
Efficient Invisible Speculative Execution through
Selective Delay and Value Prediction

Christos Sakalis
Uppsala University
Uppsala, Sweden

christos.sakalis@it.uu.se

Stefanos Kaxiras
Uppsala University
Uppsala, Sweden

stefanos.kaxiras@it.uu.se

Alberto Ros
University of Murcia

Murcia, Spain
aros@ditec.um.es

Alexandra Jimborean
Uppsala University
Uppsala, Sweden

alexandra.jimborean@it.uu.se

Magnus Själander
Norwegian University of Science and

Technology
Trondheim, Norway

magnus.sjalander@ntnu.no

ABSTRACT
Speculative execution, the base onwhichmodern high-performance
general-purpose CPUs are built on, has recently been shown to en-
able a slew of security attacks. All these attacks are centered around
a common set of behaviors: During speculative execution, the archi-
tectural state of the system is kept unmodified, until the speculation
can be verified. In the event that a misspeculation occurs, then any-
thing that can affect the architectural state is reverted (squashed)
and re-executed correctly. However, the same is not true for the
microarchitectural state. Normally invisible to the user, changes to
the microarchitectural state can be observed through various side-
channels, with timing differences caused by the memory hierarchy
being one of the most common and easy to exploit. The speculative
side-channels can then be exploited to perform attacks that can
bypass software and hardware checks in order to leak information.
These attacks, out of which the most infamous are perhaps Spectre
and Meltdown, have led to a frantic search for solutions.

In this work, we present our own solution for reducing the
microarchitectural state-changes caused by speculative execution
in the memory hierarchy. It is based on the observation that if
we only allow accesses that hit in the L1 data cache to proceed,
then we can easily hide any microarchitectural changes until after
the speculation has been verified. At the same time, we propose to
prevent stalls by value predicting the loads that miss in the L1. Value
prediction, though speculative, constitutes an invisible form of
speculation, not seen outside the core. We evaluate our solution and
show that we can prevent observable microarchitectural changes in
the memory hierarchy while keeping the performance and energy
costs at 11% and 7%, respectively. In comparison, the current state
of the art solution, InvisiSpec, incurs a 46% performance loss and a
51% energy increase.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6669-4/19/06. . . $15.00
https://doi.org/10.1145/3307650.3322216

CCS CONCEPTS
• Security and privacy→ Side-channel analysis and counter-
measures.

KEYWORDS
speculative execution, side-channel attacks, caches

ACM Reference Format:
Christos Sakalis, Stefanos Kaxiras, Alberto Ros, Alexandra Jimborean, and
Magnus Själander. 2019. Efficient Invisible Speculative Execution through Se-
lective Delay and Value Prediction. In The 46th Annual International Sympo-
sium on Computer Architecture (ISCA ’19), June 22–26, 2019, Phoenix, AZ, USA.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3307650.3322216

1 INTRODUCTION
Side-channel attacks that rely on shared microarchitectural state
and behavior to leak information have been known to the archi-
tecture and the security communities for years. In particular, side-
channel attacks on the cache system have been practically demon-
strated in many forms for the level-one cache (L1) (when the at-
tacker can share the same core as the target) [4], the shared last-level
cache (LLC) (when the attacker can share the LLC) [33, 60], and the
coherence protocol (when the attacker can simply be collocated in
the same system, under a single coherence domain, with the tar-
get) [17]. However, starting with Spectre [23] and Meltdown [29], a
new class of speculative side-channel attacks have sent a shockwave
through the architecture community. Speculation, one of the funda-
mental techniques we have for achieving high performance, proved
to be a significant security hole, leaving the door wide open for side-
channel attacks to “see” protected data. As far as the instruction set
architecture (ISA) and the target program are concerned, leaking
the information across a covert side-channel is not illegal because it
does not affect the functional, architectural behavior of the program.
The stealthy nature of a speculative side-channel attack is based on
microarchitectural state being changed by speculation even when
the architectural state is not.

The need to hide speculation is unwaning even in the face of the
latest and most sophisticated proposals to counteract side-channel
attacks. Side-channel attacks based on the position of a cache line
in the cache (e.g., Flush+Reload [60] or Prime+Probe [33] attacks)

https://doi.org/10.1145/3307650.3322216
https://doi.org/10.1145/3307650.3322216

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA C. Sakalis, S. Kaxiras, A. Ros, A. Jimborean, and M. Själander

can be confronted with techniques such as randomization or en-
cryption of addresses. Qureshi recently proposed an efficient and
performant solution that can provide strong security guarantees for
such attacks [44]. However, even such solutions can do nothing for
timing attacks such as the invalidation side-channel attack [51]. No
matter how addresses are randomized or encrypted (and cache lines
shuffled around in the caches), in an invalidation-based coherence
protocol, a writer still has to locate and invalidate all shared copies.
By timing the difference between writes that invalidate and writes
that do not, we can “see” speculative loads that accessed specific
addresses. In addition, randomization and cache isolation based
solutions do not protect against attacks originating from within the
same execution context, such as some variants of Spectre [23]. This
makes it a priority to search for an approach to make the effects
of speculation invisible without unduly affecting performance or
energy consumption.

In a breakthrough paper, Yan et al. were the first to propose an
approach, referred to as InvisiSpec, to hide changes inmicroarchitec-
tural state due to speculation [59]. InvisiSpec makes the accesses of
a speculative load invisible in the cache hierarchy (by not changing
cache and coherence state) and subsequently verifies correctness
and makes changes in the memory hierarchy with a visible access
when speculation is validated as correct. If the speculation fails to
validate, the invisible access (although it occurred and consumed
system resources, e.g., bandwidth) leaves no trace behind.

While Yan et al. provide an elegant solution to overlap the visi-
ble accesses of the loads [59], the simple fact that the accesses to
the memory hierarchy are effectively doubled carries a non-trivial
performance and energy cost [46]. The motivation of our work is
to examine if a completely different approach to the same problem,
one that still maintains the one-request-per-load execution model,
can potentially yield better results.

We present a new solution that not only hides speculation, but
recovers a significant portion of the performance and energy cost
that double-access proposals such as InvisiSpec are bound to pay.
To issue just a single access per load we must ensure that the load
is non-speculative, otherwise we risk exposing speculative side-
effects. Delaying all loads until they are non-speculative proves to
be devastating for performance. However, we do not have to. Our
solution is based on two simple observations:

(1) For speculative loads that hit in the L1, we can allow them to
proceed and use the accessed memory, provided that we do
not affect the L1 replacement state or perform any prefetches
at that time. This keeps speculative hits invisible.

(2) For speculative loads that miss in the L1 we use value pre-
diction instead of sending a request deeper in the memory
hierarchy. Value prediction is completely invisible to the
outside world, thereby enabling the load to proceed with
a value while keeping its speculation invisible. When the
load is in-the-clear and can no longer be squashed by an
older instruction (Section 2), we issue a normal request to
the memory system that fetches the actual value. At that
point, no matter if the value prediction was correct or not,
the access is non-speculative and cannot be squashed. It is,
therefore, safe to modify the memory hierarchy state.

We only focus on loads, because stores are kept hidden in the
store buffer until they are committed. In our approach, there is only
one single request per load that traverses the memory hierarchy
and fetches data. While to validate value prediction we must serial-
ize these non-speculative requests, we show that: i) the resulting
performance cost is relatively low; and ii) value prediction helps
reduce the cost of waiting for a load to become non-speculative.
We compare against the performance and energy costs of simply
delaying loads until they are no longer speculative and delaying
L1 misses without performing value prediction. To summarize, we
propose and evaluate the following:
• Delaying Loads: We delay speculative loads until they are
non-speculative, preventing any speculative side-effects from
happening. We present two different approaches, one where
loads are only executed when they reach the head of the
reorder buffer (naïve delay), and one where we only delay
loads until we know they can no longer be squashed (eager
delay). The latter is based on the Bell and Lipasti conditions
for committing instructions [1], which will be discussed in
Section 2. We will also describe a structure for efficiently
keeping track of these conditions in Section 4.
• Delaying Only L1 Misses: We limit the eager delay solu-
tion only to loads that miss in the L1 cache, while allowing
hits to execute. We refer to this solution as delay-on-miss.
• Value Predicting Delayed Loads: We augment the delay-
on-miss solution with a value predictor (VP), enabling L1
misses to execute using a predicted value. The value predictor
is local to the core and does not leak any information during
speculative execution, making the loads completely invisible
to others.

We compare our proposed solutions with the current state-of-
the-art approach, InvisiSpec [59], which works by executing all
speculative loads and hiding their side-effects until the specula-
tion has been verified. Simulation results reveal that our proposed,
value prediction based solution can provide secure, memory-side-
channel-free speculative execution with a performance cost of 11%,
significantly outperforming InvisiSpec.

2 SPECULATIVE SHADOWS
For correctness purposes, the architectural side-effects of specula-
tively executed instructions remain hidden until the speculation
can be verified. If a misspeculation is detected, the instructions
following the misspeculation point—also referred to as transient
instructions—are squashed and execution is restarted from the mis-
speculation point. In practice, on modern out-of-order (OoO) cores,
all instructions are considered speculatively executed until they
reach the head of the reorder buffer (ROB). This alleviates the need
to keep track of which instructions are speculative, reducing the
hardware cost and complexity. However, in order to achieve high
performance while hiding the microarchitectural side-effects of
speculatively executed instructions, a more fine-grain approach is
required: During dispatch, instructions with potential to cause a
misspeculation cast a speculative shadow to all the instructions
that follow. For example, a branch with an unresolved condition
or unknown target address casts a shadow to all instructions that
follow it because if the branch is mispredicted, the instructions that

Efficient Invisible Speculative Execution through Selective Delay and Value Prediction ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

bzip
2

gcc

gam
es

s
m

cf
m

ilc

ze
usm

p

gro
m

ac
s

ca
ct

usA
DM

les
lie

3d
nam

d

gobm
k

so
plex

hm
m

er
sje

ng

Gem
sF

DTD

lib
quan

tu
m

h264re
f

to
nto lb

m

om
net

pp
as

ta
r

wrf

sp
hin

x
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

C
au

se
s

of
S

p
ec

ul
at

io
n

Other Load Store Control

Figure 1: A breakdown of the instructions casting specula-
tive shadows on executed loads.

follow it will have to be squashed. We call the instructions under
such shadows (speculatively) shadowed instructions. As soon as
the condition and the branch target are known, the speculation can
be verified and the shadow is lifted. We identify the following types
of shadows:
• The E-Shadow: E-Shadows are cast by memory operations
with unknown addresses, arithmetic operations, and any
other instructions that can cause an exception. The shadow
starts when the instruction is dispatched and ends when
the absence of an exception can be verified. For memory
operations, one can check for exceptions once the address
translation has completed and the permissions have been
verified. For arithmetic and other instructions that throw
exceptions on invalid inputs, checking can be done as soon
as the instruction has been executed. Under systems where
precise exceptions are not available, this shadow can poten-
tially be ignored, as an exception does not guarantee that the
instructions that follow it will not be committed successfully.
• The C-Shadow: C-Shadows are cast by control instruc-
tions, such as branches and jumps, when either the branch
condition or the target address are unknown or have been
predicted but not yet verified. The shadow starts when the
control instruction enters the ROB, and ends when the ad-
dress and the condition have been verified.
• The D-Shadow: D-Shadows are cast by potential memory
dependencies through stores with unresolved addresses
(read-after-write dependencies). Loads can speculatively by-
pass stores and execute out of order, but they might be
squashed if it is later discovered that a store points to the
same address as that of a speculatively executed load. The
shadow starts when the store enters the ROB and ends when
the address is resolved, akin to the E-Shadow for memory
operations.
• The M-Shadow: Under the total store order (TSO) mem-
ory model, or any other model that respects the load-load
order, the observable memory order of loads needs to be
conserved. If the execution of an older load is delayed then
younger loads are allowed to execute speculatively but they
might be squashed if an invalidation is received, hence caus-
ing the M-Shadow. The shadow starts when the older load

bzip
2

gcc

gam
es

s
m

cf
m

ilc

ze
usm

p

gro
m

ac
s

ca
ct

usA
DM

les
lie

3d
nam

d

gobm
k

so
plex

hm
m

er
sje

ng

Gem
sF

DTD

lib
quan

tu
m

h264re
f

to
nto lb

m

om
net

pp
as

ta
r

wrf

sp
hin

x

G
M

ea
n

0.0

0.2

0.4

0.6

0.8

1.0

S
ha

do
w

ed
L

oa
ds

Figure 2: The ratio of loads executed speculatively.

enters the ROB, and ends when it has finished executing.
While there is an overlap with the E-Shadows, the M-Shadow
extends further, as the E-Shadow can be lifted after the per-
mission checks. The M-Shadows do not exist under more
relaxed memory models, such as release consistency (RC).

In addition to these shadows, interrupts can also halt and possibly
divert execution. In this work, we assume that interrupts can be
delayed until there are no shadowed loads preceding them. If the
opposite is required, e.g. for a real-time system, then all loads would
have to remain under a shadow until they reach the head of the ROB.

Figure 1 presents a breakdown of the type of instructions casting
shadows over the executed load instructions. The statistics have
been gathered over applications from the SPEC CPU 2006 [49]
benchmark suite. The hardware parameters of the evaluated system
can be found in Table 1. We present the instruction types and
not the shadow types, as one instruction can simultaneously cast
multiple overlapping shadows. Only the oldest shadow is taken into
consideration for these statistics, therefore, eliminating one of the
shadow types does not necessarily lead to a proportional decrease
in the number of speculatively executed loads. For the E-Shadow,
we assume that, other than memory accesses, only integer division
operations can throw an exception. Exceptions for the rest of the
integer operations are not that common on general-purpose CPUs,
so we do not consider them. Additionally, floating point exceptions
can usually be configured through special registers or other ISA
specific mechanisms. This makes it possible to detect in advance if
a floating point operation might throw an exception or not. For our
evaluation, we assume that floating point exceptions are disabled.
Finally, we assume that the permission bits for memory accesses
are verified immediately after the translation has completed. The
rest of the causes of exceptions are rare in benchmarks like SPEC
CPU, so we can omit them from the simulation without any loss of
precision in the evaluation.

Figure 2 displays the ratio of loads executed while under a specu-
lative shadow in each benchmark, based on the conditions discussed
previously. The ratio of speculatively executed loads is high for
all benchmarks, ranging from 67% (h264ref) to 97% (GemsFDTD),
with a mean of 87%. This strongly indicates that only low-overhead
solutions are viable, as the majority of the load operations are af-
fected. A more detailed analysis of the performance implications is
provided in the evaluation, Section 5.

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA C. Sakalis, S. Kaxiras, A. Ros, A. Jimborean, and M. Själander

bzip
2

gcc

gam
es

s
m

cf
m

ilc

ze
usm

p

gro
m

ac
s

ca
ct

usA
DM

les
lie

3d
nam

d

gobm
k

so
plex

hm
m

er
sje

ng

Gem
sF

DTD

lib
quan

tu
m

h264re
f

to
nto lb

m

om
net

pp
as

ta
r

wrf

sp
hin

x

G
M

ea
n

0.0

0.2

0.4

0.6

0.8

1.0

V
P

P
re

di
ct

io
n

R
at

e
/

L
1

M
is

s
R

at
io

Figure 3: VP prediction rate for shadowed L1 misses (bars),
combined with the L1 miss ratio of each benchmark (dots).

3 DELAYING SPECULATIVE LOADS
An intuitive solution for hiding the side-effects of speculative loads
is to avoid speculation on loads altogether, i.e., delay the loads
until they are no longer speculatively shadowed. We evaluate four
different versions of this approach, starting from a very aggressive
and then slowly relaxing the delay conditions while still keeping
the speculation hidden:
• A naïve version where loads are only executed when they
reach the head of the ROB.
• An eager version where loads are only executed when they
are no longer shadowed by another instruction.
• A delay-on-miss version where only loads that miss in the
L1 cache are delayed. Loads that hit in the L1 cache are satis-
fied by the cache, and only their side-effects in the memory
system (e.g., updating replacement data or prefetching) are
delayed.
• A value predicted version where, instead of simply delay-
ing them, the delay-on-miss version is extended to provide
values for L1 misses through value prediction.

3.1 Naïve Delay
By requiring loads to reach the head of the ROB before they are
issued, we can ensure that all loads are executed non-speculatively
without the need for additional hardware complexity. On the other
hand, this causes all loads to be serialized, thus, making it impossible
to take advantage of any memory-level parallelism (MLP) available
in the application. Instruction-level parallelism is equally crippled,
as loads are necessary in order to feed data to the instructions.
In fact, we are only presenting this solution to show that naïvely
executing all loads non-speculatively is not viable in OoO CPUs,
and to provide a worst-case baseline for the evaluation.

3.2 Eager Delay
Instead of delaying every load until it reaches the head of the
ROB, we can take advantage of the Bell and Lipasti conditions [1]
and our understanding of the different shadow types (Section 2)
to release them early. Loads are delayed only until they are no
longer shadowed by other instructions, at which point they can
be safely issued and executed out-of-order. While this approach

still comes with a steep performance cost, it improves significantly
over the naïve delay solution (Section 5). Additionally, it performs
comparably to InvisiSpec, without the hardware complexity cost of
modifying the memory hierarchy or the coherence protocol.

3.3 Delay-on-Miss
Overall, we propose delaying speculative loads to prevent any side-
effects from appearing in the memory hierarchy. In comparison,
other solutions, such as InvisiSpec, execute the loads and instead
try to hide the side-effects until the speculation has been verified.
While such an approach works, it requires modifications to the
whole cache hierarchy and it incurs a significant performance cost.
We observe, however, that we can reduce this cost by reducing the
scope of the side-effects that need to be hidden. By delaying L1
misses (but not hits), we eliminate the need for an additional data
structure that hides fetched cache lines until they can be installed
in the cache. Additionally, since the cache line already exists in
the L1 on a hit, no additional coherence mechanisms are required.
Instead, we only need to delay the side-effects of the hits, such as
updating the replacement data and notifying the prefetcher, which
exist outside the critical path of the cache access. The L1 behavior
for shadowed loads is as follows:
• In case of an L1 hit, the cache responds to the request but
delays any operations that might cause visible side-effects,
such as updating the replacement state. The CPU will signal
the cache to perform these operations after the speculation
has been successfully verified.
• In the case of an L1 miss, the request will simply be dropped.
We refer to these L1 misses caused by shadowed loads as
shadowed L1 misses.

If a load has received data from the L1 while under a speculative
shadow, and after it has left that shadow, it will send a release
request to the cache, signaling that the cache can now perform any
side-effect causing operations it might have delayed. On the other
hand, if a load has not received any data after executing under a
speculative shadow, it will simply repeat the initial memory request,
this time triggering the normal miss mechanisms in the cache.

While in this work we focus on the data caches, the translation
lookaside buffers (TLB) can also be utilized as a potential side-
channel in an attack. In the SPEC CPU benchmarks that we use
for the evaluation, TLB misses are rare, with the majority of the
benchmarks having a miss ratio of less than 1%. Therefore, for
the remainder of this paper, we will assume that TLB misses are
handled with the delay-on-miss mechanism that has been described
in this section.

3.4 Value Predicting Delayed Loads
The L1 miss ratio of the applications used to evaluate the solution
proposed in this paper ranges from less than 1% to 25% (Figure 3).
While the delay-on-miss proposal reduces the number of delayed
loads significantly, it still incurs stalls when encountering a shad-
owed L1miss. To solve this problem, we propose to continue the exe-
cution by predicting the value of L1 misses instead of delaying them.

Value prediction is not a new idea [28], and it has been used,
among other things, to help improve the number of instructions-per-
cycle (IPC) [27], to handle L2misses [6], to design a new architecture

Efficient Invisible Speculative Execution through Selective Delay and Value Prediction ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

L1
Tags

L1
Data

Value
Predictor

Compare

Multiplexer

Addre
ss

PC

Is
Sha

dow
ed

hit/miss

d
at

a

d
at

a

Dat
a

VP
L1

shadowed & miss
else

Figure 4: Overview of the interaction between the L1 and the
VP, simplified for brevity.

that can bypass the expensive OoO pipeline [40], and even to secure
processors from fault attacks [5]. We are only interested in using
value prediction to predict loads, and specifically L1 misses. In this
context, value predictors have two interesting properties:

(1) The predictor can be local to the core, isolated from other
cores or even other execution contexts. The visible state of
the predictor is only updated after the prediction is validated.

(2) Because the predicted value needs to be validated with a
normal memory access, the predictor can be incorporated
into an OoO pipeline with only small modifications to the
L1 cache and no modifications to the remaining memory
hierarchy and the coherence protocol [34].

The first property implies that the value predictor itself can be
used during speculative execution without any visible side-effects.
By delaying the memory access used to perform the validation
of the prediction, we can value predict loads that miss in the L1
while remaining completely invisible to the rest of the system. In
addition, we do not need to introduce any modifications to the
cache coherence protocol, as the validation of the predicted values
happens only after the speculation shadows have been resolved
and it can be issued as a normal load. Figure 4 presents an overview
of how this can be achieved. The value predictor is added as part
of the L1 cache and is queried in parallel. In case of an L1 miss on a
shadowed load, the value is returned by the value predictor instead,
if possible. Regardless if the access was resolved from the cache or
the value predictor, the cache controller delays any side-effects until
the CPU indicates that the speculation has been verified. Since the
value predictor is accessed in parallel with the L1, and multiplexing
is already necessary for associative caches, we do not introduce
any additional delay in the critical path of the cache.

To the best of our knowledge, this is the first solution that takes
advantage of the aforementioned properties of value predictors to
hide the side-effects of speculative execution in the memory hierar-
chy and the cache coherence protocol with only small modifications
to the former and no modifications to the latter.

With value prediction in place, a new type of speculative shadow
is introduced, the VP-Shadow. All value-predicted loads cast this
shadow until the predicted value can be validated. Currently, be-
cause our implementation assumes a system implementing the TSO
memory model, the VP-Shadows are completely covered by the
M-Shadows. If the M-Shadows were to be eliminated, either by
relaxing the memory model or through some other approach [45],
then the VP-Shadows could be tracked to a finer granularity and
selective replay can be used instead of fully squashing in case of
a value misprediction [20, 52]. The VP-Shadows could then be re-
stricted only to the instructions that would have to be selectively
squashed and replayed, instead of all younger instructions. With
our current proposal, value predicted loads cast a shadow on all
instructions until they are validated, and since a validation can only
be issued when the load is no longer under a speculative shadow,
only one validation at a time can be issued. This restriction can
be lifted if the M-Shadow is eliminated and the VP-Shadows are
tracked at a finer granularity but evaluating the potential of such a
solution is left for future work.

Figure 3 contains the prediction rate for a 13-component VTAGE
predictor [41], with 128 entries per component. While we use all
loads for training the predictor, it is only queried for shadowed
loads that miss in the L1 cache. Other types of value predictors
also exist [6, 27, 36, 42], but a thorough evaluation of value pre-
diction mechanisms is beyond the scope of this paper. With the
VTAGE predictor we have implemented, the prediction rate varies
significantly between applications, ranging from less than 1% to
more than 98%, with a mean value of 16%. Our data indicate that i)
the prediction rate for the shadowed L1 misses is lower than the
potential prediction rate of all loads (40%) and that ii) delaying the
validation of the predictions negatively affects the prediction rate.
However, we will see in the evaluation (Section 5) that even with a
prediction rate of 16%, significant gains can be achieved. Improv-
ing value prediction algorithms is beyond the scope of this work;
instead, in order to explore the benefits provided by improving the
predictor, we also present results with an oracle predictor that can
achieve prediction rates of 50% and 100%.

4 TRACKING SPECULATIVE SHADOWS
To efficiently delay loads or know when a value predicted load can
be validated it is necessary to know when the load is no longer
covered by a speculative shadow. We make the observation that
to answer this question it is enough to know if the oldest shadow
casting instruction is older than the load in question. We leverage
this to track shadows in a structure similar to a reorder buffer
(ROB) but that is much smaller as it only needs to track a single
bit per instruction. We call this structure the shadow buffer or
SB for short1. Shadow-casting instructions (Section 2) are entered
into the shadow buffer in the order they are dispatched. Once an
instruction no longer causes a shadow, e.g., once a branch has been

1Not to be confused with the Speculation Buffer utilized in InvisiSpec.

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA C. Sakalis, S. Kaxiras, A. Ros, A. Jimborean, and M. Själander

e

Reorder Buffer
BR1

SB-Tail

3

Shadow Buffer

3

SB-Head

Release Queue

567 4

Shadow stamp

3

T
123 0

Load Queue

F

LD0

Load queue index

LD0

Speculative
123 0

Reorder Buffer
BR1

SB-Tail

4

Shadow Buffer

3

SB-Head

Release Queue

567 4

Shadow stamp

3

T
123 0

LD2

3

Load Queue

F

LD0

Load queue index

LD0

T

LD2

Speculative

1

123 0

Reorder Buffer
BR1BR4

SB-Tail

5

Shadow Buffer

34

SB-Head

Release Queue

567 4

Shadow stamp

3

T
123 0

F

LD2

3

Load Queue

F

LD0

Load queue index

LD0

T

LD2

Speculative

1

123 0

c

Reorder Buffer

SB-Tail

3

Shadow Buffer

SB-Head

Release Queue

567 4

Shadow stamp

3

123 0

Load Queue

F

LD0

Load queue index

LD0

Speculative
123 0

a d
f

k

LD5

4
3

T

LD4

m

n

Reorder Buffer
BR1

SB-Tail

5

Shadow Buffer

3

SB-Head

Release Queue

567 4

Shadow stamp

3

T
123 0

LD2

3

Load Queue

F

LD0

Load queue index

LD0

T

LD2

Speculative

1

123 0

g

LD3

3
2

T

LD3

LD3

BR4

4

4
T

h

LD5

T

LD4

i

3
2

4
3

j

Reorder Buffer
BR1BR4

SB-Tail

5

Shadow Buffer

34

SB-Head

Release Queue

567 4

Shadow stamp

3

F
123 0

F

LD2

3

Load Queue

F

LD0

Load queue index

LD0

T

LD2

Speculative

1

123 0

LD5

T

LD4

LD3

3
2

4
3

Reorder Buffer
BR1BR4

SB-Tail

5

Shadow Buffer

34

SB-Head

Release Queue

567 4

Shadow stamp

3

F
123 0

F

LD2

3

Load Queue

F

LD0

Load queue index

LD0

F

LD2

Speculative

1

123 0

LD5

T

LD4

LD3

3
2

4
3

T

LD3

T

LD3

F

LD3

o

Reorder Buffer
BR1BR4

SB-Tail

5

Shadow Buffer

34

SB-Head

Release Queue

567 4

Shadow stamp

4

F
123 0

F

LD2

4

Load Queue

F

LD0

Load queue index

LD0

F

LD2

Speculative

3

123 0

LD5

F

LD4

LD3

F

LD3

4

l

b

(1) (2)

(6)(5)

(3)

(7)

(4)

(8)

Figure 5: Example of tracking speculative shadows. The values “T” and “F” indicate “true” and ”false”, respectively.

resolved, then the SB entry is updated. Only when an instruction
reaches the head of the SB and no longer casts a shadow does
it get removed from the SB. This assures that the oldest shadow-
casting instruction is always at the head of the SB and that they
exit the SB in program order, similar to how the ROB assures that
instructions are committed in order. To determine when a load is
no longer covered by a shadow it is enough to i) know which was
the youngest shadow-casting instruction when the load entered
the ROB and ii) check for when this shadow-casting instruction
has exited the SB. Assume the following code:

LD0: ld r2 [r1]
BR1: br r2 #0024
LD2: ld r6 [r3]
LD3: ld r3 [r3]
BR4: br r4 #0096
LD5: ld r1 [r5]

Figure 5 shows an example of how the shadows are tracked when
executing the code above. The shadow buffer (SB) is implemented
as a circular buffer; to avoid using index 0 and 1 for all the structures
in the example it is assumed that previous executions have left the
SB empty with its head and tail set at 3. The ROB, release queue, and

load queue are also assumed to be implemented as circular buffers
such that an entry of these structures can always be identified by
its index2. The SB has as many entries as the ROB and the release
queue has as many entries as the load queue to avoid any struc-
tural hazards. It might be possible to reduce the area overhead by
optimizing these based on the likelihood of how many instructions
cause shadows and how many shadowed loads exist. While the
example shows a number of distinct steps to clearly illustrate the
functionality, in reality many of these can be performed in parallel,
similar to how multiple instructions can be committed from the
ROB in a single cycle. To further simplify the example, we assume
that only branches cast shadows, i.e., we are not considering the E-
and M-Shadows of the loads. The example develops as a sequence
of nine (one not shown) steps:

(1) When the first load (LD0) enters the ROB the SB is empty (SB-
Head==SB-Tail), indicating that there are no shadow-casting
instructions and that the load can be normally executed a .

(2) The branch (BR1) causes a shadow until its condition and
target have been resolved and is, therefore, inserted into

2The head and tail pointers of the reorder buffer, release queue, and load queue are
not shown in Figure 5 to simplify the illustration.

Efficient Invisible Speculative Execution through Selective Delay and Value Prediction ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

the SB b . The ROB entry of the branch is marked with the
index of the SB entry, i.e., the SB-Tail c . The SB-Tail is then
incremented.

(3) When the second load (LD2) enters the ROB the SB is no
longer empty and the load therefore shadowed. It is still
entered into the load queue but it is marked as speculative
d , which means that it also needs to be entered into the
release queue. There, its index in the load queue e and the
youngest shadow-casting instruction (identified by SB-Tail
minus one) f are marked.

(4) The steps just described are repeated for the following load
g , branch h , and final load i .

(5) Once a shadow-casting instruction, in this example the sec-
ond branch instruction (BR4), stops casting a shadow, it up-
dates the SB index that is indicated by its ROB entry j .
Nothing happens at this point of time, since the SB-Head is
still pointing to an older shadow-casting instruction that has
not been executed.

(6) Once the first branch (BR1) is resolved the SB entry is up-
dated k .

(7) This triggers a number of events since it is the oldest shadow-
casting instruction, as indicated by the SB-Head l . Before
the SB-Head is incremented to indicate that this is no longer
the oldest shadow-casting instruction, it is compared with
the first entries of the release queue m . When these match,
the load queue entry are updated to indicate that the loads
are no longer under a speculative shadow n . This repeats
for every entry in the release queue until a shadow stamp
that does not match the SB-Head is encountered.

(8) Once the SB-Head is incremented the entry in the SB is
checked, causing the events in step (7) to be repeated and
the final load to be marked as non-speculative o .

(9) Finally, the SB-Head is incremented once more, leaving the
head equal to the tail, indicating that the SB is empty and
that there are no shadow casting instructions in the ROB
(not shown in the illustration).

One big advantage of tracking shadows this way is that it avoids
the use of content-addressable memories (CAMs), which are both
complex and costly to implement.

5 EVALUATION
We start by explaining our evaluation methodology and then pro-
ceed to discuss the memory behavior, performance, and energy us-
age characteristics of the evaluated solutions. We end by discussing
the implications of improving the value-predictor’s prediction rate.

5.1 Methodology
We have implemented our proposal and also the current state-of-
the-art solution, InvisiSpec, on Gem5 [3], combined with McPAT
and CACTI [25, 26] for the energy evaluation.We use the SPEC CPU
2006 benchmark suite [49], with six of the applications excluded
due to baseline simulation issues. We model the speculative buffers
from InvisiSpec as small caches on McPAT, and the value predictor
as a large branch target buffer (BTB). Both are sized appropriately,
taking into consideration the amount of storage required both for
data and for metadata. The VTAGE predictor is sized pessimistically,

Table 1: The simulation parameters used for the evaluation.

Parameter Value
Technology node 22nm
Processor type out-of-order x86 CPU
Processor frequency 3.4GHz
Address size 64bits
Issue width 8
Cache line size 64 bytes
L1 private cache size 32KiB, 8-way
L1 access latency 2 cycles
L2 shared cache size 1MiB, 16-way
L2 access latency 20 cycles
Value predictor VTAGE
Value predictor size 13 components × 128 entries

assuming that a proper program counter and branch history are
stored for each entry. In practice, the storage overhead for metadata
can be reduced without compromising the prediction rate [48]. For
DRAM, we use the power model built into Gem5, as McPAT does
not provide one. We perform the simulations by first skipping one
billion instructions in atomic mode and then simulating in detail
for another three billion instructions. The characteristics of the
simulated system can be found in Table 1. We simulate a system
with a private L1 and a shared L2 cache, without L3. The reason
why we chose this unusual configuration is to increase the cost
of misses in the L2 cache, since the SPEC CPU 2006 workloads
are otherwise not memory intensive enough to properly evaluate
the cost of the proposed solutions. As the baseline we use a large,
unmodified OoO CPU.

5.2 Memory Behavior
Since the memory behavior plays a significant role in the perfor-
mance and energy usage of the application, we begin the evaluation
with analyzing the memory behavior of the benchmarks.

Figure 6 presents the L1 data cache miss ratio. Overall, the miss
ratio is small, with a baseline mean value of 4%. This is a strong
argument for our delay-on-miss solution: While almost all instruc-
tions are shadowed when they are issued (Figure 2), only a small
percentage of them will have to be delayed or value predicted. On
average, the miss ratio of the applications is not affected negatively
by any of the evaluated solutions, and it is even improved by the
more aggressive delay versions. This is due to the reduced amount
of misspeculated memory accesses, which would bring in unneeded
data, and also due to the slower execution of the program allowing
time for the memory system to respond. InvisiSpec on the other
hand incurs a large increase in the miss ratio in some applications,
especially in the case of libquantum. The increase is caused by the
fact that libquantum is a streaming application that benefits greatly
from prefetching, which is disrupted by InvisiSpec. However, these
results can be misleading, as when it comes to the actual number of
misses and overall memory accesses happening in the application,
the absolute number might change while the ratio remains the
same. Instead, Figure 7 features the number of DRAM reads for
every application. We can now observe that InvisiSpec incurs a 32%
increase in the number of DRAM reads. The effect is particularly

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA C. Sakalis, S. Kaxiras, A. Ros, A. Jimborean, and M. Själander

bzip
2

gcc

gam
es

s
m

cf
m

ilc

ze
usm

p

gro
m

ac
s

ca
ct

usA
DM

les
lie

3d
nam

d

gobm
k

so
plex

hm
m

er
sje

ng

Gem
sF

DTD

lib
quan

tu
m

h264re
f

to
nto lb

m

om
net

pp
as

ta
r

wrf

sp
hin

x

G
M

ea
n

0.0

0.2

0.4

0.6

0.8

1.0

L
1D

M
is

s
R

at
io

baseline invisispec delay-naive delay-eager delay-on-miss delay-on-miss+vp

Figure 6: L1D cache miss ratio.

bzip
2

gcc

gam
es

s
m

cf
m

ilc

ze
usm

p

gro
m

ac
s

ca
ct

usA
DM

les
lie

3d
nam

d

gobm
k

so
plex

hm
m

er
sje

ng

Gem
sF

DTD

lib
quan

tu
m

h264re
f

to
nto lb

m

om
net

pp
as

ta
r

wrf

sp
hin

x

G
M

ea
n

0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

D
R

A
M

R
ea

ds

2.6 3.5

invisispec delay-naive delay-eager delay-on-miss delay-on-miss+vp

Figure 7: Number of DRAM reads, normalized to the baseline.

prominent in mcf, zeusmp, and as one might expect, libquantum.
In contrast, the rest of the evaluated solutions do not have that
problem, only marginally exceeding the baseline in one application,
GemsFDTD. There is only one case where InvisiSpec behaves better
than the delay-on-miss solutions, h264ref, where all approaches
reduce the number of DRAM reads below the baseline.

In addition to the potential performance and energy cost, DRAM
accesses can also be utilized as a side-channel for attacks [43]. Such
attacks are outside the scope of InvisiSpec, but they are covered by
our delay-based solutions.

5.3 Performance and Energy
Figures 8 and 9 present the instructions per cycle (IPC) and the
energy usage of the benchmarks, respectively. Both are normalized
to the baseline. In Figure 9, the bottom shaded part represents the
leakage energy of the system, while the top lighter part represents
the dynamic energy. The first obvious observation we can make
is that the naïve delay version is not a viable solution for high
performance CPUs. With a mean performance loss of 74% and an
energy increase of 2.4×, it consistently performs worse than any of
the other solutions we have evaluated.

For the eager delay case, we can see a significant improvement
in performance, with a mean loss of 50%, as well as in the energy
usage, with an mean increase of 49% over the baseline. While still
far from the baseline, the eager delay version already performs
similarly to InvisiSpec, which exhibits a mean performance loss
and energy increase of 46% and 51%, respectively. Both solutions
have benchmarks in which one outperforms the other, but the eager
delay solution is simpler and more secure than InvisiSpec.

Introducing the delay-on-miss optimization, we see a perfor-
mance improvement of 31 percentage points over the eager delay,
reducing the mean performance loss to 19%. Energy usage is also
improved, to a 13% cost over the baseline. At this point, delay-on-
miss, even without value prediction, is already consistently better
than both eager delay and InvisiSpec, with the exception of mcf
and GemsFDTD.

Finally, delay-on-miss combined with value prediction performs
the best out of all the evaluated solutions. With a mean performance
loss of only 11% (8 percentage points better than delay-on-miss), and
amean energy usage increase of 7%, it outperforms all the other eval-
uated solutions. Part of this energy cost is due to the value predictor
and the need to validate the predicted results, as well as the need to
update the cache metadata after the speculation has been verified.

Efficient Invisible Speculative Execution through Selective Delay and Value Prediction ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

bzip
2

gcc

gam
es

s
m

cf
m

ilc

ze
usm

p

gro
m

ac
s

ca
ct

usA
DM

les
lie

3d
nam

d

gobm
k

so
plex

hm
m

er
sje

ng

Gem
sF

DTD

lib
quan

tu
m

h264re
f

to
nto lb

m

om
net

pp
as

ta
r

wrf

sp
hin

x

G
M

ea
n

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

IP
C

Baseline: Unmodified CPU
invisispec delay-naive delay-eager delay-on-miss delay-on-miss+vp

Figure 8: IPC, normalized to the baseline.

bzip
2

gcc

gam
es

s
m

cf
m

ilc

ze
usm

p

gro
m

ac
s

ca
ct

usA
DM

les
lie

3d
nam

d

gobm
k

so
plex

hm
m

er
sje

ng

Gem
sF

DTD

lib
quan

tu
m

h264re
f

to
nto lb

m

om
net

pp
as

ta
r

wrf

sp
hin

x

G
M

ea
n

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
or

m
al

iz
ed

E
ne

rg
y

U
sa

ge

3.0 3.8 4.0 3.3 3.1

baseline invisispec delay-naive delay-eager delay-on-miss delay-on-miss+vp

Figure 9: Normalized energy usage. The bottom (shaded) part represents the static (leakage) energy of the system.

bzip
2

gcc

gam
es

s
m

cf
m

ilc

ze
usm

p

gro
m

ac
s

ca
ct

usA
DM

les
lie

3d
nam

d

gobm
k

so
plex

hm
m

er
sje

ng

Gem
sF

DTD

lib
quan

tu
m

h264re
f

to
nto lb

m

om
net

pp
as

ta
r

wrf

sp
hin

x

G
M

ea
n

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

IP
C

Baseline: Unmodified CPU
vtage oracle-50% oracle-100%

Figure 10: Normalized IPC with two Oracle value predictors,
with prediction rates of 50% and 100%.

5.4 Improving the VP Prediction Rate
We have implemented an Oracle predictor with a variable pre-
diction rate to evaluate the effects that an improved value pre-
diction rate would have on the delay-on-miss solution. We evalu-
ate two different rates, 50% of all shadowed L1 misses, and 100%.

Note that the Oracle predictor decides randomly every time it is
queried, and therefore, the prediction rate is not tied to the PC
or any other characteristics of the instruction being predicted. As
seen in Figure 10, having perfect value prediction would lead to
significant performance improvements, with the majority of the
benchmarks approaching or reaching the baseline. There is one ex-
ception, GemsFDTD, in which the VTAGE predictor already provides
almost perfect value prediction, so the Oracle predictor can not
provide any significant improvements. The missing performance in
all cases can be explained by the overhead introduced due to only
allowing one validation at a time.

Overall, we observe performance improvements of 2 and 9 per-
centage points over the VTAGE predictor, for prediction rates of
50% and 100% respectively. Given that the VTAGE predictor has a
mean prediction rate of 16%, an increase of more than 2× in predic-
tion rate yielding only 2 points improvement brings into question
whether improving the value predictor is worth the effort and po-
tential hardware cost. However, the 9 points increase provided by
the perfect predictor is still encouraging, although achieving perfect
value prediction is of course impossible.

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA C. Sakalis, S. Kaxiras, A. Ros, A. Jimborean, and M. Själander

1 s t r u c t program_data {
2 char s t o r a g e [1 0] ;
3 char s e c r e t _ k e y ; / ∗ = 7 ∗ /
4 }
5

6 char a c c e s s _ d a t a (i n t index) {
7 i f (i ndex <= 9)
8 r e t u r n program_data . s t o r a g e [index] ;
9 e l s e
10 r e t u r n −1;
11 }

Listing 1: Victim code for the Spectre attack example.

1 vo id t r a i n () {
2 f o r (i = 0 ; i < 1 0 0 0 ; i ++)
3 a c c e s s _ d a t a (0) ;
4 }
5

6 vo id probe (char p robe_a r r ay []) {
7 f o r (i = 0 ; i < 1 6 ; i ++) {
8 t 1 = RDTSCP () ;
9 x = p robe_a r r ay [i ∗ CACHE_LINE_SIZE] ;
10 de l ay = RDTSCP () − t 1 ;
11 }
12 }
13

14 vo id a t t a c k () {
15 char p robe_a r r ay [16 ∗ CACHE_LINE_SIZE] ;
16 t r a i n () ;
17 f l u s h (p robe_a r r ay) ;
18 s e c r e t = a c c e s s _ d a t a (1 0) ;
19 x = p robe_a r r ay [s e c r e t ∗ CACHE_LINE_SIZE] ;
20 probe (p robe_a r r ay) ;
21 }

Listing 2: Simplified Spectre attack example.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Probed value

0

50

100

150

200

250

300

350

D
el

ay
(R

D
T

S
C

P
)

baseline delay-on-miss

Figure 11: Probe access times (from rdtscp) for the Spectre
example in Listing 2. The secret value of seven can be easily
deduced in the baseline.

6 SECURITY EVALUATION
Listings 1 and 2 contain pseudocode for a Spectre attack example.
Listing 1 contains the victim code that is going to be exploited
by the attack. It consists of two parts, i) the program data, which
contains some user accessible storage and a secret key, and ii) a
function (access_data) that provides access to the storage, making
sure that no out-of-bounds accesses are allowed. While this is a
simplified example, similar patterns can be found, for instance, in
web browsers where the JavaScript runtime needs to prevent the
code for accessing other parts of the browser’s memory. Listing 2
shows the attack code and how it can be used to bypass the victim’s
checks in five simple steps:

(1) Line 16—The attack starts by training the branch predictor to
always expect the if statement in the access_data function
(Listing 1, Line 7) to be true. This is done by simple calling
the access_data function multiple times in a row with an
index value that is within the storage bounds.

(2) Line 17—To prepare for the Flush+Reload side-channel [60],
the probe array is flushed from the cache.

(3) Line 18—Now that the system has been set up for the attack,
the Spectre code calls the access_data function with an
out-of-bounds index of “10”. This index points to the ele-
ment directly after the end of the array, which is where the
secret key resides in the memory. From a software point
of view, we expect the access_data function to detect the
out-of-bounds access and return a value of “−1” but, due to
speculative execution, this is not exactly what happens. Be-
cause we have trained the branch predictor to always expect
the if statement to be true, i.e., to always predict the index
to be inside the storage bounds, the OoO CPU will specula-
tively perform the memory access to storage[10] (Listing 1,
Line 8), and return the loaded value (i.e., the secret key).

(4) Line 19—The attack code will then use the value returned
by the access_data function to index into the probe array3,
bringing one of its cache lines into the cache.

(5) Line 20—Eventually, the CPUwill realize that the branch was
mispredicted and the incorrect execution will be squashed,
eventually leading to the attack code receiving the correct
value of “−1”, but any data brought into the cache in the
meantime will remain there. The attack code can then scan
through the probe array, measuring the delay (time) of ac-
cessing each cache line. As one cache line was brought in
during the speculative part of the attack, we can deduce,
based on its position in the probe array, what the value at
storage[10] was, thus deducing the secret key (Figure 11).

Note that both the victim and the attacker are part of the same
execution context, which is why cache partitioning or randomiza-
tion solutions (Section 7) are ineffective against Spectre. In contrast,
when delay-on-miss is enabled, the speculative access to the probe
array will be prevented from loading any data into the cache and
probing the array later will not lead to any measurable differences
in execution time (Figure 11).

This variant of Spectre presented here takes advantage of the
branch predictor and speculative loads to bypass software-enforced

3For simplicity we use a probe array that can encode 16 different values; in practice, if
one byte is read during the attack, 256 values would be required.

Efficient Invisible Speculative Execution through Selective Delay and Value Prediction ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

bound checks and gain access to secret information. However, this
is not the only variant that has been discovered. For example, the
Spectre v1.1 and v1.2 variants [8, 9] take advantage of speculative
stores to redirect the execution stream and to bypass sandboxing.
Our solution does not prevent the redirection of the execution
stream, after all how the victim is coerced into executing the attack
code is beyond the scope of this work, but it does prevent the
attack code from leaking any sensitive information. Regardless of
how the attack code is executed, it still needs a side-channel to
leak any sensitive information it accesses, and our solution blocks
such side-channels in the cache and memory system. What our
solution does not protect against is side-channels outside of the
memory hierarchy. For example, the NetSpectre attack [47] uses
the slowdown caused by the AVX engine on some modern Intel
CPUs. Since we do not delay computational instructions, only loads,
that side-channel is left exposed. Protection against side-channels
outside of the cache and memory system is left for future work.
Similarly, attacks that require physical access to the machine, such
as power analysis attacks, are also outside the scope of this work.

7 RELATEDWORK
Cache side-channel attacks [2, 15–17, 37, 55, 60] have been known
for years before their speculative variants emerged. Instead of try-
ing to leak arbitrary memory regions of arbitrary applications, they
focus on identifying keys by detecting memory access patterns of
cryptographic applications, or on covertly transferring information
across software and hardware barriers, such as across virtualized
containers. Both hardware and software solutions have been pro-
posed [10, 12–14, 18, 21, 22, 24, 30–32, 38, 56, 57, 61], using either
cache partitioning, cache locking, or access pattern obfuscation
through randomization. These solutions do not work with specula-
tive attacks such as Spectre [23], where the attack can be performed
from within the same execution context (Section 6). Additionally,
most of these solutions focus on only protecting small amounts
of sensitive data, such as cryptographic keys, while the specula-
tive side-channel attacks we are focusing on can attack the whole
memory address range.

When it comes to the currently known speculative side-channel
attacks, hardware and software [7, 39, 53] vendors have already
promised or delivered solutions. These solution are specific to the
issue they are trying to fix (e.g., not performing loads before the
permissions have been checked, for Meltdown), and do not protect
against all existing and potential future speculative side-channel
attacks. Our solution instead provides a holistic approach that elim-
inates the threat of speculative attacks that try to take advantage
of the memory hierarchy as a side-channel. It builds on insights
provided by our work on Ghost loads [46], which evaluates, in
detail, the implications of trying to hide speculative loads in the
cache hierarchy.

There currently exist, to the best of our knowledge, two proposed
solutions for hiding the side-effects of all speculative memory ac-
cesses in the cache hierarchy. The first, InvisiSpec by Yan et al. [59]
has already been discussed in more details in Sections 1 and 5, but
we will briefly summarize the differences here as well. First, Invi-
siSpec does not delay any memory accesses, instead it performs
them and does not cache the data. The data are kept in buffers

(“Speculative Buffers”) at the L1 and the LLC, and are released after
the speculation has been resolved. To avoid attacks on these buffers,
they are not kept coherent; instead a second access (“Validation”)
is used to validate the loaded value in accordance to the memory
model. Given the speculative nature of the loads until they can be
validated, only one validation at a time can be issued. Observing
that not all loads are actually executed speculatively, they also pro-
pose an optimization where loads not executed under a speculative
shadow require no validation. Unfortunately, requiring duplicate
memory accesses for the majority of the loads in an application
leads to significant performance and energy overheads, something
that is present both in the original work and in our evaluation. In
comparison, our proposal does not allow the memory access in the
cases where InvisiSpec would require a validation and also elim-
inates the need for coherence modifications by only allowing L1
hits. Note that while validations are employed by both InvisiSpec
and our proposal, in our case they are the only memory access per-
formed by the load, since the initial value is provided by the value
predictor, with the only overhead being an additional access to the
L1 cache. Finally, InvisiSpec only considers the cache hierarchy,
while our solution prevents speculative side-effect leakage in the
whole memory hierarchy.

In addition to InvisiSpec, Khasawneh et al. [19] have been work-
ing on a solution similar to InvisiSpec, called SafeSpec. SafeSpec
does not consider cache coherence, making it inapplicable to mul-
tithreaded and multiprogram workloads. For this reason, we only
consider InvisiSpec as a viable alternative to our proposal.

Outside of the cache hierarchy, attacks on the rest of the memory
system also exist [43, 55, 58], and so do proposed solutions [11,
35, 62]. Our solution prevents any speculative (shadowed) loads
from accessing any part of the system other than the L1, thus
making them completely invisible to the rest of the memory system.
Attacks outside the memory hierarchy, such as the NetSpectre [47]
attack that utilizes the AVX engine on x86 CPUs, are outside the
scope of this work, and solutions proposed for these attacks are
complementary to ours.

8 FUTUREWORK
While we achieve significant performance improvement over the
state-of-the-art solution, we can still not recover all the performance
lost from the baseline. One of the issues we have encountered is that
the delay introduced into the validation of the value predictions
negatively affects the prediction rate of the predictor. We would
like to investigate ways of reducing this effect, either by changing
the design of the predictor or by introducing a new mechanism for
earlier validation of the predictions. Additionally, even with the
perfect predictor, there is still some performance missing over the
baseline. This performance loss is due to the loss of MLP suffered
during the VP validations, as VP-shadowed loads cannot validate
until their shadow has been lifted. We would like to further inves-
tigate methods for eagerly unshadowing loads, using either more
aggressive hardware techniques or compiler information. For ex-
ample, previous work has investigated a technique for decoupling
the calculation of the memory address from the execution of the
load [50]. Using such a technique, we can limit the duration of the

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA C. Sakalis, S. Kaxiras, A. Ros, A. Jimborean, and M. Själander

E- (and maybe D-) Shadows, as the address can be calculated poten-
tially before the load is even dispatched. Furthermore, predicated
execution can, in some cases, replace branches, thus eliminating
the C-Shadows. Finally, under TSO, Ros et al. [45] have proposed
a non-speculative solution for load-load reordering, referred to as
WritersBlock, which can eliminate the M-Shadows. By utilizing
WritersBlock and by tracking the VP-Shadows at a fine granular-
ity, we can allow for multiple validations to be issued in parallel,
restoring the MLP and the performance.

In addition to improving the performance of our current pro-
posal, there is also more work to be done in further reducing the
exposure of the side-effects of speculation in the rest of the system.
For example, we only focus on data accesses, but the instruction
cache needs to be secured as well. Unlike data caches, accesses to the
instruction cache cannot be freely delayed, as the pipeline will stall.

Finally, in this workwe assume that all data are equally important
and need to be kept secret. In practice, there might be data that
do not need to be protected from speculative side-channel attacks,
significantly limiting the number of speculative accesses that need
to be delayed or predicted. Vijaykumar et al. [54] have already
proposed a solution for tagging memory regions that can be used
exactly for this purpose, assuming that the sensitive data regions
have been identified by the programmer.

9 CONCLUSION
In this work, we propose an efficient solution for preventing visible
side-effects in the memory hierarchy during speculative execution.
It is based on the observation that hiding the side-effects of executed
instructions in the whole memory hierarchy is both expensive, in
terms of performance and energy, and complicated. At the same
time, delaying all speculative loads is also not a viable solution,
since most loads are executed speculatively. Instead, it is easier and
cheaper to hide the side-effects of loads that hit in the L1 data cache,
and prevent all other loads from executing. To limit the performance
deterioration caused by these delayed loads, we augment the L1
data cache with a value predictor that covers the loads that miss in
the L1. We observe that one of the limitations that prevents us from
reaching the baseline performance, or even exceeding it thanks
to the value predictor, is that value predicted loads can only be
validated one at a time. However, even with this limitation, we
provide secure execution, free of visible side-effects, with a cost of
only 11% in performance and 7% in energy.

ACKNOWLEDGMENTS
This work was funded by Vetenskapsrådet project 2015-05159, by
the SSF Strategic Mobility 2017 grant SM17-0064, the Spanish MCIU
and AEI, as well as European Commission FEDER grant RTI2018-
098156-B-C53. The computations were performed on resources
provided by SNIC through UPPMAX and by UNINETT Sigma2.

REFERENCES
[1] Gordon B. Bell andMikkoH. Lipasti. 2004. Deconstructing Commit. In Proceedings

of the International Symposium on Performance Analysis of Systems and Software.
IEEE Computer Society, Washington, DC, USA, 68–77. https://doi.org/10.1109/
ISPASS.2004.1291357

[2] Daniel J. Bernstein. 2005. Cache-timing attacks on AES.
[3] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali

Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh

Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The gem5 Simulator. ACM SIGARCH Computer
Architecture News 39, 2 (Aug. 2011), 1–7. Issue 2. https://doi.org/10.1145/2024716.
2024718

[4] Joseph Bonneau and Ilya Mironov. 2006. Cache-Collision Timing Attacks
Against AES. In Proceedings of the Cryptographic Hardware and Embedded Systems.
Springer, Berlin, Heidelberg, 201–215. https://doi.org/10.1007/11894063_16

[5] Rosario Cammarota and Rami Sheikh. 2018. VPsec: Countering Fault Attacks in
General Purpose Microprocessors with Value Prediction. In Proceedings of the
ACM International Conference on Computing Frontiers. ACM, New York, NY, USA,
191–199. https://doi.org/10.1145/3203217.3203276

[6] Luis Ceze, Karin Strauss, James Tuck, Josep Torrellas, and Jose Renau. 2006.
CAVA: Using Checkpoint-assisted Value Prediction to Hide L2 Misses. ACM
Transactions on Architecture and Code Optimization 3, 2 (June 2006), 182–208.
https://doi.org/10.1145/1138035.1138038

[7] Jonathan Corbet. 2017. KAISER: hiding the kernel from user space. https:
//lwn.net/Articles/738975/.

[8] National Vulnerability Database. 2017. CVE-2017-5753. Available from MITRE,
CVE-ID CVE-2017-5753.. http://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2017-5753

[9] National Vulnerability Database. 2017. CVE-2018-3693. Available from MITRE,
CVE-ID CVE-2018-3693.. http://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2018-3693

[10] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-Ghazaleh, and Dmitry
Ponomarev. 2012. Non-monopolizable Caches: Low-complexity Mitigation of
Cache Side Channel Attacks. ACM Transactions on Architecture and Code Opti-
mization 8, 4 (Jan. 2012), 35:1–35:21. https://doi.org/10.1145/2086696.2086714

[11] Xiaowan Dong, Zhuojia Shen, John Criswell, Alan Cox, and Sandhya Dwarkadas.
2018. Spectres, Virtual Ghosts, and Hardware Support. In Proceedings of the
International Workshop on Hardware and Architectural Support for Security and
Privacy. ACM, New York, NY, USA, 5:1–5:9. https://doi.org/10.1145/3214292.
3214297

[12] Hongyua Fang, Sai Santosh Dayapule, Fan Yao, Milos̆ Doroslovac̆ki, and Guru
Venkataramani. 2018. Prefetch-guard: Leveraging hardware prefetches to defend
against cache timing channels. In Proceedings of the IEEE International Symposium
on Hardware Oriented Security and Trust. IEEE Computer Society, Washington,
DC, USA, 187–190. https://doi.org/10.1109/HST.2018.8383912

[13] Adi Fuchs and Ruby B. Lee. 2015. Disruptive Prefetching: Impact on Side-channel
Attacks and Cache Designs. In Proceedings of the ACM International Systems and
Storage Conference. ACM, New York, NY, USA, 14:1–14:12. https://doi.org/10.
1145/2757667.2757672

[14] Daniel Gruss, Julian Lettner, Felix Schuster, Olya Ohrimenko, Istvan Haller, and
Manuel Costa. 2017. Strong and efficient cache side-channel protection using
hardware transactional memory. In Proceedings of the USENIX Security Symposium.
USENIX Association, Berkeley, CA, USA, 217–233.

[15] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015. Cache Template
Attacks: Automating Attacks on Inclusive Last-Level Caches. In Proceedings of the
USENIX Security Symposium. USENIX Association, Berkeley, CA, USA, 897–912.

[16] David Gullasch, Endre Bangerter, and Stephan Krenn. 2011. Cache Games –
Access-Based Cache Attacks on AES to Practice. In Proceedings of the IEEE Sym-
posium on Security and Privacy. IEEE Computer Society, Washington, DC, USA,
490–505. https://doi.org/10.1109/SP.2011.22

[17] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. 2016. Cross Processor
Cache Attacks. In Proceedings of the ACM on Asia Conference on Computer and
Communications Security. ACM, New York, NY, USA, 353–364. https://doi.org/
10.1145/2897845.2897867

[18] Georgios Keramidas, Antonios Antonopoulos, Dimitrios N. Serpanos, and Ste-
fanos Kaxiras. 2008. Non deterministic caches: a simple and effective defense
against side channel attacks. Design Automation for Embedded Systems 12, 3 (Sept.
2008), 221–230. https://doi.org/10.1007/s10617-008-9018-y

[19] Khaled N. Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu Song, Dmitry
Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2018. SafeSpec: Banish-
ing the Spectre of a Meltdown with Leakage-Free Speculation. arXiv:1806.05179
http://arxiv.org/abs/1806.05179

[20] Ilhyun Kim and Mikko H. Lipasti. 2004. Understanding scheduling replay
schemes. In Proceedings of the International Symposium High-Performance Com-
puter Architecture. IEEE Computer Society, Washington, DC, USA, 198–209.
https://doi.org/10.1109/HPCA.2004.10011

[21] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz. 2012. STEALTHMEM:
System-level Protection Against Cache-based Side Channel Attacks in the Cloud.
In Proceedings of the USENIX Security Symposium. USENIX Association, Berkeley,
CA, USA, 11–11.

[22] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas Devadas, and
Joel Emer. 2018. DAWG: A Defense Against Cache Timing Attacks in Speculative
Execution Processors. In Proceedings of the ACM/IEEE International Symposium
on Microarchitecture. IEEE Computer Society, Washington, DC, USA, 974–987.
https://doi.org/10.1109/MICRO.2018.00083

https://doi.org/10.1109/ISPASS.2004.1291357
https://doi.org/10.1109/ISPASS.2004.1291357
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1007/11894063_16
https://doi.org/10.1145/3203217.3203276
https://doi.org/10.1145/1138035.1138038
https://lwn.net/Articles/738975/
https://lwn.net/Articles/738975/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5753
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5753
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3693
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3693
https://doi.org/10.1145/2086696.2086714
https://doi.org/10.1145/3214292.3214297
https://doi.org/10.1145/3214292.3214297
https://doi.org/10.1109/HST.2018.8383912
https://doi.org/10.1145/2757667.2757672
https://doi.org/10.1145/2757667.2757672
https://doi.org/10.1109/SP.2011.22
https://doi.org/10.1145/2897845.2897867
https://doi.org/10.1145/2897845.2897867
https://doi.org/10.1007/s10617-008-9018-y
http://arxiv.org/abs/1806.05179
http://arxiv.org/abs/1806.05179
https://doi.org/10.1109/HPCA.2004.10011
https://doi.org/10.1109/MICRO.2018.00083

Efficient Invisible Speculative Execution through Selective Delay and Value Prediction ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

[23] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.
2019. Spectre attacks: Exploiting speculative execution. In Proceedings of the IEEE
Symposium on Security and Privacy. IEEE Computer Society, Washington, DC,
USA, 19–37. https://doi.org/10.1109/SP.2019.00002

[24] Jingfei Kong, Onur Aciicmez, Jean-Pierre Seifert, and Huiyang Zhou. 2009.
Hardware-software integrated approaches to defend against software cache-
based side channel attacks. In Proceedings of the International Symposium High-
Performance Computer Architecture. IEEE Computer Society, Washington, DC,
USA, 393–404. https://doi.org/10.1109/HPCA.2009.4798277

[25] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, DeanM. Tullsen, and
Norman P. Jouppi. 2009. McPAT: An Integrated Power, Area, and Timing Model-
ing Framework for Multicore and Manycore Architectures. In Proceedings of the
ACM/IEEE International Symposium on Microarchitecture. IEEE Computer Society,
Washington, DC, USA, 469–480. https://doi.org/10.1145/1669112.1669172

[26] Sheng Li, Ke Chen, Jung Ho Ahn, Jay B Brockman, and Norman P Jouppi. 2011.
CACTI-P: Architecture-Level Modeling for SRAM-based Structures with Ad-
vanced Leakage Reduction Techniques. In Proceedings of the IEEE/ACM Interna-
tional Conference on Computer-Aided Design. IEEE Computer Society, Washington,
DC, USA, 694–701. https://doi.org/10.1109/ICCAD.2011.6105405

[27] Mikko H. Lipasti and John Paul Shen. 1996. Exceeding the Dataflow Limit via
Value Prediction. In Proceedings of the ACM/IEEE International Symposium on
Microarchitecture. IEEE Computer Society, Washington, DC, USA, 226–237.

[28] Mikko H. Lipasti, Christopher B. Wilkerson, and John Paul Shen. 1996. Value
Locality and Load Value Prediction. In Proceedings of the Architectural Support
for Programming Languages and Operating Systems. ACM, New York, NY, USA,
138–147. https://doi.org/10.1145/237090.237173

[29] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
2018. Meltdown. arXiv:1801.01207 http://arxiv.org/abs/1801.01207

[30] Fangfei Liu and Ruby B. Lee. 2013. Security Testing of a Secure Cache Design. In
Proceedings of the International Workshop on Hardware and Architectural Support
for Security and Privacy. ACM, New York, NY, USA, 3:1–3:8. https://doi.org/10.
1145/2487726.2487729

[31] Fangfei Liu and Ruby B. Lee. 2014. Random Fill Cache Architecture. In Proceedings
of the ACM/IEEE International Symposium on Microarchitecture. IEEE Computer
Society, Washington, DC, USA, 203–215. https://doi.org/10.1109/MICRO.2014.28

[32] Fangfei Liu, Hao Wu, Kenneth Mai, and Ruby B. Lee. 2016. Newcache: Secure
Cache Architecture Thwarting Cache Side-Channel Attacks. IEEE Micro 36, 5
(Sept. 2016), 8–16. https://doi.org/10.1109/MM.2016.85

[33] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. 2015. Last-
Level Cache Side-Channel Attacks are Practical. In Proceedings of the IEEE Sym-
posium on Security and Privacy. IEEE Computer Society, Washington, DC, USA,
605–622. https://doi.org/10.1109/SP.2015.43

[34] Milo M. K. Martin, Daniel J. Sorin, Harold W. Cain, Mark D. Hill, and Mikko H.
Lipasti. 2001. Correctly Implementing Value Prediction in Microprocessors That
Support Multithreading or Multiprocessing. In Proceedings of the ACM/IEEE Inter-
national Symposium on Microarchitecture. IEEE Computer Society, Washington,
DC, USA, 328–337. https://doi.org/10.1109/SP.2015.43

[35] Robert Martin, John Demme, and Simha Sethumadhavan. 2012. TimeWarp:
Rethinking Timekeeping and Performance Monitoring Mechanisms to Mitigate
Side-channel Attacks. In Proceedings of the International Symposium on Computer
Architecture. IEEE Computer Society, Washington, DC, USA, 118–129. https:
//doi.org/10.1145/2366231.2337173

[36] Lois Orosa, Rodolfo Azevedo, and Onur Mutlu. 2018. AVPP: Address-first Value-
next Predictor with Value Prefetching for Improving the Efficiency of Load Value
Prediction. ACM Transactions on Architecture and Code Optimization 15, 4 (Dec.
2018), 49:1–49:30. https://doi.org/10.1145/3239567

[37] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache attacks and counter-
measures: the case of AES. In Proceedings of the RSA Conference. Springer, Berlin,
Heidelberg, 1–20. https://doi.org/10.1007/11605805_1

[38] Dan Page. 2005. Partitioned Cache Architecture as a Side-Channel Defence
Mechanism. IACR Cryptology ePrint archive.

[39] Andrew Pardoe. 2018. Spectre mitigations inMSVC. https://blogs.msdn.microsoft.
com/vcblog/2018/01/15/spectre-mitigations-in-msvc/.

[40] Arthur Perais and André Seznec. 2014. EOLE: Paving the Way for an Effective
Implementation of Value Prediction. In Proceedings of the International Symposium
on Computer Architecture. ACM, New York, NY, USA, 481–492. https://doi.org/
10.1109/ISCA.2014.6853205

[41] Arthur Perais and André Seznec. 2014. Practical data value speculation for
future high-end processors. In Proceedings of the International Symposium High-
Performance Computer Architecture. IEEE Computer Society, Washington, DC,
USA, 428–439. https://doi.org/10.1109/HPCA.2014.6835952

[42] Arthur Perais and André Seznec. 2015. BeBoP: A cost effective predictor in-
frastructure for superscalar value prediction. In Proceedings of the International
Symposium High-Performance Computer Architecture. IEEE Computer Society,
Washington, DC, USA, 13–25. https://doi.org/10.1109/HPCA.2015.7056018

[43] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan
Mangard. 2016. DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks..
In Proceedings of the USENIX Security Symposium. USENIX Association, Berkeley,
CA, USA, 565–581.

[44] Moinuddin K. Qureshi. 2018. CEASER: Mitigating Conflict-Based Cache Attacks
via Encrypted-Address and Remapping. In Proceedings of the ACM/IEEE Interna-
tional Symposium on Microarchitecture. IEEE Computer Society, Washington, DC,
USA, 775–787. https://doi.org/10.1109/MICRO.2018.00068

[45] Alberto Ros, Trevor E. Carlson, Mehdi Alipour, and Stefanos Kaxiras. 2017. Non-
Speculative Load-Load Reordering in TSO. In Proceedings of the International
Symposium on Computer Architecture. ACM, New York, NY, USA, 187–200. https:
//doi.org/10.1145/3079856.3080220

[46] Christos Sakalis, Mehdi Alipour, Alberto Ros, Alexandra Jimborean, Stefanos
Kaxiras, and Själander Magnus. 2019. Ghost Loads: What is the Cost of Invisible
Speculation?. In Proceedings of the ACM International Conference on Computing
Frontiers. ACM, New York, NY, USA, 153–163. https://doi.org/10.1145/3310273.
3321558

[47] Michael Schwarz, Martin Schwarzl, Moritz Lipp, and Daniel Gruss. 2018. Net-
spectre: Read arbitrary memory over network. arXiv:1807.10535

[48] André Seznec. 2007. A 256 kbits l-TAGE Branch Predictor. Journal of Instruction-
Level Parallelism (JILP) Special Issue: The Second Championship Branch Prediction
Competition (CBP-2) 9 (2007), 1–6.

[49] Standard Performance Evaluation Corporation. 2006. SPEC CPU Benchmark
Suite. http://www.specbench.org/osg/cpu2006/.

[50] Michael Stokes, Ryan Baird, Zhaoxiang Jin, David Whalley, and Soner Onder.
2018. Decoupling Address Generation from Loads and Stores to Improve Data
Access Energy Efficiency. In Proceedings of the ACM Conference on Languages,
Compilers, and Tools for Embedded Systems. ACM, New York, NY, USA, 65–75.
https://doi.org/10.1145/3211332.3211340

[51] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. 2018. MeltdownPrime
and SpectrePrime: Automatically-Synthesized Attacks Exploiting Invalidation-
Based Coherence Protocols. arXiv:1802.03802 http://arxiv.org/abs/1802.03802

[52] Dean M. Tullsen and John S. Seng. 1999. Storageless Value Prediction Using
Prior Register Values. In Proceedings of the International Symposium on Computer
Architecture. IEEE Computer Society, Washington, DC, USA, 270–279. https:
//doi.org/10.1145/300979.301002

[53] Paul Turner. 2018. Retpoline: a software construct for preventing branch-target-
injection. https://support.google.com/faqs/answer/7625886.

[54] Nandita Vijaykumar, Abilasha Jain, Diptesh Majumdar, Keving Hsieh, Gennady
Pekhimenko, Eiman Ebrahimi, Nastaran Hajinazar, Philip B. Gibbons, and Onur
Mutlu. 2018. A Case for Richer Cross-Layer Abstractions: Bridging the Semantic
Gap with Expressive Memory. In Proceedings of the International Symposium on
Computer Architecture. ACM, New York, NY, USA, 207–220. https://doi.org/10.
1109/ISCA.2018.00027

[55] Zenghong Wang and Ruby B. Lee. 2006. Covert and Side Channels Due to
Processor Architecture. In Proceedings of the Annual Computer Security Appli-
cations Conference. IEEE Computer Society, Washington, DC, USA, 473–482.
https://doi.org/10.1109/ACSAC.2006.20

[56] Zhenghong Wang and Ruby B. Lee. 2007. New Cache Designs for Thwarting
Software Cache-based Side Channel Attacks. In Proceedings of the International
Symposium on Computer Architecture. ACM, New York, NY, USA, 494–505. https:
//doi.org/10.1145/1250662.1250723

[57] Zhenghong Wang and Ruby B. Lee. 2008. A Novel Cache Architecture with
Enhanced Performance and Security. In Proceedings of the ACM/IEEE International
Symposium on Microarchitecture. IEEE Computer Society, Washington, DC, USA,
83–93. https://doi.org/10.1109/MICRO.2008.4771781

[58] Zhenyu Wu, Zhang Xu, and Haining Wang. 2012. Whispers in the Hyper-space:
High-speed Covert Channel Attacks in the Cloud.. In Proceedings of the USENIX
Security Symposium. USENIX Association, Berkeley, CA, USA, 159–173.

[59] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christopher W.
Fletcher, and Josep Torrellas. 2018. InvisiSpec: Making Speculative Execution
Invisible in the Cache Hierarchy. In Proceedings of the ACM/IEEE International
Symposium on Microarchitecture. IEEE Computer Society, Washington, DC, USA,
428–441. https://doi.org/10.1109/MICRO.2018.00042

[60] Yuval Yarom and Katrina Falkner. 2014. FLUSH+ RELOAD: A High Resolution,
Low Noise, L3 Cache Side-Channel Attack. In Proceedings of the USENIX Security
Symposium. USENIX Association, Berkeley, CA, USA, 719–732.

[61] Yinqian Zhang and Michael K. Reiter. 2013. Düppel: Retrofitting Commodity
Operating Systems to Mitigate Cache Side Channels in the Cloud. In Proceedings
of the ACM SIGSAC Conference on Computer & Communications Security. ACM,
New York, NY, USA, 827–838. https://doi.org/10.1145/2508859.2516741

[62] Xiaotong Zhuang, Tao Zhang, and Santosh Pande. 2004. HIDE: An Infrastructure
for Efficiently Protecting Information Leakage on the Address Bus. In Proceedings
of the Architectural Support for Programming Languages and Operating Systems.
ACM, New York, NY, USA, 72–84. https://doi.org/10.1145/1024393.1024403

https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/HPCA.2009.4798277
https://doi.org/10.1145/1669112.1669172
https://doi.org/10.1109/ICCAD.2011.6105405
https://doi.org/10.1145/237090.237173
http://arxiv.org/abs/1801.01207
http://arxiv.org/abs/1801.01207
https://doi.org/10.1145/2487726.2487729
https://doi.org/10.1145/2487726.2487729
https://doi.org/10.1109/MICRO.2014.28
https://doi.org/10.1109/MM.2016.85
https://doi.org/10.1109/SP.2015.43
https://doi.org/10.1109/SP.2015.43
https://doi.org/10.1145/2366231.2337173
https://doi.org/10.1145/2366231.2337173
https://doi.org/10.1145/3239567
https://doi.org/10.1007/11605805_1
https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-in-msvc/
https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-in-msvc/
https://doi.org/10.1109/ISCA.2014.6853205
https://doi.org/10.1109/ISCA.2014.6853205
https://doi.org/10.1109/HPCA.2014.6835952
https://doi.org/10.1109/HPCA.2015.7056018
https://doi.org/10.1109/MICRO.2018.00068
https://doi.org/10.1145/3079856.3080220
https://doi.org/10.1145/3079856.3080220
https://doi.org/10.1145/3310273.3321558
https://doi.org/10.1145/3310273.3321558
http://arxiv.org/abs/1807.10535
http://www.specbench.org/osg/cpu2006/
https://doi.org/10.1145/3211332.3211340
http://arxiv.org/abs/1802.03802
http://arxiv.org/abs/1802.03802
https://doi.org/10.1145/300979.301002
https://doi.org/10.1145/300979.301002
https://support.google.com/faqs/answer/7625886
https://doi.org/10.1109/ISCA.2018.00027
https://doi.org/10.1109/ISCA.2018.00027
https://doi.org/10.1109/ACSAC.2006.20
https://doi.org/10.1145/1250662.1250723
https://doi.org/10.1145/1250662.1250723
https://doi.org/10.1109/MICRO.2008.4771781
https://doi.org/10.1109/MICRO.2018.00042
https://doi.org/10.1145/2508859.2516741
https://doi.org/10.1145/1024393.1024403

	Abstract
	1 Introduction
	2 Speculative Shadows
	3 Delaying Speculative Loads
	3.1 Naïve Delay
	3.2 Eager Delay
	3.3 Delay-on-Miss
	3.4 Value Predicting Delayed Loads

	4 Tracking Speculative Shadows
	5 Evaluation
	5.1 Methodology
	5.2 Memory Behavior
	5.3 Performance and Energy
	5.4 Improving the VP Prediction Rate

	6 Security Evaluation
	7 Related Work
	8 Future work
	9 Conclusion
	References

