
Increasing the Effectiveness of Directory Caches by
Deactivating Coherence for Private Memory Blocks

Blas Cuesta, Alberto Ros, María E. Gómez, Antonio Robles, and José Duato
Department of Computer Engineering

Universitat Politècnica de València
Camino de Vera, s/n, 46021, Valencia, Spain

{blacuesa, aros, megomez, arobles, jduato}@gap.upv.es

ABSTRACT

To meet the demand for more powerful high-performance
shared-memory servers, multiprocessor systems must incor-
porate efficient and scalable cache coherence protocols, such
as those based on directory caches. However, the limited
directory cache size of the increasingly larger systems may
cause frequent evictions of directory entries and, consequently,
invalidations of cached blocks, which severely degrades sys-
tem performance.

A significant percentage of the referred memory blocks are
only accessed by one processor (even in parallel applications)
and, therefore, do not require coherence maintenance. Tak-
ing advantage of techniques that dynamically identify those
private blocks, we propose to deactivate the coherence proto-
col for them and to treat them as uniprocessor systems do.
The protocol deactivation allows directory caches to omit
the tracking of an appreciable quantity of blocks, which re-
duces their load and increases their effective size. Since the
operating system collaborates on the detection of private
blocks, our proposal only requires minor modifications.

Simulation results show that, thanks to our proposal, di-
rectory caches can avoid the tracking of about 57% of the
accessed blocks and their capacity can be better exploited.
This contributes either to shorten the runtime of parallel
applications by 15% while keeping directory cache size or to
maintain system performance while using directory caches 8
times smaller.

Categories and Subject Descriptors

C.1.2 [Processor Architectures]: Multiple Data Stream
Architectures (Multiprocessors); B.3.2 [Memory Struc-

tures]: Design Styles

General Terms

Management, Design, Experimentation, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’11, June 4–8, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0472-6/11/06 ...$10.00.

Keywords

Multiprocessor, cache coherence, directory cache, operating
system, coherence deactivation, private block, efficiency

1. INTRODUCTION AND MOTIVATION
Over the last years, there has been an increasing demand

for larger and more powerful high-performance shared-memory
multiprocessors [7, 15, 23]. In these architectures, proces-
sors accelerate their accesses to memory by using one or
more levels of private caches, which are made transparent
to software by means of a cache coherence protocol.

Most shared-memory multiprocessors implement cache co-
herence protocols based on directories since they represent
the most scalable approach. Traditional directories keep
track of all memory blocks in the system, which allows pro-
cessors to easily identify the cached blocks without gener-
ating large quantities of coherence traffic, as it happens in
broadcast-based protocols. However, keeping track of all the
blocks in main memory entails huge storage requirements.
To avoid it, some recent proposals [20] and commodity sys-
tems, such as the current AMD Magny-Cours [7], only keep
track of cached memory blocks. Thus, the directory infor-
mation is only kept in small directory caches [22, 12]. Due to
the lack of a full directory, the eviction of a directory cache
entry entails the invalidation of all the cached copies of the
associated block. Since systems are increasingly larger and
the size of directory caches is quite limited, directory caches
can suffer frequent evictions and, consequently, they may
exhibit high miss rates (up to 70% as reported in some re-
cent studies [20, 10]). As a result, the miss rate of processor
caches may become excessively high, which results in serious
performance degradation.

Enlarging the size of directory caches is not a reasonable
solution because this negatively impacts on both directory
access latency and area requirements. Instead, we aim at in-
creasing the effectiveness of the available space for directory
caches, assuming that it will be a scarce resource, especially
in large systems. To achieve this goal, our proposal is based
on the fact that a significant fraction of the memory blocks
used by parallel applications are private, that is, accessed
by just one processor [13]. Figure 1 shows the fraction of
private and shared blocks for a wide range of parallel ap-
plications. According to this graph, most of the accessed
blocks (about 75% on average) are private. Although pri-
vate blocks do not require coherence maintenance, directory
caches keep track of them. As a consequence, most of the
information that they keep is unnecessary, which seriously
jeopardizes their effectiveness. On the contrary, if they did

Barnes

Cholesky
FFT

Ocean

Radiosity

Raytra
ce-opt

Volre
nd

Water-N
sq

Tomcatv

Unstru
ctured

FaceRec

MPGdec

MPGenc

SpeechRec

Blackscholes

Canneal

Swaptio
ns

Fluidanim
ate

x264

Apache

SPEC-JBB

Average

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
P

ri
v
a
te

 v
s
.
s
h
a
re

d
 b

lo
c
k
s

Private
Shared

Figure 1: Fraction of private versus shared blocks.

not track private blocks, the availability of directory entries
for the blocks that really need coherence (i.e., shared blocks)
would increase spectacularly and their capacity could be ex-
ploited more efficiently.

Hence, in this work, we propose a mechanism that (1)
classifies memory blocks into private and shared and (2) de-
activates the coherence protocol for those sorted as private,
which prevents directory caches from keeping track of them.
Since a fine-grain block classification would require enor-
mous storage resources, we propose to classify blocks at a
page granularity, to which the operating system (OS) can
help. This mechanism is as follows. By default, every new
page loaded into main memory is considered as private. In
turn, all blocks belonging to private pages are considered as
private as well. The cache coherence protocol is deactivated
for private blocks, that is, upon cache misses for private
blocks, the requested data are retrieved from main mem-
ory without checking whether there are other cached copies
and without keeping track of them in the directory cache.
The OS detects when a private page must become shared.
When this happens, the OS triggers a coherence recovery
mechanism, which is in charge of restoring the coherence
for all blocks within the page. From that moment on, the
page is considered as shared and, in turn, all its blocks are
considered as shared too, which will enforce their tracking.

This scheme only requires minor modifications in the OS
and the memory controllers. Furthermore, it does not re-
quire dedicated hardware structures because it takes advan-
tage of those already used by the OS and processors: Trans-
lation Lookaside Buffers (TLBs), page tables, and Miss Sta-
tus Holding Registers (MSHRs).

We evaluate the impact of our proposal by simulating its
implementation in a system similar to the AMD Magny-
Cours processor. Simulation results show that, thanks to our
proposal, directory caches can omit the tracking of about
57% (on average) of the accessed memory blocks. By not
storing the directory information for those blocks, the num-
ber of evictions in directory caches and, therefore, the num-
ber of invalidations sent by memory controllers decreases
about 70%. This results in reductions in the miss rate of
processor caches of about 35%, which is translated into per-
formance improvements of 15% (on average). On average,
dynamic energy consumption is also reduced mainly due to
the elimination of accesses to both directory caches (5%) and
memory (20%) and the reduction in coherence traffic (15%).
Additionally, this approach can be used to maintain perfor-
mance while using smaller directory caches. In particular,
simulations show that a system implementing our proposal
can perform similarly to a system in which all cached blocks
are tracked by directory caches eight times larger.

The rest of the paper is organized as follows. Section 2
discusses the related work. We present our proposal in Sec-
tion 3. Section 4 focuses on the particular case of Magny-

Cours processors. We describe the simulation environment
in Section 5 and present the evaluation results in Section 6.
Finally, Section 7 draws some conclusions.

2. RELATED WORK
Our proposal is based on the observation that most of the

blocks referred to by parallel applications are private. We
take advantage of this fact to propose a hybrid hardware-OS
mechanism that avoids the tracking of those private blocks.
In this section, we comment on some works that are some-
how related to our proposal.

Like our approach, some authors use the OS to detect pri-
vate and shared pages. Recently, Hardavellas et al. [13] used
this detection to propose an efficient data placement policy
for distributed shared caches (NUCA). While the mechanism
for detecting private and shared pages is similar to ours, its
application is completely different (data placement) and it
does not consider coherence aspects. In contrast, we focus
on how the detection of shared and private blocks can be
used to increase directory effectiveness. On the other hand,
Kim et al. [14] employ OS detection to reduce the fraction
of snoops in a token-based protocol. That work is based
on the fact that, although most referred blocks are private,
the small fraction of shared blocks accounts for the major-
ity of the cache misses. Hence, they propose a sophisticated
mechanism that detects the shared blocks and their sharing
degree so that broadcast messages can be replaced by multi-
cast ones. Unfortunately, this proposal requires extra hard-
ware (considerably larger TLBs) and adds OS overhead in
order to be able to obtain significant improvements. Differ-
ently, our mechanism is much simpler and does not require
complex hardware/OS modifications. Furthermore, we tar-
get the fraction of private blocks instead of the fraction of
cache misses for shared blocks.

Our proposal can be used to reduce the number of direc-
tory entries while maintaining system performance. Some
proposals achieve similar reductions by combining several
directory entries into a single one as proposed in [24]. How-
ever, these proposals are orthogonal to ours and they can be
used simultaneously.

Some works remove the unnecessary traffic of broadcast-
based protocols by performing coarse-grain tracking of blocks
at the expense of increasing the storage requirements. Mo-
shovos et al. [21] and Cantin et al. [6] proposed RegionScout
filters and Region Coherence Arrays, respectively, which
provide different trade-offs between accuracy and implemen-
tation costs. Whereas RegionScout filters have lower storage
requirements and they are less complex than Region Coher-
ence Arrays, the latter are more accurate identifying shared
regions and filter more unnecessary broadcast traffic. In
turn, RegionTracker [26] provides a framework for coarse-
grain optimizations that reduces the storage overhead and
eliminates the imprecision of previous proposals. However,
it requires considerable modifications in the cache design to
facilitate region-level lookups. All these techniques share
with the ours the idea of deactivating the coherence mech-
anism when it is not indispensable. However, there are two
major differences. First, our proposal is aided by the OS,
which significantly reduces the hardware overhead and com-
plexity. Second, we do not aim at reducing broadcast traffic,
but at avoiding to allocate in a directory cache data blocks
that do not require coherence maintenance.

Similarly to our proposal, other works take advantage of

OS structures. Ekman et al. [8] propose a snoop-energy
reduction technique for CMPs. This technique keeps a shar-
ing vector within each TLB entry indicating which proces-
sors share a page. This sharing vector is broadcast on each
snoop request and prevents processors not sharing the page
from carrying out a tag-lookup in their caches. In turn,
Enright-Jerger et al. [9] extend the region tracking struc-
ture proposed by Zebchuk et al. [26] to keep track of the
current set of sharers of a region. Unfortunately, these tech-
niques increase the storage requirements and entail impor-
tant hardware modifications, which make them difficult to
be implemented in real systems. Furthermore, our technique
does not intend to keep the track of the sharers of a page,
but it only maintains information about whether the page
is shared or not (1 bit) and simply deactivates the tracking
of blocks for private pages.

Other works also support cache coherence by means of a
combination of software and hardware. Zeffer et al. [28]
proposes a trap-based architecture (TMA), which detects
fine-grained coherence violations in hardware, triggers a co-
herence trap when one occurs, and maintains coherence by
software in coherence trap handlers. Like our mechanism,
the trap-based architecture assumes a bit in the TLB and
relies on the OS to detect when a private page moves to
the shared state. However, in TMA, traps are associated
with coherence violations in load/store operations, contrary
to our mechanism, where they are associated with TLB
misses. Additionally, TMA requires extra hardware support
into each processor core to speed up the coherence trap han-
dling. Alternatively, they propose a simple hardware mech-
anism that implements the inter-node coherence protocol in
software [27]. To do this, two hardware modifications are
required. First, the inter-node coherence has to check the
need for invoking the software-coherence protocol. Second,
the memory controller must handle dirty remote data that
are evicted from the last level of cache. In this case, the
hardware overhead is low, but opposite to our proposal, the
software overhead is quite high.

Finally, Fensch et al. [11] propose a coherence protocol
that does not require hardware support to enforce cache co-
herence. Rather, it avoids the possibility of incoherence by
not allowing multiple writable shared copies of pages. Data
are mapped to processor’s caches at the granularity of pages
under OS control and remote cache accesses are supported
by hardware. However, that proposal requires release con-
sistency, introduces extra overhead regarding hardwired sys-
tems, and is only suitable for CMPs due to the severe penalty
caused by the remote cache access support.

3. COHERENCE DEACTIVATION
Directory caches keep track of cached memory blocks to

avoid inconsistencies among the different copies of them. Al-
though they indiscriminately track all cached blocks, a sig-
nificant fraction of them cannot suffer from inconsistencies
because they are private (i.e., accessed just by one proces-
sor). Therefore, the unnecessary use of the directory caches
for private blocks decreases their effectiveness.

In order to address this problem, we propose a technique
that, with the aid of the OS, dynamically detects private
blocks and deactivates the coherence for them. Since a
fine-grain detection (e.g., block-granularity) requires a huge
amount of hardware resources, our proposal is based on a
coarse-grain strategy (page granularity).

(do not keep track

override coherence protocol

resolve non−coherent miss

in directory cache)

memory reference to block A

A is in private page

cache miss on private block A

non−coherent request issue

cache miss resolved

P0 P1 MC

cache miss on shared block A

coherent request issue

cache miss resolved

use coherence protocol

resolve coherent miss

(keep track in

directory cache)

A is in private page, but it should be shared

trigger the coherence recovery mechanism

A is now in shared page

memory reference to block A

OS

Figure 2: Overview of the proposed mechanism. P0 and

P1 are processors and MC is the memory controller. The

shaded background indicates that the OS is in charge at

that moment.

The general idea is that, by default, every new page loaded
into main memory is considered as private. Cache misses
for blocks belonging to private pages override the coherence
protocol. As a result, directory caches do not keep track of
them. When the OS detects that two different processors
try to access blocks within the same private page, it triggers
a hardware coherence recovery mechanism that restores the
coherence state for every block within the private page and
converts it into shared. From that moment on, the page
will be considered as shared and the memory accesses to
its blocks are resolved according to the coherence protocol,
which entails that directory caches will keep track of them.

Figure 2 outlines our proposal. First, P0 references the
memory block A, which causes a cache miss. Assuming that
A belongs to a private page, P0 issues a non-coherent re-
quest, which is served by the home node (i.e., the memory
controller or node where the memory block is mapped to)
without storing any coherence information in its directory
cache. Later, P1 references the same memory block A and
a TLB miss happens. While the OS is handling the TLB
miss, it realizes that the page should become shared since
another processor has already accessed it. Consequently, it
triggers the coherence recovery mechanism. When the re-
covery process finishes, the page becomes shared and the
access to the cache proceeds, resulting in a miss. Since the
referred block belongs to a shared page, a coherent request
is issued, which is processed as the assumed cache coherence
protocol establishes.

Next sections explain our proposal in detail walking through
different key aspects such as the generation and service of
non-coherent requests (Section 3.1), the detection of shared
pages (Section 3.2), and the coherence recovery mechanism
that restores the coherence state (Section 3.3).

3.1 Non-Coherent Requests
On memory references, processors first access their TLB to

translate virtual addresses into physical addresses. As shown
in Figure 3, each TLB entry is made up of two components:
the tag, which basically comprises the virtual address of the
page, and the data, which contain the corresponding phys-
ical address along with several properties associated to the
translation. Since the TLB entry data field often contains
some reserved bits that are not used [4], we take advantage of

LVvirtual address Pphysical address

CVvirtual address

page table entry

keeperPphysical address

TLB entry

tag data

tag data

Figure 3: TLB and page table entry format. Shaded

fields are additional fields required by our proposal. V is

the valid bit, P is the private bit, L is the locked bit, and

C is the cached-in-TLB bit.

two of them to include two new fields: the private bit (P),
which is used to differentiate between private and shared
pages, and the locked bit (L), which is used to avoid unde-
sirable race conditions (as explained later in Section 3.3).

The P bit is only taken into account when a memory ref-
erence to a block belonging to the translated page causes a
cache miss. Hence, if the cache miss is for a block belonging
to a private page, a non-coherent request is issued. Oth-
erwise, a coherent request is issued. Non-coherent requests
override the coherence protocol and are always served by
main memory. In addition, directory caches do not track
them. This behaviour has two primary advantages. First,
neither a lookup nor an insertion in the directory cache is re-
quired, which helps to reduce the latency of cache misses, the
contention at memory controllers, and the energy consump-
tion. Second, directory caches are less occupied and, there-
fore, they do a better use of their capacity to track blocks
that really need coherence. Notice that, to instruct memory
controllers to understand non-coherent requests, only minor
modifications in their microcode will be required, but not
hardware modifications.

3.2 Detection of Shared Pages
Similarly to other works [13, 14], we take advantage of OS

capabilities to distinguish between private and shared pages.
To accomplish this task, page table entries need three addi-
tional fields, as Figure 3 shows. The private bit (P) indicates
whether the page is private or shared. If P is set, the keeper
field will contain the identity of the first and single proces-
sor caching the page table entry in its TLB. The cached-in-
TLB bit (C) indicates whether the keeper field is valid or
not. Notice that these extra fields do not require dedicated
hardware, but only extra OS storage requirements, which
are very small. Particularly, the size of the extra fields is
2 + log2(N) bits, where N is the number of processors in
the system. Thus, assuming a system comprised of 8 pro-
cessors, like the AMD Magny-Cours, only 5 extra bits per
entry would be required.

On a page table fault, the OS allocates a new page ta-
ble entry with the virtual to physical address translation.
In addition, since every newly loaded page is considered as
private, the P bit is set and C is cleared indicating that the
entry is not cached in any TLB yet. When a TLB miss takes
place, a search in the page table will be performed. In ad-
dition to caching the corresponding page table entry in the
TLB, the new fields of the page table may be updated as
indicated by the Algorithm 1. According to it, if C is clear,
it means that the page table entry has not been cached yet
and, therefore, the page is private. In this case, C is set and

Algorithm 1 Actions to perform in view of a TLB miss

if C is clear then

C ← set
keeper ← requester

else

if P is set then

if keeper 6= requester then

trigger coherence recovery mechanism
P ← clear

end if

end if

end if

the identity of the processor requesting the page table entry
is kept in the keeper field. If both C and P bits are set, it
is necessary to check whether the page should be converted
into shared. Thus, if the keeper field matches the requester,
it means that the keeper processor suffered a TLB eviction
and it requires such information again. Since only one pro-
cessor is still accessing the page, the page continues to be
private and no changes are necessary. On the contrary, if
the keeper field does not match the requester, two different
processors are trying to access blocks within the same pri-
vate page and, consequently, the page must become shared.
In this case, the coherence recovery mechanism is triggered
and, when it finishes, P is cleared. Finally, if P is clear,
it means that the page is shared and no modifications are
required. Notice that, to avoid races, this algorithm is exe-
cuted by the OS inside a critical section during the resolution
of TLB misses.

Figure 4 depicts all the actions that can take place on
memory operations.

3.3 Coherence Recovery Mechanism
From the point of view of directory caches, the main dif-

ference between the blocks considered as private and those
considered as shared is that, whereas private blocks are not
tracked, shared ones are. Therefore, when a private page
must become shared, the recovery mechanism will have to
ensure that the corresponding directory cache keeps proper
track of each block within the page to recover. Notice that
only the keeper may have valid copies of those page blocks
since, until then, the page was private. To recover the coher-
ent status of the corresponding blocks, we propose two dif-
ferent strategies: (1) evicting blocks from the keeper’s cache
(flushing-based recovery) or (2) updating the directory cache
so that it keeps track of currently cached blocks (updating-
based recovery). Next two sections explain these mecha-
nisms in detail and the main differences between them.

3.3.1 Flushing-based Recovery Mechanism

The simplest way to restore the coherence status of the
blocks belonging to a page that has been detected as shared
is by flushing all the page blocks. This flushing-based recov-
ery mechanism is as follows.

First, the initiator (node that triggers the coherence re-
covery mechanism) issues a recovery request for the involved
page to its keeper (obtained from the page table).

Second, on the recovery request arrival, the keeper per-
forms three operations. It firstly locks the corresponding
TLB entry by setting the L bit. This prevents the keeper
from issuing new requests for any of the page blocks. In

Access
to cache

Access
to TLB

Non−coherent
request

Coherent
request

Access to
page table

Private page

Memory
operation

Mark page
as shared

Hit

Hit Miss

Yes No

Miss

Fault Hit

Yes No

Operation
successful

Add page
table entry
(private)

Store page table
entry in TLB

YesNo Is this the
page keeper?

Coherence
recovery

Private
page in TLB

Miss resolved Miss resolved

Figure 4: Block diagram of the general working scheme.

case the TLB entry is not present, new operations for blocks
within that page cannot be issued because it does not have
the required information in its TLB and it cannot access
the page table entry since the initiator is accessing it inside
a critical section. Therefore, it would not be necessary to
lock it. Secondly, the keeper performs a cache lookup and
flushes every cached block within the involved page, writing-
back data to main memory in case they have been modified.
Thirdly, the keeper checks its MSHR structure to see the
pending operations. While there is at least one pending miss
or eviction for any of the page blocks, the keeper must wait
for its completion. Once this happens, the involved blocks
are evicted. After this, the keeper marks the corresponding
TLB entry as shared, unlocks it, and informs the initiator
by means of a recovery done message.

Third, when the initiator receives the recovery done mes-
sage, the recovery mechanism finalizes and the page is set
as shared in both the page table and the local TLB entry.
Notice that, during this process, the OS has exclusive access
to the involved page table entry and no other processor can
access it so that race conditions cannot take place. Figure 5
illustrates an example of how this mechanism works.

After completing the flushing-based recovery mechanism
for a page, we know for sure that the blocks belonging to
such a page are not cached. Thus, from that moment on,
since the page is marked as shared, every time a cache miss
for any of its blocks happens, a coherent request will be
issued and the directory cache will be able to keep proper
track of them.

3.3.2 Updating-based Recovery Mechanism

The main advantage of the flushing-based recovery is that
its implementation in real systems is quite feasible and straight-
forward, since the flushing operation is already supported by
current systems. Unfortunately, the main drawback of this
approach is that the flushing of all the blocks within a page
may increase the miss rate of processor caches, which could
degrade system performance (we raise this aspect in Sec-
tion 6). To address this potential drawback, we propose an
alternative implementation based on updating the directory
cache information. This mechanism is as follows.

First, the initiator issues a recovery request to the corre-
sponding page keeper.

Second, like in the flushing-based recovery mechanism, the
page keeper locks the corresponding TLB entry on the ar-
rival of the recovery request and looks for the blocks within
the page that are present in its cache. The addresses of the
found blocks are coded in a bit vector, which is included in

lock page P in TLB

evict cached

blocks of P

write data

to memory

set TLB entry to shared

unlock page P in TLB

page P

wait for pending

operations

P0 P1 MC

evictions

TIME

recovery done

trigger coherence recovery OS

keeper P0page P

end coherence recovery

set page table entry to shared

keeper homeinitiator

recovery request

Figure 5: Flushing-based recovery mechanism. P0
and P1 are processors and MC is the home node.

Solid arrows are messages due to the recovery mech-

anism, whereas dashed arrows are messages due to

the coherence protocol.

a recovery response that will be sent to the home memory
controller. To easily code the addresses of the cached blocks,
a bit vector which contains as many bits as blocks within a
page is used (e.g., 64 bits for systems using 4K pages with
64 bytes blocks). Thus, if the first bit in the vector is set, it
means that the first block of the page is cached; if the sec-
ond bit is set, the second block of the page is cached; and so
on. After composing the bit vector and before sending the
recovery response, the keeper checks whether there are out-
standing operations for any of the page blocks. This is done
by looking up the MSHR structure. If any of the pending
operations is for a block belonging to the page being recov-
ered, the node waits until they finish. Once these operations
complete, the recovery response is sent.

Third, upon the receipt of a recovery response, the home
memory controller proceeds to update its directory cache
according to the received bit vector. To determine the ad-
dress of each cached block, the memory controller uses the
page address of the block (received in the response) and the
position of the bit within the bit vector. For each bit set
in the vector, the memory controller creates a new entry for
the corresponding block in its directory cache, evicting an
old entries when required. The sharing code of the new en-
try can be easily set because it knows that, at that moment,
there is a single copy of the block cached by the keeper.
When the directory cache updating finalizes, the home node
sends a recovery target done message back to the page keeper
informing about it.

Forth, when the keeper receives the recovery target done
message, it marks the TLB entry corresponding to the page
as shared, unlocks the corresponding TLB entry, and sends a
recovery done message to the initiator, finalizing the recovery
process. Figure 6 shows an example of how the updating-
based recovery mechanism works.

After completing the updating-based recovery mechanism
for a page, we know for sure that the directory cache will
hold the track of the page blocks that are cached until then.
Therefore, the next time a miss on any of those blocks hap-
pens, the coherence protocol will be able to use the infor-
mation in the directory cache to appropriately resolve it.

page P

lock page P in TLB

look for cached

blocks of P

wait for pending

operations

keeper P0page P

P0 P1 MC

trigger coherence recovery

tag

A

C

sharing code

P0

P0

set TLB entry to shared

unlock page P in TLB

recovery target done

recovery done

directory cache updating

TIME

page Pkeeper P0

cached blocks 1010..0

OS

recovery response

keeper P0page P

end coherence recovery

set page table entry to shared

keeper initiator

recovery request

home

Figure 6: Updating-based recovery mechanism. P0
and P1 are processors and MC is the home node.

3.3.3 Discussion

In this section, we comment on some aspects of the re-
covery latency and the adaptation to systems with different
features: page table walkers and memory interleaving.

Latency of the recovery: The recovery process may take a
long time because its critical path includes a search in the
keeper’s cache and maybe several evictions from the keeper’s
cache or insertions in the directory cache. Despite its high
latency, we have to take into account that the recovery pro-
cess is only performed very few times. In fact, during the
lifetime of a page in main memory, the page will probably
have a large number of references (according to the locality
principle) and it will be converted from private to shared
at most once. Therefore, it is not unreasonable to expect
the latency of the accesses to memory blocks to have much
more impact on the overall performance than the latency of
the recovery mechanism. In Section 6.3, we show that the
recovery mechanism is only triggered about 3 times per 1000
cache misses (on average). Thus, the impact of the recovery
mechanism on the protocol performance is indeed negligible
since it is largely offset by the savings in cache misses and
the reduction in their latency.

Page table walkers: Although we have linked the descrip-
tion of our proposal to traditional page tables, its applica-
tion is also possible in systems that use hardware page table
walkers. The adjustment to this context would be quite
straightforward and simple. The page table will require the
same fields as those assumed along this document. The sin-
gle difference is that the responsibility of detecting shared
pages will fall on hardware instead of the OS. Therefore,
some additional extra hardware logic will be required to do
it. However, since this class of system is out of the scope of
this work, we have not carried out such an implementation.

Memory interleaving: The flushing-based recovery mech-
anism is independent of whether we assume a system with
memory interleaving or not, but the updating-based recov-
ery is slightly affected. In systems assuming memory inter-
leaving, a page can be physically distributed across different
memory controllers and, consequently, each page may have
several home nodes. Therefore, the recovery responses con-

Table 1: System parameters.
Memory Parameters

Processor frequency 3.2 GHz
Cache block size 64 bytes
Processor cache 2MB (32K entries), 4-way
Processor cache access latency 2ns
Directory cache 256KB (64K entries), 4-way
Directory cache access latency 2ns
Directory cache coverage ratio Typical 2×, worst-case 0.25×
Memory access latency (local bank) 60ns
Page size 4KB (64 blocks)

Network Parameters
Network topology Hypercube + extra channels
Data message size 68 and 72 bytes
Control message size 4 and 8 bytes
Network bandwidth 12.8GB/s
Inter-die link latency 2ns
Inter-processor link latency 20ns
Flit size 4 bytes
Link bandwidth 1 flit/cycle

veying the addresses of the cached blocks will have to be
sent to several home nodes. This can be easily done by us-
ing multicast messages instead of unicast ones. Thus, the
destinations of a recovery response will be the set of home
nodes of the blocks cached by the keeper. Furthermore, after
sending the multicast recovery response and before sending
the recovery done message, the keeper will have to collect
as many recovery target done messages as the number of
destinations in the multicast response.

4. TARGET SYSTEM: AMD MAGNY-COURS
We evaluate the benefits that our proposal could achieve

in a system similar to AMD Magny-Cours [7]. We make this
decision based on our belief that the proposed mechanism
can be implemented in a commodity system without requir-
ing great effort. To better understand the advantages that
our proposal can provide, we briefly describe this system.

Magny-Cours processors comprise 2 dies, each of them
with 6 processing cores which have private L1/L2 caches and
share a large L3 cache (6MB). Cache coherence inside the
dies is maintained by means of a broadcast-based protocol.
A maximum of eight dies (four Magny-Cours processors) can
be included in a board to compound a larger system. These
processor dies are made coherent by using a directory-based
cache coherence protocol that implements MOESI states.
Directory information is stored in directory caches called HT
Assists (HTAs) or Probe Filters and there is not a directory
backup in memory. Each HTA is associated with a memory
controller and it holds an entry for every block cached in the
system that maps to its memory bank. The sharing code
field of the HTA comprises just one pointer to the owner
node (3 bits). Upon a miss on the HTA, a new entry must
be allocated, which may require to replace an existing one.
Due to the lack of a directory backup, before performing the
replacement, all the cached copies of the block identified by
the replaced entry must be invalidated.

Typically, each HTA has 256K entries and each die has
128K entries in its cache hierarchy. Therefore, the coverage
ratio of the directory caches is 2×, i.e., there are at least
twice as many directory entries in the system as blocks can
be cached1 [7]. This would be enough for tracking all the
cached blocks if they were distributed uniformly among the
HTAs. However, it may happen that some memory con-

1In fact, Gupta in [12] recommends a factor of 2 or 4.

Table 2: Benchmarks and input sizes.
Benchmarks Input size

SPLASH 2 (8)
Barnes 8192 bodies, 4 time steps
Cholesky Input file tk15.O
FFT 64K complex doubles
Ocean 258 × 258 ocean
Radiosity room, -ae 5000.0 -en 0.050 -bf 0.10
Raytrace-opt Teapot
Volrend Head
Waternsq 512 molecules, 4 time steps

Scientific benchmarks (2)
Tomcatv 256 points, 5 time steps
Unstructured Mesh.2K, 5 time steps

ALPBench (4)
FaceRec Script
MPGdec 525 tens 040.m2v
MPGenc Output of MPGdec
SpeechRec Script

PARSEC (4)
Blackscholes simmedium
Canneal simmedium
Fluidanimate simmedium
Swaptions simmedium
x264 simsmall

Commercial Workloads (2)
Apache 1000 HTTP transactions
SPEC-JBB 1600 transactions

trollers hold more cached blocks than others. The worst-
case scenario appears when all the cached blocks belong to
the same memory controller (known as hotspotting). In
Magny-Cours, having up to 8 dies, the coverage ratio in
this worst-case dramatically decreases down to 0.25×, which
could cause a lot of replacements and, therefore, the inval-
idation of a large quantity of cached blocks, thereby un-
derutilizing caches and leading to a significant performance
degradation.

In Magny-Cours, memory blocks are distributed among
memory banks without performing interleaving. This has
two important consequences. First, all the blocks within
a page map to the same memory bank and, therefore, to
the same directory cache. Second, the coverage ratio can
be dramatically reduced, especially for parallel applications,
because they may allocate most of the accessed data in the
node where the main thread of the application is executed,
leading to hotspotting.

5. EVALUATION METHODOLOGY
We evaluate our proposals with full-system simulation us-

ing Virtutech Simics [18] running Solaris 10 and extended
with the Wisconsin GEMS toolset [19], which enables de-
tailed simulation of multiprocessor systems. For modeling
the interconnection network, we have used GARNET [1], a
detailed network simulator included in GEMS. Finally, we
have also used the McPAT tool [17], assuming a 45nm pro-
cess technology, to measure the savings in terms of energy
consumption that our proposal can entail.

For the evaluation of our proposals, we have first modeled
a cache coherent HyperTransport system optimized with di-
rectory caches (HTAs) similar to those of the AMD Magny-
Cours. We simulate eight dies, which constitutes the maxi-
mum number of nodes supported by the Magny-Cours proto-
col. Although each Magny-Cours die has actually six cores,
we are only able to simulate two of them due to time con-
straints. Moreover, since this paper does not focus on the
intra-die broadcast-based coherence protocol and taking into

Barnes

Cholesky
FFT

Ocean

Radiosity

Raytra
ce-opt

Volre
nd

Water-N
sq

Tomcatv

Unstru
ctured

FaceRec

MPGdec

MPGenc

SpeechRec

Blackscholes

Canneal

Swaptio
ns

Fluidanim
ate

x264

Apache

SPEC-JBB

Average

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ri
v
a

te
 b

lo
c
k
s
 r

a
te

Flushing
Ideal

Figure 7: Fraction of actual private blocks versus de-

tected private blocks.

account that such a protocol would considerably increase the
simulation time, we do not model it. We consider the de-
scribed system as the base architecture and its main param-
eters are shown in Table 1. Our proposals are implemented
upon this system.

We evaluate our proposal with a wide variety (21) of par-
allel workloads from 3 suites (SPLASH-2 [25], ALPBenchs
[16], and PARSEC [5]), two scientific benchmarks, and two
commercial workloads [2], which are shown in Table 2. Due
to time requirements, we are not able to simulate these
benchmarks with large working sets. Consequently, as done
in most works [6, 10, 11], we have simulated the applications
assuming smaller data-sets. To avoid altering the results, we
have reduced the size of both processor caches and directory
caches accordingly. Particularly, our caches are four times
smaller than the ones used by the original Magny-Cours pro-
cessors. Notice that, since the size of all the simulated caches
are proportionally reduced, the coverage ratio of directory
caches is the same as in Magny-Cours (2×).

All the reported experimental results correspond to the
parallel phase of benchmarks. We account for the variabil-
ity in multi-threaded workloads [3] by doing multiple simu-
lation runs for each benchmark and injecting small random
perturbations in the timing of the memory system.

6. PERFORMANCE EVALUATION
In this section, we show how our proposal is able to reduce

the amount of blocks tracked by directory caches. This re-
sults in energy saving and less processor cache misses, which
leads to performance improvements. We also study how,
thanks to our proposal, it is possible to maintain perfor-
mance while dramatically reducing the directory cache size.

6.1 Private Blocks
Our proposal is based on the fact that a significant amount

of the memory blocks accessed during the execution of par-
allel applications is private. Crosses in Figure 7 show the
fraction of memory blocks referred to by processors that
are only used by one of them (i.e., private). As observed,
about 75% (on average) of the referred blocks are private.
Our mechanism tries to identify such private blocks. How-
ever, since it works at a page granularity (instead of at block
level), not all the private blocks can be identified as such be-
cause, when a page contains both private and shared blocks
or just private blocks accessed by different processors, our
mechanism will consider the whole page as shared and, in
turn, all the blocks within that page will be considered as
shared too. Thus, bars in Figure 7 show the fraction of
blocks that our mechanism detects as private. Comparing
the fraction of actual private blocks (75% on average) to the
fraction of detected private blocks (57% on average), we can

Barnes

Cholesky
FFT

Ocean

Radiosity

Raytra
ce-opt

Volre
nd

Water-N
sq

Tomcatv

Unstru
ctured

FaceRec

MPGdec

MPGenc

SpeechRec

Blackscholes

Canneal

Swaptio
ns

Fluidanim
ate

x264

Apache

SPEC-JBB

Average

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

N
o

rm
a

liz
e

d
 c

a
c
h

e
 m

is
s
 r

a
te

3C Coherence Coverage Flushing1. Base 2. Flushing 3. Updating

Figure 8: Normalized cache miss rate classification.

see that our proposal obtains a good approximation since
only 18% of the blocks are misclassified. According to these
data, a detection based on pages provides a good trade-off
since it does not entail large overhead and it allows proces-
sors to detect most of the private blocks. Hence, Figure 7
shows that directory caches omit the tracking of 57% of the
referred blocks.

6.2 Processor Cache Misses
Since directory caches do not track blocks belonging to

private pages, less blocks contend for their entries. Conse-
quently, they suffer fewer evictions and, therefore, less blocks
are invalidated from processor caches. As a result, the pro-
cessor cache miss rate is reduced by 35% (on average), as
Figure 8 shows. This figure illustrates the fraction of the
overall cache misses normalized with respect to the base
system (first bar), when using coherence deactivation and
the flushing-based recovery mechanism (second bar), and
when using coherence deactivation and the updating-based
recovery mechanism (third bar). We classify cache misses in
four different groups: the 3C misses comprise Cold, Capac-
ity, and Conflict misses; the Coherence misses refer to those
caused by invalidations due to write requests (store opera-
tions issued by other processors); the Coverage misses are
those caused by the invalidations issued as a consequence of
evictions in the directory caches due to their limited capac-
ity; and the flushing misses are due to evictions performed by
the recovery mechanism. Since our proposal aims at improv-
ing the effectiveness of directory caches, it mainly acts on
the coverage misses. Thus, by avoiding the tracking of pri-
vate blocks, a significant part of the coverage misses can be
avoided (about 75% on average). The reduction of coverage
misses depends to a large extent on the quantity of misclas-
sified blocks. In applications like barnes, cholesky, radiosity,
volrend, or tomcatv there are few misclassified blocks (see
Figure 7) and, therefore, the coverage misses are highly re-
duced. On the contrary, applications like ocean, mpgenc,
swaptions, or blackscholes present a high rate of misclassi-
fied blocks, which leads to lower reductions in the number
of coverage misses. The reduction of coverage misses is an
important achievement because, as shown in the figure and
as reported in other studies [20, 10], their rate may be really
important in some scenarios (more than 90%).

The recovery mechanism is triggered once per each page
converted into shared. In case of assuming the flushing-
based recovery mechanism, the invalidation of cached blocks
may cause additional cache misses. For instance, in appli-
cations like FFT, the use of the recovery mechanism based
on flushing increases the rate of cache misses with respect
to that obtained with the recovery mechanism based on up-
dating. This happens because the pages that are converted
from private to shared have a lot of cached blocks at the

Barnes

Cholesky
FFT

Ocean

Radiosity

Raytra
ce-opt

Volre
nd

Water-N
sq

Tomcatv

Unstru
ctured

FaceRec

MPGdec

MPGenc

SpeechRec

Blackscholes

Canneal

Swaptio
ns

Fluidanim
ate

x264

Apache

SPEC-JBB

Average

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

N
o

rm
a

liz
e

d
 n

e
tw

o
rk

 t
ra

ff
ic

Flushing Updating

Figure 9: Normalized network traffic (in flits).

Barnes

Cholesky
FFT

Ocean

Radiosity

Raytra
ce-opt

Volre
nd

Water-N
sq

Tomcatv

Unstru
ctured

FaceRec

MPGdec

MPGenc

SpeechRec

Blackscholes

Canneal

Swaptio
ns

Fluidanim
ate

x264

Apache

SPEC-JBB

Average

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

N
o

rm
a

liz
e

d
 c

a
c
h

e
 m

is
s
 l
a

te
n

c
y

Request Waiting Memory Response1. Base 2. Flushing 3. Updating

Figure 10: Normalized latency of solving cache misses.

moment of the conversion. Therefore, all those blocks will
be invalidated and, when they are accessed again, new cache
misses will be generated. Notice though that this is not the
common situation. In fact, on average, the number of flush-
ing misses is insignificant and their increase is largely offset
by the reduction in 3C, Coherence, and Coverage misses.
Thus, contrary to what might be thought, the use of the
flushing-based recovery mechanism does not entail an in-
crease of the total number of cache misses with respect to
that of the updating-based implementation.

The reduction of both directory evictions and cache misses
has a meaningful impact on the overall network traffic, as
depicted in Figure 9. This figure shows the network traffic
generated by the assumed cache coherence protocol using
our proposal normalized to the base system. Each bar plots
the number of flits transmitted through the interconnection
network. Notice that those data include the traffic due to
the coherence recovery mechanisms, but it is really insignifi-
cant (lower than 0.1% on average). As shown, the reduction
in the number of cache misses is so impressive that the co-
herence traffic reduces drastically (about 40% on average).
Besides, given that the cache miss rate is more or less sim-
ilar regardless of the used coherence recovery mechanism,
the reduction in network traffic does not change according
to the recovery policy.

Our proposal is not only able to reduce the amount of
cache misses, but also their average completion latency, as
Figure 10 depicts. The latency of cache misses is split into
4 stages: request latency refers to the time elapsed from the
beginning of the cache miss until the receipt of the corre-
sponding request by the home memory controller; waiting
is the time that requests remain in the home memory con-
troller waiting for the beginning of their service; memory
is the latency of the memory controller (which also includes
the latency of the directory cache) in obtaining the requested
data from memory; finally, response is the latency from ei-
ther the sending of the memory response or the forwarding of
the request to another processor until the completion of the
miss. Since requests for private blocks do not need a direc-
tory cache lookup, non-coherent requests can be served more
quickly and, therefore, the average latency of cache misses is
lowered. Thus, the average cache miss latency is reduced by

Barnes

Cholesky
FFT

Ocean

Radiosity

Raytra
ce-opt

Volre
nd

Water-N
sq

Tomcatv

Unstru
ctured

FaceRec

MPGdec

MPGenc

SpeechRec

Blackscholes

Canneal

Swaptio
ns

Fluidanim
ate

x264

Apache

SPEC-JBB

Average

0.0
100.0
200.0
300.0
400.0
500.0
600.0
700.0
800.0
900.0

1000.0
1100.0
1200.0
1300.0
1400.0

A
v
e

ra
g

e
 r

e
c
o

v
e

ry
 l
a

te
n

c
y

Network Flush-Lookup Wait-Update1. Flushing 2. Updating

Figure 11: Average latency of the coherence recovery

mechanisms (in clock cycles).

Barnes

Cholesky
FFT

Ocean

Radiosity

Raytra
ce-opt

Volre
nd

Water-N
sq

Tomcatv

Unstru
ctured

FaceRec

MPGdec

MPGenc

SpeechRec

Blackscholes

Canneal

Swaptio
ns

Fluidanim
ate

x264

Apache

SPEC-JBB

Average

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0
18.0
20.0
22.0

R
e
c
o
v
e
ry

 a
c
ti
o
n
s
 p

e
r

1
0
0
0
 m

is
s
e
s

Flushing Updating
23.2

Figure 12: Times that the coherence recovery mecha-

nism is triggered per 1000 cache misses.

about 13% on average when assuming the updating-based
recovery mechanism and by 10% when using the flushing-
based recovery. Notice that this reduction is reached mainly
thanks to avoid doing a directory cache lookup and, besides,
is linked to the proportion of cache misses treated as non-
coherent. Consequently, the more cache misses for private
blocks, the higher the reduction in the average latency of
cache misses. On the other hand, for the FFT application
and assuming the flushing-based recovery, the average la-
tency of cache misses increases slightly with respect to that
of the base system. This mainly happens because in that
case there are a lot of flushing misses, which are treated as
misses for shared blocks.

6.3 Coherence Recovery Mechanism
Figure 11 shows the average latency of the proposed coher-

ence recovery mechanisms according to the timing parame-
ters shown in Table 1. We have split their latency into sev-
eral components: network is the transmission latency of the
generated messages; flush is the latency required to perform
the flushing of the corresponding page; lookup is the latency
of looking up the cached blocks belonging to a page; wait
is the time that nodes must wait until the evictions finish;
and update is the latency of updating the directory cache.
Thus, whereas the latency of the flushing-based mechanism
is made up of network, flush, and wait latencies, the one
of the updating-based mechanism is composed of network,
lookup, and update latencies. Notice that the latency of
the recovery mechanisms may be considerable because it in-
cludes a search in the cache of the page keeper. Besides,
the latency of the updating-based mechanism also includes
several accesses to the directory cache to add the required
entries. As Figure 11 shows, the network and flush/lookup la-
tencies are quite similar for both mechanisms. However, the
update latency is appreciably higher than the wait latency.
This is due to two reasons. First, in the flushing-based re-
covery mechanism, evictions are overlapped with the cache
lookup, whereas in the updating-based mechanism, the bit-
vector is not sent to the home memory controller until the
lookup finishes. Second, the insertion of new directory cache
entries (updating) may cause the eviction of other directory

Barnes

Cholesky
FFT

Ocean

Radiosity

Raytra
ce-opt

Volre
nd

Water-N
sq

Tomcatv

Unstru
ctured

FaceRec

MPGdec

MPGenc

SpeechRec

Blackscholes

Canneal

Swaptio
ns

Fluidanim
ate

x264

Apache

SPEC-JBB

Average

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o

rm
a

liz
e

d
 e

x
e

c
u

ti
o

n
 t

im
e

Flushing Updating

Figure 13: Normalized runtime maintaining the direc-

tory cache size.

cache entries, which may entail extra latency. This latency
is specially high in Cholesky, Ocean, and FFT, because in
Magny-Cours a controller can have at most 32 outstanding
transactions (due to the limited number of tags to iden-
tify coherence transactions [7]). When a controller reaches
the maximum number of simultaneous transactions, the new
ones will have to wait for the completion of those already
outstanding. Thus, when the recovery mechanism based on
updating is working on a page with a lot of blocks cached in
the keeper and the updating entails several evictions of direc-
tory cache entries, it may occur that the memory controller
runs out of free tags and reaches the maximum number of
outstanding transactions, which will slow down the updat-
ing. This is the reason why the wait latency is particularly
high for Cholesky, Ocean, and FFT.

Although the recovery mechanism can exhibit a consider-
able latency, it is not often used. To illustrate this, we have
estimated the number of times that the coherence recovery
mechanism is triggered with respect to the total number of
cache misses. As shown in Figure 12, on average, the coher-
ence recovery mechanism is only triggered about 3 times per
1000 cache misses (up to 23 for the SPEC-JBB application).
As a result, its impact on the whole runtime of applications
is almost unnoticeable (less than 1% on average).

6.4 Execution Time
Due to the reduction in the number of cache misses and

their latency, the runtime of applications can be significantly
reduced, as depicted in Figure 13. This figure also illustrates
that the coherence recovery mechanism has little impact on
the overall performance since the results for the two evalu-
ated mechanisms are almost identical. Thus, according to
these results, the proposed technique can lead to improve-
ments in application runtime of about 15% on average.

The systems where the storage requirements are critical
can also take advantage of our proposal because, by means
of it, the size of directory caches can be drastically reduced
while obtaining good performance. This is illustrated in
Figure 14 by the bars labeled as DC:2, DC:4, and DC:8,
which represent three configurations with a half, a fourth,
and an eighth of the base cache size, respectively. Since the
results are quite similar for both recovery mechanisms, we
only show the results for the mechanism based on flushing.
We can see that our proposal allows to reduce the size of
directory caches up to eight times while still maintaining
the execution time of applications similar (on average) to
that of the base system.

6.5 Energy Consumption
Thanks to the reduction in cache misses and network traf-

fic, our proposal is also able to reduce system energy con-
sumption. Figure 15 shows the dynamic energy consump-

Barnes

Cholesky
FFT

Ocean

Radiosity

Raytra
ce-opt

Volre
nd

Water-N
sq

Tomcatv

Unstru
ctured

FaceRec

MPGdec

MPGenc

SpeechRec

Blackscholes

Canneal

Swaptio
ns

Fluidanim
ate

x264

Apache

SPEC-JBB

Average

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

N
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t
im

e
Flushing
Flushing DC:2

Flushing DC:4
Flushing DC:8

1.60 2.42

Figure 14: Execution time normalized to the base system. DC:2, DC:4, and DC:8 stand for directory caches with their

size divided by 2, 4, and 8, respectively.

Barnes

Cholesky
FFT

Ocean

Radiosity

Raytra
ce-opt

Volre
nd

Water-N
sq

Tomcatv

Unstru
ctured

FaceRec

MPGdec

MPGenc

SpeechRec

Blackscholes

Canneal

Swaptio
ns

Fluidanim
ate

x264

Apache

SPEC-JBB

Average

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

D
y
n
a
m

ic
 e

n
e
rg

y

DirectoryCache MemoryController Network

3.02

1. Base 2. Updating 3. Flushing 4. Flushing DC:2 5. Flushing DC:4 6. Flushing DC:8

Figure 15: Dynamic energy consumption normalized to the base system. DC:2, DC:4, and DC:8 stand for directory

caches with their size divided by 2, 4, and 8, respectively.

tion of directory caches, memory controllers, and the in-
terconnection network. Since non-coherent requests do not
need to access directory caches, their consumption is re-
duced, which is shown by the updating and flushing bars.
Furthermore, this reduction becomes more significant as the
directory cache size decreases because, despite the fact that
smaller directory caches suffer more accesses, their access
latency is lower, which offsets such an increase of accesses.

Although our proposal decreases the number of memory
accesses (due to the cache miss reduction, as shown in Fig-
ure 8), the flushing recovery mechanism may increase it
(due to the eviction of cached blocks). On average, the
referred reduction offsets this increase. As a result, the en-
ergy consumption of memory controllers is reduced by 20%,
as the flushing bar shows. Notice that, for the FFT ap-
plication, the number of flushed blocks is noticeable and,
therefore, the energy consumption of memory controllers in-
creases slightly. However, when the updating recovery mech-
anism is used (updating bar), since it does not cause addi-
tional cache misses, the energy consumption of memory con-
trollers is reduced. On the other hand, as directory caches
become smaller, the number of caches misses increases and,
consequently, more accesses to memory controllers will be
required, thereby increasing its consumption.

Finally, our proposal also entails savings in the energy
consumption of the interconnection network due to the re-
duction in network traffic, as shown in Figure 9. Taking into
account the overall consumption of directory caches, mem-
ory controllers, and the interconnection network, we can see
that both updating and flushing are able to reduce the energy
consumption by about 40% on average. As directory caches
become smaller, the energy consumption increases mainly
due to the increase in network traffic and the accesses to
memory controllers. Despite this, the dynamic energy con-
sumption of a system using our proposal remains lower than
that of the base system using directory caches 8 times larger.

Regarding static energy consumption (not shown in Fig-
ure 15), notice that it is really tight to the execution time
of applications. In particular, the reduction in static energy

consumption of memory controllers and the network is di-
rectly proportional to the reduction in runtime (Figures 13
and 14). With respect to directory caches, their static en-
ergy reduction depends on both the application runtime and
their size. Thus, when using directory caches 2, 4, and 8
times smaller than that in the base system, the static power
consumption is reduced by 48%, 74%, and 86%, respectively.

7. CONCLUSIONS
In this paper we have proposed a simple approach which

is able to remarkably increase the effectiveness of directory
caches. It is based on the idea of avoiding the tracking of
private blocks, since they do not need coherence. The OS is
responsible for dynamically detecting shared blocks, which
are handled as established by the applied cache coherence
protocol. Avoiding the tracking of private blocks decreases
the contention on directory caches. As a result, the num-
ber of blocks invalidated due to the lack of entries in di-
rectory caches can be drastically reduced (by about 57%
on average). This advantage can be used not only for in-
creasing the performance of a system (15% of reduction in
application runtime), but also for continuing to obtain good
performance having less storage requirements (systems with
directory caches 8 times smaller).

We can also conclude that the coherence recovery mech-
anism does not have a significant impact on system per-
formance and it only slightly affects energy consumption.
Therefore, the flushing-based recovery mechanism seems to
be the most suitable option since it offers similar perfor-
mance results to the updating-based mechanism and it is
much simpler to implement, being suitable for future com-
mercial processors.

8. ACKNOWLEDGMENTS
This work has been supported by Generalitat Valenciana

under Grant PROMETEO/2008/060, by Spanish Ministry
of Ciencia e Innovación under grant “TIN2009-14475-C04-
01”, and by European Commission FEDER funds under
grant “Consolider Ingenio-2010 CSD2006-00046”.

9. REFERENCES
[1] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha.

GARNET: A detailed on-chip network model inside a
full-system simulator. In IEEE Int’l Symp. on
Performance Analysis of Systems and Software
(ISPASS), pages 33–42, Apr. 2009.

[2] A. R. Alameldeen, C. J. Mauer, M. Xu, P. J. Harper,
M. M. Martin, D. J. Sorin, M. D. Hill, and D. A.
Wood. Evaluating non-deterministic multi-threaded
commercial workloads. In 5th Workshop On Computer
Architecture Evaluation using Commercial Workloads
(CAECW), pages 30–38, Feb. 2002.

[3] A. R. Alameldeen and D. A. Wood. Variability in
architectural simulations of multi-threaded workloads.
In 9th Int’l Symp. on High-Performance Computer
Architecture (HPCA), pages 7–18, Feb. 2003.

[4] AMD. AMD64 architecture programmer’s manual
volume 2: System programming. Whitepaper, June
2010.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The
PARSEC benchmark suite: Characterization and
architectural implications. In 17th Int’l Conference on
Parallel Architectures and Compilation Techniques
(PACT), pages 72–81, Oct. 2008.

[6] J. F. Cantin, M. H. Lipasti, and J. E. Smith.
Improving multiprocessor performance with
coarse-grain coherence tracking. In 32th Int’l Symp.
on Computer Architecture (ISCA), pages 246–257,
June 2005.

[7] P. Conway, N. Kalyanasundharam, G. Donley,
K. Lepak, and B. Hughes. Cache hierarchy and
memory subsystem of the AMD opteron processor.
IEEE Micro, 30(2):16–29, Apr. 2010.

[8] M. Ekman, F. Dahlgren, and P. Stenström. TLB and
snoop energy-reduction using virtual caches. In Int’l
Symp. on Low Power Electronics and Design
(ISLPED), pages 243–246, Aug. 2002.

[9] N. D. Enright-Jerger, L.-S. Peh, and M. H. Lipasti.
Virtual circuit tree multicasting: A case for on-chip
hardware multicast support. In 35th Int’l Symp. on
Computer Architecture (ISCA), pages 229–240, June
2008.

[10] N. D. Enright-Jerger, L.-S. Peh, and M. H. Lipasti.
Virtual tree coherence: Leveraging regions and
in-network multicast tree for scalable cache coherence.
In 41th IEEE/ACM Int’l Symp. on Microarchitecture
(MICRO), pages 35–46, Nov. 2008.

[11] C. Fensch and M. Cintra. An OS-based alternative to
full hardware coherence on tiled CMPs. In 14th Int’l
Symp. on High-Performance Computer Architecture
(HPCA), pages 355–366, Feb. 2008.

[12] A. Gupta, W.-D. Weber, and T. C. Mowry. Reducing
memory traffic requirements for scalable
directory-based cache coherence schemes. In Int’l
Conference on Parallel Processing (ICPP), pages
312–321, Aug. 1990.

[13] N. Hardavellas, M. Ferdman, B. Falsafi, and
A. Ailamaki. Reactive NUCA: Near-optimal block
placement and replication in distributed caches. In
36th Int’l Symp. on Computer Architecture (ISCA),
pages 184–195, June 2009.

[14] D. Kim, J. Ahn, J. Kim, and J. Huh. Subspace

snooping: Filtering snoops with operating system
suport. In 19th Int’l Conference on Parallel
Architectures and Compilation Techniques (PACT),
pages 111–122, Sept. 2010.

[15] H. Q. Le, W. J. Starke, J. S. Fields, F. P. O’Connell,
D. Q. Nguyen, B. J. Ronchetti, W. M. Sauer, E. M.
Schwarz, and M. T. Vaden. IBM POWER6
microarchitecture. IBM Journal of Research and
Development, 51(6):639–662, Nov. 2007.

[16] M.-L. Li, R. Sasanka, S. V. Adve, Y.-K. Chen, and
E. Debes. The ALPBench benchmark suite for
complex multimedia applications. In Int’l Symp. on
Workload Characterization, pages 34–45, Oct. 2005.

[17] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi. McPAT: An Integrated
Power, Area, and Timing Modeling Framework for
Multicore and Manycore Architectures. In 42nd
IEEE/ACM Int’l Symp. on Microarchitecture
(MICRO), pages 469–480, Dec. 2009.

[18] P. S. Magnusson, M. Christensson, and J. Eskilson, et
al. Simics: A full system simulation platform. IEEE
Computer, 35(2):50–58, Feb. 2002.

[19] M. M. Martin, D. J. Sorin, and B. M. Beckmann, et
al. Multifacet’s general execution-driven
multiprocessor simulator (GEMS) toolset. Computer
Architecture News, 33(4):92–99, Sept. 2005.

[20] M. R. Marty and M. D. Hill. Virtual hierarchies to
support server consolidation. In 34th Int’l Symp. on
Computer Architecture (ISCA), pages 46–56, June
2007.

[21] A. Moshovos. RegionScout: Exploiting coarse grain
sharing in snoop-based coherence. In 32nd Int’l Symp.
on Computer Architecture (ISCA), pages 234–245,
June 2005.

[22] B. W. O’Krafka and A. R. Newton. An empirical
evaluation of two memory-efficient directory methods.
In 17th Int’l Symp. on Computer Architecture (ISCA),
pages 138–147, June 1990.

[23] M. Shah, J. Barreh, and J. Brooks, et al. UltraSPARC
T2: A highly-threaded, power-efficient, SPARC SoC.
In IEEE Asian Solid-State Circuits Conference, pages
22–25, Nov. 2007.

[24] R. Simoni. Cache Coherence Directories for Scalable
Multiprocessors. PhD thesis, Stanford University, 1992.

[25] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and
A. Gupta. The SPLASH-2 programs: Characterization
and methodological considerations. In 22nd Int’l
Symp. on Computer Architecture (ISCA), pages
24–36, June 1995.

[26] J. Zebchuk, E. Safi, and A. Moshovos. A framework
for coarse-grain optimizations in the on-chip memory
hierarchy. In 40th IEEE/ACM Int’l Symp. on
Microarchitecture (MICRO), pages 314–327, Dec.
2007.

[27] H. Zeffer and E. Hagersten. A case for low-complexity
MP architectures. In ACM/IEEE Conference on
Supercomputing (SC), pages 10–16, Nov. 2007.

[28] H. Zeffer, Z. Radović, M. Karlsson, and E. Hagersten.
TMA: A trap-based memory architecture. In 20th Int’l
Conference on Supercomputing (ICS), pages 259–268,
June 2006.

