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ABSTRACT
Cache coherence protocols based on self-invalidation allow
simpler hardware implementation compared to traditional
write-invalidation protocols, by relying on data-race-free se-
mantics and applying self-invalidation and self-downgrade
on synchronization points. This work examines how self-
invalidation and self-downgrade are performed in relation to
atomicity and ordering and shows that they do not need to
be applied conservatively, as so far implemented. Our key
observation is that, often, critical sections which are not or-
dered in time, are intended to provide only atomicity but
not thread synchronization.
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1. INTRODUCTION
Recently, a number of proposals aim to simplify coherence

by relying on data-race-free (DRF) semantics and on self
invalidation to eliminate invalidation traffic and the need to
track readers at the directory [5, 2, 3, 6]. With the addition
of self-downgrade, the directory can be eliminated [6] and
virtual cache coherence becomes feasible at low cost, without
reverse translation [4].

In these coherence protocols, writes to memory are not
explicitly signaled to sharers, and the written value will be
visible to the sharers when they self-invalidate their local
copy. Most of these proposals offer sequential consistency
for data-race-free (SC for DRF) programs [1]. Data-race-
free semantics require that conflicting accesses (e.g., a read
and a write to the same address from different cores) must be
separated by synchronization. Self-invalidation is therefore
initiated on synchronization. Unfortunately, exposing all
synchronization to the hardware, causes indiscriminate self-
invalidation on lock, barrier, and wait constructs.
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We show that self-invalidation does not need to be applied
conservatively. Our key observation is that lock / unlock

synchronization (i.e., ensuring atomic execution of a critical
section) is often not intended to constitute DRF synchro-
nization for its surrounding code. The execution of such
critical sections is therefore unordered in time and cannot
successfully separate conflicting accesses that straddle criti-
cal sections. This indicates that self-invalidation in a critical
section should be restricted only to the data accessed inside
it, and should not affect any data accessed prior to its exe-
cution. Using similar reasoning, only data modified between
the lock and unlock operations should be made globally vis-
ible when exiting the critical section; not necessarily data
that were modified prior to the critical section.

2. ORDERING VERSUS ATOMICITY
Ordering. Some synchronization primitives, such as bar-

riers or signal/wait, are clearly intended to establish order
between memory accesses from different threads. The ex-
pectation is then that all data written before a synchroniza-
tion in thread 1 become visible in thread 2 after its corre-
sponding synchronization. Thread 2 is then disallowed from
using its stale data found in its cache. Symmetrically, in
the case of barriers, any data written by thread 2 after the
synchronization will not yet be visible to thread 1 before
its synchronization. Such synchronization primitives estab-
lish happens-before order between memory accesses, and are
often used to accomplish data race freedom [1].

Atomicity. On the other hand, some other synchroniza-
tion primitives do not inherently establish order. A common
example is the critical section shown in Figure 1. Assume
that we are only interested in performing an atomic read and
write of the global variable count, but not in enforcing any
order between other memory accesses. Assume now that we
access data unrelated to the critical sections. For example,
we access the same variable x before and after a critical sec-
tion in thread 1. Should x be self-invalidated when entering
the critical section (acquire semantics)? The answer is no.
The reason is that the lock is intended to provide atomicity
for the increment of count. It is not intended to provide any
ordering for x or between thread 1 and thread 2. Therefore
self-invalidating x is unnecessary, and would hurt perfor-
mance since it will cause a cache miss when re-accessing x

after exiting the critical section.
However, it is also possible to write code that detects the

order in which different critical sections execute. A typical



lock(l);
count += my_count;

unlock(l);

Thread 1

lock(l);
count += my_count;

unlock(l);

Thread 2

Figure 1: Critical sections used for atomicity.

x = 1;
lock(l);
flag++;

unlock(l);

Thread 1

lock(l);
local = flag;

unlock(l);
if (local)
print(x);

Thread 2

Figure 2: Critical sections used for ordering.

example is shown in Figure 2. Here the variable flag is used
to detect the order in which the critical sections execute.
The variable x is only read by thread 2 when the detected
execution order guarantees that the load is not in a data
race with the store to x by thread 1. Hence, the code in
Figure 2 is data race free despite having conflicting accesses
to x located outside of any critical section.

3. PROPOSAL
We propose new synchronization primitives for locks: For-

ward Self-Invalidation (FSI) and Forward Self-Downgrade
(FSD). In a critical section, the accesses between lock and
unlock are always self-invalidated/downgraded. However,
the programmer can specify if the accesses outside the criti-
cal section should be also self-invalidated or self-downgraded,
depending on the semantics of the critical section: pure
atomicity (Figure 1) or thread-ordering (Figure 2). Hence,
our new primitives allow for applications to be optimized
by preventing self-invalidation/downgrade of variables sur-
rounding critical sections for the case when the locks only
provide atomicity. When the programmer needs to take care
of accesses surrounding thread-ordering critical sections, con-
servative self-invalidation/downgrade is employed.

Forward Self-Invalidation (FSI). From the time of its
activation, e.g., on a lock operation, FSI invalidates each
cache line that is accessed, exactly once (on its first access).
The invalidated cache lines immediately cause misses and
need to be re-fetched and cached again. FSI continues until
its deactivation, e.g., upon the next unlock operation. The
FSI implementation is simple: we use an additional access
bit per cache line that is set when entering FSI. Accessing
a cache line with the FSI bit set, invalidates the cache line
and resets the bit. Ending FSI, all the FSI bits are reset.

Forward Self-Downgrade (FSD). When exiting a crit-
ical section, only the data written inside it need to be made
globally visible. An efficient implementation of FSD is based
on write-throughs via a coalescing write buffer that delays
write throughs for a small period of time [6]. Our implemen-
tation uses a write bit per write-buffer entry that is reset
when entering FSD. Writing to a cache line sets its write
bit. Ending FSD, all the entries in the write buffer with the
write bit set are self-downgraded, and their corresponding
write bits are reset.

4. RESULTS
Our proposal is evaluated for an extensive set of bench-

marks from Splash3 and PARSEC, where locks have been

modified appropriately to take advantage of FSI and FSD
where possible. Our evaluation using the GEMS simulator
for 64-core multiprocessors show that our techniques signifi-
cantly limit penalties occurring in synchronization-intensive
benchmarks. Results report significant improvements over
a traditional directory-based coherence protocol (17.1% in
execution time and 33.9% in energy consumption) and also
over state-of-the-art VIPS-M coherence protocol [6] that em-
ploys Callbacks [7] for efficient spin-waiting (7.6% in execu-
tion time and 9.1% in energy consumption).

5. CONCLUSIONS
We found that self-invalidation and self-downgrade, that

conventionally affect what happened in the past, can be sub-
stantially improved if we turn them forward in time. This
is possible for critical sections that do not ascertain thread-
order without changing program semantics. This way, im-
portant performance and energy improvements are obtained
over traditional and state-of-the-art self-invalidation cache
coherence protocols.
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