
DRAFT 1

A Direct Coherence Protocol
for Many-Core Chip Multiprocessors

Alberto Ros, Manuel E. Acacio and José M. Garcı́a
Departamento de Ingenierı́a y Tecnologı́a de Computadores

Universidad de Murcia, 30100 Murcia (Spain)
email: {a.ros,meacacio,jmgarcia}@ditec.um.es

Abstract —Future many-core CMP designs that will integrate tens of processor cores on-chip will be constrained by area and power.
Area constraints make impractical the use of a bus or a crossbar as the on-chip interconnection network, and tiled CMPs organized
around a direct interconnection network will probably be the architecture of choice. Power constraints make impractical to rely on
broadcasts (as, for example, Token-CMP does) or any other brute-force method for keeping cache coherence, and directory-based
cache coherence protocols are currently being employed. Unfortunately, directory protocols introduce indirection to access directory
information, which negatively impacts performance. In this work, we present DiCo-CMP, a novel cache coherence protocol especially
suited to future many-core tiled CMP architectures. In DiCo-CMP the task of storing up-to-date sharing information and ensuring
ordered accesses for every memory block is assigned to the cache that must provide the block on a miss. Therefore, DiCo-CMP
reduces the miss latency compared to a directory protocol by sending requests directly to the cache that provides the block in a cache
miss. These latency reductions result in improvements in execution time of up to 6% on average over a directory protocol. In comparison
with Token-CMP, our protocol only sends one request message for each cache miss, as such is able to reduce network traffic by 43%.

Index Terms —Many-core CMP, cache coherence protocol, direct coherence, indirection problem, on-chip network traffic.

✦

1 INTRODUCTION

THE huge number of transistors that are currently
offered in a single die has made major microproces-

sor vendors to shift towards multi-core architectures in
which several processor cores are integrated on a single
chip, leading to Chip-multiprocessors or CMPs [33].

Most current CMPs (for example, the dual-core IBM
Power6 [23] and the eight-core Sun UltraSPARC T2
[38]) have a relatively small number of cores, every one
with at least one level of private cache. These cores are
typically connected through an on-chip shared bus or
crossbar. However, the interesting new opportunity is
now that the number of cores is expected to be doubled
every 18 months [9], making undesirable elements that
could compromise the scalability of these designs. One of
such elements is the interconnection network. As shown
in [22], the area required by a shared bus or a crossbar
as the number of cores grows has to be increased to the
point of becoming impractical. Tiled CMP architectures
[43], which are designed as arrays of identical or close-to-
identical building blocks (tiles) connected over a point-
to-point unordered network, are a scalable alternative to
these small-scale CMP designs and they help in keeping
complexity manageable. In this work, we focus on tiled
CMPs with private L1 caches and shared L2 caches.
Therefore, some accesses to the shared cache will be sent
to the local slice while the rest will be serviced by remote
slices (L2 NUCA architecture [21]). Figure 1 shows the
organization of a tile (left) and a 16-tile CMP (right).

On the other hand, most CMP systems provide pro-
grammers with the intuitive shared-memory model,

CPU Core

L1D$L1I$

L2$

(Tags)

L2$ (Data)

R
outer

D
irectory

Fig. 1. Organization of a tile and a 4×4 tiled CMP.

which requires efficient support for cache coherence.
Although a great deal of attention was devoted to cache
coherence protocols in the last decades in the context
of shared-memory multiprocessors, the technological pa-
rameters and constraints entailed by CMPs demand new
solutions to the cache coherence problem [9].

Directory-based cache coherence protocols have been
typically employed in systems with point-to-point un-
ordered networks (as tiled CMPs are). Unfortunately,
these protocols introduce indirection to obtain coherence
information from the directory (commonly on chip as
a directory cache), thus increasing cache miss latencies.
Moreover, the number of cache misses suffering from
indirection increases with tiled CMPs. This is because the
directory information is commonly distributed among
the tiles of the CMP through a physical address map-
ping [19], [38], [43], i.e., the tile wherein the directory
information of a block resides (the home tile) is calculated
by taking log2n bits from the block address, where n is
the number of tiles. Since this mapping distributes di-
rectory information among tiles in a round-robin fashion

DRAFT 2

DirectoryIdeal

Token−CMP

N
et

w
or

k
tr

af
fi

c

Indirection

Fig. 2. Trade-off between indirection and network traffic.

without considering the cores requesting each block, the
probability of accessing a remote tile increases.

An alternative approach that avoids indirection is
Token-CMP [32]. Token-CMP is based on broadcasting
requests to all last-level private caches. In this way,
caches can directly provide data when they receive a
request (no indirection occurs). Unfortunately, the use
of broadcasting increases network traffic and, there-
fore, power consumption in the interconnection network,
which has been previously reported to constitute a sig-
nificant fraction (approaching 50% in some cases) of
the overall chip power [25], [40]. Figure 2 shows the
trade-off between Token-CMP and directory protocols
[28]. An ideal protocol for tiled CMPs would avoid the
indirection of the directory protocols without relying on
broadcasting requests.

In this work, we present direct coherence, a cache co-
herence protocol that meets the advantages of directory
and token protocols and avoids their problems. In direct
coherence, the task of storing up-to-date sharing infor-
mation and ensuring ordered accesses for every memory
block is assigned to the cache that provides the block
on a cache miss (the owner cache in a MOESI protocol).
In this way, indirection is avoided by directly sending
the requests to the owner cache instead of to the home
tile, where coherence information resides in a directory
protocol. Particularly, we describe an implementation of
direct coherence for tiled CMPs, named as DiCo-CMP.
In DiCo-CMP, the identity of the owner caches is specu-
latively recorded in a small structure called L1 coherence
cache associated to each core. To achieve accurate owner
predictions, this structure can be updated whenever the
owner tile changes through control messages called hints.
Additionally, since the owner cache can change on write
misses, another structure called L2 coherence cache keeps
up-to-date information about the identity of the owner
cache and it is accessed each time a request fails to locate
that cache.

In this way, DiCo-CMP reduces the latency of cache
misses compared to a directory protocol by sending
coherence messages directly from the requesting caches
to those that must observe them, as it would be done
in Token-CMP, and reduces network traffic compared to
Token-CMP by sending just one request message on ev-
ery cache miss, which also translates into improvements
in execution time. Detailed simulations show that DiCo-
CMP achieves improvements in total execution time of

6% on average over a directory protocol and of 3%
on average over Token-CMP. Moreover, our proposal
reduces network traffic up to 43% on average compared
to Token-CMP, and consequently, the total power con-
sumed in the interconnection network.
A first implementation of direct coherence was pre-

sented for distributed shared-memory multiprocessors
in [35]. Later on, a preliminary version of direct coher-
ence optimized for tiled CMPs (DiCo-CMP) was pre-
sented in [36]. Here, we extend the later work with the
following contributions:

• A new proposal for updating the L1 coherence
cache that employs address signatures to filter some
useless hint messages. Address signatures allow us
to significantly reduce the storage required by the
original hints mechanism (from 4KB and scalability
of O(n) to 0.25KB for any number of cores) with a
slight increase in network traffic. Additionally, this
scheme constitutes our best alternative in terms of
execution time.

• A more extensive evaluation that includes multime-
dia applications from the ALPBench suite [24].

The rest of the work is organized as follows. In Section
2 we present a review of the related work and the base
protocols used for the evaluation. Section 3 describes
DiCo-CMP. The different ways of updating the L1 co-
herence cache including the use of address signatures
are described in Section 4. Section 5 studies the area
and power requirements of DiCo-CMP. In Section 6, we
introduce the methodology employed in the evaluation.
Section 7 shows the performance results obtained by our
proposal and, finally, Section 8 concludes the paper.

2 RELATED WORK

In this paper, we compare DiCo-CMP against two cache
coherence protocols aimed to be used in CMPs: an
implementation of a directory protocol for CMPs and
Token-CMP. The next two subsections give some details
regarding these two cache coherence protocols. First of
all we comment on some of the related works.
In the shared-memory multiprocessors domain, Aca-

cio et al. propose to avoid the indirection for cache-to-
cache transfer misses [1] and upgrade misses [2] sepa-
rately by predicting the current holders of every cache
block. Predictions must be verified by the corresponding
directory controller, thus increasing the complexity of the
protocol on mis-predictions. Hossain et al. propose dif-
ferent optimizations for each sharing pattern considering
a chip multiprocessor architecture [17]. Particularly, they
accelerate the producer-consumer pattern by converting
3-hop read misses into 2-hop read misses. Again, com-
munication between the cache providing the data block
and the directory is necessary, thus introducing more
complexity in the protocol. In contrast, our proposal
is applicable to all types of misses (reads, writes and
upgrades) and just the identity of the owner tile is pre-
dicted. Moreover, the fact that the directory information

DRAFT 3

is stored along with the owner of the block simplifies
the protocol. Finally, differently from the techniques pro-
posed by Acacio et al., we avoid predicting the current
holders of a block by storing the up-to-date directory
information in the owner tile.
Also in the context of shared-memory multiprocessors,

Cheng et al. [13] have proposed converting 3-hop read
misses into 2-hop read misses for memory blocks that
exhibit the producer-consumer sharing pattern by using
extra hardware to detect when a block is being accessed
according to this pattern. In contrast, our proposal ob-
tains 2-hop misses for read, write and upgrade misses
without the need of detecting sharing patterns.
Enright et al. propose Virtual Tree Coherence (VTC)

[16]. In this mechanism, that uses coarse-grain coherence
tracking [10], the sharers of a memory region are con-
nected by means of a virtual tree. Since the root of the
virtual tree serves as the ordering point in place of the
home tile, and the root tile is one of the sharers of the re-
gion, the indirection can be avoided for some misses. In
contrast, direct coherence protocols keep the coherence
information at block granularity and the ordering point
always has the valid copy of the block, which leads to
less network traffic and lower levels of indirection.
Huh et al. [19] propose to allow replication in a NUCA

cache to reduce the access time to a shared multibanked
cache. More recently, Beckmann et al. [6] present ASR
that replicates cache blocks only when it is estimated that
the benefits of replication (lower L2 hit latency) exceeds
its costs (more L2 misses). In contrast, our protocol
reduces miss latencies by avoiding the access to the L2
cache when it is not necessary, and no replication is
performed. DiCo-CMP could be also used in conjunction
with techniques that try to make the best use of the
limited on-chip cache storage.
Martin et al. present a technique that allows snooping-

based protocols to utilize unordered networks by adding
logical timing to coherence requests and reordering them
on destiny to establish a total order [30]. Likewise, Agar-
wal et al. propose In-Network Snoop Ordering (INSO)
[3] to allow snooping over unordered networks. The
Intel QPI (Quick Path Interface) [20] also achieves 2-
hop misses by broadcasting requests, but removes most
responses by introducing a new cache state (F). Since
direct coherence protocols do not rely on broadcasting
requests, they generate less traffic and, therefore, less
power consumption when compared to snooping-based
protocols.
Martin et al. propose to use destination-set predic-

tion to reduce the bandwidth required by a snoopy
protocol [28]. Differently from DiCo-CMP, this proposal
is based on a totally-ordered interconnect (a crossbar
switch), which does not scale with the number of
nodes. Destination-set prediction is also used by Token-
M in shared-memory multiprocessors with unordered
networks [27]. However, on mis-predictions, requests
are solved by resorting on broadcasting after a time-
out period. Differently, in DiCo-CMP mis-predictions are

re-sent immediately to the owner cache, thus reducing
latency and network traffic.
Finally, some authors evaluated the use of hints with

different objectives [7], [18]. In these works the authors
try to keep updated directory information to find out
where a valid copy of the block can be obtained in
case of a read miss. In contrast, we use the hints as a
policy to update the location of the owner cache which
servers as ordering point and stores up-to-date directory
information. On the other hand, the use of signatures has
been recently proposed for disambiguating addresses
across threads in transactional memory [12], [42]. In
contrast, we use signatures to keep information that
improves the efficiency of the hints mechanism.

2.1 Directory-CMP

Directory-based coherence protocols [11] have been
widely used in shared-memory multiprocessors. Now,
several chip multiprocessors, like Piranha [5], also use
directory protocols to keep cache coherence. In this
paper, we compare our proposal against a directory
protocol similar to the intra-chip coherence protocol used
in Piranha, which is based on MOESI states. In this
implementation, on-chip directory caches are used for
accelerating the accesses to directory information for
blocks stored in the L1 caches. Moreover, the protocol
implements a migratory-sharing optimization [39], in
which a cache holding a modified cache block inval-
idates its copy when responding with the block, thus
granting the requesting processor read/write access to
the block (even when only read permission was re-
quested). This optimization has been shown to improve
substantially the performance of many applications.

2.2 Token-CMP
Token coherence [29] is a framework for designing coher-
ence protocols whose main asset is that it decouples the
correctness substrate from several different performance
policies. Token coherence protocols can avoid both the
need of a totally ordered network and the introduc-
tion of additional indirection caused by the directory
in the common case of cache-to-cache transfers. Token
coherence protocols keep cache coherence by assigning
T tokens to every memory block, where one of the
T is the owner token. Then, a processor can read a
block only if it holds at least one token for that block
and has valid data. On the other hand, a processor
can write a block only if it holds all T tokens for that
block and has valid data. Token coherence avoids star-
vation by issuing a persistent request when a processor
detects potential starvation. In this paper, we compare
our coherence protocol against Token-CMP [32], which
is a performance policy aimed to achieve low-latency
cache-to-cache transfer misses. Token-CMP targets CMP
systems, and uses a distributed arbitration scheme for
persistent requests, which are issued after a single retry
to optimize the access to contended blocks. Again, the
migratory-sharing optimization is implemented.

DRAFT 4

R O

H&D

1
G
etS 2

F
w
d

3 Data

3
U

n
b
l

(a) Directory protocols.

R

O&D1 GetS

2 Data

(b) Direct coherence protocols.

Fig. 3. How cache-to-cache transfer misses are per-
formed in directory and direct coherence protocols.
R=Requester; H=Home; D=Directory; O=Owner.

3 DICO-CMP
In this section, we describe DiCo-CMP in detail. First,
we explain how direct coherence avoids indirection for
most cache misses by changing the distribution of the
roles involved in cache coherence maintenance. We also
study the changes in the structure of the tiles necessary
to implement DiCo-CMP. Then, we describe the cache
coherence protocol for tiled CMPs and, finally, we study
how to avoid the starvation issues that could arise.

3.1 Direct coherence basis

Directory protocols introduce indirection in the critical
path of cache misses. Figure 3(a) shows a cache miss
suffering from indirection in a directory protocol, a
cache-to-cache transfer for a read miss. When a cache
miss takes place it is necessary to access the home
tile to obtain the directory information and serialize
the requests before performing any coherence action
(1 GetS). In case of a cache-to-cache transfer miss, the
request is subsequently forwarded to the owner cache (2
Fwd), where the block is provided (3 Data). As it can be
observed, the miss is performed in three hops. Moreover,
requests for the same block cannot be processed by the
directory until it receives the unblock message (3 Unbl).
To avoid this indirection problem, we propose to

directly send the request to the provider of the block,
i.e., the owner cache. This is the main motivation behind
direct coherence. To allow that, direct coherence stores
the sharing information along with the owner block, and
it also assigns the task of keeping cache coherence and
ensuring ordered accesses for every memory block to
the tile that stores that block. As shown in Figure 3(b),
DiCo-CMP sends the request to the owner cache (1 GetS)
instead of to the home tile. In this way, data is provided
by the owner cache in just two hops (2 Data).
Therefore, direct coherence requires a re-distribution

of the roles involved in solving a cache miss. Next,
we describe the tasks performed in cache coherence
protocols and the component responsible for each task
in both directory and direct coherence protocols, which
are illustrated in Figure 4:

• Order requests: Cache coherence maintenance re-
quires to serialize the requests issued by different

OWNER

HOME

Directory Direct Coherence

Order requests

Keep sharers

Keep owner

Provide off−chip storage

REQUESTOR

HOME

OWNER
Provide data block

Fig. 4. Tasks performed in cache coherence protocols.

cores for the same block. In snooping-based cache
coherence protocols, the requests are ordered by
the shared interconnection network (usually, a bus).
However, since tiled CMP architectures implement
an unordered network, this serialization of the re-
quests must be carried out by another component.
Directory protocols assign this task to the home tile
of each memory block. In direct coherence protocols,
this task is performed by the owner cache.

• Keep coherence information: Coherence information
is used to track blocks stored in private caches.
In protocols that include the O state, like MOESI
protocols, coherence information also identifies the
owner cache. In particular, sharing information is
used to invalidate all cached blocks on write misses,
while owner information is used to know the identity
of the provider of the block on every miss. Directory
protocols store coherence information at the home
tile, where cache coherence is maintained. Instead,
direct coherence requires that sharing information
be stored in the owner cache for keeping coherence
there, while owner information is stored in two
different components. First, the requesting cores
need to know the owner cache to send the requests
to it. Processors can easily keep the identity of the
owner cache, e.g., by recording the last core that
invalidated their copy. However, this information
can become stale and, therefore, it is only used for
avoiding indirection (dashed arrow in Figure 4).
Then, the responsible for tracking the up-to-date
identity of the owner cache is the home tile which
must be notified on every ownership change.

• Provide the data block: If the valid copy of the block
resides on chip, data is always provided by the
owner cache, since it always holds a valid copy.

• Provide off-chip storage: When the valid copy of a
requested block is not stored on chip, an off-chip
access is required to obtain the block. In both proto-
cols, the home tile is responsible for detecting that
the owner copy of the block is not stored on chip,
sending the off-chip request and receiving the data
block.

Another example of the advantages of DiCo-CMP is
shown in Figure 5. This diagram represents an upgrade
that takes place in a tile whose L1 cache is the owner
one, which happens frequently in common applications

DRAFT 5

O

H&D

S

2
In

v

3 Ack

1
U
pgr

2
A
ck4

U
nbl

(a) Directory protocols.

O&D

S

1
Inv

2 Ack

(b) Direct coherence protocols.

Fig. 5. How upgrades are performed in directory
and direct coherence protocols. O=Owner; H=Home;
D=Directory; S=Sharers.

(e.g., in the producer-consumer pattern). In a directory
protocol, upgrades are resolved by sending the request
to the directory (1 Upgr), which replies with the number
of acknowledgements that must be received before the
block can be accessed (2 Ack), and sends invalidation
messages to all sharers (2 Inv). Sharers confirm their
invalidation to the requester (3 Ack). Once all the ac-
knowledgements have been received by the requester,
the block can be modified and the directory is unblocked
(4 Unbl). In contrast, in DiCo-CMP only invalidation
messages (1 Inv) and acknowledgements (2 Ack) are
required, thus solving the miss with just two hops.
Additionally, by keeping together the owner block and

the directory information, the control messages between
them are not necessary, thus saving some network traffic
(two messages in Figure 3 and three in Figure 5). More-
over, this allows the O&D node to solve misses without
using transient states, thus reducing the number of states
of the cache controller and making the implementation
simpler. Finally, the elimination of transient states at the
directory reduces the waiting time for the subsequent
requests and, therefore, average miss latency.

3.2 Changes to the structure of the tiles of a CMP

The new distribution of roles that characterizes direct
coherence protocols requires some modifications in the
structure of the tiles that build the CMP. Firstly, the
identity of the sharers for every block is stored in the
corresponding owner cache, instead of in the home tile,
to allow caches to keep coherence for the memory blocks
that they hold in owner state. Therefore, DiCo-CMP
extends the tags’ part of the L1 caches with a sharing
code field, e.g., a bit-vector (L2 caches already include
this field in directory protocols). In contrast, DiCo-CMP
does not need the directory structure in the home tile
that traditional directory protocols require.
Additionally, DiCo-CMP needs two extra hardware

structures that are used to record the identity of the
owner cache for a certain set of blocks:

• L1 coherence cache (L1C$): The pointers stored in
this structure are used by the requesting core to
avoid indirection by directly sending local requests
to the corresponding owner cache. Therefore, this
structure is located close to each processor’s core.

R
outer

CPU Core

L1D$L1I$

L2$ (Data) D
irectory

L2$
(Tags)

R
outer

CPU Core

L2$ (Data)

L1I$

L1D$ L2C$

L1C$

(Tags)
L2$

Fig. 6. Organization of a tile for a directory protocol (left)
and for direct coherence (right).

DiCo-CMP can update this information in several
ways based on network usage (see Section 4).

• L2 coherence cache (L2C$): Since the owner cache can
change on write misses, this structure must track
the owner cache for each block allocated in any L1
cache. This structure is accessed each time a request
fails to locate the owner cache. Therefore, its infor-
mation must be updated whenever the owner cache
changes through control messages, which must be
processed by the L2C$ in the very same order in
which they were generated (see Section 3.3.3).

Figure 6 shows a tile design for directory protocols
(left) and for direct coherence protocols (right). A com-
parison among the extra storage required by the proto-
cols considered in this work can be found in Section 5.

3.3 Description of the cache coherence protocol

3.3.1 Requesting processor
When a processor issues a request that misses in its
private L1 cache, it directly sends the request to the
owner cache in order to avoid indirection. The identity
of the potential owner cache is obtained from the L1C$,
which is accessed at the time that the cache miss in
detected. If there is a hit in the L1C$, the request is sent
to the owner cache. Otherwise, the request is sent to the
home tile, where the L2C$ will be accessed to get the
identity of the current owner cache.

3.3.2 Request received by a cache that is not the owner
When a request is received by a cache that is not
the current owner of the block, it simply re-sends the
request. L1 caches re-send requests to the home tile. On
the other hand, if the request is received by the home tile
and there is a hit in the L2C$, it is sent to the current
owner cache. In absence of race conditions the request
will reach the owner cache. Finally, if there is a miss in
the L2C$ and the L2 cache is not the owner of the block,
main memory is accessed to get the block. In this case,
the block is allocated in the requesting L1 cache, which
gets the ownership of the block, but not in the L2 cache
(as occurs in the directory protocol since we assume non-
inclusive caches). In addition, it is necessary to allocate a
new entry in the L2C$ pointing to the current L1 owner
cache.

DRAFT 6

The appearance of owner mis-predictions could im-
pact on the minimum number of virtual networks that
ensure the absence of deadlock at the interconnect. How-
ever, the longest message dependency chain (without
cycles) in direct coherence is the same as in directory
protocols (five messages) and, therefore, the minimum
number of virtual networks required is the same (five in
both protocols) according to [15].

3.3.3 Request received by the owner cache

Every time a request reaches the owner cache, it is neces-
sary to check whether this cache is currently processing a
request from a different processor for the same block (a
previous write waiting for acknowledgements). In this
case, the block is in a busy or transient state, and the
request must wait until all the acknowledgements are
received.
If the block is not in a transient state, the miss can be

immediately resolved. If the owner is the L2 cache all
requests (reads and writes) are resolved by deallocating
the block from the L2 cache and allocating it in the
private L1 cache of the requester. Again, the identity of
the new owner cache must be stored in the L2C$.
When the owner is an L1 cache, read misses are

completed by sending a copy of the block to the re-
quester and adding it to the sharing code field. Since
our protocol is also optimized for the migratory-sharing
pattern, read misses for migratory blocks invalidate the
copy in the owner cache and send the exclusive data to
the L1 cache of the requesting processor.

For write misses, the owner cache sends invalidation
messages to all the caches that hold a copy of the block
and, then, it sends the data block to the requester. Ac-
knowledgement messages are collected at the requesting
cache. If the miss is an upgrade the owner cache checks
the sharing code field to know whether the requester
still holds a copy of the block (note that a previous write
miss from a different processor could have invalidated
its copy and in this case the owner cache should also
provide a valid copy of the block). As shown in Figure
5, upgrade misses that take place in the owner cache
just need to send invalidations and receive acknowledge-
ments (two hops in the critical path).

Finally, since the L2C$ must store up-to-date infor-
mation regarding the owner cache, every time that the
owner cache changes, the old owner cache also sends a
control message to the L2C$ indicating the identity of
the new owner. These messages must be processed by
the L2C$ in the very same order in which they were
generated. Otherwise, the L2C$ could fail to store the
identity of the current owner. To enforce this constraint,
once the L2C$ processes the message reporting an own-
ership change from the old owner, it sends a confirma-
tion response to the new owner. Until this confirmation
message is received by the new owner, it could access
the data block (if already received), but cannot give
the ownership to another cache. Since these two control

R O

HS

2
In

v3
A
ck

1 GetX

2 Data

2
C

h
O

w
n

3
A
ckC

h

Fig. 7. Example of ownership change upon write misses.
R=Requester; O=Owner; S=Sharers; H=Home.

messages are not in the critical path the cache miss, they
do not introduce extra latency.
As an example, Figure 7 illustrates a write miss for

a shared block. It assumes that the requester has valid
and correct information about the identity of the current
owner tile in the L1C$ and, therefore, it is able to send
directly the request to the owner tile (1 GetX). Then,
the owner tile must perform the following tasks. First, it
sends the data block to the requester (2 Data). Second, it
sends invalidation messages to all the sharers (2 Inv), and
it also invalidates its own copy. The information about
the sharers is obtained from the sharing code stored
along with every owner block. Third, it sends the mes-
sage informing about the ownership change to the home
tile (2 ChOwn). All tiles that receive an invalidation mes-
sage respond with an acknowledgement message to the
requester once they have invalidated their local copies
(3 Ack). When the data and all the acknowledgements
arrive to the requesting processor the write operation can
be performed. However, if another write request arrives
to the tile that previously suffered the miss (R), it cannot
be handled until the acknowledgement to the ownership
change issued by the home tile (3 AckCh) is received.

3.3.4 Replacements
In our particular implementation, when an owner block
is evicted from an L1 cache, it must be allocated at the
L2 cache along with its sharing code. The replacement
is performed just by sending a writeback message to
the home tile, as happens in Token-CMP. Then, the
L2C$ deallocates its entry for this block because the
owner cache is now the L2 cache. Replacements for
blocks in shared state are performed transparently, i.e.,
no coherence messages are needed.
Finally, no coherence actions must be performed in

case of an L1C$ replacement. However, when an L2C$
entry is evicted, the protocol should ask the owner cache
to invalidate all the copies from the L1 caches. Luckily, as
happens to the directory cache in directory protocols, an
L2C$ with the same number of entries and associativity
than the L1 cache could be enough to completely remove
this kind of replacements [37].

3.4 Preventing starvation

Directory protocols avoid starvation by queuing requests
in FIFO order at the directory buffers. Differently in

DRAFT 7

DiCo-CMP, write misses can change the cache that keeps
coherence for a particular block and, therefore, some
requests can take some extra time until this cache is
finally found. If a memory block is repeatedly written by
different cores, a request could take some time to find the
owner cache ready to process it, even when it is sent by
the L2C$. Hence, some cores could be completing their
requests while other requests remain starved.
DiCo-CMP detects and avoids starvation by using a

simple mechanism. In particular, each time a request
accesses the L2C$ a counter is increased. The request is
considered starved when this counter reaches a certain
value (e.g, three accesses to the L2C$, in this work).
When the L2C$ detects a starved request, it re-sends the
request to the owner cache, but it records the address
of the requested block. If the starved request reaches
the owner cache, the miss is resolved, and the L2C$ is
notified, ending the starvation situation. If the starved
request does not reach the owner tile, ownership is mov-
ing from a cache to another one, and a message notifying
the change has been issued. When the L2C$ receives this
message, it detects the block as suffering from starvation,
and the acknowledgement message is not sent. This
ensures that the identity of the owner cache does not
change until the starved request completes.

4 UPDATING THE L1 COHERENCE CACHE

DiCo-CMP uses the L1C$ to avoid indirection by keep-
ing pointers that identify the owner cache of certain
blocks. Several policies can be used to update the value
of these pointers. A first option is to record the informa-
tion about the last core that invalidated or provided each
block, i.e., the last processor that wrote the block. When
a block is invalidated from an L1 cache, the L1C$ records
the identity of the processor causing the invalidation. In
case of a read miss, the identity of the provider of the
block is also stored. Additionally, when an owner block
is evicted from an L1 cache, some control messages are
sent to the sharers to inform about the new location of
the owner cache, the home tile. We call this policy the
Base policy.
Unfortunately, in most cases this information is not

enough to obtain accurate owner predictions and it must
be enhanced by sending some hints. Hints are control
messages that inform the L1C$ about owner changes.
Since sending hints to all cores on each change is not
efficient in terms of network traffic, it is necessary to
keep track of those cores that need to receive hints for
each memory block.
In our previous work of DiCo-CMP [36], we proposed

a frequent sharers mechanism to send hints. This mecha-
nism requires the addition of a new field to each cache
entry. This field keeps a bit-vector that identifies the
requesting cores (or frequent sharers) for each owner
block. When the owner changes, hints are sent to these
cores to update their L1C$s. Moreover, the frequent shar-
ers vector is also sent along with the data message. Since

Requester != Sender

Fwd

to owner

Fwd

Change_Owner

2 bits

L2 Signature

2 bitsn0 n1

2 bits

L2 Signature

2 bitsn0 n1
=

Decode Decode

Home
offset

Home
offset

Decode Decode

Block
offset

Block
offset

Hint

if equal
to all cores

Adress

n0 n1...

Adress

n0 n1...

Fig. 8. Organization of the address signature mechanism
proposed to send hints.

we choose not to store the frequent sharer information at
the L2 cache level in order to keep storage requirements
low, this field is reset whenever there is an L1 cache
eviction of an owner block. We call this policy Hints FS.
This mechanism is not very suitable for large-scale CMPs
since the area required by the bit-vector could become
prohibitive. In addition, it does not filter hint messages
for those blocks in which the Base mechanism works
well, thus consuming precious network bandwidth.

Therefore, in this work, we propose to use address
signatures to design a scalable hints mechanism in terms
of area requirements. We call this policy Hints AS. Ad-
dress signatures encode a set of addresses into a register
of fixed size, following the principles of hash-encoding
with allowable errors as described in [8]. An address
signature stores a superset of the addresses that have
been encoded in it, so it only can claim that a particular
address has not been included in it. Therefore, the disad-
vantage of address signatures is that false positives can
happen. However, this is not a correctness issue for the
hints mechanism but maybe a performance issue, due to
a potential increase in network traffic.

Essentially, each home tile includes an address sig-
nature (L2 Signature) that encodes a certain set of ad-
dresses. In order to filter some useless hints we only
store the addresses for those cache misses mis-predicting
the owner tile, i.e., the home tile receives a request from
a core that is not the requester one (Figure 8, top). In
this way, when the home tile is informed about the
ownership change for a particular block, it checks the
signature and broadcast hints to all cores if the address is
present (Figure 8, bottom). Note that when invalidation
messages are required it is not necessary to send hints
to the cores that receive them.

DRAFT 8

Since this scheme only uses one signature for all cores,
and hints are broadcast to them in case the address is
found, some cores will receive hints for blocks that they
are not actually requesting, thus overloading the L1C$.
To avoid this effect, we add another address signature
(L1 Signature) to each core. On each cache miss, the
address of the block is encoded in the signature. Then,
when a hint is received, it is only stored in the L1C$ if
the address is found in the signature.
Particularly, addresses are encoded using a double-bit-

select signature implementation [42], as Figure 8 shows.
The signature is divided into two sets. The log2(b) − 1
less-significant bits (n1) are decoded and ORed with
the first set, being b the size in bits of the signature.
The log2(b) − 1 subsequent less-significant bits (n0) are
decoded and ORed with the second set. An address
belongs to the signature if the corresponding bit is
present in both sets.
When we refer to the less-significant bits we do not

take into consideration the block offset. For the L2 sig-
nature, we neither take the home offset, as illustrated in
Figure 8. This offset comes from assigning an address to
a home tile according to the less-significant bits (log2n).

5 AREA AND POWER CONSIDERATIONS

In this section, we compare the memory overhead and
the extra structures needed by the three protocols consid-
ered in this work: Token-CMP, Directory, and DiCo-CMP.
Moreover, we discuss how frequently these structures
are accessed to demonstrate that our proposal will not
have significant impact on the power consumed by
these structures and, therefore, significant reductions in
total power consumption can be expected as a result of
the savings in terms of network traffic that DiCo-CMP
entails (see Section 7.3).
Token-CMP needs to keep the token count for any

block stored both in the L1 and L2 caches. This informa-
tion only requires ⌈log2(n+1)⌉ bits (the owner-token bit
and the non-owner token count), where n is the number
of processing cores. These additional bits are stored in
the tags’ part of both cache levels.
Directory protocols store the on-chip directory infor-

mation either in the L2 tags when the L2 cache holds
a copy of the block or in a distributed directory cache
when the block is stored in any of the L1 caches but not
in the L2 cache. In our implementation, the number of
entries of a directory bank is the same as the number of
entries of an L1 cache, since this size is enough to always
find the directory information for on-chip misses, i.e.,
without incurring in directory misses [37]. The directory
must be accessed on each cache miss.
DiCo-CMP stores the directory information for blocks

held in any L1 or L2 cache in the owner cache (L1 or
L2). Moreover, it uses two structures that store a pointer
to the owner cache, the L1 and L2 coherence caches. The
L1C$ is accessed only when it is known that there is a
cache miss in order to keep power consumption low. The

TABLE 1
Memory overhead introduced by coherence information

(per tile) in a 4x4 tiled CMP.
Structure Entry size Entries Total size Overhead

Data
L1 cache tag + 64 bytes 2K 134.25KB
L2 cache tag + 64 bytes 16K 1070KB

Token-CMP
L1$ tokens 5 bits 2K 1.25KB

0.93%
L2$ tokens 5 bits 16K 10KB

Directory
L2$ dir. inf. 2 bytes 16K 32KB

3.59%
Dir. cache tag + 2 bytes 2K 11.25KB

DiCo-Base

L1$ dir. inf. 2 bytes 2K 4KB

4.19%
L2$ dir. inf. 2 bytes 16K 32KB
L1C$ tag + 4 bits 2K 7.25KB
L2C$ tag + 4 bits 2K 7.25KB

DiCo-Hints FS L1$ freq. sh. 2 bytes 2K 4KB +0.34%

DiCo-Hints AS
L1 signature 128 bytes 1 0.125KB

+0.02%
L2 signature 128 bytes 1 0.125KB

L2C$ is necessary for locating the owner cache whenever
the information in the L1C$ is not correct. This structure
is only accessed for misses affected by indirection (about
22% of the cache misses as shown in Section 7.1). As
happens with the on-chip directory cache in the directory
protocol, the L2C$ does not require more entries than
the number of entries of the L1 caches. Differently from
a directory cache, just one pointer is stored in each entry.
In this way, the L2C$ required by DiCo-CMP has smaller
size than the directory cache employed in the directory-
CMP protocol. The use of hints improves performance at
the cost of increasing both storage requirements and net-
work traffic. In particular, the frequent sharers mechanism
requires to store the frequent sharers in the tags of the L1
caches –O(n)–. On the other hand, the address signature
mechanism only uses two signatures per tile (1024 bits,
each one) and, therefore, the storage requirements are
reduced and scales with the number of cores.
For the particular configuration of this work (a 4×4

tiled CMP with 128KB L1 private caches), the number
of bits required for storing the sharing code is 16 (2
bytes), whereas just log216 = 4 bits are needed for storing
a single pointer. Table 1 summarizes the structures,
the size, and the memory overhead respect to the size
of the data caches required by Token-CMP, directory-
CMP and the different implementations of DiCo-CMP
evaluated in this work. Note that the table concentrates
on the structures used for keeping coherence information
and, therefore, does not account for the extra structures
required by Token-CMP and DiCo-CMP to avoid starva-
tion. In general, we can see that direct coherence has an
overhead close to a directory protocol.

6 SIMULATION ENVIRONMENT

We evaluate our proposal with full-system simulation
using Virtutech Simics [26] extended with Multifacet
GEMS 1.3 [31]. GEMS provides a detailed memory sys-
tem timing model which accounts for all protocol mes-
sages and state transitions. In order to model precisely
the interconnection network, and thus, obtain more ac-
curate results, we have replaced the original (not very
detailed) network simulator offered by GEMS with the
SiCoSys detailed interconnection network simulator [34].

DRAFT 9

TABLE 2
System parameters.

Memory Parameters (GEMS)

Processor frequency 3 GHz
Cache hierarchy Non-inclusive
Cache block size 64 bytes
Split L1 I & D caches 128KB, 4 ways
L1 cache hit time 4 cycles
Shared unified L2 cache 1MB/tile, 4 ways
L2 cache hit time 6 + 9 cycles (tag + data)
L1 & L2 Coherence cache 512 sets, 4 ways, 1 cycle
L1 & L2 Signatures 1024 bits, double-bit-select

Memory access time 160 cycles

Network Parameters (SiCoSys)

Network frequency 1.5 GHz
Topology 4x4 Mesh
Switching technique Wormhole
Routing technique Deterministic X-Y
Data and control message size 4 flits and 1 flit
Flit size 144 bits (18 bytes)
Routing time 1 cycle
Switch time 1 cycle
Link latency (one hop) 2 cycles
Link bandwidth 1 flit/cycle

SiCoSys allows to take into account most of the VLSI
implementation details with high precision but with
much lower computational effort than hardware-level
simulators. In addition, we have extended SiCoSys to
allow us to simulate multicast networks.
The simulated system is a tiled CMP organized as a

4×4 array of replicated tiles. Since we consider CMPs
with a relatively large number of cores, each tile contains
an in-order processor core, thus offering better perfor-
mance/power ratio than a small number of complex
cores would obtain. Table 2 shows the values of the main
parameters of the system evaluated in this work.
Finally, we have used a varied selection of twelve

scientific and multimedia applications for the evaluation.
Barnes (16K bodies, 4 time steps), Cholesky (tk15.O), FFT
(64K complex doubles), Ocean (258x258 ocean), Radix
(1M keys, 1024 radix), Raytrace (teapot), Volrend (head)
andWater-NSQ (512 molecules, 4 time steps) are from the
SPLASH-2 benchmark suite [41]. RaytraceOpt improves
the original Raytrace application by removing a lock
acquisition for a ray ID which is not used for any
actual computation. Unstructured (Mesh.2K, 5 time steps)
is a computational fluid dynamics application. MPGdec
(525 tens 040.m2v) and MPGenc (output of MPGdec),
are multimedia applications from the APLBench suite
[24]. We account for the variability in multithreaded
workloads [4] by doing multiple simulation runs for each
benchmark in each configuration and injecting random
perturbations in memory systems timing for each run.
The experimental results reported in this paper corre-
spond to the parallel phase of each program.

7 EVALUATION RESULTS AND ANALYSIS

We compare the different implementations of DiCo-CMP
proposed in Section 4 (base, hints FS, and hints AS) with
both Token-CMP and the directory protocol described in
Section 2. In addition, to find out the potential of DiCo-
CMP, we have implemented an oracle policy in which

the identity of the current owner cache is provided on
every cache miss.

7.1 Impact on the number of hops needed to solve
cache misses

In general, DiCo-CMP reduces the number of hops
needed to solve a miss by avoiding the indirection
introduced by the access to the home tile. However, some
misses can increase the number of hops compared to a
directory protocol due to owner mis-predictions. In order
to study how DiCo-CMP impacts on the number of hops
needed to solve cache misses, we classify each miss in
one of the following categories:

• 2-hop misses: Misses belonging to this category does
not suffer from indirection since the number of hops
in the critical path of the miss is two. In directory
protocols, misses fall into this category either when
the home tile of the requested block can provide the
copy of the block or when the miss takes place in
the home tile, and in both cases it is not necessary to
invalidate blocks from other tiles. Token-CMP solves
all misses that do not require persistent requests in
two hops. Finally, DiCo-CMP solves cache misses
using two hops either when the request is directly
sent to the current owner cache and invalidations
are not required, or when the miss takes place in
the tile where the owner block resides (upgrades).
In all protocols, when the miss takes place in the
home tile and this tile holds the owner block in
the L2 cache, the miss is solved without generat-
ing network traffic (0-hop miss). These misses are
also included in this category because they do not
introduce indirection.

• 3-hop misses: A miss belongs to this category when
three hops in the critical path are necessary to solve
it. This never happens in Token-CMP.

• >3-hop misses: We include in this category misses
that need more than three hops in the critical path
to be solved. This only happens in DiCo-CMP when
the identity of the owner cache is mis-predicted, or
in Token-CMP when persistent requests are required
to solve the miss.

• Memory misses: Misses that require off-chip access
since the owner block is not stored on chip fall into
this category.

Figure 9 shows the percentage of cache misses that fall
into each category. As commented in the introduction,
in tiled CMP architectures that implement a directory
protocol it is not very frequent that the requester be
at the home tile of the block because the distribution
of blocks among tiles is performed in a round-robin
fashion. However, the fact that sometimes the block is
found in the L2 cache in owner state due to L1 cache
evictions, decreases the number of misses with indirec-
tion. In this way, the first bar in Figure 9 shows that
most applications have an important fraction of misses

DRAFT 10

Barnes

Cholesky
FFT

MPGdec

MPGenc
Ocean

Radix

Raytra
ce

Raytra
ceOpt

Unstru
ctured

Volrend

Water-N
sq

Average
0.0

10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

C
ac

he
 m

is
s

ty
pe

 (
%

)
2-hop
3-hop

>3-hop
Memory

1. Directory
2. Token-CMP

3. DiCo-Base
4. DiCo-Hints FS

5. DiCo-Hints AS
6. DiCo-Oracle

Fig. 9. How each miss type is solved for the applications evaluated in this work.

suffering from indirection, like MPGdec, MPGenc, Ray-
trace, RaytraceOpt, Unstructured, and Volrend, and other
applications in which most of the misses are solved in
two hops, like Barnes, FFT, Ocean, and Radix. Obviously,
DiCo-CMP will have more impact for the applications
that suffer more indirection, although this impact will
also depend on the cache miss rate of each application.
We also can observe that Token-CMP solves most of the
misses (85% on average) using two hops (second bar).

As shown in the third bar of Figure 9, DiCo-Base
increases the percentage of cache misses without in-
direction compared to a directory protocol (from 46%
to 63% on average). On the other hand, 17% of cache
misses are solved needing more than three hops. This
fact is due to owner mis-predictions that arise for two
reasons: (1) staled owner information was found in the
L1C$ or (2) the owner cache is changing or busy due
to race conditions and the request is sent back to the
home tile. The first case can be removed with a precise
hints mechanism, as clearly happens in Unstructured. In
the second case, the extra number of hops entailed by
DiCo-CMP is equivalent to the cycles that the requests
wait at the home tile until they are processed in the base
directory protocol and, consequently, it does not suppose
extra miss latency. This kind of >3-hop misses mainly
appears in applications with high levels of contention,
like MPGdec, MPGenc and Raytrace, and they also occur
in Token-CMP.

The two hints mechanisms implemented for DiCo-
CMP, DiCo-Hints FS and DiCo-Hints AS (fourth and fifth
bars, respectively), increase the percentage of misses
solved in two hops with respect to DiCo-Base in 11%
and 12% on average, respectively. The main advantage of
DiCo-Hints AS is its low storage overhead. Although for
some applications the use of hints slightly increases the
percentage of two-hop misses, like in Barnes, Cholesky,
and FFT, for others, especially Unstructured, hints sig-
nificantly help to achieve accurate predictions. Hints are
mainly useful for applications in which the migratory-
sharing pattern is common since writes (or migratory
reads) for blocks following this pattern do not send
invalidations because the owner cache has the only valid
copy of the block. Therefore, in DiCo-Base, the cores
requesting migratory blocks do not update the pointer

stored in their L1C$.
The DiCo-Oracle implementation (last bar) gives us

the potential of DiCo-CMP. Therefore, the results are
similar to the ones obtained by Token-CMP. In both
cases, the misses falling into the >3-hop category are
for contended blocks. Although DiCo-Hints AS does not
obtain the same percentage of 2-hop misses than DiCo-
Oracle (10% less on average), it has similar percentage of
>3-hop misses which makes this solution perform close
to the oracle case, as we will see in Section 7.4.

7.2 Impact on cache miss latencies

The avoidance of indirection shown by DiCo-CMP re-
duces the average cache miss latency. In addition, DiCo-
CMP removes the transient states at the directory by
putting together the provider of the block and the di-
rectory information. This fact reduces the time that the
requests are waiting at the directory to be processed,
which results in even more latency reductions. Figure
10 shows L1 cache miss latency for the applications
evaluated in this work normalized with respect to Token-
CMP, which is shown as a horizontal line. It does not
consider the overlapping of the misses, and latency is
calculated considering each miss individually. Latency
is broken down into four segments to understand better
in what way DiCo-CMP reduces the cache miss latency:

• Finding: It is the time elapsed between the issue
of a request and the arrival of the request to the
serialization point, i.e., the home tile for directory
protocols and the owner cache for DiCo-CMP.

• Waiting: In directory protocols, it is the time spent
waiting at the home tile because another request for
the same block is being processed. In DiCo-CMP,
this segment represents the period elapsed between
the first time that the owner cache is found and the
time when the owner cache processes the request.

• Memory: It is the time spent getting the data block
from main memory when it is required.

• Solving: It is the time elapsed between the request
leaves the serialization point and the block is ac-
cessed by the requesting processor. This period in-
cludes the need of forwarding the request in a di-
rectory protocol, and the issue of data, invalidation
and acknowledgement messages in both protocols.

DRAFT 11

Barnes

Cholesky
FFT

MPGdec

MPGenc
Ocean

Radix

Raytra
ce

Raytra
ceOpt

Unstru
ctured

Volrend

Water-N
sq

Average
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

N
or

m
al

iz
ed

 c
ac

he
 m

is
s

la
te

nc
y

Finding
Waiting

Memory
Solving

-- Token-CMP
1. Directory

2. DiCo-Base
3. DiCo-Hints FS

4. DiCo-Hints AS
5. DiCo-Oracle

Fig. 10. Normalized L1 cache miss latency for the applications evaluated in this work.

We do not consider this classification for Token-CMP
because this protocol does not follow a particular order
to solve cache misses.

In general, we can see that all the polices implemented
for DiCo-CMP reduce the average cache miss latency
compared to a directory protocol (first bar). Both DiCo-
Hints FS and DiCo-Hints AS (third and fourth bars,
respectively) also reduce the latency compared to Token-
CMP. In particular DiCo-Hints AS obtains reductions of
12% and 7% on average over a directory protocol and
Token-CMP, respectively. Moreover, its average latency
is close to the obtained for the oracle case (last bar).

Looking at the different segments into which cache
miss latency is split, we can observe that, in general, the
finding time is shorter for the directory protocol. This
is because in a directory protocol this period always
comprises a single hop. However, DiCo-CMP can take
several hops until the owner cache is found. As we can
see, the more accurate are the owner predictions, the
shorter is this segment. For example, Unstructured has
a lot of mis-predictions (>3-hop misses) when the base
policy is considered, which doubles the finding time
compared to a directory protocol. Nevertheless, hints
significantly helps to reduce this extra latency. Note that
for some other applications the increase in the number
of >3-hop misses is due to race conditions, which do
not increase the latency of the misses. Finally, for other
applications like FFT, Ocean, Radix, and Raytrace, the
finding time in the oracle case is a bit shorter than in a
directory protocol. This is because sometimes the owner
cache is closer to the requesting core than the home tile.

Regarding the waiting time, we can observe that only
some applications (Barnes, MPGdec, MPGenc, Raytrace,
RaytraceOpt and Volrend) have requests waiting at the
home tile during a meaningful time. Since DiCo-CMP
removes transient states at the directory, this waiting is
shortened for some of these applications. This waiting
time is usually caused by contended locks and, therefore,
reductions in these requests result in a faster acquisition
of locks and, finally, in reductions in the number of mem-
ory requests, as happens in Raytrace and RaytraceOpt.

The memory time does not vary significantly for the
evaluated protocols. However, the solving time is always

reduced when DiCo-CMP is implemented because for
most misses it requires just one hop, in contrast to the
two hops (forwarding and data) needed for a directory
protocol. This time is not affected by the policy em-
ployed because the policy only tries to find the owner
cache as soon as possible.

7.3 Impact on network traffic

Figure 11 compares the network traffic generated by
the protocols considered in this work. In particular,
each bar plots the number of bytes transmitted through
the interconnection network (the total number of bytes
transmitted by all the switches of the interconnect)
normalized with respect to Token-CMP. As stated in
Section 6, we assume an interconnection network with
multicast support. We can see that Token-CMP obtains
the highest traffic levels because it broadcasts requests
on every cache miss. Network traffic can be dramatically
reduced when the directory protocol is employed (51%
on average). This is because requests are only sent to the
home tile, which in turn sends coherence messages just
to the L1 caches that must receive them.
In Figure 11 (top), we show the network traffic split

into three categories: data, control and hints traffic. For
some applications data traffic is reduced due to the de-
crease of cache misses that DiCo-CMP can entail, as com-
mented in the previous section. Compared to the direc-
tory protocol, DiCo-CMP meaningfully saves the traffic
generated by control messages. This saving is originated
by the elimination of control messages between the home
tile and the owner cache that DiCo-CMP entails. This
reduction allows DiCo-Base to reduce network traffic by
6% compared to the directory protocol. In contrast, DiCo-
CMP introduces hint messages for some configurations
in order to achieve more accurate owner predictions.
The hints that appear for DiCo-Base come as consequence
of evictions of owner blocks, as explained in Section 4.
In general, hints increase network traffic, especially in
Unstructured in which they are crucial to obtain good
performance. However, this traffic is always lower than
the reached by Token-CMP because hints are only sent
(if necessary) when the owner cache changes. DiCo-Hints
AS requires more traffic than DiCo-Hints FS at the cost of

DRAFT 12

Barnes

Cholesky
FFT

MPGdec

MPGenc
Ocean

Radix

Raytra
ce

Raytra
ceOpt

Unstru
ctured

Volrend

Water-N
sq

Average
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

iz
ed

 n
et

w
or

k
tr

af
fic

Data
Control

Hints1. Directory
2. Token-CMP

3. DiCo-Base
4. DiCo-Hints FS

5. DiCo-Hints AS
6. DiCo-Oracle

Barnes

Cholesky
FFT

MPGdec

MPGenc
Ocean

Radix

Raytra
ce

Raytra
ceOpt

Unstru
ctured

Volrend

Water-N
sq

Average
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

iz
ed

 n
et

w
or

k
tr

af
fic

Critical
Non-critical

1. Directory
2. Token-CMP

3. DiCo-Base
4. DiCo-Hints FS

5. DiCo-Hints AS
6. DiCo-Oracle

Fig. 11. Normalized network traffic for the applications evaluated in this work.

reducing considerably the storage requirements for the
hints mechanism. In general, we can observe that DiCo-
Hints AS increases network traffic by 14% compared to
the directory protocol, although it still reduces the traffic
compared to Token-CMP up to 43%.
Figure 11 (bottom) shows the network traffic split

into critical and non-critical messages. This classifica-
tion is important to know how each protocol can be
optimized under heterogeneous networks [14], in which
non-critical messages can be sent through low-power
wires to save power consumption. In Token-CMP all
broadcast requests are considered critical because it is
unknown which ones are going to be actually in the
critical path. Directory highly reduces the amount of
critical traffic with respect to Token-CMP. We can also
observe that DiCo-CMP reduces even more this kind of
traffic because hints are out of the critical path of the
miss. Therefore, under heterogeneous networks, DiCo-
CMP can save more power consumption and even other
more aggressive hints policies, as broadcasting hints on
every owner change, can be implemented with small
overhead in terms of power.

7.4 Impact on execution time

The ability of avoiding indirection and the low network
traffic requirements that DiCo-CMP shows translates
into applications’ execution time. Figure 12 plots the
average execution times that are obtained for the ap-
plications evaluated in this paper. All the results have
been normalized with respect to those observed for the
directory protocol.

In general, we can see from Figure 12 that Token-CMP
improves the execution times of the directory protocol
by 2% on average. As already discussed, Token-CMP
avoids indirection by broadcasting requests to all caches
and, consequently, the network contention can become
critical, even when a network with multicast support is
assumed. For applications with high level of contention,
like MPGdec, MPGenc and Raytrace, Token-CMP has to
issue persistent requests for a significant number of
cache misses which make it get worse performance.

DiCo-CMP does not rely on broadcasting but requests
are just sent to the potential owner cache. It is clear that
the performance achieved by DiCo-CMP will depend on
its ability to find the current owner cache. We observe
improvements in execution time for DiCo-Base of 3%
compared to the directory protocol, obtaining similar
performance than Token-CMP. On the other hand, the
use of hints increases the fraction of two-hop misses
which translates into increased gains in terms of ex-
ecution time. Both DiCo-Hints FS and DiCo-Hints AS
improve execution time by 6% over a directory protocol
and 3% over Token-CMP. We also can see that the DiCo-
Hints AS policy obtains average results very close to
the unimplementable DiCo-oracle policy. Particularly, for
the MPGdec application, the hints policies achieve lower
execution time than the oracle one. This is because, in
case of contention, always predicting the owner node
can be unfair for the misses that take place in the
tiles farther to the owner cache, thus introducing more
starved requests.

DRAFT 13

Barnes

Cholesky
FFT

MPGdec

MPGenc
Ocean

Radix

Raytra
ce

Raytra
ceOpt

Unstru
ctured

Volrend

Water-N
sq

Average
0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e
Directory
Token-CMP

DiCo-Base
DiCo-Hints FS

DiCo-Hints AS
DiCo-Oracle

Fig. 12. Normalized execution time for the applications evaluated in this work.

8 CONCLUSIONS

Tiled CMP architectures have recently emerged as a
scalable alternative to current small-scale CMP designs,
and will be probably the architecture of choice for future
many-core CMPs. Differences in the technological pa-
rameters and constraints entailed by CMPs with respect
to traditional shared-memory multiprocessors demand
new solutions to the cache coherence problem.

In this work, we present direct coherence, a cache co-
herence protocol for tiled CMP architectures that meets
the advantages of directory and token protocols and
avoids their problems. In direct coherence, the task
of storing up-to-date sharing information and ensuring
ordered accesses for every memory block is assigned to
the owner cache. Compared to a directory protocol, our
proposal avoids the indirection that the access to the
directory entails by directly sending the requests to the
owner cache and, therefore, it also reduces the cache miss
latency. Compared to Token-CMP, our proposal reduces
network traffic by sending just one request message on
every cache miss. We name the implementation of direct
coherence for CMPs as DiCo-CMP, and we evaluate
different policies of this implementation.

In this way, we show that DiCo-Hints AS, the best
policy for DiCo-CMP, is able to reduce the indirection
compared to a directory protocol from 54% to 26% on
average. Both this reduction in misses with indirection
and the decrease in the waiting time for some appli-
cations that DiCo-CMP achieves result in reductions of
12% in the latency of cache misses, on average. Finally,
the improvements obtained for the cache miss latencies
lead to improvements of 6% in execution time. Moreover,
DiCo-Hints AS achieves network traffic reductions of 43%
compared to Token-CMP by sending just one request
message per miss, and consequently, the total power
consumed in the interconnection network will be also
reduced. The savings allow DiCo-Hints AS achieve im-
provements of 3% in terms of execution time compared
to Token-CMP. Additionally, we show that the structures
and complexity required by DiCo-CMP are comparable
to those used in a directory protocol, which confirms
that our proposal is a viable alternative to current cache
coherence protocols for tiled CMPs.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous review-
ers for their detailed comments and valuable sugges-
tions, which have helped to make the paper sounder.
This work has been jointly supported by Spanish Min-
istry of Ciencia e Innovación under grant “TIN2006-
15516-C04-03” and European Comission FEDER funds
under grant “Consolider Ingenio-2010 CSD2006-00046”.
Alberto Ros is supported by a research grant from Span-
ish MEC under the FPU national plan (AP2004-3735).

REFERENCES

[1] M. E. Acacio, J. González, J. M. Garcı́a, and J. Duato. Owner
prediction for accelerating cache-to-cache transfer misses in cc-
NUMA multiprocessors. In SC2002 High Performance Networking
and Computing, pages 1–12, Nov. 2002.

[2] M. E. Acacio, J. González, J. M. Garcı́a, and J. Duato. The
use of prediction for accelerating upgrade misses in cc-NUMA
multiprocessors. In 11th PACT, pages 155–164, Sept. 2002.

[3] N. Agarwal, L.-S. Peh, and N. K. Jha. In-Network Snoop Ordering
(INSO): Snoopy coherence on unordered interconnects. In 15th
HPCA, pages 67–78, Feb. 2009.

[4] A. R. Alameldeen and D. A. Wood. Variability in architectural
simulations of multi-threaded workloads. In 9th HPCA, pages
7–18, Feb. 2003.

[5] L. A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk,
S. Qadeer, B. Sano, S. Smith, R. Stets, and B. Verghese. Piranha:
A scalable architecture based on single-chip multiprocessing. In
27th ISCA, pages 12–14, June 2000.

[6] B. M. Beckmann, M. R. Marty, and D. A. Wood. ASR: Adaptive
selective replication for CMP caches. In 39th MICRO, pages 443–
454, Dec. 2006.

[7] M. Björkman, F. Dahlgren, and P. Stenström. Using hints to reduce
the read miss penalty for flat COMA protocols. In 28th Int’l
Conference on System Sciences, pages 242–251, Jan. 1995.

[8] B. H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13:422–426, July 1970.

[9] K. D. Bosschere, W. Luk, X. Martorell, N. Navarro, M. O’Boyle,
D. Pnevmatikatos, A. Ramı́rez, P. Sainrat, A. Seznec, P. Stenström,
and O. Temam. High-performance embedded architecture and
compilation roadmap. Transactions on HiPEAC I, pages 5–29, Jan.
2007.

[10] J. F. Cantin, J. E. Smith, M. H. Lipasti, A. Moshovos, and B. Fal-
safi. Coarse-grain coherence tracking: RegionScout and region
coherence arrays. IEEE Micro, 26(1):70–79, Jan. 2006.

[11] L. M. Censier and P. Feautrier. A new solution to coherence
problems in multicache systems. IEEE Transactions on Computers,
27(12):1112–1118, Dec. 1978.

[12] L. Ceze, J. Tuck, C. Cascaval, and J. Torrellas. Bulk disambiguation
of speculative threads in multiprocessors. In 33rd ISCA, pages
227–238, June 2006.

[13] L. Cheng, J. B. Carter, and D. Dai. An adaptive cache coher-
ence protocol optimized for producer-consumer sharing. In 13th
HPCA, pages 328–339, Feb. 2007.

DRAFT 14

[14] L. Cheng, N. Muralimanohar, K. Ramani, R. Balasubramonian,
and J. B. Carter. Interconnect-aware coherence protocols for chip
multiprocessors. In 33rd ISCA, pages 339–351, June 2006.

[15] J. Duato, S. Yalamanchili, and L. M. Ni. Interconnection Networks:
An Engineering Approach. Morgan Kaufmann Publishers, Inc.,
2002.

[16] N. D. Enright-Jerger, L.-S. Peh, and M. H. Lipasti. Virtual tree
coherence: Leveraging regions and in-network multicast tree for
scalable cache coherence. In 41th MICRO, pages 35–46, Nov. 2008.

[17] H. Hossain, S. Dwarkadas, and M. C. Huang. Improving support
for locality and fine-grain sharing in chip multiprocessors. In 17th
PACT, pages 155–165, Oct. 2008.

[18] H.-C. Hsiao and C.-T. King. Boosting the performance of now-
based shared memory multiprocessors through directory hints. In
20th ICDCS, pages 602–609, Apr. 2000.

[19] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W. Keckler.
A NUCA substrate for flexible CMP cache sharing. In 19th ICS,
pages 31–40, June 2005.

[20] D. Kanter. The common system interface: Intel’s future intercon-
nect. Real World Technologies, Aug. 2007.

[21] C. Kim, D. Burger, and S. W. Keckler. An adaptive, non-uniform
cache structure for wire-delay dominated on-chip caches. In 10th
ASPLOS, pages 211–222, Oct. 2002.

[22] R. Kumar, V. Zyuban, and D. M. Tullsen. Interconnections in
multi-core architectures: Understanding mechanisms, overheads
and scaling. In 32nd ISCA, pages 408–419, June 2005.

[23] H. Q. Le, W. J. Starke, J. S. Fields, F. P. O’Connell, D. Q. Nguyen,
B. J. Ronchetti, W. M. Sauer, E. M. Schwarz, and M. T. Vaden.
IBM POWER6 microarchitecture. IBM Journal of Research and
Development, 51(6):639–662, Nov. 2007.

[24] M.-L. Li, R. Sasanka, S. V. Adve, Y.-K. Chen, and E. Debes. The
ALPBench benchmark suite for complex multimedia applications.
In Int’l Symp. on Workload Characterization, pages 34–45, Oct. 2005.

[25] N. Magen, A. Kolodny, U. Weiser, and N. Shamir. Interconnect-
power dissipation in a microprocessor. In Int’l workshop on System
Level Interconnect Prediction, pages 7–13, Feb. 2004.

[26] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,
G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and B. Werner.
Simics: A full system simulation platform. IEEE Computer,
35(2):50–58, Feb. 2002.

[27] M. M. Martin. Token Coherence. PhD thesis, University of
Wisconsin-Madison, Dec. 2003.

[28] M. M. Martin, P. J. Harper, D. J. Sorin, M. D. Hill, and D. A.
Wood. Using destination-set prediction to improve the la-
tency/bandwidth tradeoff in shared-memory multiprocessors. In
30th ISCA, pages 206–217, June 2003.

[29] M. M. Martin, M. D. Hill, and D. A. Wood. Token coherence:
Decoupling performance and correctness. In 30th ISCA, pages
182–193, June 2003.

[30] M. M. Martin, D. J. Sorin, A. Ailamaki, A. R. Alameldeen, R. M.
Dickson, C. J. Mauer, K. E. Moore, M. Plakal, M. D. Hill, and D. A.
Wood. Timestamp snooping: An approach for extending SMPs.
In 9th ASPLOS, pages 25–36, Nov. 2000.

[31] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,
A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood.
Multifacet’s general execution-driven multiprocessor simulator
(GEMS) toolset. Computer Architecture News, 33(4):92–99, Sept.
2005.

[32] M. R. Marty, J. D. Bingham, M. D. Hill, A. J. Hu, M. M. Martin,
and D. A. Wood. Improving multiple-cmp systems using token
coherence. In 11th HPCA, pages 328–339, Feb. 2005.

[33] K. Olukotun, B. A. Nayfeh, L. Hammond, K. G. Wilson, and
K. Chang. The case for a single-chip multiprocessor. In 7th
ASPLOS, pages 2–11, Oct. 1996.

[34] V. Puente, J. A. Gregorio, and R. Beivide. SICOSYS: An integrated
framework for studying interconnection network in multiproces-
sor systems. In 10th Euromicro Workshop on Parallel, Distributed and
Network-based Processing, pages 15–22, Jan. 2002.

[35] A. Ros, M. E. Acacio, and J. M. Garcı́a. Direct coherence:
Bringing together performance and scalability in shared-memory
multiprocessors. In 14th HiPC, pages 147–160, Dec. 2007.

[36] A. Ros, M. E. Acacio, and J. M. Garcı́a. DiCo-CMP: Efficient cache
coherency in tiled CMP architectures. In 22nd IPDPS, pages 1–11,
Apr. 2008.

[37] A. Ros, M. E. Acacio, and J. M. Garcı́a. Scalable directory
organization for tiled CMP architectures. In Int’l Conference on
Computer Design (CDES), pages 112–118, July 2008.

[38] M. Shah, J. Barreh, J. Brooks, R. Golla, G. Grohoski, N. Gura,
R. Hetherington, P. Jordan, M. Luttrell, C. Olson, B. Saha, D. Shea-
han, L. Spracklen, and A. Wynn. UltraSPARC T2: A highly-
threaded, power-efficient, SPARC SoC. In IEEE Asian Solid-State
Circuits Conference, pages 22–25, Nov. 2007.

[39] P. Stenström, M. Brorsson, and L. Sandberg. An adaptive cache
coherence protocol optimized for migratory sharing. In 20st ISCA,
pages 109–118, May 1993.

[40] H. Wang, L.-S. Peh, and S. Malik. Power-driven design of router
microarchitectures in on-chip networks. In 36th MICRO, pages
105–111, Dec. 2003.

[41] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 programs: Characterization and methodological
considerations. In 22nd ISCA, pages 24–36, June 1995.

[42] L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D. Hill,
M. M. Swift, and D. A. Wood. LogTM-SE: Decoupling hardware
transactional memory from caches. In 13th HPCA, pages 261–272,
Feb. 2007.

[43] M. Zhang and K. Asanović. Victim replication: Maximizing
capacity while hiding wire delay in tiled chip multiprocessors.
In 32nd ISCA, pages 336–345, June 2005.

Alberto Ros received the MS degree in Com-
puter Science from the Universidad de Murcia,
Spain, in 2004. In 2005, he joined the Computer
Engineering Department (DITEC) at the same
university as a PhD student with a fellowship
from the Spanish government, receiving the PhD
degree in computer science in 2009. He is work-
ing on designing and evaluating scalable coher-
ence protocols for shared-memory multiproces-
sors. His research interests include cache co-
herence protocols, memory hierarchy designs,

and scalable cc-NUMA and chip multiprocessor architectures.

Manuel E. Acacio received the MS and PhD
degrees in computer science from the Univer-
sidad de Murcia, Spain, in 1998 and 2003, re-
spectively. He joined the Computer Engineering
Department, Universidad de Murcia, in 1998,
where he is currently an Associate Profes-
sor of computer architecture and technology.
His research interests include prediction and
speculation in multiprocessor memory systems,
multiprocessor-on-a-chip architectures, power-
aware cache-coherence protocol design, fault

tolerance, and hardware transactional memory systems.

Jos é M. Garcı́a received a MS degree in Elec-
trical Engineering and a PhD degree in Com-
puter Engineering in 1987 and 1991 respec-
tively, both from the Technical University of Va-
lencia (Spain). Prof. Garcı́a is currently serving
as Dean of the School of Computer Science at
the University of Murcia (Spain). From 1995 to
1997 he served as Vice-Dean of the School of
Computer Science, and also as Director of the
Computer Engineering Department from 1998
to 2004. He is professor in the Department of

Computer Engineering, and also Head of the Research Group on
Parallel Computer Architecture.

He has developed several courses on Computer Structure, Peripheral
Devices, Computer Architecture, Parallel Computer Architecture and
Multicomputer Design. He specializes in computer architecture, parallel
processing and interconnection networks. His current research interests
lie in high-performance coherence protocols and fault tolerance for
Chip Multiprocessors (CMPs), and parallel aplications for GPUs. He
has published more than 110 refereed papers in different journals and
conferences in these fields.

Prof. Garcı́a is member of HiPEAC, the European Network of Excel-
lence on High Performance and Embedded Architecture and Compila-
tion. He is also member of several international associations such as
the IEEE and ACM, and also member of some European associations
(Euromicro and ATI).

