
IEEE TRANSACTIONS ON COMPUTERS 1

Understanding Selective Delay as a Method for
Efficient Secure Speculative Execution

Christos Sakalis, Member, IEEE, Stefanos Kaxiras, Senior Member, IEEE, Alberto Ros, Senior
Member, IEEE, Alexandra Jimborean, and Magnus Själander, Senior Member, IEEE

Abstract—Since the introduction of Meltdown and Spectre, the research community has been tirelessly working on speculative
side-channel attacks and on how to shield computer systems from them. To ensure that a system is protected not only from all the
currently known attacks but also from future, yet to be discovered, attacks, the solutions developed need to be general in nature,
covering a wide array of system components, while at the same time keeping the performance, energy, area, and implementation
complexity costs at a minimum. One such solution is our own delay-on-miss, which efficiently protects the memory hierarchy by i)
selectively delaying speculative load instructions and ii) utilizing value prediction as an invisible form of speculation. In this work we dive
deeper into delay-on-miss, offering insights into why and how it affects the performance of the system. We also reevaluate value
prediction as an invisible form of speculation. Specifically, we focus on the implications that delaying memory loads has in the memory
level parallelism of the system and how this affects the value predictor and the overall performance of the system. We present new,
updated results but more importantly, we also offer deeper insight into why delay-on-miss works so well and what this means for the
future of secure speculative execution.

Index Terms—speculative execution, side-channel attacks, memory, security

F

1 INTRODUCTION

Since the introduction of Meltdown [1] and Spectre [2],
speculative execution, the cornerstone of modern, high-
performance CPUs, has been under attack. By abusing
the fact that speculative execution, by nature, can execute
instructions that would have otherwise not have been ex-
ecuted by the application, a malicious attacker is able to
bypass software and hardware barriers and leak sensitive
information. These attacks exploit different parts of the
system to access and leak the information, but they all
consist of two main parts: The illegal access to the in-
formation, done speculatively, and the information leakage.
The first part depends on the aforementioned property of
speculative execution that allows instructions to execute and
access data that they would normally not be allowed to.
However, to leak that data, the second part is necessary,
which takes advantage of micro-architectural state-changes
that are done under speculative execution and that can be
observed by the attacker during or after the speculation has
been resolved. While there are some practical limitations,
these two parts are interchangeable: The way the attack
gains access to the sensitive information and the way this
same information is leaked are independent of one another,
assuming there is a way of transferring the information from
the first to the second. Specifically, for the second part, a
number of different side-channels are available, capable of
leaking information across software and hardware barriers.
These might include side-channels such as memory-timing
side-channels [3], port-contention side-channels [4], or even

• C. Sakalis, S. Kaxiras, A. Jimborean, and M. Själander are with Uppsala
University, Sweden. E-mail:first.lastname@it.uu.se.

• A. Ros is with the University of Murcia, Spain .
• M. Själander is with the Norwegian University of Science and Technology.

Manuscript received January 13, 2020; revised August 26, 2015.

a frequency-scaling side-channel [5]. Due to being easy to
exploit and also offering great versatility between where the
victim and the attacker are placed relative to each other,
memory-timing side-channels (including cache-timing side-
channels) are particularly popular [6], [7].

Researchers, both in academia and in the industry, have
been frantically working on providing solutions for these
issues. To solve specific attacks, solutions might focus on
preventing the illegal access to the sensitive information
in the first place [8], [9], [10], [11]. This approach has the
advantage that it can be implemented quickly, sometimes
requiring only software or operating system changes, but it
does not protect against any future attacks or even variants
of the same attack. Instead, some researchers (including
ourselves) have focused on preventing the leakage of infor-
mation through side-channels, and specifically speculative
side-channels.

In our previous work [12], we proposed an efficient way
for invisible speculative execution by introducing delay-on-
miss, a way of selectively delaying load instructions from
executing under unsafe speculation, preventing any specu-
lative side-effects from being made visible in the memory
hierarchy. Specifically, delay-on-miss builds on the insight
that if a load hits in its own private L1 cache, it only
causes minimal side-effects that can easily be delayed, as
they are not part of the critical path of the memory access.
To determine when an instruction is safe or unsafe, we also
introduced the concept of speculative shadows [12], [13], a
way of determining the earliest point at which an instruc-
tion is no longer speculative, reducing the cost of naı̈vely
delaying all speculative instructions. Finally, we combined
the delay-on-miss approach with value prediction, as a way
of further mitigating the cost of delaying speculative loads.

In this work, we give an in-depth analysis into the results



IEEE TRANSACTIONS ON COMPUTERS 2

of our previous work (delay-on-miss and value prediction).
Specifically,

• We provide a detailed justification for the perfor-
mance of the delay-on-miss approach, especially
when compared to a delay-all approach.

• We examine the effect that delay-on-miss has on the
memory level parallelism (MLP) of the application
and how this affects the runtime performance.

• We revisit our results for the value prediction, in
light of a new, more accurate implementation that
uncovered issues in the original implementation; is-
sues that inadvertently led to an overestimation of
the benefits of value prediction.

• We explore the properties of value prediction to
further understand what its limiting factors are and
how it can be improved. We identify that the accesses
required for validating the predictions are the main
culprit, as not only they have to be restricted under
the same conditions as all the other loads in delay-
on-miss, but they also introduce a new type of unsafe
speculation, which imposes further restrictions.

One of the main insights of this work is that the delay-
on-miss approach performs well with respect to the base-
line (when compared with other secure solutions) because,
contrary to intuition, it does not completely restrict all the
memory level parallelism available in the application. On
the other hand, value prediction offers additional instruction
level parallelism (ILP), but does not contribute to memory
level parallelism (Section 3). Due to these effects, the delay-
on-miss approach reduces the overhead of delaying specu-
lative loads by two thirds, from −53% under the baseline
for the delay-all version to −18%. Value prediction reduces
the delay-on-miss overhead by 1 percentage point, and
we show that even with an oracular value predictor that
can correctly predict any load value, the mean overhead
is still reduced by only 3 percentage points. Furthermore,
we show that for the value predictor to offer significant
performance improvements, we would have to allow the
prediction validations to be issued without any restrictions,
violating the delay-on-miss guarantees.

2 THREAT MODEL

We consider speculative side-channel attacks that utilize the
memory hierarchy as the side-channel. Attacks that use dif-
ferent side-channels, such as port contention, energy usage,
etc., are outside the scope of this work; please see Section 4
for other delay based solutions that go beyond the memory
system. Additionally, we focus on speculative side-channel
attacks that target the core concept of speculative execution.
Specifically, we assume that memory permission checks are
done fully and correctly as soon as the virtual to physical
memory translation has been completed. If this is not the
case, then we assume i) that loads are delayed until such
permission checks are made and ii) that the duration of the
relevant shadows (Section 5) is also extended accordingly.
Attacks that depend on such information not being checked
on time (e.g. Meltdown – which is still covered by delay-
on-miss) exploit implementation specific bugs that are not

inherent in speculative execution, are possible only on spe-
cific CPU manufactures/models and can be fixed without
restricting speculative execution.

Two components are necessary to successfully mount a
speculative side-channel attack: i) A way of bypassing soft-
ware/hardware barriers to access information illegally, and
ii) a way of leaking that secret data across the speculation
boundary. Generally, based on the first component, such
attacks can be split into two broad categories, Spectre-style
and Meltdown-style attacks [?], depending on how they
exploit speculative execution to illegally access information.
Our work is orthogonal to this categorization, as we are not
concerned with how the attacker manages to execute the
malicious code or how the secret data are accessed, we are
only concerned with preventing the leakage of information.
In addition, we assume that an attack can be launched
from any context: From the same thread, from a different
thread sharing the core (SMT), or even from a different
core. Whether the attacker and the victim share the same
virtual/physical memory or not is also not a limitation. We
also assume that all data is equally important in needing
to be kept secret, solutions that identify subsets of the data
and only protect those can be applied to our solutions as
well, but evaluating them is outside the scope of our work.
Finally, outside the scope of this work are also attacks that
are not speculative in nature, i.e., traditional side-channel
attacks, even if they utilize the same memory side-channel
techniques.

3 INSTRUCTION AND MEMORY LEVEL PARAL-
LELISM

Instruction level parallelism (ILP) refers to the ability of
executing multiple instructions as the same time. Other
than the obvious advantage of being able to utilize different
functional units in parallel, ILP also prevents long-latency
instructions from blocking the pipeline until they are com-
pleted, as long as other, independent instructions can be
found in the instruction window.

Memory level parallelism (MLP) refers to the ability
of having multiple in-flight memory operations at the
same time. It is an important capability in modern high-
performance CPUs, where the latency of memory accesses
can be far greater than any computation instruction. While
exploiting MLP offers multiple different advantages, there
is one specific advantage that makes MLP crucial for high
performance:

Assume two independent loads accessing different cache
lines, both missing in the L1 cache, and both being at the
head of the ROB, thus blocking other instructions from
retiring. Let us also assume that the L2 cache has a round-
trip latency of 12 cycles. If both loads are issued in parallel,
then their latencies will overlap and the core will receive
the data for both of them in (roughly) 12 cycles. So, in this
scenario, the head of the ROB will remain blocked for 12
cycles. However, if we cannot issue these loads in parallel,
i.e., we need to wait for the first load to retire before issuing
the second, then the total latency for retiring both loads will
be 24+ cycles. It is easy to see that the more in-flight loads
we add the greater the benefit of exploiting MLP, and the
higher the cost of not doing so.



IEEE TRANSACTIONS ON COMPUTERS 3

In this example, we use L1 misses to demonstrate the
importance of MLP, but we could also consider multiple
accesses that hit in the L1 as exhibiting a degree of MLP. We
will refer to these cases as hit-MLP. Since the latency of an
L1 hit is low, the benefits of exploiting hit-MLP are not as
significant.

To better understand the effects of delaying speculative
loads, we will further divide MLP into two categories: intra-
cacheline MLP and inter-cacheline MLP. By intra-cacheline
MLP, we refer to multiple in-flight memory accesses that
all target the same cache line. Once the line is brought
into the cache, then all the memory accesses targeting it
can be satisfied. However, even if these accesses were not
overlapped, once the first access brings the line into the
cache, then the rest would be cache hits, downgrading the
intra-cacheline MLP to hit-MLP.

On the other hand, inter-cacheline MLP refers to the
case when there are multiple independent memory accesses
to separate cache lines, as in the example above. If inter-
cacheline MLP is not exploited in the application, then each
memory access to each cache line will introduce significant
latency in the execution. Thus, we argue (and demonstrate
in Section 8) that inter-cacheline MLP is the most important
type of MLP to exploit during execution.

4 THE STATE-OF-THE-ART

There is a body of work covering side-channel defences for
the memory system that predates speculative side-channel
attacks [6], [7]. These works focus on the conventional
side-channel attacks that leak information between different
execution contexts. However, some speculative side-channel
attacks, such as Spectre v1 [2], can be exploited from within
the same execution context, bypassing the aforementioned
defence mechanisms. Instead, we are interested in solu-
tion that specifically target speculative side-channel attacks.
Unfortunately, there is currently no established metric for
comparing how secure each solution is, nor is there a way
of comparing the security and cost trade-offs. This makes
it impossible to directly compare the different solutions
against each other, as each one makes different assumptions
about what is secure or insecure, and what falls within its
scope. We can, however, categorize the different solutions in
three broad categories:

Hiding speculation: This approach includes solutions
such as InvisiSpec [14], Ghost loads [13], SafeSpec [15], and
MuonTrap [16]. All of these allow speculative execution
to continue unhindered, but delay any visible side-effects
until after the speculation has been resolved. Specifically, all
three solutions focus on hiding the side-effects of loads in
the memory system by keeping fetched data in temporary
buffers, in order to prevent speculative memory accesses
from updating the cache. While such solutions do not fully
restrict the MLP of the application during execution, they
still segment it and also need to impose restrictions during
validation for coherence reasons. They also have the dis-
advantage that they require modifications throughout the
whole system and that, since instructions are allowed to
execute and access the memory, it is hard to hide all possible
side-effects.

Delaying speculation: Instead of trying to hide the side-
effects of speculatively executed instructions, these solutions
prevent “unsafe” instructions from being executed in the
first place. We have quoted the word “unsafe” here be-
cause which instructions are considered as safe and which
are not changes depending on the exact threat model and
implementation details of each solution. Our current work,
delay-on-miss [12], delays all speculative loads until they
are certain to be retired (Section 5). Conditional Specula-
tion [17], NDA [18], Speculative Taint Tracking (STT) [19],
SpectreGuard [20], and Context [21] keep track of the flow of
information during execution and prevent any speculatively
loaded data from being used by any “unsafe” instruction.
The advantage of such solutions is that the changes required
are mostly isolated in the core, instead of being pervasive in
the whole memory hierarchy and the coherence protocol.
At the same time, since instructions are not executed at
all, they prevent a larger array of attacks than solutions
that try to hide speculative execution. As a matter of fact,
the last three solutions protect more than just the memory
system, but at a significant performance loss. Their disad-
vantage is that by restricting the execution of speculative
instructions, they restrict the amount of ILP and MLP that
can be exploited during execution. The authors of STT
have also proposed Speculative Data-Oblivious Execution
(SDO) [22], an extension to STT that utilizes speculation to
replace speculative execution that depends on speculatively
loaded data with data-oblivious execution. In their work
they focus on different forms of prediction, instead of using
value prediction, so it is not possible to compare the two
directly.

Undoing speculation: During speculative execution, ar-
chitectural side-effects are kept hidden and any changes
made during speculation that might lead to incorrect ex-
ecution are squashed. CleanupSpec [23] takes a similar
approach for the micro-architectural changes as well. Specif-
ically, it utilizes cache randomization to prevent information
leakage between different execution contexts, invalidations
and re-fetching of data to undo the side-effects in the
L1 cache, and delaying some accesses that can cause un-
safe transitions in the coherence directories. This solutions
achieves the best (reported) performance from all the other
solutions, but at the cost of pervasive modification in the
whole system. In addition, the energy costs have not been
explored.

Some of the solutions already mentioned, namely Con-
ditional Speculation and SpectreGuard, also boost perfor-
mance by not protecting the whole memory space but
instead only parts that the user has identified as secret. Such
optimization can be applied to the other solutions as well
but, to the best of our knowledge, it has not been explored
by any of the authors. In our work we also assume that all
information is equally sensitive, but there are no inherent
limitations preventing us from only protecting parts of the
memory space.

5 SPECULATIVE SHADOWS

As described in our previous work [12], [13], speculative
shadows are cast by instructions that might cause a mis-
speculation and, subsequently, squashing of all instructions



IEEE TRANSACTIONS ON COMPUTERS 4

that follow them in the execution window. Essentially, the
shadows are a way of defining (and tracking) when an
instruction is guaranteed to be retired, without having to
wait for it to reach the head of the reorder buffer (ROB) [24].
As long as an instruction is under such a shadow, then it
cannot be speculatively executed safely. We refer to such
instructions as shadowed, and to the instructions that cause
the shadow as shadow casting instructions. As soon as the
shadow is lifted/resolved and the instruction is unshadowed,
then it can be safely executed even if it is still speculative.
Since we only focus on the memory system, we are only
concerned with tracking shadowed loads; other instructions
that might be used as part of a non-memory side-channel
attack are not considered.

We have defined four baseline shadow types, plus an
additional shadow when value prediction is utilized. These
are as follows:

• E-Shadows: These shadows are cast by instructions
that might throw an exception, causing the execu-
tion to be aborted and redirected to an exception
handler. Common examples include memory access
operations that might cause memory exceptions and
arithmetic operations.

• C-Shadows: These are shadows that are cast by
instructions that control the execution flow directly,
most commonly branches. While the target of the
branch is unknown, it is not possible to know if the
instructions being executed are the correct instruc-
tions, or if they will have to be squashed when the
branch target has been resolved.

• D-Shadows: When a load reads a memory location
previously modified by a store, then the load has a
data dependency to that store. If during execution a
store with an unknown store address is encountered,
all following loads have the potential of being depen-
dent on that store. Out-of-order processors deploy a
memory dependency predictor, which determines if
there is a high chance that a load can safely bypass a
store. When a misprediction occurs, execution has to
be restarted from the offending load.

• M-Shadows: This is a special type of shadow caused
by the coherence and memory model requirements
of the system. If the total store order (TSO) model
is employed, the order between loads needs to be
observed. Younger loads can speculatively bypass
older loads, but if an order violation is detected1,
the execution needs to be restarted from the younger
load that caused the violation. This shadow is not
present in systems where the memory model allows
for loads to be reordered, such as release consistency
(RC) based systems.

• VP-Shadows: If value prediction is employed, it is
necessary to validate the prediction. If a prediction
is incorrect, then the execution needs to be restarted,
this time with the correct value.

It is possible to efficiently track these shadows in hard-
ware [12] but, for brevity, we will not repeat the mechanism
here in detail. With the exception of the VP-Shadows, which

1. In the context of the system’s memory model.

bzip
2

gcc

bw
av

es

gam
es

s
m

cf
m

ilc

ze
usm

p

gro
m

ac
s

ca
ct

usA
DM

les
lie

3d
nam

d

gobm
k

so
plex

hm
m

er
sje

ng

Gem
sF

DTD

lib
quan

tu
m

h264re
f

lb
m

om
net

pp
as

ta
r

wrf

sp
hin

x

G
M

ea
n

0.0

0.2

0.4

0.6

0.8

1.0

S
ha

do
w

ed
L

oa
ds

D
oM

Fig. 1. Ratio of loads executed under a speculative shadow when delay-
on-miss is enabled.

bzip
2

gcc

bw
av

es

gam
es

s
m

cf
m

ilc

ze
usm

p

gro
m

ac
s

ca
ct

usA
DM

les
lie

3d
nam

d

gobm
k

so
plex

hm
m

er
sje

ng

Gem
sF

DTD

lib
quan

tu
m

h264re
f

lb
m

om
net

pp
as

ta
r

wrf

sp
hin

x
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

C
au

se
s

of
S

p
ec

ul
at

io
n

D
oM Other Load Store Control

Fig. 2. Oldest shadow covering each shadowed load.

start once a load is predicted, the rest of the shadows start
when an instruction is dispatched and put into the ROB. All
of the shadows last until the reason for the shadow has been
resolved. For example, C-Shadows can be removed once
the target of the branch instruction is known. On the other
hand, M- and VP-Shadows require the shadow casting load
to be executed/validated before being lifted. This restricts
the number of loads that can be unshadowed to one at a
time, which makes solutions that delay all shadowed loads
indiscriminately impractical.

In our previous work, the D-Shadows cast by stores were
lifted once the store was ready to be executed, including
having its value, as this is the point where the virtual to
physical address translation happens in Gem5. However,
this was too pessimistic, so for this work we decided to mod-
ify our implementation to lift D-Shadows once the address
register(s) of the store are ready, assuming that the address
translation can be performed before the store is ready to
be issued. Specifically, we assume that it is possible to split
the store address calculation and translation into a separate
micro-op and then directly feed the physical address into
the actual memory store micro-op. It should be noted here
that we are not aware of any systems that actually do this,
but there are no fundamental limitations preventing such
behavior from being implemented.

Figure 1 contains the number of loads executed under
a speculative shadow in the delay-on-miss version for the
SPEC2006 benchmarks, normalized to the total number of
loads executed. This number ranges from 64% (h264ref) to



IEEE TRANSACTIONS ON COMPUTERS 5

93% (libquantum), with a mean of 80%. In Figure 2 we can
also see the types of instructions that cause these shadows.
Specifically, each time we need to check if an instruction
is under a shadow or not, we record the oldest shadow-
casting instruction. As we have modified our shadow-
tracking implementation to lift shadows caused by stores
earlier, the number of store shadows is greatly reduced. In
our experiments, removing just one shadow type does not
significantly affect the performance, as each load is usually
covered by multiple shadows, but this new implementa-
tion does indicate that the most important shadows (for
optimizations) are the ones caused by load and by control
instructions.

In addition to misspeculation, the execution can also
be interrupted and squashed by interrupts. As, generally
speaking, an interrupt can happen by external reasons and
at any point during the execution, a generic “interrupt
shadow” would always be present regardless of the current
state of the instructions in the pipeline. In this work, we
assume that interrupts can be delayed until the speculation
in the pipeline has been resolved but, as not all interrupts
are the same, we can handle different interrupts in different
ways.

To begin with, there are interrupts that are uncorrelated
to the underlying execution and do not have precise tim-
ing requirements, such as context switches from the OS
scheduler or IO related interrupts. As these interrupts can
happen at any time, squashing earlier or a bit later does
not play any role in the correctness of the execution. For
these reasons, these interrupts can be left unaltered, as any
(delayed) squashing caused by them cannot be part of a
speculative side-channel attack.

On the other hand, interrupts that are caused by the exe-
cution of the program directly, such as exceptions or explicit
interrupt instructions, require precise timing and squashing,
as they do affect the correctness of the execution. Such
interrupts need to be treated as any other shadow caused
by an instruction. In our evaluation, interrupts caused by
exceptions are covered by the E-shadows, but explicit in-
terrupt instructions (e.g. the x86 int instruction) are not,
as they are treated as non-speculative by our simulator to
begin with. The shadow tracking mechanism can be easily
modified to include such instructions as well, but since
they are rare in the benchmarks we use, there will be no
observable performance difference.

Note that some systems, such as real-time systems, have
special requirements on how interrupts need to be handled,
as well as special use cases for them. Such systems fall
outside the scope of this work, as such cases need to be
evaluated separately, to determine the security implications
together with the system requirements.

6 DELAY-ON-MISS

Delay-on-miss protects against speculative attacks that use
the memory hierarchy as a side-channel by delaying all
“unsafe” loads that miss in the L1 cache. As “unsafe”
we define all loads that are executed under a speculative
shadow. Stores are not delayed, because stores are not
allowed to speculatively modify the memory hierarchy in
the first place. Other, non-memory instructions are also not

delayed, since they fall outside the scope of this work. The
main insight behind delay-on-miss is that hiding the side-
effects of loads that hit in the private L1 cache is easy, as
the data can be returned without making any changes in the
cache, and the replacement policy and prefetcher updates
can be delayed until later. On the other hand, hiding loads
that need to fetch data from other, lower level, caches is
not as easy, because it requires mechanisms for getting the
data without modifying anything in the hierarchy or the
main memory, storing the data temporarily, and handling
the coherence implications [13], [14].

In the context of delay-on-miss, we consider loads that
miss in the L1 but hit in an MSHR entry that has been
allocated by a safe operation as hits, as the data will be
brought in by the safe memory operation anyway. This
introduces some additional memory level parallelism (both
intra- and inter- cacheline), as it is now possible to coalesce
shadowed loads with other unshadowed/non-speculative
operations, such as unshadowed loads, validations, stores,
or even prefetches, without degrading the security guaran-
tees of delay-on-miss.

Delay-on-miss differs from mechanisms such as
NDA [18] or STT [19], as both NDA and STT allow for
speculative loads to be executed but delay all dependent
instructions. This is based on the insight that for a secret
to be leaked, it has to be loaded first. The first load, the
one that loads the secret into the core, does not itself leak
any information, instead the loaded value is fed to other
instructions, which in turn construct a side-channel and
leak the secret. In STT, only values loaded by a load that is
currently speculative are considered unsafe. The implication
is that STT does not protect against attacks that leak secret
values that are already stored in registers [18]. NDA on the
other hand offers different modes, one of which protects all
values from being leaked, at additional performance cost.

Figure 3 shows the first four steps of the example in our
previous work [12], describing how shadows are tracked,
with the addition of how the memory hierarchy is accessed.
The example shows the reorder buffer (ROB) and the ad-
ditional structures required to track speculative shadows,
i.e., the shadow buffer and release queue. The example
starts with an empty ROB and due to previously executed
instructions SB-Head and SB-Tail arbitrarily point to the
fourth entry of the empty shadow buffer. For simplicity, and
without loss of generality, only the branch C-Shadows are
tracked in the example, other shadows are ignored.

1) Step 1: When the first load (LD0) enters the ROB
the shadow buffer is empty (SB-Head==SB-Tail)
indicating that the there are no shadow casting
instructions and that the load can be executed as
normal a . The load can to go all the way to the DRAM
to fetch the data. This is the same behavior as in an
unsecured architecture.

2) Step 2: The branch (BR1) casts a C-shadow, which is
indicated by setting the SB-Tail entry of the shadow
buffer b and marking the ROB entry with SB-
Tail c . The SB-Tail is then incremented. No access is
made to the memory hierarchy since it is not a load
instruction.

3) Step 3: When the second load (LD2) enters the



IEEE TRANSACTIONS ON COMPUTERS 6

T
21

e

Reorder Buffer
BR1

SB-Tail
3

Shadow Buffer
3

SB-Head

Release Queue

567 4

Shadow stamp

3

T
123 0

Load Queue

F

Load queue index

LD0

Speculative
123 0

Reorder Buffer
BR1

SB-Tail
4

Shadow Buffer
3

SB-Head

Release Queue

567 4

Shadow stamp

3

T
123 0

LD2

3

Load Queue

F

Load queue index

LD0

T Speculative

1

23 0

c

Reorder Buffer

SB-Tail
3

Shadow Buffer

SB-Head

Release Queue

567 4

Shadow stamp

3

123 0

Load Queue

F

Load queue index

LD0

Speculative
123 0

a d
f

4
3

Reorder Buffer
BR1

SB-Tail
5

Shadow Buffer
3

SB-Head

Release Queue

567 4

Shadow stamp

3

T
123 0

LD2

3

Load Queue

F

Load queue index

LD0

T Speculative

1

13 0

g

LD3

3
2

T

BR4

4

4
T

h

LD5

i

4
b

(1) (2) (3) (4)

LD5 LD3 LD2 LD0LD2 LD0LD0LD0

L1

L2

DRAM

VP L1

L2

DRAM

VP L1

L2

DRAM

VP L1

L2

DRAM

VP

2

✓

✓ ✓

Fig. 3. Example of speculative and non-speculative loads accessing the memory hierarchy and the value predictor.

ROB the shadow buffer is no longer empty. This
indicates that at least one older shadow casting
instruction exists causing the load to be shad-
owed/speculative d . An entry is allocated in the
release queue and associated with the load queue
entry of the load e and the youngest shadow-
casting instruction, which is determined by SB-Tail
minus one f . Since the load is shadowed a tentative
access is made in the L1 cache that turns out to be
a hit. The data of the load can be returned from the L1
without modifying any state in the cache, e.g., without
updating replacement policy state. Instead, the cache
state will be updated once the load is unshadowed,
i.e., once BR1 is completed causing SB-Head to be
incremented. This results in the first entry of the
release queue to not equal SB-Head indicating that
no older shadow casting instructions exist and the
load can safely update the cache state and exit the
release queue. This is not shown in this figure, for
a detailed description see steps six and seven in the
example in our previous work [12].

4) Step 4: Two shadowed loads (LD3 and LD5) miss in
the L1 and are prevented from accessing the next
level caches or the main memory. This is in contrast
to an unsecured architecture, where the next level cache
would have been accessed instead. We will see in the
next section (Section 7) how the value predictor
comes in play. The two loads will only be allowed
to access the next level caches once they become

bzip
2

gcc

bw
av

es

gam
es

s
m

cf
m

ilc

ze
usm

p

gro
m

ac
s

ca
ct

usA
DM

les
lie

3d
nam

d

gobm
k

so
plex

hm
m

er
sje

ng

Gem
sF

DTD

lib
quan

tu
m

h264re
f

lb
m

om
net

pp
as

ta
r

wrf

sp
hin

x

G
M

ea
n

0.0

0.2

0.4

0.6

0.8

1.0

V
P

P
re

di
ct

io
n

R
at

e

Fig. 4. Prediction rate for the VP (bars) and the L1 miss ratio (circles)

unshadowed, as is shown in step 1 of the example.

7 VALUE PREDICTION

Value prediction is a micro-architectural optimization that
aims at reducing the delay and overheads of executing [25]
or even scheduling [26] instructions by predicting their
value based on previously seen values. Similar to a cache,
a value predictor takes advantage of the locality exhibited
by the data but instead of focusing on spatial or temporal
locality, the value predictor exploits value locality. In our
work, we use value prediction as a mechanism for hiding
the delay introduced by delaying shadowed loads. Evalu-
ating all the different predictor types, their advantages and
disadvantages, and how well they perform, is beyond the



IEEE TRANSACTIONS ON COMPUTERS 7

scope of this work, but we do have three requirements that
the predictors must meet in order to be safely used:

1) The predictor must be able to work on the L1 level.
2) The predictor must not require any memory ac-

cesses to perform a prediction.
3) The state of the predictor must be able to be ob-

fuscated, any updates to it must be delayed while
speculative, and any state kept during speculation
must be squashed in the event of a misprediction.

The reason for these requirements is that we cannot
allow any memory accesses past the L1 during speculation
and we also do not want the predictor itself to leak any
information. While the values predicted are speculative, if
these criteria are met then it is a safe, invisible form of
speculation, isolated from other cores or execution contexts.

Figure 4 contains the VP prediction rate for each bench-
mark, i.e., the number of shadowed L1 misses that the VP
is able to predict over the total number of shadowed L1
misses. In the same figure, the L1 miss ratio of the bench-
marks can also be seen, as the total number of predicted
loads over all loads depends on the number of L1 misses
during execution. Overall, the VP achieves a prediction
rate of 23%, with benchmarks ranging from as low as 1%
(namd) to as high as 98% (cactusADM). In the performance
analysis, Section 8, we will also present an oracular VP, with
100% prediction rate, to evaluate the upper limit of the
performance gain that improving the prediction rate and
accuracy can offer.

Returning to our example in Figure 3, Step 4 shows
the case where two shadowed loads (LD3 g and LD5 i )
miss in the L1. Under delay-on-miss, these loads are not
allowed to access the next level caches. However, the value
predictor (VP), which is accessed in parallel with the L1
accesses, is able to predict the value of the third load with a
high confidence. The predicted value is returned without
updating any state of the cache nor the value predictor,
letting the load execute.

Once the first branch (BR1) is resolved the predicted
value is validate by issuing a normal load to the memory
hierarchy, which retrieves the value and updates the caches
and the value predictor state. The final load has to wait for
the second branch (NR4) to also be resolved before a normal
memory access can commence.

Note that, for simplicity, the example tracks only C-
Shadows. The load instructions seen in the example will
themselves also cast E- and M-Shadows, as well as VP-
Shadows (explained below). The main difference with the
example would be that each load would also allocate an
entry in the shadow buffer indicating that the load casts a
shadow.

Regarding the VP-Shadows, since the values provided
by the predictor are speculative, they need to be validated,
both to ensure that the value was correct at the time of the
prediction, but also to avoid coherence issues on memory
models that enforce the load-load order. To do so, a normal,
globally visible memory access needs to be issued in the
memory system. Since such an access would be unsafe
under delay-on-miss, the same rules as for normal loads
apply: If the validation access hits in the L1, then it can
be proceed unhindered, otherwise it has to be delayed.

At the same time, if the validation fails, all instructions
that follow the value predicted load need to be squashed2,
hence why the VP-Shadow is introduced. This means that
while value prediction introduces some additional ILP, it
does not introduce any MLP, as it simply pushes the actual
memory access from the execution point to the validation.
We will discuss the performance implications of this in
detail in Section 8.2.

In addition to providing functional correctness, we also
need to ensure that the predictor cannot be used to con-
struct new speculative side-channel attacks. Specifically, a
side-channel attack consists of two components, a way of
bypassing software/hardware barriers to access information
illegally, and a side-channel for leaking this information
outside of the speculative execution.

When it comes to the first component, the predictor can
be used to guide the execution to a misspeculated path,
gaining access to data illegally, or it can even provide sensi-
tive data directly, in the form of a prediction. For example,
in the classic Spectre v1 attack, where the attacker trains the
branch predictor in order to bypass an array bound check,
the value predictor can also be trained to provide an incor-
rect array bound value. However, as we have introduced the
VP-Shadows, all data accessed speculatively due to a value
prediction are protected by delay-on-miss, and cannot be
leaked.

On the other hand, as the predictor contains micro-
architectural state that affects the timing of the execution,
it can also be used as the second component of an attack, i.e.
it can be used to construct a timing side-channel. To solve
this, the predictor is never updated using speculative data,
as such micro-architectural state changes under speculation
can be used to leak information. In our case, as the predicted
value can only be validated when the load becomes un-
shadowed, all the updates to the predictor are delayed until
the speculation has been resolved by default. This prevents
attacks from both the same and from different execution
contexts from using the value predictor as a side-channel. In
addition, to further secure the predictor, any temporary state
that needs to be kept for implementation reasons, needs
to be either obfuscated or statically partitioned between
different execution contexts. This prevents temporary state
from being used a side-channel between two execution
contexts being executed in parallel. Finally, as the predictor
is on the L1 level and does not participate in coherence, it is
invisible to the other cores and we do not need to protect it
from attacks originating from another core.

8 EVALUATION

We use a combination of the Gem5 simulator [27], Mc-
PAT [28] with CACTI [29], and the SPEC2006 [30] bench-
mark suite. The architectural parameters of the simulated
system can be found in Table 1. In Gem5, we first fast-
forward through one billion instructions using the atomic
simple CPU, and then simulate in full detail using the O3
CPU for another three billion instructions. From all the
benchmarks in SPEC2006, we have excluded perlbench,

2. There is a possibility of selectively squashing and replaying only
the load-dependent instructions, but evaluating such approaches are
beyond the scope of this work.



IEEE TRANSACTIONS ON COMPUTERS 8

bzip
2

gcc

bw
av

es

gam
es

s
m

cf
m

ilc

ze
usm

p

gro
m

ac
s

ca
ct

usA
DM

les
lie

3d
nam

d

gobm
k

so
plex

hm
m

er
sje

ng

Gem
sF

DTD

lib
quan

tu
m

h264re
f

lb
m

om
net

pp
as

ta
r

wrf

sp
hin

x

G
M

ea
n

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
N

or
m

al
iz

ed
IP

C Baseline: Unsecured OoO CPU

delay DoM DoM + VP DoM + VP (Oracle) DoM + VP (Instant) DoM + VP (Oracle + Instant)

Fig. 5. Performance (IPC) normalized to the unsecured baseline.

TABLE 1
The simulated system parameters.

Parameter Value
Technology node 22nm
Processor type out-of-order x86 CPU
Processor frequency 3.4GHz
Issue / Execute / Commit width 8
Cache line size 64 bytes
L1 private cache size 32KiB, 8-way
L1 access latency 2 cycles
L2 shared cache size 1MiB, 16-way
L2 access latency 20 cycles
Value predictor VTAGE
Value predictor size 13 components × 128 entries

dealII, povray, calculix, tonto, and xalancbmk due
to baseline simulation issues. In total, we evaluate seven
different hardware versions:

• baseline: The unmodified, unsecured out-of-order
CPU that Gem5 provides.

• delay-all: A secured out-of-order CPU where all
shadowed loads are delayed until they have been
unshadowed.

• DoM: Delay-on-miss, without any value prediction.
• DoM + VP: Delay-on-miss with a VTAGE value

predictor.
• DoM + VP (Oracle): Delay-on-miss with the oracular

value predictor, capable of correctly predicting all
speculative L1 misses. Even thought the Oracle VP
is always correct, validations are still being sent out
once the load has been unshadowed.

• DoM + VP (Instant): Delay-on-miss with the VTAGE
predictor, but validation are sent as soon as the value
has been predicted, instead of waiting for the load to
be unshadowed. This is an unsecured version that is
used to evaluate the cost of delaying and serializing
the validations.

• DoM + VP (Oracle + Instant): Delay-on-miss with
the oracular predictor and instant validations. This is
another unsecured version used to demonstrate the
cost of validation.

McPAT can model the energy usage of the CPU com-
ponents but it does not offer the capability of adding new
components without modifying its source code. In order to

calculate the energy usage of the value predictor, we model
it as a branch target buffer (BTB) and a branch predictor (BP)
in McPAT. While the implementation details of these units
differ from the VP, they are the two components that are the
closest to the VP. In addition, McPAT does not model the
DRAM, for this we rely on the integrated DRAMPower [31]
model in Gem5.

A significant difference with our previous work is how
the dynamic energy usage of the system is modeled. Previ-
ously, while the instruction queue and the ROB were idle,
Gem5 would still poll them to try to find instructions ready
to issue or commit. This lead to an increase in the dynamic
energy proportional to the execution time. We have since
modified our energy model to exclude this polling, under
the assumption that modern CPUs are capable of clock-
gating such structures until an instruction becomes ready.

8.1 Performance

In this section we will establish the performance of the
different versions, before further diving into the different
runtime characteristics in the sections that follow. Figure 5
contains the average number of retired instructions per cycle
(IPC) for each benchmark and for each version, normalized
to the unsecured baseline version. First, we have the delay-
all approach, where all shadowed loads are delayed until
they are unshadowed. The performance of this version
ranges from −74% (hmmer) to −3% (lbm) under the base-
line, with a mean performance loss of 53%.

The next version is the delay-on-miss version, where
we only delay shadowed loads if they miss in the L1.
With a mean performance of −18% under the baseline,
delay-on-miss improves significantly over delay-all, reduc-
ing the performance loss by two thirds. The five benchmarks
that perform the worst with delay-on-miss are GemsFDTD
(−67%), mcf (−55%), omnetpp (−41%), milc (−26%),
and bwaves (−25%). We will discuss these benchmarks
further in the next section (8.2), where we discuss the effects
of the different versions in the amount of memory level
parallelism exploited. For the remaining of the SPEC2006
benchmarks, the performance loss is constrained to less than
25% under the baseline, with five benchmarks reaching 99%
(h264ref, sjneg, and gobmk) or even 100% (wrf and lbm)
of the baseline performance.



IEEE TRANSACTIONS ON COMPUTERS 9

bzip
2

gcc

bw
av

es

gam
es

s
m

cf
m

ilc

ze
usm

p

gro
m

ac
s

ca
ct

usA
DM

les
lie

3d
nam

d

gobm
k

so
plex

hm
m

er
sje

ng

Gem
sF

DTD

lib
quan

tu
m

h264re
f

lb
m

om
net

pp
as

ta
r

wrf

sp
hin

x

G
M

ea
n

0

1

2

3

4

5

6

M
S

H
R

E
nt

ri
es

baseline delay DoM DoM + VP DoM + VP (Oracle) DoM + VP (Instant) DoM + VP (Oracle + Instant)

(a) MSHR Entries. The bottom dark part represents entries allocated by memory reads.

bzip
2

gcc

bw
av

es

gam
es

s
m

cf
m

ilc

ze
usm

p

gro
m

ac
s

ca
ct

usA
DM

les
lie

3d
nam

d

gobm
k

so
plex

hm
m

er
sje

ng

Gem
sF

DTD

lib
quan

tu
m

h264re
f

lb
m

om
net

pp
as

ta
r

wrf

sp
hin

x

G
M

ea
n

0

1

2

3

4

M
S

H
R

T
ar

ge
ts

baseline delay DoM DoM + VP DoM + VP (Oracle) DoM + VP (Instant) DoM + VP (Oracle + Instant)

(b) MSHR Targets.

Fig. 6. Average number of MSHR entries (inter-cacheline) and targets per entry (intra-cacheline).

bzip
2

gcc

bw
av

es

gam
es

s
m

cf
m

ilc

ze
usm

p

gro
m

ac
s

ca
ct

usA
DM

les
lie

3d
nam

d

gobm
k

so
plex

hm
m

er
sje

ng

Gem
sF

DTD

lib
quan

tu
m

h264re
f

lb
m

om
net

pp
as

ta
r

wrf

sp
hin

x

G
M

ea
n

0.0

0.2

0.4

0.6

0.8

1.0

L
1D

M
is

s
R

at
io

baseline delay DoM DoM + VP DoM + VP (Oracle) DoM + VP (Instant) DoM + VP (Oracle + Instant)

Fig. 7. L1 miss ratio.

When value prediction is introduced into delay-on-miss,
the performance loss is further reduced by 1 percentage
point with the VTAGE predictor and by 3 percentage points
with the oracle predictor, which contradicts our old value
prediction results. The reason for this discrepancy is that in
our original implementation the overhead of the validations
had not been modeled as accurately, understating the effects
of the validation in the MLP of the application, which led
to an overestimation of the performance benefits of value
prediction. Instead, in order to achieve results that are sim-
ilar to our initial simulations, we need to introduce instant

validations, which can match or even exceed the initial VP
results. With instant validations, the VTAGE predictor can
achieve a mean performance loss of only 8% under the
baseline, while the oracle predictor can even exceed the
baseline by 3%.

8.2 Memory Level Parallelism
Having established the performance that the different ver-
sions exhibit, it is time to understand why. As we have
explained, memory level parallelism plays an important role
in the performance of the applications. We will use the



IEEE TRANSACTIONS ON COMPUTERS 10

bzip
2

gcc

bw
av

es

gam
es

s
m

cf
m

ilc

ze
usm

p

gro
m

ac
s

ca
ct

usA
DM

les
lie

3d
nam

d

gobm
k

so
plex

hm
m

er
sje

ng

Gem
sF

DTD

lib
quan

tu
m

h264re
f

lb
m

om
net

pp
as

ta
r

wrf

sp
hin

x

G
M

ea
n

0

5

10

15

20

25
M

P
K

I
baseline delay DoM DoM + VP DoM + VP (Oracle) DoM + VP (Instant) DoM + VP (Oracle + Instant)

Fig. 8. LLC (L2) misses per one thousand instructions.

bzip
2

gcc

bw
av

es

gam
es

s
m

cf
m

ilc

ze
usm

p

gro
m

ac
s

ca
ct

usA
DM

les
lie

3d
nam

d

gobm
k

so
plex

hm
m

er
sje

ng

Gem
sF

DTD

lib
quan

tu
m

h264re
f

lb
m

om
net

pp
as

ta
r

wrf

sp
hin

x

G
M

ea
n

0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

E
ne

rg
y

U
sa

ge

baseline delay DoM DoM + VP DoM + VP (Oracle) DoM + VP (Instant) DoM + VP (Oracle + Instant)

Fig. 9. Energy usage normalized to the unsecured baseline. Each bar consists of four parts (bottom to top): The dynamic energy usage of the CPU
(bottom, light colored), the static energy usage of the CPU (middle, dark colored), the dynamic energy usage of the DRAM (middle, light colored),
and the VP overhead, both static and dynamic (top, dark colored).

MSHRs in the L1 cache as a proxy metric for measuring
the amount of MLP during execution. For each cache line
requested in a cache, an MSHR entry is allocated. Each
entry in turn has several targets, each of which corresponds
to a memory access, whether that access is a load or a store3.
The number of entries indicates how many different cache
lines are fetched in parallel (inter-cacheline MLP) while the
number of targets indicates how many accesses benefit from
each fetch (intra-cacheline MLP).

Figure 6 contains the average number of MSHR entries
(6a) and targets (6b) in the matching entry already allocated
when a load access misses in the L1 cache. For loads that
are delayed or value predicted, we only account for their
visible access/validation, i.e., we do not count the number
of MSHR entries/targets at the point that they were delayed.
Similarly, delayed loads are not counted as part of the
allocated targets/entries. For the MSHR entries, we also
differentiate between entries that were allocated by a load
(excluding prefetches – bottom, dark color) and entries that
were allocated by another operation (top, light color). In
figures 7 and 8 the L1 data-cache miss ratio and the last-level
cache (LLC) MPKI can also be seen. By looking at the mean
number of entries (6a) we can immediately see how each

3. Other operations (such as prefetching) might also allocate MSHR
targets.

version affects the inter-cacheline MLP of the application.
In the baseline, there is an average of two MSHR entries
already allocated when a load misses in the L1, which
translates to two cache lines being fetched in parallel. Out of
these, roughly half are entries allocated by loads, while the
rest correspond to other operations. If we indiscriminately
delay all shadowed loads (delay-all), then the number of
load-allocated entries falls to zero and the total to a mean
value of less than one. Essentially, in the majority of the
cases, when a load misses in the L1 there are no other
pending memory fetches. This translates to very poor MLP,
which in turn leads to very poor performance.

On the other hand, by introducing delay-on-miss and
only selectively delaying loads, we can recover over half
(55%) of the baseline MLP. Specifically, the number of load-
allocated entries is increased from 0 to 36% of the baseline,
but the majority of the MLP comes from the rest (non-load-
allocated), at 81% of the baseline. Introducing the value
predictor, either the VTAGE predictor or the Oracle, does
not significantly change these numbers, which supports our
analysis that value prediction only aids in gaining ILP and
not any inter-cacheline MLP. We only see a boost in the
MLP once the instant validations are used, with the VTAGE
version reaching 76% of the baseline, and the Oracle version
reaching 100% of the baseline.

Finally, if we look into the number of MSHR targets



IEEE TRANSACTIONS ON COMPUTERS 11

found in the matching MSHR entry, we see that only the
delay version leads to a significant decrease. This is due
to the fact that, as explained in Section 6, we can allow
shadowed loads to proceed if a safe memory request is
already in flight. The fact that delay-on-miss does not nega-
tively affect intra-cacheline MLP contributes to the reduced
performance cost over simply delaying all loads, but as we
have already discussed, its effect on the inter-cacheline MLP
is also important.

We can look at GemsFDTD as a specific example of this,
as it is the application with the biggest performance degra-
dation. In the baseline, there is an average of 5.7 MSHR
entries already allocated when a load misses in the L1 cache.
Out of these, two thirds are entries that have been allocated
by other loads. With delay-on-miss we regain the MLP for
the entries that are not allocated by loads (as well as the
intra-cacheline MLP), but we only regain 8% for the load-
allocated entries. The same is true for the VP and Oracle
VP versions, as long as the (unsafe) instant validations
are not allowed. On the other hand, if we allow instant
validations, then we regain back the majority of the MLP. We
can make similar observations for other benchmarks as well,
such as bwaves, mcf, milc, and omnetpp, which are the
benchmarks we identified in Section 8 as the benchmarks
with the biggest performance loss under delay-on-miss. On
the other hand, on benchmarks such as wrf and lbm (the
best performing benchmarks), delay-on-miss fully recovers
all of the baseline MLP.

8.3 Energy Usage

As neither version significantly affects MPKI or the instruc-
tions executed by the benchmarks, the two main factors
affecting the energy usage is the execution time and the
overhead of doing value predictions. As the value predictor
uses a relatively small amount of energy, compared to the
rest of the system, the execution time is the main parameter
affecting the energy usage.

The results can be seen in Figure 9. Each bar consists of
four parts, from bottom to top: The dynamic energy usage
of the CPU (bottom, light colored), the static energy usage of
the CPU (middle, dark colored), the dynamic energy usage
(including refresh and power-down states) of the DRAM
(middle, light colored), and the overhead of the VP, both
static and dynamic (top, dark colored).

We observe that the dynamic-energy usage of the CPU is
not significantly affected by the different versions, instead,
the static-energy usage, as well as the DRAM-energy usage,
are the main factors contributing to the energy overheads.
The delay-all version increases the mean energy by 48%
over the baseline, while the delay-on-miss reduces this
overhead by four fifths, to just 9% over the baseline. With
value prediction, the overhead increases insignificantly, due
to the added overhead of the value prediction. Finally, the
VTAGE and oracle versions with (unsafe) instant validations
reduce the overhead to 4% and −1%, respectively.

9 CONCLUSIONS

We have performed a detailed evaluation of the implications
of delaying speculative loads to improve the resilience of

modern, high-performance CPUs against speculative side-
channel attacks targeting the memory hierarchy. This evalu-
ation leads to the new insight that the major factor affecting
the performance of the applications under such solutions
is the amount of memory level parallelism that can be
exploited during execution. Our delay-on-miss solution,
which builds on the idea that only loads that miss in the L1
cause significant side-effects, is able to recover a significant
portion of the MLP lost by indiscriminately delaying all
speculative loads, achieving a performance loss of only 18%
compared to the baseline. In contrast, the aforementioned
delay-all approach that indiscriminately delays all specula-
tive loads suffers from a 53% performance loss.

We have also shown that introducing value prediction
does not significantly alter the performance, as value pre-
diction increases the instruction level parallelism of the
application but not the MLP. Instead, for value prediction to
improve the performance of delay-on-miss, we would have
to remove the delay-on-miss restrictions from the predic-
tion validations, which would lead to information leakage.
However, similar to other approaches that face the same
issues, such as InvisiSpec, we believe that, under certain
cases, future work can remove some of the restrictions
on validations, which will lead to significant performance
improvements.

ACKNOWLEDGMENTS

This work was funded by Vetenskapsrådet project 2015-
05159, by the SSF Strategic Mobility 2017 grant SM17-0064,
the Spanish MCIU and AEI, as well as European Commis-
sion FEDER grant RTI2018-098156-B-C53. The computations
were performed on resources provided by SNIC through
UPPMAX.

REFERENCES

[1] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown,”
Jan. 2018. [Online]. Available: http://arxiv.org/abs/1801.01207

[2] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre
attacks: Exploiting speculative execution,” in Proceedings of the
IEEE Symposium on Security and Privacy. Washington, DC, USA:
IEEE Computer Society, May 2019, pp. 19–37.

[3] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard,
“DRAMA: Exploiting DRAM addressing for cross-CPU attacks.”
in Proceedings of the USENIX Security Symposium. Berkeley, CA,
USA: USENIX Association, 2016, pp. 565–581.

[4] A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. Pereida Garcia, and
N. Tuveri, “Port Contention for Fun and Profit,” in Proceedings
of the IEEE Symposium on Security and Privacy. San Francisco,
CA, USA: IEEE, May 2019, pp. 870–887. [Online]. Available:
https://ieeexplore.ieee.org/document/8835264/

[5] M. Schwarz, M. Schwarzl, M. Lipp, and D. Gruss, “Netspectre:
Read arbitrary memory over network,” 2018.

[6] Y. Lyu and P. Mishra, “A Survey of Side-Channel Attacks on
Caches and Countermeasures,” Journal of Hardware and Systems
Security, vol. 2, no. 1, pp. 33–50, Mar. 2018. [Online]. Available:
http://link.springer.com/10.1007/s41635-017-0025-y

[7] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey
of microarchitectural timing attacks and countermeasures on
contemporary hardware,” Journal of Cryptographic Engineering,
vol. 8, no. 1, pp. 1–27, Apr. 2018. [Online]. Available:
http://link.springer.com/10.1007/s13389-016-0141-6

[8] A. Pardoe, “Spectre mitigations in MSVC,” 2018,
https://blogs.msdn.microsoft.com/vcblog/2018/01/15/
spectre-mitigations-in-msvc/.

http://arxiv.org/abs/1801.01207
https://ieeexplore.ieee.org/document/8835264/
http://link.springer.com/10.1007/s41635-017-0025-y
http://link.springer.com/10.1007/s13389-016-0141-6
https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-in-msvc/
https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-in-msvc/


IEEE TRANSACTIONS ON COMPUTERS 12

[9] C. Reis, “Mitigating Spectre with site isolation in Chrome,”
2018, https://www.kernel.org/doc/html/latest/admin-guide/
hw-vuln/spectre.html.

[10] “The Linux kernel users and administrators guide: Spectre
side channels,” 2019, https://www.kernel.org/doc/html/latest/
admin-guide/hw-vuln/spectre.html.

[11] E. M. Koruyeh, S. H. A. Shirazi, K. N. Khasawneh, C. Song,
and N. Abu-Ghazaleh, “SPECCFI: Mitigating Spectre Attacks
using CFI Informed Speculation,” arXiv:1906.01345 [cs], Dec. 2019.
[Online]. Available: http://arxiv.org/abs/1906.01345

[12] C. Sakalis, S. Kaxiras, A. Ros, A. Jimborean, and M. Själander,
“Efficient invisible speculative execution through selective
delay and value prediction,” in Proceedings of the International
Symposium on Computer Architecture, ser. ISCA ’19. New
York, NY, USA: ACM, 2019, pp. 723–735. [Online]. Available:
http://doi.acm.org/10.1145/3307650.3322216

[13] C. Sakalis, M. Alipour, A. Ros, A. Jimborean, S. Kaxiras,
and S. Magnus, “Ghost loads: What is the cost of invisible
speculation?” in Proceedings of the ACM International Conference
on Computing Frontiers. New York, NY, USA: ACM, 2019,
pp. 153–163. [Online]. Available: http://doi.acm.org/10.1145/
3310273.3321558

[14] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. W. Fletcher, and
J. Torrellas, “InvisiSpec: Making speculative execution invisible in
the cache hierarchy,” in Proceedings of the ACM/IEEE International
Symposium on Microarchitecture. Washington, DC, USA: IEEE
Computer Society, Oct. 2018, pp. 428–441.

[15] K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin,
D. Ponomarev, and N. Abu-Ghazaleh, “SafeSpec: Banishing the
Spectre of a Meltdown with Leakage-Free Speculation,” in 2019
56th ACM/IEEE Design Automation Conference (DAC), Jun. 2019,
pp. 1–6.

[16] S. Ainsworth and T. M. Jones, “MuonTrap: Preventing cross-
domain spectre-like attacks by capturing speculative state,” in
Proceedings of the International Symposium on Computer Architecture.
IEEE Computer Society, 2020.

[17] P. Li, L. Zhao, R. Hou, L. Zhang, and D. Meng, “Conditional
speculation: An effective approach to safeguard out-of-order ex-
ecution against spectre attacks,” in Proceedings of the International
Symposium High-Performance Computer Architecture, Feb 2019, pp.
264–276.

[18] O. Weisse, I. Neal, K. Loughlin, T. F. Wenisch, and B. Kasikci,
“NDA: Preventing Speculative Execution Attacks at Their
Source,” in Proceedings of the ACM/IEEE International Symposium
on Microarchitecture, ser. MICRO ’52. New York, NY, USA: ACM,
2019, pp. 572–586, event-place: Columbus, OH, USA. [Online].
Available: http://doi.acm.org/10.1145/3352460.3358306

[19] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W.
Fletcher, “Speculative Taint Tracking (STT): A Comprehensive
Protection for Speculatively Accessed Data,” in Proceedings
of the ACM/IEEE International Symposium on Microarchitecture,
ser. MICRO ’52. New York, NY, USA: ACM, 2019, pp.
954–968, event-place: Columbus, OH, USA. [Online]. Available:
http://doi.acm.org/10.1145/3352460.3358274

[20] J. Fustos, F. Farshchi, and H. Yun, “SpectreGuard: An Efficient
Data-centric Defense Mechanism against Spectre Attacks,” in
Proceedings of the ACM/IEEE Design Automation Conference. Las
Vegas, NV, USA: ACM Press, 2019, pp. 1–6. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3316781.3317914

[21] M. Schwarz, R. Schilling, F. Kargl, M. Lipp, C. Canella,
and D. Gruss, “ConTExT: Leakage-Free Transient Execution,”
arXiv:1905.09100 [cs], May 2019. [Online]. Available: http:
//arxiv.org/abs/1905.09100

[22] J. Yu, N. Mantri, J. Torrellas, A. Morrison, and C. W. Fletcher,
“Speculative data-oblivious execution: Mobilizing safe prediction
for safe and efficient speculative execution,” in Proceedings of the
International Symposium on Computer Architecture. IEEE Computer
Society, 2020.

[23] G. Saileshwar and M. K. Qureshi, “CleanupSpec: An ”undo”
approach to safe speculation,” in Proceedings of the ACM/IEEE
International Symposium on Microarchitecture, ser. MICRO ’52.
New York, NY, USA: ACM, 2019, pp. 73–86. [Online]. Available:
http://doi.acm.org/10.1145/3352460.3358314

[24] G. B. Bell and M. H. Lipasti, “Deconstructing commit,”
in Proceedings of the International Symposium on Performance
Analysis of Systems and Software. Washington, DC, USA:

IEEE Computer Society, 2004, pp. 68–77. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1153925.1154589

[25] M. H. Lipasti and J. P. Shen, “Exceeding the dataflow limit via
value prediction,” in Proceedings of the ACM/IEEE International
Symposium on Microarchitecture. Washington, DC, USA: IEEE
Computer Society, 1996, pp. 226–237.

[26] A. Perais and A. Seznec, “EOLE: Combining static and
dynamic scheduling through value prediction to reduce
complexity and increase performance,” ACM Trans. Comput.
Syst., vol. 34, no. 2, pp. 4:1–4:33, Apr. 2016. [Online]. Available:
http://doi.acm.org/10.1145/2870632

[27] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The
gem5 simulator,” ACM SIGARCH Computer Architecture News,
vol. 39, no. 2, pp. 1–7, Aug. 2011.

[28] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi, “McPAT: An integrated power, area, and timing
modeling framework for multicore and manycore architectures,”
in Proceedings of the ACM/IEEE International Symposium on Microar-
chitecture. Washington, DC, USA: IEEE Computer Society, Dec.
2009, pp. 469–480.

[29] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi,
“CACTI-P: Architecture-level modeling for SRAM-based struc-
tures with advanced leakage reduction techniques,” in Proceedings
of the IEEE/ACM International Conference on Computer-Aided Design.
Washington, DC, USA: IEEE Computer Society, 2011, pp. 694–701.

[30] Standard Performance Evaluation Corporation, “SPEC CPU
benchmark suite,” http://www.specbench.org/osg/cpu2006/,
2006.

[31] K. Chandrasekar, C. Weis, Y. Li, S. Goossens, M. Jung, O. Naji,
B. Akesson, N. Wehn, and K. Goossens, “DRAMPower: Open-
source dram power & energy estimation tool,” 2012, http://www.
drampower.info.

Christos Sakalis is a PhD student at Uppsala
University, Sweden. His research is on secure
hardware architectures, and specifically on pro-
tecting general purpose systems from specu-
lative side-channel attacks. Before starting his
PhD, Christos worked as a compiler engineer at
Codeplay, UK, focusing on auto-vectorization for
their ComputeAorta toolkit.

Stefanos Kaxiras is a full professor at Uppsala
University, Sweden. His research interests are
in the areas of memory systems, and multipro-
cessor/multicore systems, with a focus on power
efficiency. He is a Distinguished ACM Scientist
and IEEE member.

Alberto Ros is Associate Professor at the Uni-
versity of Murcia, Spain. He was funded by the
Spanish government to conduct the PhD studies
and received the PhD in computer science from
the University of Murcia in 2009. He hold post-
doctoral positions at the Universitat Politècnica
de València and at Uppsala University. He re-
ceived a Consolidator Grant from European Re-
search Council. His research interests include
cache coherence, memory consistency, and pro-
cessor microarchitecture.

https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/spectre.html
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/spectre.html
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/spectre.html
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/spectre.html
http://arxiv.org/abs/1906.01345
http://doi.acm.org/10.1145/3307650.3322216
http://doi.acm.org/10.1145/3310273.3321558
http://doi.acm.org/10.1145/3310273.3321558
http://doi.acm.org/10.1145/3352460.3358306
http://doi.acm.org/10.1145/3352460.3358274
http://dl.acm.org/citation.cfm?doid=3316781.3317914
http://arxiv.org/abs/1905.09100
http://arxiv.org/abs/1905.09100
http://doi.acm.org/10.1145/3352460.3358314
http://dl.acm.org/citation.cfm?id=1153925.1154589
http://doi.acm.org/10.1145/2870632
http://www.specbench.org/osg/cpu2006/
http://www.drampower.info
http://www.drampower.info


IEEE TRANSACTIONS ON COMPUTERS 13

Alexandra Jimborean is an Associate Profes-
sor at Uppsala University since 2019. She ob-
tained her PhD from the University of Stras-
bourg, France in 2012, was awarded the Anita
Borg Memorial Scholarship offered by Google
in recognition of excellent research, along with
other 30 distinctions, awards and grants. Her
research focuses on compile-time and run-time
code analysis and optimization for performance,
energy efficiency, and security and on software-
hardware co-designs.

Magnus Själander is an Associate Professor at
the Norwegian University of Science and Tech-
nology (NTNU) and a Visiting Senior Lecturer
at Uppsala University. He obtained his Ph.D.
from Chalmers University of Technology in 2008.
Before joining NTNU in 2016 he has been a
researcher at Chalmers, Florida State Univer-
sity, and Uppsala University. Själanders research
interests include hardware/software co-design
(compiler, architecture, and hardware implemen-
tation) for high-efficiency computing.


	Introduction
	Threat Model
	Instruction and Memory Level Parallelism
	The State-of-the-Art
	Speculative Shadows
	Delay-on-Miss
	Value Prediction
	Evaluation
	Performance
	Memory Level Parallelism
	Energy Usage

	Conclusions
	References
	Biographies
	Christos Sakalis
	Stefanos Kaxiras
	Alberto Ros
	Alexandra Jimborean
	Magnus Själander


