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Universitat Politècnica de València, 46021 Valencia (Spain)

E-mail: {megomez,arobles,jduato}@gap.upv.es

Abstract—There is a growing trend towards developing large-
scale cache-coherent systems by using commodity symmetric
multiprocessors, which requires to extend their coherence proto-
col. In such systems, cache coherence transactions issued due
to cache misses traverse interconnection networks with very
different topologies and latencies. In this work, we perform a
cache miss characterization aimed at analyzing the benefits that
can be expected for a specialized coherence controller able to
locally resolve cache misses, thus saving traffic across long-latency
links. Results show that there is a high potential in reducing miss
latency in these systems, and that this potential reduction grows
as the number of nodes in the system increases. Particularly, in
a system with just two boards 40% of the cache misses do not
need the expensive inter-board communication. This percentage
can increase up to 67.5% for an 8-board system.

I. INTRODUCTION

Until recently, many service providers were able to use clus-

ters of PCs for high performance computing (HPC). This kind

of clusters usually relies on message-passing communications

for remote memory accesses, which not only increases the

communication latencies, but also difficulties the developing

of efficient applications when compared to the shared-memory

programing model. These drawbacks highlight the need for

large-scale cache-coherent systems.

There is a current trend towards developing such large-scale

cache-coherent systems based on using existing commodity

symmetric multiprocessors (SMP), which requires to extend

their coherence protocol. AMD was the first to include such

features in their Opteron processors. Particularly, the six- and

twelve-core versions of AMD Opteron processors, codenamed

Istanbul and Magny-Cours [1] respectively, can be intercon-

nected to compound a larger system while still maintaining

cache coherence thanks to the Coherent HyperTransport (cHT)

technology [2]. Similarly, the Intel’s QuickPath Interconnect

§This work was done before the author joined Intel, while being at the
Universitat Politècnica de València.

(QPI) allows several Nehalem processors to compound a larger

coherent system.

In order to increase even more the number of processor

cores that can be kept coherent in such systems, several

proposals aimed at further extending the coherence domain

have appeared recently. We can find examples of these systems

either in the market (e.g., Horus [3] and SGI Altix UV [4])

or in the literature (e.g., EMC2 [5], [6]). These hierarchical

systems have very different communication latencies among

processing cores depending on the distance, the interconnec-

tion technology, and its level in the coherence hierarchy, as

we can see in Figure 1. The basic building block is the die,

that can comprise several processor cores (currently from 4 to

12). Communication among these cores is very fast (just a few

nanoseconds) and can be carried out by a shared bus. Several

dies can be placed in the same board in order to compound

a larger system. Communication among dies is commonly

performed through a scalable point-to-point interconnect (e.g.,

cHT or QPI), and usually requires tens of nanoseconds [1].

Finally, several boards can be connected by an InfiniBand

[7] or Ethernet switch fabric. The component responsible for

managing communication between internal (intra-board) and

external (inter-board) messages is the bridge chip (also named

as HORUS chip in [3], as UV HUB in [4], and as EMC2 in

[8]). Communication latency across the inter-board network

can be higher than one microsecond [9]. Since in these systems

the inter-board communication latency is extremely high when

compared to the other network latencies, the avoidance of this

communication becomes a fundamental goal for delivering

high performance.

In this paper, we present a characterization of the cache

misses that require coherence transactions among dies or

boards. This characterization represents the first and funda-

mental step of a work in progress whose final goal is the

design of a cache coherence protocol able to make the most

of the hierarchical systems. In particular, we are interested
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Fig. 1: Generic overview of a hierarchical system. P refers to the processors or cores and NI stands for network interface.

in a classification of cache misses according to their latency

requirements. We mainly focus on the communication mes-

sages used to resolve each miss (e.g., if they require the

access to another board or just to some die within the same

board). Additionally, we are also interested in the misses

that, requiring accesses to remote boards, could be resolved

locally thereby avoiding the inter-board communication. In this

paper, we briefly discuss the modifications and extra structures

required in the cache coherence protocol in order to resolve

cache misses without requiring remote transactions.

By means of full-system simulation we show that a high

percentage of cache misses require inter-board communica-

tion. Particularly, for systems composed of 2, 4, and 8 boards,

we have found that 50.0%, 75.2%, and 83.6% of cache misses

(on average) need to traverse long-latency links, respectively.

Additionally, this implies that as the system size grows, the

latency of cache misses will also grow significantly. Our

results also show that up to 85.8%, 89.8%, and 90.3% of these

misses could be resolved locally for systems with 2, 4, and

8 boards, respectively, by adding some extra structures at the

same time that the cache coherence protocol engine is modified

to this purpose.

The rest of this paper is organized as follows. Section II

offers some background about the kind of systems analyzed in

this paper. Section III describes our simulation environment.

The cache miss characterization is presented in Section IV.

In Section V, we briefly discuss some techniques that can be

employed for avoiding inter-board communication, and finally,

conclusions and future work are drawn in Section VI.

II. BACKGROUND

There are some systems both in the market and in the

recent literature that are examples of the baseline system

considered in this paper: Horus, SGI Altix UV, and EMC2.

In the following sections, we give some background about

them.

A. Horus

HORUS [3] is a system that scales from 8 sockets to 32

sockets the SMP capabilities of a family of AMD Opteron

processors that keep coherence by means of a broadcast-

based protocol [2]. Particularly, the system comprises several

HORUS chips, each one connected to 4 dies (one die per

socket) through internal cHT links and to other HORUS chips

through an external longer-latency interconnect. In order to

reduce the significant amount of external traffic generated

by the broadcast-based protocol, the HORUS chip includes

a directory structure that maintains both the state and a bit-

vector sharing code (one bit per HORUS chip) for each local

memory block that is cached remotely. In this way, the amount

of external traffic can be significantly reduced.

Additionally, each HORUS chip includes a 64MB remote

data cache (RDC) to avoid inter-board communication (i.e.,

external communication among HORUS chips). This can lead

to a reduction in both cache miss latency and coherence traffic.

The RDC cache can be filled in two ways. First, it keeps a

copy of data sent by the memory controller to one of the

4 dies connected to an HORUS chip. Second, when a local

processor evicts a dirty memory block from cache, the RDC

stores the data block. Unfortunately, this RDC can only save

inter-board communication on read misses and only when

the data block has been previously requested by one of the

processors belonging to the same board.

B. SGI Altix UV

The SGI Altix UV [4] is another example of a scalable

global shared-memory system, where communication among

processing cores usually goes across different networks with

diverse link latencies. With up to eight cores per socket and



up to 256 sockets, the SGI Altix UV can scale up to 2048

cores. A board can contain one or two sockets. The UV HUB

is the component that links the cache-coherent QPI [10] found

on Intel processors with the larger cache-coherent NUMAlink

environment that extends across the full system. Differently

from HORUS, the UV HUB includes neither a directory nor

any cache structure to filter expensive NUMAlink traffic.

C. EMC2

EMC2 (Extended Magny-Cours Coherence) [5], [6] over-

comes the 8-die limitation of Magny-Cours systems [1]. The

basic building block of this system is the Magny-Cours die,

which comprises six cores. Up to two Magny-Cours dies can

be included in the same socket and up to four sockets are

available per board (8 dies per board). Since the EMC2 chip

replaces one of the existing dies, the maximum number of

processor dies per board is seven. These dies and the EMC2

chip, which manages the translation between internal (cHT)

and external (High Node Count or HNC [11]) messages, are

connected by means of a cHT interconnect. The different

EMC2 chips are connected by an InfiniBand switch fabric, so

HNC packets are encapsulated into InfiniBand packets. Again,

the external network introduces longer latency than the internal

one.

Differently from the HORUS chip, the EMC2 chip has to

deal with an internal directory-based protocol, which already

includes directory caches (called HTA probe filter [1]) that

store both the state and the owner of the cached memory

blocks. When the block’s owner, which is codified by using

3 bits, is any remote die (i.e., a die connected to another

EMC2 chip), it will point to its local EMC2 chip, which

contains another directory cache (called extended HTA, or

EHTA) in order to extend the local HTA information to the

global system. While dies (and particularly their HTAs) only

have an intra-board view, EMC2 chips (and particularly their

EHTAs) have a view of all copies of local memory blocks out

of its board. Although the EMC2 system is able to filter some

inter-board traffic due to the EHTA capabilities, there is still

a large amount of external traffic that could be avoided, thus

reducing cache miss latencies and final application’s execution

time, as we show in Section IV.

III. SIMULATION ENVIRONMENT

We have performed the characterization presented in this

paper by means of full-system simulation using Virtutech

Simics [12] along with the Wisconsin GEMS toolset [13],

which enables detailed simulation of multiprocessor systems.

The interconnection network has been modelled using GAR-

NET [14], a detailed network simulator included in the GEMS

toolset.

For carrying out the miss characterization, we have consid-

ered the EMC2 system because this is built based on current

Magny-Cours dies. We assume that each board includes 4

dies. We have analyzed comprised by 2, 4, and 8 boards. The

parameters for the Magny-Cours dies used in the simulations

correspond to the ones described by their designers [1] and are

TABLE I: System parameters.

Memory Parameters

Processor frequency 3.2 GHz

Cache block size 64 bytes

Aggregate L1+L2 caches 3MB, 4-way

L3 cache 5MB, 16-way

Average cache access latency 2ns (L1+L2+L3)

HT assist (probe filter) 1MB, 4-way

HT assist access latency 4ns

EMC2 chip processing latency 16ns

Memory access latency (local bank) 100ns

Network Parameters

Intra-board topology Fully-connected

Inter-board topology Hypercube

Data message size 68 or 72 bytes

Control message size 4 or 8 bytes

HyperTransport bandwidth 12.8GB/s

Inter-die link latency 2ns

Inter-socket link latency 40ns

InfiniBand bandwidth 12GB/s

Inter-board communication (one way) 1µs

Flit size 4 bytes

Link bandwidth 1 flit/cycle

shown in Table I. We do not model the intra-die coherence

protocol or the intra-die cache hierarchy because in this

paper we are only focused on the behaviour of the coherence

protocol among dies and among boards, but not within the

die. Since the detailed simulation of in-die traffic would result

in a significant increase of the simulation time, we assume a

fixed access latency (representing the average access time) for

the whole intra-die hierarchy (L1, L2, and L3 caches). Note

that these three levels are private within a die, so this does not

affect the behaviour of either the inter-die or the inter-board

coherence protocols, which are the target protocols for this

paper. The parameters used for connecting different boards

are also based on real systems [9]. These parameters are also

shown in Table I.

We have performed the characterization for a wide range

of scientific applications: Barnes (16K particles), Cholesky

(tk16), FFT (64K complex doubles), FMM (16K particles),

Ocean (514×514 ocean), Radiosity (room, -ae 5000.0 -en

0.050 -bf 0.10), Radix (512K keys, 1024 radix), Raytrace

(teapot), Volrend (head), and Water-Sp (512 molecules) are

from the SPLASH-2 benchmark suite [15]. Blackscholes

(simmedium) and Canneal (simsmall) belong to PARSEC

[16]. All the experimental results reported in this paper



correspond to the parallel phase of these benchmarks. We

account for the variability in multithreaded workloads [17] by

doing multiple simulation runs for each benchmark in each

configuration and injecting small random perturbations in the

timing of the memory system for each run.

IV. CACHE MISS CHARACTERIZATION

To provide some hints about the potential benefits in miss

latency reduction of avoiding the inter-board communication,

first of all, it is interesting to define a taxonomy of cache

misses and then to obtain, for a set of parallel applications,

the fraction of misses that fall into each of the miss types in

the taxonomy. In this way, we can show the fraction of cache

misses that imply inter-board communication, as well as the

fraction of them that could avoid it, i.e., that could be resolved

locally if the cache coherence protocol is modified to take this

into account.

Table II shows the taxonomy defined in this paper. We first

consider the type of the cache miss (read or write), since they

require different coherence actions. Then, it is necessary to

know if the requested block maps to a memory controller

within the local die (i.e., the home memory controller is in

the same board as the requester) or within a remote die. If the

home memory controller is remote, the cache miss transaction

will require the issue of messages through long-latency links.

However if the home is local, inter-board communication will

only happen depending on the following:

• For read misses, if the die having the ownership of the

requested block belongs to the same board as the home

memory controller (and therefore as the requester), no

inter-board communication will be required. Otherwise,

a coherence message must be sent to the remote board

where the owner die resides.

• For write misses, if at least one copy of the block in

a external die (i.e., a die within a remote board), then

high-latency communication will be required. Otherwise,

the write miss can be resolved locally. Note that the

EMC2 system is already able to filter board-to-board

communication when there are not external sharers.

Finally, it is also interesting to analyze if, despite requiring

external transactions, (1) the cache miss could be locally

resolved by modifying the cache coherence engine in the

bridge chip and (2) in which situations this could be done.

As we can see in Table II, among the six cache miss types

shown, two of them do not entail inter-board communication.

Among the remaining four miss types that require inter-board

communication, we have detected that three of them could

avoid those high-latency links. Particularly, read misses could

be resolved locally if the requested data block is present in the

same board where the miss takes place. On the other hand,

write misses can be resolved locally if the requested block is

only stored in caches within the same board as the requester.

Once the taxonomy is clearly defined, it is interesting to

study how frequent each type of miss is, and since misses

entailing inter-board communication have longer latency, it

is also interesting to know their impact on the overall miss

latency.

Figure 2 shows the fraction of misses that fall into each

category of the taxonomy for a system with two boards (8

dies), four boards (16 dies), and eight boards (32 dies), and for

the different applications described in Section III. The fraction

of misses represented as white or striped corresponds to the

misses that, not requiring inter-board communication, could

be resolved locally. We can see that this fraction of misses

increases with the number of boards. For a 2-board system

comprised of 8 dies these misses represent 40.0% (on average)

of the total, but for a 4-board system this percentage goes up to

61.5% on average, and up to 67.5% on average for an 8-board

system.

Additionally, the misses with inter-board communication are

the ones that take longer to resolve. Therefore, the avoidance

of the inter-board communication for them can be very helpful

to reduce the applications’ execution time. Figure 3 shows the

fraction of time required to resolve the misses falling into each

category. Again, we can see that the fraction of time spent

for misses that could avoid the inter-board communication

increases with the number of boards in the system, being of

about 69.8% for a 2-board configuration and about 89.2% for

an 8-board configuration (on average). This increase is due to

both the larger number of misses within these categories and

the increase in the number of network hops required to reach

a remote board.

Although we have shown that the latency of many cache

misses can be shortened, current implementations of hierarchi-

cal systems do not take full advantage of this. For example,

neither SGI Altix UV nor EMC2 employ any technique for

reducing the inter-board communication. Differently, HORUS

includes the remote data cache, but this cache is only able to

avoid the inter-board communication for some Read Remote

misses, which only account for 18% and 36% of total misses

for a 2-board and an 8-board configuration, respectively. We

have shown that a larger fraction of read misses (from 27.4%

when considering 2 boards to 44.9% for 8 boards) and a

significant fraction of write misses (from 12.5% –and 37%

w.r.t the number of write misses– for 2 boards to 22.1% –

and 61% w.r.t the number of write misses– for 8 boards) can

severely reduce their latency.

V. AVOIDING HIGH-LATENCY COMMUNICATION

In the previous section we have shown that cache miss

latency can be considerably reduced if the cache coherence

protocol was modified by having the presented characterization

into account. Since these results are very promising, we think

that it is worthy to pay more attention to the development of

specific cache coherence protocols for hierarchical systems.

Therefore, this section points out some of the techniques

that can be employed to improve performance. A complete

implementation and evaluation of such a protocol is out of the

scope of the paper and is kept as future work.

We have noticed that the avoidance of remote read misses

can be carried out by adding extra data structures (caches) to



TABLE II: Taxonomy of cache misses.

Miss type Home Inter-board communication Can it be avoided?

Read
Local

No (local owner) Not necessary

Yes (remote owner) Yes, if there are local copies

Remote Yes Yes, if there are local copies

Write
Local

No (no external copies) Not necessary

Yes (external copies) No

Remote Yes Yes, if there are only internal copies
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Fig. 2: Fraction of misses that falls into each category.

the component responsible for the inter-board communication

(i.e., the bridge chip).

Read misses can be locally solved if the requested data are

found in the local board. To get this, we can force the data to

be found in the local board in two ways. When a die in the

same board requests some data, this can be stored either in

a local data cache located in the bridge chip (similar to the

RDC cache in Horus) or in a local directory cache pointing

to the die holding the data block. The decision will depend on

the state of the block in the local cache. If the block is clean,

evictions will take place in a silent way, so it is important to

have the data in the bridge chip. If the block is dirty, write-

backs will inform about evictions, and the identity of the die

holding the data is enough to locally provide the requested

data.

On the other hand, the avoidance of remote write misses

can be achieved by adding in the local directory cache ex-

tra information about if there exist external copies for the

requested block. In case only internal copies exist, the miss

can be resolved locally by broadcasting invalidation messages

to every die within the local board.

Note that, although these two structures would require a

significant amount of extra storage, the current size of the

bridge chip is extremely small (e.g., less than 30mm2 in [6])

considering that it will be allocated instead of a processor die

of several hundreds of mm2, so extra data caches can be added

to its design without compromising its area.

VI. CONCLUSIONS AND FUTURE WORK

This paper constitutes a preliminary work that studies the

potential of avoiding long latency communication for large-

scale cache coherent systems comprised of interconnection

networks with different latencies. Particularly, this work fo-

cuses on the avoidance of the inter-board communication,

which is the most expensive one in hierarchical systems. We

have noticed that a large percentage of cache misses can be

resolved locally, i.e., without leaving the board where the miss

takes place, if some additional extra structures were used by

the cache coherence protocol. This percentage increases from

40% in a 2-board system to 67.5% in an 8-board system, and

it is expected to increase even more for larger configurations.

Additionally, we have shown that the reduction that can be



Barnes

Blackscholes

Canneal

Cholesky
FFT

FMM
Ocean

Radiosity
Radix

Raytra
ce

Volre
nd

Water-S
p

Average

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
ra

c
ti
o

n
 o

f 
la

te
n

c
y

Read_Local_No
Read_Local_Yes
Read_Remote

Write_Local_No
Write_Local_Yes
Write_Remote

1. 8 dies (2 boards)
2. 16 dies (4 boards)
3. 32 dies (8 boards)

Fig. 3: Fraction of latency for misses into each category.

obtained in the cache miss latency is expected to be significant

and also higher for larger systems. These promising results

suggest that more attention must be paid in the design of cache

coherence protocols for hierarchical systems.

Therefore, the next step in this project consists on modifying

the cache coherence protocol of such systems in order to be

able to avoid long-latency communication for the cases that

we have detected in this paper. To this end, we plan to add

some hardware structures to the bridge chip, as well as to

change the behaviour of the coherence protocol to support

locally resolved cache misses.
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