., bit-vector, BT and BT-ST). Next, we study the
impact that the compressed sharing codes have on network traffic. For that, we consider both an
interconnection network with and without multicast support. Finally, we end with a comparison
between the three directory organizations in terms of the execution times that they obtain for
the ten applications described in the last section.

5.1 Impact on area overhead

Figure 4 plots the total area (in mm2) that would be required by a 1MB 4-way cache module
when bit-vector, BT and BT-SN sharing codes are used. Due to the limited number of cores used
in our simulations (32), we evaluate BT-SN assuming only one symmetric node. In this way,
the size of BT-SN is equal to the size of BT plus 1 bit to codify whether the home node or the
symmetric node is being used in the codification.

As shown in Figure 4 (and discussed in the introduction of this work), the area overhead
that the bit-vector sharing code entails does not scale with the number of cores. Obviously,



Barnes
FFT

MPGdec

MPGenc
Ocean

Radix

Raytra
ce

Unstru
ctured

Volrend

Water-S
p

Average
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

N
or

m
al

iz
ed

 N
et

w
or

k 
T

ra
ffi

c Bit-vector
BT-SN
BT

Barnes
FFT

MPGdec

MPGenc
Ocean

Radix

Raytra
ce

Unstru
ctured

Volrend

Water-S
p

Average
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

N
or

m
al

iz
ed

 N
et

w
or

k 
T

ra
ffi

c Bit-vector
BT-SN
BT

(a) Without multicast

Barnes
FFT

MPGdec

MPGenc
Ocean

Radix

Raytra
ce

Unstru
ctured

Volrend

Water-S
p

Average
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

N
or

m
al

iz
ed

 N
et

w
or

k 
T

ra
ffi

c Bit-vector
BT-SN
BT

Barnes
FFT

MPGdec

MPGenc
Ocean

Radix

Raytra
ce

Unstru
ctured

Volrend

Water-S
p

Average
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

N
or

m
al

iz
ed

 N
et

w
or

k 
T

ra
ffi

c Bit-vector
BT-SN
BT

(b) With multicast

Fig. 5: Normalized network traffic for bit-vector, BT and BT-SN

the size of the bit-vector (in bits) increases linearly with the number of cores. For this reason,
the bit-vector could be a good option for a small number of cores. However, from 16 cores on
the increase in area that the bit-vector conveys makes it unfeasible (the area overhead becomes
almost 100% for the 64-core configuration). On the other hand, the size of BT and BT-SN barely
increases with the number of cores. Moreover, the total number of bits needed by BT and BT-SN
is very small in all cases (⌈log

2
(log

2
N + 1)⌉ bits and ⌈log

2
(log

2
N + 1)⌉+ 1 bits, respectively).

In this way, the area overhead of BT and BT-SN is very low (less than 5% for the 256-core
configuration) and keeps almost constant with the number of cores. This makes that BT and
BT-SN can be considered as promising alternatives to bit-vector for future may-core CMPs, since
besides introducing very small overheads in terms of area, these sharing codes would allow to
support families of CMPs with varying number of cores and using exactly the same tile (without
requiring any modifications in the directory structure).

5.2 Impact on network traffic

Although compressed sharing codes can drastically reduce the size of the directory, their coun-
terpart is that they could increase the number of coherence messages as a consequence of the
in-excess codification of the sharers that they perform. Increasing the number of coherence mes-
sages leads to more traffic being injected in the interconnection network of the CMP. Since
previous works have identified the interconnection network as one of the most important ele-
ments of the CMP from the point of view of energy consumption (consuming almost 40% of the
total energy budget in the Raw processor [14]), more traffic at the end means more energy.

Figure 5 shows the amount of network traffic that would be generated for bit-vector, BT and
BT-SN for the 32-core CMP configuration assumed in this work. In particular, each bar plots
the number of bytes transmitted through the interconnection network (the total number of bytes
transmitted by all the switches of the interconnect) normalized with respect to the bit-vector
case. We present results considering both a network with unicast support (a) and with multicast
support (b).

As shown in Figure 5(a), the use of BT has severe impact on the amount of network traffic
and degradations ranging from approximately 50% for MPGenc to 350% for Unstructured are
found. The problem with BT is that when one of the sharers is far from the home node in the
logical tree structure illustrated in Figure 3(b), the root of the tree is selected as the minimum
tree level covering both the home node and the sharer, which results in all cores being actually
codified. We have found that this situation occurs frequently in most applications, which explains
the significant amount of extra traffic for BT. In particular, the average number of coherence



Barnes
FFT

MPGdec

MPGenc
Ocean

Radix

Raytra
ce

Unstru
ctured

Volrend

Water-S
p

Average
0.8

0.9

1.0

1.1

1.2

1.3
N

or
m

al
iz

ed
 E

xe
cu

tio
n 

T
im

e Bit-vector
BT-SN
BT

Barnes
FFT

MPGdec

MPGenc
Ocean

Radix

Raytra
ce

Unstru
ctured

Volrend

Water-S
p

Average
0.8

0.9

1.0

1.1

1.2

1.3
N

or
m

al
iz

ed
 E

xe
cu

tio
n 

T
im

e Bit-vector
BT-SN
BT

(a) Without multicast

Barnes
FFT

MPGdec

MPGenc
Ocean

Radix

Raytra
ce

Unstru
ctured

Volrend

Water-S
p

Average
0.8

0.9

1.0

1.1

1.2

1.3

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e Bit-vector

BT-SN
BT

Barnes
FFT

MPGdec

MPGenc
Ocean

Radix

Raytra
ce

Unstru
ctured

Volrend

Water-S
p

Average
0.8

0.9

1.0

1.1

1.2

1.3

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e Bit-vector

BT-SN
BT

(b) With multicast

Fig. 6: Execution time for 32 cores

messages that are sent on a coherence event3 increases from 2 in bit-vector to more than 20 in
BT. On the contrary, when BT-SN is considered the tree level that covers all the sharers can be
computed from either the home node or its symmetric node. This leads to noticeable reductions
in the average number of coherence messages (12 in BT-SN), which leads to important savings
in network traffic when compared with BT. Unfortunately, BT-SN does not mitigate completely
the extra traffic introduced by BT and degradations of approximately 100% on average are still
observed. Again, when two or more cores, distant in the logical tree, share a memory block, the
root of the tree would be codified by BT-SN.

Obviously, the provision of multicast support at the interconnection network level can alleviate
the levels of extra traffic. More specifically, in Figure 5(b) we show the results obtained when we
take advantage of multicast support for sending coherence messages (invalidations and cache-to-
cache transfer commands). Efficient implementations of such kind of multicast support in on-chip
networks have recently been proposed [11]. Unfortunately, using multicast support for factorizing
efficiently also the response messages is not a trivial issue. So, in this work we assume that
responses to coherence commands are unicast messages. As it can be seen, the use of multicast
support is an step forward in achieving the network traffic levels obtained by bit-vector, and it is
especially useful when BT is considered (average traffic overhead is reduced from 200% without
multicast support to 150%). Anyway, the fact that multicast support is available just for the
coherence commands and not for their associated responses limits its benefits.

5.3 Impact on execution time

The degradations previously reported in terms of network traffic finally translate into increases in
terms of execution time. In Figure 6 we show how the use of BT and BT-SN impacts applications’
execution times, considering an interconnection network with and without multicast support, (a)
and (b) respectively. Again, all results have been normalized with respect to the bit-vector case.

As observed in Figure 6(a), the use of BT without multicast support has important conse-
quences on performance. In particular, the execution time grows from less than 10% for Barnes
and Water-Sp to more than 30% for Raytrace (19% on average). In general, the greater number
of messages that are needed with BT to resolve every coherence event leads to longer cache miss
latencies, and therefore, execution times. Obviously, the extent of the degradation in execution
time will depend on the particular characteristics of each application (L1 cache miss rate, average
number of coherence messages per cache miss, kind of synchronization used, etc.). This is why
there is no direct correlation between the amount of extra traffic reported in Figure 5(a) and the

3 By coherence event we refer to a situation where the home node must use the sharing code to send
coherence messages (invalidations or cache-to-cache transfer commands).



Normalized Network Traffic

0.0

0.75

1.5

2.25

3.0

Normalized Execution Time

0.8

0.9

1.0

1.1

1.2

Area Requirements (mm
2)

5.0

6.0

7.0

8.0

9.0

Bit-vector y

BT y
BT-SN y

Fig. 7: Trade-off between area, performance and network traffic for BT, BT-SN and bit-vector
(32 cores and multicast support are assumed)

degradation in execution time shown in Figure 6(a). On the other hand, when BT-SN is used
instead of BT, the average overhead in terms of execution time is reduced to a half (10%). In this
case, significant reductions in execution time are observed for most applications. The exceptions
are Barnes and Water-Sp, that hardly see their execution times reduced when BT-SN is used,
even when significant savings in terms of network traffic were reported.

The effects of using multicast support with BT and BT-SN are analyzed in Figure 6(b). As
before, multicast support has significant impact on execution time when BT is assumed. In this
case, average degradation falls from 19% to less than 10%. Although all applications benefit
from multicast support, FFT, MPGdec, Radix, Raytrace and Unstructured are the most affected
(in all these cases performance degradation entailed by BT is reduced to more than a half).
Finally, and as it was reported for network traffic, multicast support does not help much in
reducing performance overhead when BT-SN is considered. In this case, what dominates cache
miss latencies is the time taken to collect all responses to a coherence event, which is not optimized
with the assumed multicast support.

6 Conclusions and Future Work

The organization of the directory needed to maintain cache coherence will be a key design
point in future many-core CMPs. In this work we have analyzed the effects that the BT and
BT-SN compressed sharing codes have on area, network traffic (as representative of the energy
consumed in the interconnection network) and performance in the context of many-core chip-
multiprocessors. In particular, we have found that although very area-efficient directories could be
derived based on these two sharing codes (with area overheads of less than 5%), the degradations
in terms of network traffic (200% for BT and 100% for BT-SN) as well as execution time (20%
for BT and 10% for BT-SN) that they entail could preclude them from being employed in future
many-core CMPs. Moreover, we have studied the case of having an interconnection network with
multicast support, and have found that although BT can significantly benefit from such kind
of support (degradations in execution time and network traffic are reduced to 8% and 150%
respectively), BT-SN barely finds any benefits from it. The reasons why multicast support is
unable to hide the degradation that BT and BT-SN introduce are two. First, multicast support
is only used for sending coherence commands but not for collecting the responses. An second, even
when an efficient mechanism able to provide combined responses were used, more destinations for
the coherence commands still implies more traffic and longer cache miss latencies. As a summary
of the results, Figure 7 shows the trade-off between area, performance and network traffic for the
sharing codes evaluated in this work.



Our future work includes new organizations for the sharing code aimed at reducing the amount
of unnecessary coherence messages that BT-SN entails but having similar requirements in terms
of area. Additionally, we are studying the possibility of including support in the interconnection
network for discarding unnecessary coherence messages as they travel to their destination. Finally,
we are extending our simulation tools to compare the different directory organizations in terms
of their energy requirements (considering both static and dynamic energy consumption).

References

1. Single-chip Cloud Computer. http://techresearch.intel.com/articles/Tera-Scale/1826.htm.
2. M. E. Acacio, J. González, J. M. Garćıa, and J. Duato. A new scalable directory architecture for

large-scale multiprocessors. In 7th Int’l Symp. on High-Performance Computer Architecture (HPCA),
pages 97–106, Jan. 2001.

3. S. Borkar. Thousand core chips: A technology perspective. In 44th Annual Design Automation
Conference, pages 746–749, June 2007.

4. T. Horel and G. Lauterbach. UltraSPARC-III: Designing third-generation 64-bit performance. IEEE
Micro, 19(3):73–85, May 1999.

5. C. Kim, D. Burger, and S. W. Keckler. An adaptive, non-uniform cache structure for wire-delay
dominated on-chip caches. In 10th Int. Conf. on Architectural Support for Programming Language
and Operating Systems (ASPLOS), pages 211–222, Oct. 2002.

6. J. Leverich, H. Arakida, A. Solomatnikov, A. Firoozshahian, M. Horowitz, and C. Kozyrakis. Com-
paring memory systems for chip multiprocessors. In 34th Int’l Symp. on Computer Architecture
(ISCA), pages 358–368, June 2007.

7. M.-L. Li, R. Sasanka, S. V. Adve, Y.-K. Chen, and E. Debes. The ALPBench benchmark suite for
complex multimedia applications. In Int’l Symp. on Workload Characterization, pages 34–45, Oct.
2005.

8. P. S. Magnusson, M. Christensson, and J. Eskilson, et al. Simics: A full system simulation platform.
IEEE Computer, 35(2):50–58, Feb. 2002.

9. M. M. Martin, D. J. Sorin, and B. M. Beckmann, et al. Multifacet’s general execution-driven
multiprocessor simulator (GEMS) toolset. Computer Architecture News, 33(4):92–99, Sept. 2005.

10. V. Puente, J. A. Gregorio, and R. Beivide. SICOSYS: An integrated framework for studying inter-
connection network in multiprocessor systems. In 10th Euromicro Workshop on Parallel, Distributed
and Network-based Processing, pages 15–22, Jan. 2002.

11. S. Rodrigo, J. Flich, J. Duato, and M. Hummel. Efficient unicast and multicast support for CMPs.
In 41st IEEE/ACM Int’l Symp. on Microarchitecture (MICRO), pages 364–375, Nov. 2008.

12. M. B. Taylor, J. Kim, and J. Miller, et al. The raw microprocessor: A computational fabric for
software circuits and general purpose programs. IEEE Micro, 22(2):25–35, May 2002.

13. S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi. CACTI 5.1. Technical Report
HPL-2008-20, HP Labs, Apr. 2008.

14. H. Wang, L.-S. Peh, and S. Malik. Power-driven design of router microarchitectures in on-chip
networks. In 36th IEEE/ACM Int’l Symp. on Microarchitecture (MICRO), pages 105–111, Dec.
2003.

15. S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2 programs: Character-
ization and methodological considerations. In 22nd Int’l Symp. on Computer Architecture (ISCA),
pages 24–36, June 1995.

16. M. Zhang and K. Asanović. Victim replication: Maximizing capacity while hiding wire delay in tiled
chip multiprocessors. In 32nd Int’l Symp. on Computer Architecture (ISCA), pages 336–345, June
2005.


