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Abstract

Snoop-based cache coherence protocols perform well in small-scale systems

by enabling low latency cache-to-cache data transfers in just two-hop coherence

transactions. However, they are not a scalable alternative as they require fre-

quent broadcast of coherence requests. Token coherence protocols were proposed

to improve the scalability of snoop-based protocols by removing a large amount

of traffic due to broadcast responses. Still, broadcasting coherence requests

on every cache miss represents a scalability issue for medium and large-scale

systems.

In this paper, we propose to reduce the number of broadcast operations in

Token coherence protocols by performing an efficient fine-grain private-shared

data classification and disabling broadcasts for misses to data classified as pri-

vate. Our fine-grain classification is orchestrated and stored by the Translation

Look-aside Buffers (TLBs), where entries are kept for a longer time than in local

caches. We explore different classification granularity accounting for different

storage overheads and their impact on filtering coherence traffic. We evaluate

our proposals on a set of parallel benchmarks through full-system cycle-accurate

simulation and show that a subpage-grain classification offers the best trade-off

when accounting for storage, traffic, and performance. When running a 16-core
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configuration, our subpage-grain classification eliminates 40.1% of broadcast op-

erations compared to not performing any classification and 13.7% of broadcast

operations more than a page-grain data classification. This reduction trans-

lates into less network traffic (16.0%), and finally, performance improvements

of 12.0% compared to not having a classification mechanism.

Keywords: multicore, cache coherence, private-shared data classification,

token protocol

1. Introduction

Coherence protocols can be classified mainly into two categories [1]: snoop-

based coherence protocols [2, 3, 4, 5] and directory-based coherence protocols [6,

7, 8]. There are many variants of each group and even hybrid protocols [9].

Snoop-based protocols use broadcast messages, and can transfer data from one

cache to another in just two hops. Snoop-based cache coherence protocols are

cost-effective and straightforward for small-scale systems. However, they do

not achieve good performance with an increasing number of cores due to the

frequent issue of broadcast operations. On the other hand, directory-based

coherence protocols avoid broadcast by using a directory to track the sharers

of data blocks. However, the directory structure incurs non-scalable storage in

its simpler form, and these protocols perform cache-to-cache transfers in three

hops.

With the premise cache coherence protocols should avoid both indirection

when performing a cache-to-cache miss and interconnect ordering, Token co-

herence [10] was proposed. Token coherence makes snoop-based protocols more

scalable by reducing the network traffic using tokens. Still, Token coherence

protocols issue a broadcast request on each cache miss. Our work departs from

the observation that private data (i.e., accessed by a single core) do not require

broadcasting requests in a Token protocol as other cores do not cache a copy of

the requested data [4]. However, knowing the private nature of the data before

or in parallel to cache access is a current challenge.
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There have been many studies that focus on the private-shared classifica-

tion of data to improve the cache coherence protocols driven by the fact that

private and read-only shared data do not require a cache coherence mecha-

nism [4, 11, 12, 13, 14, 15, 16, 17, 18, 19]. There are many proposals in the

recent literature on the topic of data classification that differ based on the

level they are obtained: compiler [20, 12], operating system [11], and hard-

ware [21, 22, 23, 8, 14]. Compiler alternatives are less accurate due to the lack

of sharing information at compile time. Operating system and hardware alter-

natives that perform the classification before issuing a coherence request work

at coarse granularity (e.g., page grain) [4, 11, 14, 24].

Proposal.

Our private/shared data classification is carried out by Translation Look-

aside Buffers (TLBs) communication, mostly on TLB misses. When a block is

classified as private, the broadcast request issued to maintain coherence can be

filtered. In particular, we evaluate the following classification schemes and their

impact on filtering Token coherence traffic:

• Page-Grain Classification (PGC): This classification mechanism classi-

fies data with page granularity through TLB-to-TLB communication [14].

Thus, PGC is able to remove the broadcast operation for requests to blocks

belonging to a private page. It stores the private-shared page information

in the TLB using a single bit per entry. PGC has a low classification

accuracy as it faces a false-sharing problem, where two blocks belonging

to the same page but privately accessed by different cores are classified as

shared.

• Block-Grain Classification (BGC): This classification also performs the

classification through TLB-to-TLB communication but works at a finer

granularity than PGC, classifying memory blocks as private or shared [15].

It stores the private/shared information of each block by allocating bit

vectors in each TLB entry. BGC helps to remove the miss classification

of the blocks encountered in PGC, thus achieving more accuracy and, in
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the end, filtering more broadcasts than PGC. However, it requires more

storage as it stores 64 bits (since there are 64 blocks in a 4KB page) per

vector.

• Sub-page Grain Classification (SGC): This classification works at the gran-

ularity of a group of memory blocks. Its goal is to reduce the size of the

bit vectors used in BGC, hence its total storage requirements. We analyze

the impact of clustering memory blocks for classification purposes on both

classification accuracy and performance of the Token coherence compared

to the previous granularities.

Results. Using full-system simulation and 14 parallel applications from

SPLASH-2 and PARSEC benchmarks we evaluate how the three classification

approaches can improve Token protocol performance and compare them to a

baseline Token protocol without any classification scheme for 8 cores, 16 cores,

and 32 cores. We show that PGC has poor classification accuracy, while BGC

has high memory requirements. In contrast, our proposed sub-page granularity

(SGC) obtains the best of both worlds: the low memory requirements of PGC

and the accuracy of BGC. Considering 16 cores, SGC reduces the broadcast

operation by 40.1% (13.7% more than PGC), reducing network traffic by 16.0%

(6.0% with respect to PGC). This improves the overall execution time of a

Token protocol without data classification by 12.0% for 16 cores and 25.3% for

32 cores.

Contributions. The main contributions of this paper are:

• Proposing an intermediate granularity (sub-page) to perform private/shared

classification of data blocks, that improves accuracy over a state-of-the-

art page-grain classification mechanism, without impacting significantly

network traffic.

• Integrating three different private/shared data classification techniques

with Token coherence, and showing that they can filter broadcast traffic

considerably, thus reducing network traffic and improving performance.
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The rest of the paper is organized as follows. Section 2 talks about the

background on data classification and Token coherence. Section 3 presents the

different classification schemes evaluated in this work. Section 4 details how to

use the classification mechanisms in Token protocols to filter coherence traffic.

Section 5 presents the simulation environment, and Section 6 analyzes experi-

mental results. Section 7 describes the most relevant related work, and finally,

Section 8 concludes the paper.

2. Background

This section explains the basics of Token coherence and offers a summary of

prior work on data classification.

2.1. Token coherence

Martin et al. [10] proposed TokenB, a Token-based coherence protocol that

brings together advantages from snoop-based and directory-based protocols,

that is, cache-to-cache low latency misses and the ability to work on any net-

work topology. Cache coherence in Token coherence is maintained by a number

of tokens (commonly as many tokens as cores in the system) assigned to ev-

ery memory block. An owner token takes care of sending the data block when

requested. Token protocols assure coherence protection by token counting: A

core with all tokens gets exclusive access to the block, and a core with at least

one token gets shared access to the block.

Cache misses generate coherence requests that are broadcast to all cores. In

case of write miss, an exclusive request is generated, and all cores answer with

all tokens they have. The core holding the owner token sends the data block.

The requester processor gets exclusive permission for the block when it receives

all tokens. In case of read misses, the core with the owner token needs to answer

with the requested data, and other cores with more than one token could send

tokens too. On evictions, Token protocols send all tokens assigned to a block

along with the data block (if dirty) to the home node.
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When several cores request exclusive permission simultaneously by issuing

broadcast requests, it is probably that none of them obtain all tokens. If, after

some attempts, this racy situation still occurs, cores will issue a Persistent

request, which is serialized by an arbiter.

Unfortunately, the use of broadcasts on every cache miss increases network

traffic and, therefore, power consumption in the interconnection network, con-

tributing to overall power consumption.

2.2. Private-shared memory block classification

Data classification mechanisms are becoming popular for multi-core and het-

erogeneous computers as they permit sharing status-based many optimizations

regarding block management, being tested already in commodity processors [25].

Private-shared data classification can be done at different levels: compiler, hard-

ware, and operating system level. Our technique to filter broadcast requests

requires the data classification to be known before a coherence transaction is

generated after the cache miss. While hardware classification schemes are among

the most accurate due to the run-time knowledge and the fine-grain classifica-

tion, they commonly provide the classification after the coherence request has

been generated (e.g., at the directory [22, 26]). We focus, therefore, on the

subset of hardware classification techniques that are able to provide an accurate

classification before the coherence protocol is called : those based on TLB-to-

TLB communication.

TLB-based classification schemes detect data classification at run time de-

rived from the classification information cached at the TLBs [14, 27]. The

TLB-based classification relies on querying the other TLBs in the system about

their use of the data. The TLB-to-TLB communication with requests and re-

sponses uses the same interconnect as the cache coherence protocol. A broadcast

message is sent to all the other TLBs in the system in every TLB miss. They

reply with their page usage information and the page translation if they hold it,

which quickens the page table walk process, since communication between cores

is faster than accessing the page table [28, 29, 30]. The page table walk occurs
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parallel to the TLB broadcast, as the address translation is obtained from the

page table if none of the TLBs holds the translation. A recovery process may

be triggered depending on the optimization enabled by the classification when

a page nature changes from private to shared (e.g., on the first access of a core

to a memory page).

TLB-based classification can also be performed at block granularity by adding

bit vectors to each TLB entry and tracking the classification in a per-block ba-

sis [15, 31]. Finer granularity helps to remove the classification accuracy and the

cost of extra hardware overhead and has been shown helpful in improving the

performance and scalability of directory-based protocols. This work analyzes

the benefits of this classification, along with a new classification that clusters

blocks, on Token coherence.

3. TLB-based data classification schemes

We propose to apply TLB-based fine-grain data classification to filter To-

ken coherence traffic. For this purpose, we describe in detail three alternatives

for classifying data using TLB-to-TLB communication. The first classification

mechanism works at page granularity and was proposed by Ros et al. [14] to

improve directory-based coherence protocols. The second classification mech-

anism works at block granularity and was recently proposed by the authors

of this work [15] also to improve directory-based coherence protocols. Finally,

the third mechanism is a new proposal, inspired by the work by Soltaniyeh et

al. [32] but placed at the TLB and performed through TLB-to-TLB communi-

cation without requiring any operating system modification, that works at an

intermediate granularity and seeks to achieve a good balance in classification

accuracy versus storage requirements.

3.1. Page-grain classification (PGC)

The page-grain classification mechanism classifies pages as private or shared

using a TLB classification protocol and stores the classification information
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along with the TLB entries. The classification is based on gathering information

about the use of the pages by each core. A simple approach is to treat a page

present in the TLB as in use. Pages used by more than two cores are considered

as shared, while pages used by a single core are considered as private.

This technique faces a mis-classification of memory blocks. Two blocks be-

longing to the same page but accessed by different cores would be considered

as shared, as they belong to a shared page. The next schemes aim to avoid this

mis-classification of blocks, making the data classification more accurate.

3.1.1. Classification protocol

The goal of the classification protocol is to classify each page as private or

shared. The classification is stored along with the TLB entries, and therefore, on

a TLB miss the classification protocol is triggered to retrieve the private-shared

information.

With the purpose of collecting the information about the use of the pages

by other cores, on each TLB miss, a broadcast request is sent to all cores in the

system. This request is simply asking about the use of the page by other cores.

All cores reply with the information about the use of the page, by sending the

address translation for the page in case they have it in their TLB, which helps

to accelerate TLB misses as the page table walk to find the address translation

may incur long latency. Once the requesting core receives all the replies, it

can classify the page. If no other core is using the page, the page is private.

Otherwise, the page is shared.

In case of a race condition where a TLB that initiated a broadcast request

receives a remote request from another TLB for the same page, the page is

classified as shared by both cores.

Protocol messages and their size. The TLB request message broadcast to other

cores TLBs includes the address of the accessed page and the requesting core

information. These fields are standard in all protocol messages and included in

the message header (8 bytes). Other core TLBs respond with a control message
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Virtual Address Physical Address P

Figure 1: TLB entry for Page-Grain Classification

containing the header (8 bytes) plus the address translation (4 bytes) only if

the requested page is present in the TLB.

3.1.2. Storage requirements

The classification information for each page is stored along with the TLB

entries. Figure 1 shows how each TLB entry is extended to support page-

grain classification (extra fields in gray). The virtual and physical addresses are

already present in the TLB entries. The P bit (private) indicates if the page is

private (P=1) or shared (P=0). The TLB is accessed on each cache access since

both structures are accessed in parallel.

In case of a cache miss (and TLB hit), a coherence transaction is initiated

for the missing block using the P bit corresponding to its page retrieved from

the TLB before the cache miss is detected.

3.2. Block-grain classification (BGC)

Block-grain classification aims to improve the accuracy of page-grain schemes

by tracking private-shared information for each accessed block. They are based

on collecting information about the use (or predicted use) of the blocks by each

core. TLB entries, therefore, need to be extended with information about the

use of each block within the page: the access (A) bit vector. Each bit in the

vector represents each of the blocks in the page. A bit set to one means that

the block has been accessed, while a zero means that the block has not been

accessed. The obtained per-block classification is also stored in another bit-

vector field added to each TLB entry: the private (P) bit vector. The value

of the corresponding bit for a memory block in both bit vectors indicate its

classification status, as described in table 1.
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Table 1: Access and private bits for a particular memory blocks and its classification status

Access Private Classification status

0 0 Block not accessed. No classification performed.

0 1 Block not accessed. But no other core asked for it,

so it will become private when accessed.

1 0 Block accessed and shared.

1 1 Block accessed and private.

3.2.1. Classification protocol

The classification protocol is triggered in two situations: a TLB miss (since

there are no vectors stored for that page) and TLB classification miss (when the

corresponding bits to the accessed block in the access and private bit vectors are

set to zero (0,0) and the classification is not know for that block). The protocol

works as follows.

On a TLB or classification miss, a request is broadcast to all other TLBs in

the system. All TLBs reply with their prediction of use for each block in a bit

vector in case of a TLB miss, or simply the predicted use of the requested block

in case of a classification miss. Classifying as many blocks as possible in a single

protocol transaction helps to reduce the traffic overhead of the classification

scheme. Similarly to the page-grain scheme, the address translation of the page

is sent along with the responses to accelerate the TLB misses in case the address

translation was not found in the local TLB.

Once the broadcasting TLB receives all replies, it extracts the information

or predicted use of all other cores and performs a bit-wise NOR operation with

the vectors received. The result from the operation indicates the privacy of each

block in the page. That is, only if no other core claims a use of the block, it can

be considered private.

Figure 2 shows an example of the classification protocol for the block-grain

scheme, which also includes some optimizations explained along with the exam-

ple. Core-3 suffers a TLB miss and, consequently, it broadcasts a request for a
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P
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P

Block offered as private to 
improve spatial locality

Figure 2: Block-grain Classification scheme

block with offset 0 in the depicted page. The access bit of the block with offset

zero is set to 1 as the core is accessing the block. The request is broadcast to

all TLBs in the system.

When core-0 receives the request from core-3, it makes the prediction of the

cache blocks that it expects to use. Since it is not accessing blocks 0 and 1 the

core will reply offering them as private (0 in the bit vector). Block 2 is already

shared, so it will be not offered as private (1 in the bit vector). Finally, block

3 is potentially private at core-0, but not accessed. In this case, core 0 decides

that, since it accessed block 2, and core-3 is asking for block 0, core-0 has more

chances to access block 3 due to spatial locality and will not offer the block as

private (1 in the bit vector). A simple OR operation between the access and

private vector suffices to compute the response issued back to core-3. Core-0

sends a 0011 bit vector to core-3. Core-1 has block 0 as private, and it has to

convert it to shared, thus resetting the private bit of block 0. Block 1 is this

time offered as private by Core-1, since Core-3 is just accessing block 0, and

spatial locality says that it may probably access block 1 in the near future. The

general rule for spatial locality is that a core offer all blocks as private from the

requested block to the first accessed block (block 1 in core-1 in this example).
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Block 2 is shared, and therefore not offered as private, and block 3 can be offered

as private. Core-1 sends a 1010 bit vector to core-3.

When core-3 receives all the replies, it performs a NOR operation for all

replies (0100) to get the private bit vector. Additionally, core-3 can extract

from the received vectors sharing information for blocks that it has not accessed.

This happens in the example for block 2 and we call it the access prefetch

optimization. In essence, when more than one TLB has claimed the use of a

block, we can infer that the block will be a shared one when accessed. The way

to mark it before the access as shared is to set it as accessed directly, even if

it has not been accessed yet. This optimization allows to reduce the broadcast

operation, due to classification misses, for shared blocks in the future. Both the

spatial locality optimization and the access prefetch optimization help to reduce

the number of broadcast operations in the block-grain scheme.

Protocol messages and their size. The TLB request now also contains the ad-

dress of the requested block, not just the page address. The block address is

used, for example, in the optimization for the spatial locality described in this

section. As this information is commonly included in the header of the message,

requests are made of 8 bytes. The responses issued by the TLBs include the us-

age information (access bit vector), which, considering that 4KB pages contain

64 blocks, is represented using 64 bits (8 bytes). In addition, some response

messages may include the physical address translation, encoded using 4 bytes.

Responses due to classification misses do not send the access bit vector nor the

page translation information, thus using the 8-byte message format.

3.2.2. Storage requirements

Block-grain data classification stores the access and private bit vectors for the

corresponding pages in TLB entries. Figure 3 shows the format of a TLB entry

in the block-grain classification scheme (added fields in gray). As mentioned,

two bit vectors are added to TLB entries: access and private. Accessed blocks

are classified according to their private bit. Non-accessed blocks are considered
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Virtual address Physical address Access bit vector Private bit vector

0 0 0 0 0 1 1 1 1 1

Figure 3: TLB entry in Block-grain Classification

not to have any classification information if the private bit is 0, in which case

the classification miss broadcast transaction triggers. If the private bit is 1, new

accessed blocks are transparently (i.e., without informing other cores) moved to

private. Therefore, only one core has a particular block with the private bit set

to 1 independently from being accessed or not. The number of bits required by

each vector is 64, the total number of blocks per page in 4KB pages. Therefore,

each entry adds a total of 16 bytes, a number that does not grow with the

number of cores in the system.

3.2.3. Adaptation to large pages

The majority of OS use a standard page size of 4KB since it allows greater

granular control over the system. It is possible that in certain circumstances,

huge pages may be supported, resulting in larger bit-vectors being used in the

TLB, which can result in a significant increase in the storage needs. An alter-

native would be to consider large pages as shared by default, not performing

extra optimizations in case they are employed [31].

3.3. Subpage-grain classification (SGC)

Finally, we propose a subpage-grain classification scheme aimed to achieve a

trade-off between TLB storage and classification accuracy. This scheme works

at a finer granularity than the page-grain policy but at a coarser granularity

than the block-grain policy. The technique is based on the well-known concept

of clustering, in a similar way as cores clustered in a coarse bit vector [33].

Without loss of generality, we assume in our implementation a clustering value

K=4, that is, four contiguous blocks are represented using a single bit.

Shrinking the size of bit-vectors with clustering helps to reduce TLB storage

requirements but also has an impact on performance. On the one hand, it may
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reduce the accuracy of classification, and on the other hand, it may reduce

the number of TLB classification miss broadcast operations. We analyze this

proposal along with page-grain and block-grain schemes.

3.3.1. Classification protocol

This classification protocol works similar to BGC. Broadcasting TLB re-

quests happen in two situations: TLB miss and TLB classification miss. Again,

the classification messages use the same network as other coherence messages.

In case of a TLB miss, all TLBs reply with an access bit vector, where each bit

represents a set of blocks in a cluster, instead of an individual block.

Subpage-grain classification has fewer TLB classification misses than the

block-grain classification scheme as the classification of one block is used for

its other three neighbours. The private-shared nature of the cluster of blocks

is calculated after receiving all replies from the other core TLBs applying the

NOR operation for all replies.

Protocol messages and their size. The subpage-grain classification protocol in-

cludes in the TLB requests the page address and the id of the cluster of blocks

in the page accessed. This is again encoded in the header of the message. Each

TLB core reply with a control message that includes a header with the target

address (8 bytes). In case of a request generated by a TLB miss, and on a hit

in the remote TLB, the response message adds the access bit vector (2 bytes

now due to clustering, that is, four times less compared to information sent in

the block-grain classification scheme) and the address translation (4 bytes). In

case of a classification miss, the response just adds a single bit in the header

indicating the use of the requesting cluster. SGC reduces therefore the size of

the bit vector sent through the interconnect, thus helping to further reduce the

traffic generated over the interconnection network.

3.3.2. Storage requirements

The subpage-grain classification technique requires adding two-bit vectors

to each TLB entry (access and private), as the block-grain classification mech-
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Figure 4: Subpage-grain Classification scheme

anism. Still, these vectors are four times smaller, reducing the storage area

requirements. Figure 4 depicts the bit vector formation for the sub-page classi-

fication scheme, where the first bit in each vector corresponds to blocks 0, 1, 2,

and 3 (and to the four first bits in a block-grain scheme). Overall the subpage-

grain classification scheme adds 4 bytes to each TLB entry. The TLB scheme

is similar to the one depicted for the block-grain scheme (see Figure 3).

3.3.3. Adaptation to large pages

As discussed in Section 3.2.3, large pages (e.g., 2MB) would enlarge the mem-

ory requirements of the access and private bit vectors, which can dramatically

increase the memory requirements. The subpage-grain classification approach

simply solves this problem by just modifying the K value. Larger pages can use

a larger K value, just that the size of the vector is always the same, independent

on the page.

4. Applying data classification to Token coherence

The Token coherence protocol broadcasts all cache miss requests without

knowing the nature of the accessed block. In this work, we propose integrating

an efficient data classification mechanism with a Token coherence protocol in

order to filter such broadcast requests. This section discusses the integration of
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the Page-grain (PGC), Block-grain(BGC), and Subpage-grain (SGC) classifica-

tion schemes in a Token coherence protocol.

On each memory reference, the core access in parallel both to the TLB and

the L1 cache, since we assume virtually-indexed, physically tagged caches.1. In

case of a cache miss, the TLB retrieves the classification for the accessed block:

the one of the page, subpage, or block, depending on the implemented scheme.

If the classification for the block being accessed is shared, then the Token

protocol behaviour is not altered. However, in case the classification is private,

there is a guarantee that the current block is not accessed by other core, and

issuing a broadcast request is therefore not required. In that case, the broadcast

request is filtered, thus saving important network traffic.

Note that even if our classification mechanism relies on broadcast, once a

block is classified as private, it can filter many Token broadcast requests due

to cache misses as (1) the life of TLB pages is longer than the life of blocks in

the local cache and (2) in a single TLB broadcast request our mechanisms can

classify several blocks at the same time, even when considering the block-grain

approach, since the protocol replies with the use information of all blocks within

a page.

Figure 5 shows the classification integration with Token coherence. A request

is broadcast to all TLBs in the case of TLB miss. BGC and SGC also perform

the broadcast in the case of a TLB classification miss in parallel to the cache

access and in case of a hit, the classification is not required. The requestor

collects responses from all TLBs (vectors and page translation information) to

form the private/shared classification. On a cache miss, Token coherence does

not broadcast the coherence request for private blocks, but a single request to

the home controller is sent to get the tokens and cache block. Otherwise, Token

coherence performs the broadcast as usual.

1However, the mechanism can work with other cache designs [34]
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Figure 5: Token-grain classification scheme

4.1. Recovery mechanism

Commonly, when a block transitions from private to shared, a recovery mech-

anism is required as a block considered not coherent before becomes coherent

now. For example, directory protocols require the eviction (or directory up-

date [11]) of the blocks transitioning from private to shared as the directory

does not track them. Token coherence protocols do not require the recovery

process as the sharing information (tokens) is distributed among the coherence

nodes. This, is an important simplification with respect to the integration of

the classification in directory protocols and offers better performance for the

classification as the eviction time can be quite large.

4.2. TLB evictions or TLB shoot-down

Private-shared data classification information is lost when a TLB entry is

evicted due to TLB capacity or a TLB shoot-down. When invalidating a TLB

entry, the usage information is lost, and the corresponding blocks for the page
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should not be locally cached. Otherwise, other TLB may believe that the block

is not in use by other core and considered as private while indeed may be not

private. All blocks belonging to the evicted page are invalidated from the cache

to keep the classification consistent. This procedure is commonly supported

when TLB shoot-downs take place, as the corresponding virtual address may

have changed its physical location.

5. Simulation environment

We evaluate how the data classification at different granularities affects the

performance of Token coherence. To this end, we perform full-system simula-

tions using Virtutech Simics [35] and the Wisconsin GEMS [36] tool-set. We

use the simple network model provided by GEMS. The simulated architecture

is a tiled-CMP architecture (with 8(2x2), 16(4x4) and 32(4x8) tiles/cores) that

maintains coherence using a Token protocol. We also model a directory-based

coherence protocol to offer a comparison point between Token and directory

protocols. We model in-order cores with private L1 caches and a shared unified

L2 cache. Table 2 shows the parameters of the simulated system. Four memory

references are considered for TLB miss latency to walk the page table, as in the

48-bit x86-64 virtual address space.

We apply the three classification schemes described in Section 3 to a Token

protocol, and hence we refer to our resulting schemes as Token-PGC, Token-

SGC, and Token-BGC. We refer to just Token to the baseline Token coherence

protocol without a classification scheme. Token coherence uses persistent re-

quests if normal communication reaches the time limit. Private-shared data

classification is not applied to persistent requests to streamline the Token co-

herence.

These schemes are evaluated using 14 different parallel workloads from SPLASH-

2 [37] and PARSEC [38]. Table 3 shows the input used for each benchmark. We

report results for the parallel phase of each benchmark, and the classification

mechanism is initialized at the beginning of the parallel phase. Due to the large
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Table 2: System configuration

Processor 2.20GHz, 8, 16, and 32 cores.

Cache hierarchy Non-inclusive. Token and directory-based coherence.

L1 I/D caches: 64KB, 4-way (256 sets), 2 cycle access

latency. Shared L2 cache: 1MB/tile, 8-way (2048 sets),

6 cycles access latency. Memory access time: 160 cycles.

Virtual memory I/D TLB: 128 sets, 4 ways, 1 hit cycle, 1000 cycles to

walk the page table, 4KB page sizes.

On-chip Network 4x4 2-D mesh with broadcast support. Flit size: 16

bytes. Bandwidth: 1 flit/cycle. 5-flit data and 1-flit

control messages. 1-cycle switch and 1-cycle link time.

simulation time requirements of 32-core simulation, we selected the benchmarks

that were able to be simulated to completion in a reasonable amount of time. In

particular, we run the same benchmarks as in our previous work on classifica-

tion [31], excluding Volrend since we noticed in our simulations the appearance

of the performance bug described in the SPLASH-3 work [39].

6. Results

This section shows how different data classification schemes help to reduce

the number of broadcast operations in Token coherence and, in the end, re-

duce the network traffic and improve system performance in Token coherence

protocols.

6.1. Fraction of broadcast requests

Figure 6 shows the the percentage of broadcast requests for Token-PGC

Coherence (First bar), Token-SGC Coherence (Second bar), and Token-BGC

Coherence (Third bar) for 8 cores, 16 cores, and 32 cores. Each bar shows the

broadcast requests split into coherence and classification. The baseline Token
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Table 3: Benchmarks and input sizes

Benchmark Input size

SPLASH-2 Benchmarks

Barnes 8192 bodies, 4 time steps

Cholesky tk15.O

FFT 64K complex doubles

FMM 16K particles

LU 512×512 matrix

LUNC 1024×1024 matrix, 64×64 blocks

Ocean 258×258 ocean

Radiosity room, -ae 5000.0 -en 0.050 -bf 0.10

Radix 8,388,608 integers

Watersp 4096 molecules

PARSEC Benchmarks

Blackscholes Simmedium

Fluidanimate Simsmall

Swaptions Simsmall

x264 Simsmall

coherence contains only coherence broadcasts. Our private-shared data classifi-

cation is able to filter the broadcast requests issued by the coherence protocol

with minimal classification (TLB) broadcast request overhead, which ultimately

leads to a decrease in the number of cache look-ups, and a consequent decrease

in energy consumption.

Figure 6a shows the the percentage of broadcast requests for the 8-core con-

figuration. Token-PGC, working on a coarse granularity, classifies more memory

blocks as shared, and the filtering is less effective. Indeed, Token-PGC re-

duces broadcast by 38.7% compared to the baseline Token coherence. Although

Token-PGC coherence has lower memory overhead, its benefit is limited, and

finer-grain classification is required to achieve larger reduction. Token-SGC im-
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proves the classification by allocating one bit to represent the classification of

four blocks, and that helps reducing broadcast by 52.9% (14.2% reduction com-

pared to Token-PGC). Token-BGC reduces the number of broadcast operations

by 53.9%. The effectiveness of Token-SGC is therefore similar to Token-BGC

(just 1.0% difference), and therefore it represents a good trade-off between stor-

age requirements and filtering capabilities.

Figure 6b and Figure 6c focus on 16- and 32-core configurations, respectively.

Token-PGC reduces broadcast by 26.4% and 21.3%, respectively. Token-SGC

filters 40.1% and 30.0%, respectively, of broadcast requests. Finally, Token-

BGC reduces even more broadcast operations (46.4% and 36.7%, respectively).

As the number of core increases, the number of filtered broadcast operations is

reducing as the sharing behavior of data increases as the number of core grows.

6.2. Normalized Network traffic

This section analyzes the overall impact on network traffic considering the

TLB broadcast overhead in network traffic and the reduction in network traffic

due to the broadcast filtering. Figure 7 shows the traffic in the on-chip network,

flits transmitted from router to router, which it can be considered as a proxy for

network energy consumption. The traffic is normalized with respect to Token

protocol (first bar), and it is shown also for Directory (Second bar), Token-

PGC (Third bar), Token-SGC (Fourth bar), and Token-BGC (Fifth bar) and

for 8, 16 and 32 cores. Each bar differentiates the traffic based on cache request,

cache response control, cache response data, TLB request control, TLB response

control, and TLB response data. Token-SGC scheme and Token-BGC scheme

have more TLB requests issued than the Token-PGC approach. This is because

Token-PGC coherence has TLB broadcast only in one case, TLB miss. In

contrast, Token-BGC and Token-SGC coherence broadcast in two instances:

TLB miss and TLB classification miss, which increases the number of TLB

broadcast operations.

Directory, Token-PGC, Token-SGC, and Token-BGC reduce the network

traffic by 6.9%, 11.3%, 15.3%, and 16.2%, respectively for 8 cores. Token-SGC
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Figure 6: Number of broadcast requests in Token coherence

and Token-BGC reduce the network traffic by 4.0% and 5.0% compared to the

Token-PGC coherence scheme. The reductions are in line with Figure 6a. For

example, Blackscholes is the application that reduces more broadcast requests,

as it is highly parallel, and it therefore reduces to a greater extent the cache

request traffic.

For 16 cores, on average, the overhead of the number of TLB requests in

Token-SGC and Token-BGC is 1.5% and 2.7%, respectively, compared to the
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Figure 7: Normalized Network traffic

Token-PGC approach. FFT and Radix show more TLB communication over-

head in Token-BGC, since pages are densely accessed and with irregular sharing

patterns. Token-SGC helps to reduce the TLB communication overhead that

is observed in the FFT, Radix benchmarks, at the cost of classification accu-

racy. Directory, Token-PGC, Token-SGC, and Token-BGC reduce the network

traffic by 24.0%, 10.3%, 16.0%, and 16.1% than the baseline Token protocol for
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16 cores. On average, Token-BGC reduces network traffic by 6.0% compared

to Token-PGC. Token-SGC reduces the TLB miss classification broadcast com-

pared to the Token-BGC, which helps to reduce the network traffic. At the same

time, Token-BGC has more reduction in the broadcast operation of private data.

They both compensate each other and turns into the same performance on av-

erage.

For 32 cores, Directory, Token-PGC, Token-SGC, and Token-BGC reduce

the network traffic by 35.9%, 9.8%, 14.4%, and 16.2% compared to baseline

Token coherence. Ocean and Blackscholes shows more broadcast reduction in

Figure 6c) that reflects in more reduction in the network traffic for 32 cores.

FFT and Radix benchmark increase the overall network traffic as it has more

TLB communication network traffic. FFT and Radix spend increase network

traffic in TLB communication for tracking private data, but at the same time

the TLB communication helps to find address translation and to accelerate

TLB misses. We can observe that as the number of core increases, the TLB

broadcast increases. Token-SGC reduces the same network traffic compared to

Token-BGC.

6.3. L1 cache miss latency

Figure 8 shows the average L1 cache miss latency in Token coherence (First

bar), Directory (Second bar), Token-PGC (Third bar), Token-SGC (Fourth

bar), and Token-BGC (Fifth bar) for 8 cores, 16 cores, and 32 cores.

For 8 cores, the L1 cache miss latency in Token, Directory, Token-PGC,

Token-SGC, and Token-BGC is 64.1, 70.0, 47.9, 48.1, and 49.0 cycles, respec-

tively. FFT and Radix show around 57.4% and 44.5% reduction in cycles for all

the classification schemes compared to baseline Token coherence. For 16 cores,

the L1 cache miss latency in Token, Directory, Token-PGC, Token-SGC, and

Token-BGC is 57.6, 63.7, 40.0, 40.5, and 41.5 cycles, respectively. FFT and

Radix show around 35.3% and 46.5% reduction in cycles for all the three clas-

sification schemes compared to baseline Token coherence. For 32 cores, the L1
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cache miss latency in Token, Directory, Token-PGC, Token-SGC, and Token-

BGC is 75.8, 82.9, 50.6, 49.2, and 50.9 cycles, respectively.

Token coherence reduces cache miss latency by avoiding the indirection to

the directory present in directory protocols. Our classification schemes applied

to Token coherence still include the advantage of avoiding indirection, but also

reduce broadcast and accelerate address translation. By reducing broadcast

requests, the latency of cache misses is also reduced. As the number of cores

increase, the reduction in L1 cache miss latency also increases. On the other

hand, the increase in traffic due to TLB communication does not negatively

affect cache miss latency, as this process is done before the cache miss and also

is done in parallel to the page table walking, which is usually the limiting factor

on a TLB miss.

6.4. Execution time

Figure 9 presents the execution time for Directory (Second bar), Token-PGC

(Third bar), Token-SGC (Fourth bar), and Token-BGC (Fifth bar), normalized

with respect to baseline Token coherence (First bar), for 8, 16, and 32 cores.

The first observation is that Token and Directory perform practically on

par. Directory requires access to the home tile for every cache miss, resulting in

most cache misses requiring more time to obtain the desired data. This latency

increases as the number of cores increase. On the other hand, Token, although

it avoids the indirection to the home node, relies on broadcast. The broadcast

also becomes more problematic as the number of cores increase. Hence, the

similar results obtained for both protocols.

As mentioned, there are several factors that make classification mechanisms

faster. First, they reduce broadcast at the same time that benefit from the lack

of indirection of Token. Additionally, they accelerate page translation thanks

to the TLB-to-TLB communication [14], which is one of the key reasons behind

the performance improvements.

In particular, when considering 8 cores (Figure 9a), the execution time im-

provement in Token-PGC, Token-SGC, and Token-BGC is 10.6%, 10.7%, 10.5%
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Figure 8: L1 cache miss latency

respectively, with respect to the baseline token coherence protocol. Directory

protocol gives almost the same performance as Token protocol. Radix has a

maximum reduction in the L1 cache miss latency (44.5%), as seen in Figure 8,

which results in a 41.0% improvement in all three schemes. It uses more TLB

communication traffic to determine classification, but it also lowers the num-

ber of cycles to perform the page address translation. Note that as mentioned
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previously, this extra traffic is in parallel with the address translation, which

is the factor limiting the latency on a TLB miss. When considering 16 cores

(Figure 9b), Directory, Token-PGC, Token-SGC, and Token-BGC reduce the

execution time by 1.0%, 12.3%, 12.0%, and 12.9% compared to the baseline

Token protocol. When considering 32 cores (Figure 9c), Directory, Token-PGC,

Token-SGC, and Token-BGC reduce the execution time by 2.0%, 25.7%, 25.3%,

and 25.2%, respectively, with respect to the baseline token protocol. The per-

formance improvement is doubled for 32 cores compared to the 16-core configu-

ration. The classification provides more performance benefits as the number of

cores increases in the system.

6.5. Storage overhead

This section compares the storage overhead of the three classification schemes

analyzed and the two cache coherence protocols considered. Coherence proto-

cols entail extra overhead to track the coherence information. The classification

mechanism adds extra overhead due to storing the classification information.

Table 4 shows the memory overhead (in KB) of the coherence protocols for

each core in the system, which depends on the number of cores. Token coherence

keeps the token count for any block stored in the L1 and L2 caches, requiring

1+log2(n) bits (the owner-token bit and non-owner token count) –the L1 and L2

cache level stores these extra bits in the tag part of the caches. Our directory-

based protocol stores the directory information either in the L2 tags, when the

L2 cache holds a copy of the block, or in a distributed directory cache, when the

block is stored in any of the L1 caches but not in the L2 cache. Therefore, no

invalidation messages due to directory evictions are generated. In our directory-

based protocol the information is stored using a full-map sharing code. Hence,

the number of bits required corresponds to the number of cores in the system.

Different from the L2, where the sharing information is added to the tags, the

directory is a standalone cache, and therefore we account for the tag (32 bits)

associated to the sharing codes. The directory has a coverage of 100% with

respect to the L1 caches, that is, the same number of entries.

27



0
0.2
0.4
0.6
0.8

1
1.2
1.4

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 t

im
e Token Directory Token-PGC Token-SGC Token-BGC

(a) 8 cores

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
al

ai
ze

d
 E

xe
cu

ti
o

n
 t

im
e

Token Directory Token-PGC Token-SGC Token-BGC

(b) 16 cores

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 t

im
e

Token Directory Token-PGC Token-SGC Token-BGC

(c) 32 cores

Figure 9: Normalized execution time

Table 4: Per-core storage overhead of coherence protocols

8 cores 16 cores 32 cores

Protocol Structure Entries Entry

size

(bits)

Total

size

(KB)

Entry

size

(bits)

Total

size

(KB)

Entry

Size

(bits)

Total

size

(KB)

Token L1D tags 1K 4 0.5 5 0.625 6 0.75

L1I tags 1K 4 0.5 5 0.625 6 0.75

L2 tags 16K 4 8 5 10 6 12

Directory L2 tags 16K 8 16 16 32 32 64

Directory 2K 32+8 10 32+16 12 32+32 16
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Figure 10: Trade-off among the main design goals for coherence protocols

Table 5 shows the memory overhead (in KB) of the classification schemes

for each core in the system, which does not depend on the number of cores

in the system. PGC adds 1 bit for private-shared page information per TLB

entry. BGC classification adds two 64-bit bit-vectors per TLB entry, reaching

an overhead of 16KB per core. SGC classification reduces by four the overhead

of BGC classification, being just 4KB per core. These classification methods

do not increase the area overhead as the number of cores increases. On the

contrary, storage demands of Token grow logarithmically as the number of cores

increases, and worse, storage demands of a full-map directory grow linearly with

the number of cores. The memory requirements for Token-PGC, Token-SGC,

and Token-BGC correspond to the addition of the memory requirements of both

the Token protocol and the classification protocol.

Table 5: Per-core storage overhead of classification protocols

Protocol Structure Entries Entry size (bits) Total size (KB)

PGC ITLB 512 1 0.0625

DTLB 512 1 0.0625

SGC ITLB 512 32 2

DTLB 512 32 2

BGC ITLB 512 128 8

DTLB 512 128 8
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6.6. Overall analysis

Figure 10 shows a three-fold trade-off among network traffic, execution time,

and storage overhead for the evaluated coherence and classification protocols.

The three-axis are normalized with respect to a Token protocol. Again, we show

three configurations: 8 cores, 16 cores, and 32 cores. In general, the Token

coherence protocol does not achieve good results for all the parameters. The

Token protocol has the highest network traffic and execution time, but it also

has fewer memory requirements. In contrast, the directory protocol requires the

largest memory requirements and the lowest network traffic in all protocols. For

an 8-core configuration, Directory, Token-PGC, Token-SGC, and Token-BGC

can reduce network traffic by 6.0%, 12.0%, 15.0%, and 16.0% compared to

baseline directory protocol, respectively. Compared to baseline Token protocol,

Directory, Token-PGC, Token-SGC, and Token-BGC reduce execution time by

1.0%, 9.0%, 11.0%, and 10.0%, respectively.

Although Token coherence has acceptable storage requirements for a 16-core

configuration, it is limited by traffic. Token-PGC has a 12.0% execution time

improvement compared to the Token protocol, and also requires lower storage.

Token-PGC experiences more network traffic than the Token-SGC and Token-

BGC protocols. Compared to a Directory protocol, Token-SGC can better

compromise network traffic with less memory requirements and still guarantee

low average execution time (14.0% improvements). Token-PGC has only 1.0%

more memory requirement compared to the Token protocol.

For a 32-core configuration, all classification-based protocols have fewer

memory requirements than the directory protocol and a 24.0% improvement

in execution time. As the number of core grows, the TLB communication over-

head can increase. However, the classification protocols manage to reduce this

overhead considerably.

In general, the baseline Token coherence protocol and Directory protocol

do not get good results for all the performance metrics. However, shrinking

bit vectors for Token-SGC can lead to a good compromise between memory

requirements and network traffic, improving execution time.
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7. Related work

Classifying data as private or shared can improve the energy efficiency of

the cache memories [40, 41], remove interference misses by allowing cache par-

titioning [42], and improve the cache coherence mechanism, leading to system

performance [15, 19, 43, 25, 26, 27, 44, 45, 31]. In particular, some works aim

to reduce access latency to NUCA caches in a tiled-CMP [46, 20], other works

to reduce the directory size [11, 32], and other works to bring down the number

of broadcast operations in snoop-based cache coherence protocols [4, 47, 48].

There are several compiler, hardware, and operating system-based tech-

niques to find private-shared data classification at different granularity. In

a compiler-dependent approach [20, 12], it is hard to know during compila-

tion time what will be the status of a variable at execution time. Our pro-

posed schemes work during program execution which gives more precise clas-

sification. Hardware-based techniques implemented at the coherence direc-

tory [8, 22, 26] work on finer granularity, but they entail large storage re-

quirements. More importantly, the classification is unknown in directory-based

schemes until the directory is accessed, thus preventing their use to filter coher-

ence traffic in snoop-based protocols. Operating-system-based data classifica-

tion mechanisms [46, 11, 13] use the existing hardware structure like page-table

and TLB and, as a result, they do not require important hardware changes.

However, operating system-based data classifications work at a coarse (page)

granularity, resulting in the misclassification of blocks in the presence of false

sharing within their page.

Achieving accurate fine-grain classification before a cache miss takes place

has been previously investigated. Davari et al. [43] made a potential study on

both granularity and adaptivity, showing a potential for both factors in a num-

ber of applications. Upadhyay et al. [15, 31] proposed a block grain classification

to improve directory-based coherence. However, it comes with some extra stor-

age at the TLB level, which we minimize in this work. Also, we apply the

resulting classification to filtering traffic in Token protocols, showing potential
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for that kind of protocol too. Soltaniyeh et al. [32] analyzed a subpage-grain

data classification to improve directory-based protocols. However, their alter-

native employs an on-chip page table and requires modification in the operating

system. In addition, their page tables store the keeper information for each sub-

page and the other information, which results in storage overhead to hold all

keepers. Differently from their subpage-grain data classification, our proposed

SGC classification leverages TLB-to-TLB communication and reduces storage

requirements.

Subspace snooping [4] also targets broadcast filtering in snooping-based pro-

tocols. Their approach is to store the sharer information in the page table and

converts the broadcast request into a multicast only to the sharer of the block.

Therefore, they require to store information about the sharers of a block. In

contrast, our approach uses a single bit indicating the private or shared nature

of a page, which is more efficient. More importantly, they can just support page

granularity, while our approach can go beyond the page limit.

Coarse-Grain Coherence Tracking [21] monitors the coherence status of large

memory regions and uses that information to avoid unnecessary broadcasts in

a multiprocessor system. Differently from coarse-grain coherence tracking, our

classification techniques work at the TLB level. This brings several benefits,

such as fast address translation, classification provided before the first cache

miss, more effective, and reusing TLB tags, thus requiring less storage than

coarse-grain coherence tracking.

TokenTLB [24, 27] is a novel classification technique using TLB structure di-

rectly to reduce consumption in directory cache coherence protocols. TokenTLB

works like Token coherence [16], applying tokens for classification as it does not

require issuing persistent requests as in the case of races, the page is classified

as shared. They are also restricted to page granularity, although that technique

could be combined with our SGC to improve accuracy. However, the storage

requirement of tracking token at subpage granularity would be much higher.

The proposed schemes work on different granular approaches and analyze the

trade of area and token cache coherence performance using the TLB broadcast
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mechanism.

8. Conclusion

We have proposed to apply fine-grain private/shared data classification tech-

niques to filter broadcast traffic in Token coherence. The described classification

mechanisms work at the TLB level and provide the private/shared classification

for a missing block in the cache before any coherence action to obtain that block

is performed. This allows us to filter unnecessary broadcast requests for private

data in Token coherence and reduce the L1 cache miss latency.

We have analyzed the trade-off among classification storage, performance,

and traffic, showing that a subpage-grain classification offers a good compromise

among them. Token-SGC requires less area storage and performs similar to

Token-BGC. The proposed Token-SGC scheme eliminates, on average, 40.1%

of broadcast request operations and results in a reduction of network traffic

by 16.0% and a performance improvement of 12.0% compared to the baseline

Token protocol for 16-cores. In terms of storage requirements, Token-SGC adds

a moderate amount of storage requirement. Token-SGC has a bit more storage

requirement than the baseline Token coherence protocol and four times less than

the Token-BGC protocol.
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