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Abstract—Branch predictors are the hardware logic that tries
to guess the outcome of a branch instruction before its execution.
Currently, researchers make use of simulation tools to measure
the accuracy of their predictors against hundreds of program
traces. However, these simulations require multiple hours of
computation time. This makes the prototyping slow and limits
the ability of the researcher to test different strategies. Besides,
current simulators are built as frameworks instead of libraries,
in the sense that they call the user code and not the other way
around. As a result, the user has no control of the program
execution and they cannot optimize it for the experiment at hand.

In this paper we present Modular Branch Prediction Library
(MBPlib), an open-source C++ library that solves the aforemen-
tioned issues. MBPlib runs over 18.4× faster than the current
fastest framework, and its trace format uses 6.5× less disk space.
MBPlib also makes development easier by providing utilities that
are typically used as subcomponents in most branch prediction
designs. Moreover, the library features one of the largest collec-
tions of example implementations, including traditional as well
as state-of-the-art predictors.

MBPlib will allow researchers to significantly reduce the time
needed for evaluation. Furthermore, by giving the option of
obtaining results within seconds, as well as by means of the
broad collection of examples, written in a modern and uniform
code style, MBPlib can significantly decrease the barrier to entry
into the field. Thus, we believe that MBPlib is also a great tool
for computer architecture classes.

Index Terms—branch-prediction, simulation, library.

I. INTRODUCTION

Branch predictors are the hardware logic that tries to guess
the outcome of the branch instruction before its execution.
Having an accurate branch predictor is critical to achieving
high performance in modern pipelined architectures [1], [2].
As a matter of fact, experiments on real processors showed
that the performance could be improved by 13% if the
mispredictions were reduced by half [3].

Branch prediction designs are commonly evaluated us-
ing trace-based simulators. Microarchitecture-agnostic metrics,
such as the mispredictions per kilo-instructions (MPKI), have
become a de-facto standard in the field. Most recent research
articles only provide the MPKI of their design, leaving
performance improvements as a second-class metric [4]–[7].
Similarly, MPKI is the only metric used in the Championships
in Branch Prediction [8]–[12].

One reason for the use of microarchitecture-agnostic metrics
is that research has been influenced by the championships
methodology, which needs to be based on simple tools to

make the competition more accessible. Another reason is that
it has been shown that having fewer mispredictions per kilo-
instructions is correlated with better performance. Plus, it
is always preferable to have a metric that does not depend
on the microarchitecture evaluated. Lastly, and perhaps more
importantly given the continuous increase in the complexity
of the predictors, the simulators that do not need to reproduce
the processor internals or model non-branch instructions are
orders of magnitude faster. This makes it possible to run more
or longer traces.

Two popular trace-based simulators that model branch pre-
dictors and have a user-friendly interface are the Champi-
onship Simulator (ChampSim) [13] and the framework from
the 5th Championship in Branch Prediction (CBP5) [12].
ChampSim is a cycle-accurate simulator for microarchitec-
ture study. It implements an out-of-order processor and can
measure the instructions per cycle as well as the MPKI.
Thus, ChampSim traces include a detailed description of the
execution. On the other hand, the CBP5 framework is micro-
architecturally independent and its trace format only contains
information about the program branches and the number of
instructions. As a result, the CBP5 framework can be 50×
faster (section VII), making it the preferred option by a lot of
researchers, even though it is not maintained.

In this paper we present the Modular Branch Prediction
library (MBPlib). MBPlib is an open-source1 C++ library
for writing branch predictors implementations and performing
microarchitecture-agnostic simulations. As a tool, MBPlib
offers the following:

1) It is 18.4× and 923× faster than the CBP5 framework
and ChampSim, respectively.

2) It uses a compact trace format. Our translation of two
sets of traces use 6.5× and 42× less space, respectively.

3) It offers utilities to avoid reimplementing common func-
tionality and it favors designs written with composability
in mind, where predictors also become components.

4) It is built on top of modern technologies, such as C++17
and CMake, and uses JSON as the output format.

5) It is designed as a library instead of a framework, which
means that the user code calls MBPlib and not the other
way around, making more easy to use it in conjunction
with other software.

1MBPlib is published at https://github.com/useredsa/MBPlib/.
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II. MOTIVATION

The relevance of branch prediction has only increased in the
past years due to the continuous increase in the width of the
pipeline and the number of ways of superscalar processors.
The reason for this is that the deeper in the pipeline the
evaluation of the branch is, the higher the number of penalty
cycles incurred on a misprediction. And the higher the number
of ways, the higher the percentage of time that the stalls
suppose. For instance, a microarchitecture that fetches one
instruction per cycle, evaluates branches in the 5-th cycle
and has a branch predictor with 5 MPKI has a CPI of
1 + 0.005× 4 = 1.02. If we could reduce in 1 the MPKI, the
CPI would become 1 + 0.004× 4 = 1.016, giving a speedup
of 1.02

1.016 ≈ 0.4%. On the other hand, a microarchitecture that
fetches 4 instructions per cycle and evaluates the branches in
the 11-th cycle would achieve 0.25 + 0.005 × 10 = 0.3 CPI
and 0.25 + 0.004 × 10 = 0.29 CPI, respectively. Hence, the
speedup is this case would be 0.3

0.29 ≈ 3.4%.
In parallel to the increasing relevance of branch prediction,

branch prediction schemes have also become more complex.
If an old GShare [14] predictor had 3 parameters: the size
of the table, the number of bits of each entry and the branch
history length used to index it, a modern TAGE [15] predictor
can have more than 50 parameters. Since at the very least
it has the same 3 plus the number of bits used for the tag
and utility counters for each of its tables, which can be 10
or more. Thus, finding the optimal parameter values requires
testing more configurations.

Moreover, as years have passed, the evaluation has also
become more thorough and the number of traces used in
evaluation has increased. For instance, the CBP4 used a set of
40 traces, while the last CBP used 223 traces for training and
440 for evaluation [16]. Now it is common to use hundreds
of traces from popular benchmark suites [12], [17]. Besides,
sometimes the researchers use long traces to measure how
the predictor adapts to changes in the program behavior. For
example, also in the last CBP, 23 and 40 traces of the training
and evaluation sets, respectively, contained more than 1 billion
instructions.

In section VII we show that simulating a single trace of 100
million instructions in ChampSim, which models the whole
processor, takes 11.7min on average. Thus, simulating the
whole training set of traces of the CBP5 in ChampSim would
require roughly 84 h of computational time. This justifies the
need for fast microarchitecture-agnostic simulators that can be
used to explore the design space, tune the predictor parameters
and run very long traces.

A. Objectives

The 5th Championship Branch Prediction (CBP5) [12]
was held in 2016. The organization committee provided a
microarchitecture-agnostic common evaluation framework and
a set of 223 training traces. To create the set, they obtained
thousands of traces from programs of different popular soft-
ware suites and followed a complex classification process

based on principal component analysis and clustering tech-
niques to select a representative set [16]. Obviously, this
process is time-consuming, and for that reason the traces from
the CBP5 were still used after the competition [5]. However,
the CBP5 framework is not maintained, and 7 years have
passed since the championship celebration.

Currently, there is no open-source simulator that is as easy
to use as those featured in the championships. MBPlib tries to
fill the gap by being a simulator with those two characteristics.
However, since MBPlib is being designed in 2022, we are also
expected to improve upon previous simulators.

Our primary goal was to make MBPlib as fast as possible.
Even with the CBP5 framework, it is necessary to wait
multiple minutes to obtain the results for a small number
of traces, not to mention for all 223 traces. Students and
beginning researchers often need to see the effect of small
changes in the predictor’s performance to understand which
strategies work. Thus, MBPlib should make prototyping in
real-time possible. That is, to obtain results within seconds.
In order to be faster, MBPlib had to leave behind the CBP5
trace format, which is encoded in plain text, and switch to a
binary format. Still, we believed that in order to gain broad
adoption, it was essential to offer a curated set of traces. For
that reason, we translated the CBP5 traces to our new format.

The second objective of MBPlib was to integrate with other
projects. Frameworks that come with their own build system,
typically a Makefile file, can make it difficult to use third-
party code. There is no way to manage the user dependencies
and there is no control over the program’s start-up. It becomes
necessary to create scripts that invoke the framework’s compi-
lation process. To cope with this, we conceived MBPlib as a
simulation library instead of a framework. MBPlib integrates
inside the user project and not the other way around.

In a nutshell, while prioritizing the objective of being fast,
MBPlib shall be modular, easy to use and accessible to a broad
public.

III. ARCHITECTURE OF MBPLIB

We start with a description of MBPlib, detailing its archi-
tecture as a software suite. Rather than as a single library,
MBPlib is built as three C++17 libraries that can be used
independently. They are the simulation, utilities and examples
libraries, targeted towards simulation, development and edu-
cation, respectively.

The simulation library is what would correspond to the
whole framework in other software suites. Basically, it offers
all the routines needed to run a user-defined branch predictor
for a program trace and obtain a JSON object with the
simulation results. Besides, the simulation library offers the
trace reader and trace writer as subcomponents. What this
means is that the user can also link a library that contains
only the trace reader or writer, which is useful for creating
applications that inspect or modify the program traces.

The utilities library offers software implementations of
components that are present in most branch predictors, such as
fixed-width saturated counters or a class that maintains a hash

2



of the global branch history. These components avoid the need
to reimplement common functionality in different predictors
and can be better than the short pieces of code that are typically
written to replace them, because they handle all inputs, include
error checks and can be optimized by the software maintainers.
For instance, by modeling the fixed-width counters as a class
we can create custom arithmetical operators for it, providing
a simple and modern interface. (Note that even though the
utilities library is part of MBPlib, it can still be used to
implement branch predictors in other simulators.)

Finally, the examples library offers implementations for the
most well-known branch predictors. Including state-of-the-art
predictors, like BATAGE [5], a recent successor to the famous
predictor TAGE [15]. These implementations can serve two
purposes. One is to learn and teach about branch prediction
techniques or how to take advantage of the utilities library. The
other is to use them as subcomponents of another predictor.
For instance, a lot of predictors use a bimodal predictor [18]
as a subcomponent. Others combine the result obtained by
different prediction strategies.

IV. THE SIMULATION LIBRARY

The simulation library, which is abbreviated as the simulator
throughout the text, is a lightweight library focused on obtain-
ing microarchitecture-agnostic metrics. In simple words, what
the simulator does is read a program trace that contains the
branches seen during the execution, ask the branch predictor
to anticipate the outcome of those branches, and record how
many times the predictor was incorrect.

Our simulator uses a custom trace format named Simple
Binary Branch Trace (SBBT). The format is greatly inspired
by the CBP5 framework trace format, BT9, but it is designed
to take less space and allow faster parsing. The BT9 format is
a plain-text format that starts by describing a graph where the
nodes are the branches present in a program and their possible
outcomes are the edges and then follows with a section that
describes the sequence of edges taken. The SBBT format, on
the other hand, has only a small header without the graph
description and the rest is just a concatenation of packets of
128 bits. Each of these packets includes a description of the
current branch and its outcome. In addition, SBBT is a binary
format. Hence, it uses less space and saves the time required
for parsing the text format.

It is common practice to distribute the traces compressed
and let the simulator decompress them. MBPlib can decom-
press traces compressed with xz, gzip, lz4 or zstd. Of
all the available compression algorithms, we used zstandard
(zstd) [19] because it had the best decompression speed for the
SBBT format. Moreover, in the case of zstandard, we saw that
a bigger compression factor did not make the decompression
slower. Thus, we use the biggest compression ratio available
(level 22).

In practice, the absence of the branch graph in the header
makes the SBBT traces contain more redundant information.
This may make the files bigger but it makes the simulator
avoid the cache misses from accessing a big hashed structure to

read the branch metadata. Using a good compression method
also helps to reduce the amount of redundant information.
The CBP5 training traces in SBBT format take 769MB when
compressed using zstandard [19], while the same traces in
BT9 format, when compressed with the same method, take
only 504MB. However, the original CBP5 framework used
gzip [20] to compress its traces and the traces distributed used
5.4GB of disk space. That makes the new set of traces 7.3×
smaller. Besides, 700MB to 800MB is already an affordable
disk space. Consequently, we considered more important the
simulation speed.

Throughout the rest of the section we describe the simulator
interface, the SBBT format, and the output produced by the
simulator.

A. Predictor Interface

In MBPlib, a branch predictor is a class that inherits
from mbp::Predictor and overrides the following three
functions.

• bool predict(uint64_t)

Obtains the outcome prediction for a given instruction
address. This function shall not modify the state of the
predictor in any way that would affect future predictions.

• void train(const mbp::Branch&)

Updates the predictor considering what was the outcome
of the branch in the current scenario.

• void track(const mbp::Branch&)

Updates the predictor scenario based on the outcome
of the given branch. The word scenario refers to the
information stored about the recent program behavior,
such as the outcome of recent branches.

The predictor class also includes other functions which can be
optionally overridden, though for the sake of brevity, we do not
describe them here, but in the software manual. They can be
used, for example, to include predictor data in the simulator’s
output.

B. Train and Track

In contrast to ChampSim and the CBP5 framework, MBPlib
has two functions that update the predictor. This distinction
was done with composability in mind.

Branch predictors have two types of data structures. Data
structures of the first type determine the prediction given the
branch address and the current scenario, while data structures
of the second type record the current scenario. Thus, even
though both types of structures condition what the output
of calling predict is, the difference is that the information
contained in the structures of the second type is used as
input to access the structures of the first type whereas the
information retrieved from the structures of the first type is
used to decide the prediction. Thus, it is as if the structures
of the second type were also parameters to predict. But
they cannot be parameters of predict because each predictor
decides what information to store for a prediction.

If the predictor is being called by the simulator then track

is invoked for all branches while train is invoked before track
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Fig. 1: SBBT header, spanning 196 bits.

Trace Set Num. of
Traces

Original
Size

Translated
Size

Size
Ratio

CBP5 - Training 223 5.4GB 760MB 7.3×
CBP5 - Evaluation 440 4.0GB 727MB 5.0×
DPC3 95 30.0GB 727MB 42.0×

TABLE I: Size reduction of the set of traces translated.

but only for conditional branches. However, when the predictor
is part of a bigger (meta-)predictor or we place a branch filter
before it, it will be the owning component the one deciding
which functions are called. For example, a meta-predictor may
be interested in training a subcomponent only when there is no
other component giving the correct prediction, which is called
a partial update policy. But the meta-predictor still needs to
call the track function, because knowing the outcome of the
current branch may be necessary to predict other branches.
Similarly, a filter may decide that it is not necessary to track
some branches.

C. Trace Format

The SBBT format, version 1.0.0, is a concatenation of
packets of 128 bits that is preceeded by a header of 192 bits.

The SBBT header structure is shown in fig. 1. The first
5 bytes of the header is the signature that characterizes the
SBBT filetype, which correponds to the string "SBBT\n" if
read as plain text. The following 3 bytes encode the major (1),
minor (0) and patch (0) version numbers as three unsigned 8
bit numbers. The rest of the header are two 64 bits numbers,
encoded in little endian: the number of instructions (branch
and non-branch) excuted by the processor during the tracing
procedure and the number of branches present in the trace.

Each SBBT packet of 128 bits represents a branch instruc-
tion, as depicted in fig. 2. The packet is divided into two blocks
of 64 bits, which are encoded in little endian. The first 64-bit
block contains the branch opcode, the outcome and the virtual
address of the branch instruction. The second 64-bit block
contains the number of instructions that got executed since
the last branch (without counting either branch) and the virtual
address of the branch target. The format stores the number of
instructions between branches to know the instruction number
of each branch. This allows the user to run only the first
n instructions of the trace and to use certain amount of
instructions as warm-up: instructions whose mispredictions are
not counted.

The addresses are encoded using the 52 most significant bits
of each 64-bit block. With this width we can encode both the

Target Address

Branch Address

0 12 64

0 4 11 12

OutcomeReserved

0 1 2 4

B. TypeConditional Indirect

Num. Instrs.

Opcode

Behavior

Fig. 2: SBBT branch packet, spanning 128 bits.

48-bit virtual addresses used by the x86-64 architecture [21],
[22] and the 52-bit virtual addresses used by the ARMv8-A
architecture with the Large Virtual Address Extension [23].
The 64-bit addresses used in the simulator are obtained by
performing an arithmetical shift of 12 bits.

The other 12 bits of the first block are used to encode the
branch behavior. The first 4 encode the branch opcode. The
next 7 bits that are reserved for future use and the last bit
indicates the branch outcome. The opcode follows closely the
definition of opcode used in the BT9 traces. The first two
bits indicate whether the branch is conditional and indirect,
respectively. The next two the base type of the branch, which
can be JUMP (00), CALL (10) or RET (01). With this notation,
branches that push or pop from the return address stack are
labeled as CALL or RET, respectively. The rest of the branches
are labeled as JUMP.

In the second block, the additional 12 bits encode the num-
ber of instructions executed in the path to this branch. Hence,
there can be at most 4096 instructions separating two consecu-
tive branches. This is not a small number, since approximately
15%to25% of all the instructions are branches [24], and traces
with a small number of branches are of little relevance in
branch prediction. In particular, none of the 663 traces from
the CBP5 and the 95 traces [25] from the 3rd Data Prefetching
Championship [17], which are based on the SPEC17 suite [26],
have two consecutive branches spread more than 4096 instruc-
tions apart.

Lastly, not all combinations of values are valid. Two rules
should be obeyed. First, if the branch is not conditional, the
outcome bit must always mark that the branch was taken.
Second, when the branch is conditional and indirect and the
outcome bit indicates that it is not taken, the target virtual
address must be null (0x0).

D. Available Traces

MBPlib comes with the traces of the Championship Branch
Prediction 5 (CBP5) and the traces of the 3rd Data Prefetch-
ing Championship (DPC3), which are linked in ChampSim’s
GitHub repository [27]. Table I shows the number of traces
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present in each set and their total size. All of the sets of SBBT
traces occupy less than 800MB. This means a reduction of
6.5× in disk space on average for the totality of the CBP5
traces (train and evaluation). The translated DPC3 traces are
42× smaller, but in this case the comparison is not fair
because ChampSim needs to store the registers accessed by
the instructions and information about all types of instructions,
not just branches.

The programs used to translate traces from the BT9 and
champsimtrace formats are linked in MBPlib’s repository.
Therefore, the user can translate any traces that they had
already recorded for both simulators. Apart from that, we also
provide an instrumentation module to trace an x86 executable.
This module is to be used with Intel’s PIN tool [28].

E. Output Format

MBPlib embeds user data into the output. Both static data
the user wants to add to identify details of the simulation
and dynamic data recorded during the execution of the trace.
Hence, we had to choose an output data type that was flexible
enough. At the same time, we also wanted a machine-friendly
output format that could be easily parsed by other tools and
scripting languages afterward. Therefore, we decided to make
the simulator return a JSON object.

Listing 1: Example output.
1 {
2 "metadata": {
3 "simulator": "MBPlib std simulator",
4 "version": "v0.5.0",
5 "trace": "traces/SHORT_SERVER-1.sbbt.zst",
6 "warmup_instr": 0,
7 "simulation_instr": 1283944652,
8 "exhausted_trace": true,
9 "num_conditonal_branches": 162876464,

10 "num_branch_instructions": 16056,
11 "predictor": {
12 "name": "MBPlib GShare",
13 "history_length": 25,
14 "log_table_size": 18,
15 "track_only_conditional": false
16 }
17 },
18 "metrics": {
19 "mpki": 3.312043080187229,
20 "mispredictions": 4252480,
21 "accuracy": 0.973891378192002,
22 "num_most_failed_branches": 36,
23 "simulation_time": 8.443604087
24 },
25 "predictor_statistics": {},
26 "most_failed": [
27 {
28 "ip": 1995000000,
29 "occurrences": 3231824,
30 "mpki": 0.22369422198426667,
31 "accuracy": 0.9111303709607949
32 },
33 {
34 "ip": 2148302608,
35 "occurrences": 1638183,
36 "mpki": 0.19968617774966207,
37 "accuracy": 0.8434936756149954
38 },
39 ...
40 ]
41 }

JSON is well-known, flexible, human friendly and quickly
parseable. Furthermore, it is also straightforward for the users
to encode any type of data as a JSON object. The JSON library
used is nlohmann/json [29], a JSON library for modern
C++ with intuitive syntax and trivial integration.

An example JSON output from MBPlib can be seen in list-
ing 1. The metadata section includes the type of simulator
used and its version, the trace read, the number of warm-
up instructions, the number of simulation instructions, the
number of branch instructions and the number of conditional
branches. The metrics section tells the user the number
of mispredictions, the MPKI, the accuracy, the simulation
time and the minimum number of branches that account (on
their own) for half of the mispredictions. The most_failed
section lists these branches.

The sections including user output are predictor, inside
metadata, and predictor_statistics. Typically, in
the first section we want to include the name of the predictor
and the selection of parameters which was used to configure
it. For example, from the information included in listing 1
we can tell that this is a 64 kB version of GShare because it
is using a table of 218 two-bit counters. On the other hand,
in the second section we want to include execution statistics
that will allow us to gather information unique to our design.
For example, a measure of the number of conflicts inside the
predictor tables.

V. THE UTILITIES AND EXAMPLES LIBRARIES

The utilities library offers common logic extracted from
the five championships in branch prediction. This reduces the
amount of repeated code, offers a good deal of abstraction and
achieves an homogeneous design among branch predictors.

Listing 2: GShare Implementation with MBP utilitites.
1 template <int H = 15, int T = 17>
2 struct Gshare : mbp::Predictor {
3 std::array<mbp::i2, (1 << T)> table;
4 std::bitset<H> ghist;
5

6 uint64_t hash(uint64_t ip) const {
7 return mbp::XorFold(ip ^ ghist.to_ullong(), T);
8 }
9 bool predict(uint64_t ip) override {

10 return table[hash(ip)] >= 0;
11 }
12 void train(const mbp::Branch& b) override {
13 table[hash(b.ip())].sumOrSub(b.isTaken());
14 }
15 void track(const mbp::Branch& b) override {
16 ghist <<= 1;
17 ghist[0] = b.isTaken();
18 }
19 };

In a sense, the biggest achievement is that the utilities library
makes it easy to build branch predictors by gluing together
different components. For example, if we use the class bitset
from the standard C++ library to store the branch history and
i2 and XorFold from MBPlib, which are a two-bit saturating
signed counter and a function to compute the hash of the
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branch address and history register, a GShare predictor [14]
can fit in barely 20 lines of code (see listing 2).

Initially, we included the examples library to showcase how
the utilities library could help and the implementations were
built specifically for MBPlib. As a byproduct of this, all of
them share a similar coding style. At the same time, the use
of components makes our implementations noticeably shorter
than those found online. The most remarkable example of this
would be the TAGE predictor [15], which is implemented with
barely 150 lines of code in MBPlib, in contrast to the 700 lines
of code of the championship version.

Moreover, as with the GShare predictor above, all of the
examples allow the user to tweak the predictor parameters. For
example, one can create a TAGE predictor with an arbitrary
number of tables, each using its own history length and
counter and tag width. And, of course, the proper function is
overridden so that these options get recorded in the metadata
of the predictor and then appear in the simulator’s output.

Due to this, the examples library could serve a teacher to set
up an exercise in which the students measure how the MPKI
varies with respect to some parameters or try to find the best
set of parameters. All in all, we reckon that the utilities library
is a fundamental addition to the suite and that the examples
library is a valuable learning resource.

VI. SAMPLE USE CASES

A software suite that wants to find a place in the research
ecosystem must consider which common usage scenarios it
will handle. When it comes to branch prediction, we identified
three common use cases: parameter optimization, predictor
comparison and composition. In the case of parameter op-
timization, the set of parameters could be known beforehand
or we could perform a search in the design space based on
simulation results.

A. Parameter Optimization

Consider the GShare implementation shown in listing 2.
The predictor depends on two parameters, the size of the
table (controlled with parameter T ) and the length of the
global history register (H). The parameter T may be fixed
based on the available budget, but we would like to choose
the value of H that gives the best results. To measure the
effect of some parameters on the mispredictions, we would like
to generate multiple simulation executables for the different
sets of values. In addition, it can be helpful to compile the
different versions of our predictor separately to let the compiler
perform compile-time optimizations based on the values of the
parameters.

Frameworks such as the CBP5 and ChampSim include their
own build system created to produce a single executable. In
the case of ChampSim, it even needs to run a configuration
phase before the compilation. Due to this, the user needs to
create scripts to invoke the build system or adapt it to generate
multiple executables.

MBPlib, on the other hand, is designed as a library and
makes the user responsible for creating the binaries. For the

example we had at hand, the simplest solution would be to use
a CMake for-loop to define multiple executables with similar
characteristics, as shown in listing 3.

Listing 3: Generating Parametrized Executables.
1 foreach(h RANGE 6 30)
2 add_executable(gshare_${h}_64KB src/main.cpp)
3 target_link_libraries(gshare_${h}_64KB
4 PRIVATE mbp_sim mbp_utils)
5 target_compile_definitions(gshare_${h}_64KB
6 PRIVATE "PREDICTOR=Gshare<${h}, 18>")
7 endforeach()

B. Searching the Parameter Space

The generation of multiple executable files works well when
the number of parameters is small or when we want to see the
effect of only a subset of them. However, the state-of-the-art
predictors, in particular the winners of the CBPs, have dozens
of parameters. In that case, we cannot afford to simulate all
possible combinations, because the amount is exponential in
the number of parameters.

Possible solutions include using genetic algorithms, ma-
chine learning or Bayesian optimization to find the best set
of parameters. MBPlib does not try to be a library that can
do all of these, since there are existing C++ libraries for these
purposes. However, once more, the fact that MBPlib is built
as a library helps in this regard. The user also has complete
control of the program execution. Thus, they can integrate
other libraries in their code and call MBPlib as part of the
optimization process.

C. Predictor Comparison

Another typical use case is to compare the effectiveness
of adding a new component, like a loop predictor, to our
design. Apart from the standard simulator, MBPlib offers a
comparison simulator that simulates two predictors in parallel.
This simulator can be used to determine which occurrences
are mispredicted by only one of them. In this simulator, the
most_failed section of the output contains the branches
which accounted for the biggest difference in MPKI. Thus,
it can serve to tell which branches get predicted better and if
there are some whose predictability worsens.

D. Reusability and Composability

Having two separate functions (train and track) to up-
date the different data structures is very useful to improve
reusability and composability. We show why with a practical
example.

The original tournament predictor [30] had a bimodal and a
GShare predictor internally. The rationale for using two branch
predictors was that, while a GShare predictor becomes more
accurate after learning the program patterns, it requires more
training time to adapt to new behaviors. What the tournament
predictor does is choosing between the predictions of the
bimodal and the GShare components based on the accuracy
that they show at the moment. Thus, the tournament predictor
is a meta-predictor whose outcome bit, instead of the outcome
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of the branch, tries to guess which prediction must be chosen.
A generalization of this idea is to use two arbitrary predictors
as base components and another one as a meta-predictor.

To implement these types of generalizations, in which we
need to use another predictor, we can add a member of type
mbp::Predictor to our class. The separation of the train

and track functions creates the opportunity of calling just
one of these (even if the branch is conditional) or to call them
with different values.

Listing 4: Generalized Tournament Predictor.
1 struct TournamentPred : mbp::Predictor {
2 std::unique_ptr<mbp::Predictor> meta;
3 std::unique_ptr<mbp::Predictor> bp0;
4 std::unique_ptr<mbp::Predictor> bp1;
5 // Cached Data
6 uint64_t predictedIp;
7 bool tracked;
8 bool provider;
9 std::array<bool, 2> prediction;

10

11 TournamentPred(std::unique_ptr<Predictor> meta,
12 std::unique_ptr<Predictor> bp0, std::

unique_ptr<Predictor> bp1)
13 : meta(std::move(meta)),
14 bp0(std::move(bp0)),
15 bp1(std::move(bp1)),
16 tracked(true) {}
17

18 bool predict(uint64_t ip) override {
19 if (predictedIp == ip && tracked == false)
20 return prediction[provider];
21 predictedIp = ip;
22 tracked = false;
23 provider = meta->predict(ip);
24 prediction[0] = bp0->predict(ip);
25 prediction[1] = bp1->predict(ip);
26 return prediction[provider];
27 }
28

29 void train(const mbp::Branch& b) override {
30 this->predict(b.ip());
31 bp0->train(b);
32 bp1->train(b);
33 if (prediction[0] != prediction[1]) {
34 mbp::Branch metaBranch = {
35 b.ip(), b.target(), b.opcode(),
36 prediction[1] == b.isTaken()};
37 meta->train(metaBranch);
38 }
39 }
40

41 void track(const mbp::Branch& b) override {
42 meta->track(b);
43 bp0->track(b);
44 bp1->track(b);
45 tracked = true;
46 }
47

48 json metadata_stats() const override {
49 return {
50 {"name", "MBPlib Tournament"},
51 {"metapredictor", meta->metadata_stats()},
52 {"predictor_0", bp0->metadata_stats()},
53 {"predictor_1", bp1->metadata_stats()},
54 };
55 }
56 };

For example, the implementation for the generalized tour-
nament predictor, illustrated in listing 4, only trains the
meta-predictor when the output from the base predictors is
different (line 33). And in that case, instead of training the
predictor with the program branch it creates a new branch in

TABLE II: Branch Predictors included in the examples library.

Bimodal [18]
All versions of Two Level: GAg, GAs, PAs, SAp, etc. [31], [32]
GShare [14]
Generalized tournament [30]
2bc-gskew [33]
Hashed perceptron [34]
TAGE [15]
BATAGE [5]

which the outcome indicates the correct base predictor. On the
other hand, the track function of the meta-predictor is always
invoked with the program branch.

This example shows that, if the train function does the
work of the track function as well, like in ChampSim and
the CBP5 framework, it is not possible to write some types of
meta-predictors without reimplementing the base predictors.
It is not enough to have a function for conditional branches
and another one for non-conditional branches, like the CBP5
framework does, because the metapredictor component trains
for and tracks different branches.

Note as well how, on line 48, the meta-predictor includes a
description of its components as part of its description. This
is possible thanks to the flexibility of the JSON format.

VII. EVALUATION

To evaluate the performance of MBPlib, we compared its
running time against the CBP5 framework and ChampSim.

A. Methodology

The branch predictors chosen for comparison were the ones
included in the MBPlib examples library. In particular, we
draw conclusions from the bimodal [18] and BATAGE [5]
predictors. The first one is very simple, thus the vast majority
of the running time is spent in the simulator code and it serves
to measure the speed gained. The second one is one of the
most complex state-of-the-art predictors. It includes multiple
tables, has a prediction-overriding scheme based on priorities,
has a non-trivial update policy and needs to generate random
numbers. As such, it is computationally complex even among
state-of-the-art predictors and we use it to measure how much
speed gain we can expect for one of the slowest (in terms
of simulation time) of the state-of-the-art predictors. In the
case of ChampSim, we only ran the GShare and BATAGE
predictors to show that simple and complex predictors have
approximately the same running time.

To make the comparison fair, we used the same branch
predictor implementations across the different simulators, with
only small changes needed to comply with the different inter-
faces. For the same reason, all the executables were compiled
with the same settings, using GCC with -O3 and link time
optimizations and targeting the underlying microarchitecture
with -march=native and -mtune=native. ChampSim
is configured with default parameters, similar to Intel’s Ice
Lake architecture [35], except for the branch predictor and
the branch target buffer (BTB). We accompanied the GShare
predictor with a 8 K-entry branch target buffer (BTB) and
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a 4 K-entry GShare-like indirect target predictor [36], while
for the BATAGE predictor, we used a 64 kB ITTAGE target
predictor [37]. The rationale is that if we are going to simulate
for performance, it makes sense to have a high-end target
predictor accompanying a high-end branch predictor.

The executables generated by the CBP5 framework were
run against the 223 training traces from the CBP5, which
have from a few hundred million instructions for the shortest
traces up to 55 billion for the longest trace. The executables
generated by the ChampSim framework were run against the
traces from the DPC3, a set of 95 traces generated from
the SPEC17 suite [26]. Since the ChampSim framework is
noticeably slower, we run only the first 100 million instructions
from each trace.

B. Performance Results

The results are shown in table III. The simulation time
for bimodal (GShare in the case of ChampSim) measures
the speedup gained inside the simulator code. On the other
hand, the simulation time for BATAGE serves to give a
measure of what final speedup we can expect in the slowest
case. On average, we obtain, with respect to ChampSim, a
923× speedup for GShare and a 134× speedup for BATAGE.
Note, however, that these speedups are so impressive because
ChampSim is a cycle-accurate simulator. In fact, the fraction of
time spent on branch predictor code in ChampSim is so small
that the running time when using the GShare and BATAGE
predictors is almost the same. With respect to the CBP5
framework, which is, like MBPlib, microarchitecture-agnostic,
we obtain a 18.4× speedup in the simulator code (i.e., for
Bimodal) which translates to a 3.25× worst-case scenario final
speedup (for the BATAGE predictor).

An important fact about MBPlib is that, as is shown,
the average running time for a simple predictor and 100M
instructions, which is already a good amount to measure the
MPKI, is below 1 s. What this means is that the user can
perform a couple of short and quick simulations with a set of
4 to 10 traces to reevaluate their design. This is very relevant
when one is starting in the field and wants to prototype and
test basic ideas fast. But it also allows using MBPlib during
computer architecture classes.

C. Simulation Results

Trace-based simulators always give the same results, pro-
vided that the user code is deterministic. In particular, MBPlib
can be used as a replacement of the CBP5 framework, since it
comes with the same set of traces. As part of the evaluation,
we checked that the simulation results of both frameworks
were identical.

The same is true for the ChampSim framework. However,
since ChampSim sometimes simulates some extra instructions
(due to the way it implements the instruction commit), there
may be slight differences between the MPKIs calculated
by ChampSim and MBPlib when the number of simulation
instructions is very small.

TABLE III: Simulation time of MBPlib versus the CBP5
framework (CBP5 simulation traces) and ChampSim (100
million instructions).

CBP5
Traces

CBP5 MBPlib Speedup

Bimodal
Slowest 2.01h 5.60min 21.49×
Average 1.40min 4.57 s 18.38×
Fastest 166.00ms 148.41ms 1.12×

Two-Level
Slowest 2.05h 5.92min 20.79×
Average 1.47min 5.00 s 17.69×
Fastest 26.00ms 2.37ms 10.97×

GShare
Slowest 2.07h 6.56min 18.90×
Average 1.44min 4.82 s 17.88×
Fastest 22.00ms 4.86ms 4.53×

Tournament
Slowest 2.10h 7.31min 17.20×
Average 1.46min 5.47 s 15.96×
Fastest 23.00ms 6.12ms 3.76×

2bc-gskew
Slowest 1.77h 7.90min 13.43×
Average 1.36min 6.73 s 12.17×
Fastest 39.00ms 15.60ms 2.50×

Hashed Perc.
Slowest 1.92h 17.12min 6.73×
Average 1.48min 14.38 s 6.19×
Fastest 42.00ms 2.97ms 14.16×

TAGE
Slowest 2.18h 32.54min 4.01×
Average 1.73min 28.01 s 3.70×
Fastest 14.00ms 4.37ms 3.20×

BATAGE
Slowest 2.28h 41.07min 3.34×
Average 1.81min 33.29 s 3.25×
Fastest 16.00ms 4.84ms 3.31×

100 M Instr. ChampSim MBPlib Speedup

GShare
Slowest 1h 1.7 s 2167×
Average 11.7min 762ms 923×
Fastest 3.7min 3.7ms 55 250×

BATAGE
Slowest 1h 11.7 s 309×
Average 11.7min 5.3 s 134×
Fastest 3.7min 20ms 11 050×

D. Effects of the Compression Method on the Speedup

Since the SBBT traces were compressed with zstandard,
which is a better compressor than gzip, it is important to
measure which percentage of the speedup is gained thanks to
using a new compression algorithm, rather than being thanks
to the library implementation. Thus, we modified the CBP5
framework to allow it to read traces compressed with zstd
and ran the same set of experiments in the modified version.
For this, we recompressed the BT9 traces using the maximum
compresssion level, as with the SBBT traces.

Table IV shows the speedup obtained by the CBP5 frame-
work with the zstdandard traces. Since the speedup is only
1.02× to 1.12×, and MBPlib is 3.25× to 18.4× faster, we
can conclude that the most significant part of the speedup is
not thanks to the compression method. The speedup of MBPlib
is due to other factors, such as the use of a stream-like format
(SBBT), which avoids the cache misses of accessing a big
hashed structure to read the branch metadata.
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TABLE IV: Speedup of the CBP5 framework with Zstd.

(Averages) CBP5
Gzip

CBP5
Zstd

Speedup

Bimodal 1.40min 1.25min 1.12×
Two-Level 1.47min 1.32min 1.12×
GShare 1.44min 1.31min 1.09×
Tournament 1.46min 1.35min 1.08×
2bc-gskew 1.36min 1.32min 1.03×
Hashed Perc. 1.48min 1.44min 1.03×
TAGE 1.73min 1.69min 1.02×
BATAGE 1.81min 1.72min 1.05×

VIII. ADVANTAGES OF MBPLIB

ChampSim and the CBP5 framework have already found
a place in the ecosystem of computer architecture simula-
tion [13]. Nevertheless, MBPlib can stand as a good competitor
and be a replacement for the researchers using the CBP5
framework, which is not maintained. In particular, MBPlib
has the following advantages.

A. Modular

MBPlib is built with modularity in mind. First of all, it is
distributed as three independent libraries to make it possible to
use the utilities and examples library in a different simulator
and not restrict your designs to MBPlib’s simulator. Secondly,
it has modular output the user can complete. Thirdly, it defines
a simple interface that makes it possible to use predictors as
subcomponents. And lastly, it works as a library and lets the
user depend on other tools to complement MBPlib.

B. Modern

To recent graduates, MBPlib will feel very modern. MBPlib
uses a modern C++ standard, the de-facto C++ build system
for cross-compilation, which is CMake, and a feature-complete
JSON library. MBPlib codebase also resembles a modern
library, which is something that helps attract collaborators to
the project.

C. Fast

The utilities library makes the development faster and the
codes shorter. The simulation library and the trace format
speeds up the evaluation. Besides, MBPlib takes the everyday
use cases into account and tries to handle them efficiently.

D. Lightweight

MBPlib’s traces use 6.5× less disk space than the CBP5
traces. Only 769MB of space are needed to store them.

E. Pedagogical

For educational purposes, it is better to use easy-to-use tools
with simple installation. MBPlib satisfies these requirements
and is fast enough to be used during a class. In addition,
at the moment of writing, the examples library includes the
predictors listed in table II. The most basic predictors, like
bimodal and GShare, serve to introduce the topic. Tournament
predictors and the 2bc-gskew predictor show more effective
but still old examples. And the hashed perceptron, TAGE and
BATAGE predictors are the state-of-the-art.

IX. CONCLUSION

In this work we have presented the Modular Branch Pre-
diction library, an open-source library for the simulation,
development and teaching of branch predictors.

MBPlib arises as an alternative to the CBP5 framework, but
it is significantly faster, more modular, modern and accessible.
MBPlib runs 18.4× faster than the CBP5 framework, 923×
faster if we measure it against ChampSim, and uses 6.5× less
space to store the same traces. In addition, MBPlib is built as a
library instead of a framework. This means that the user code
calls MBPlib and not the other way around. Thanks to that,
it gives the user more freedom to use it in combination with
other software. Moreover, MBPlib uses a modern build system,
produces a more detailed output which can include user
data and favors designs written with composability in mind.
Besides, MBPlib offers a utilities library, which eliminates the
need to reimplement common logic, and an examples library,
which is one of the largest collections of branch predictor
implementations. Thus, we reckon MBPlib can achieve a new
lower bound to enter the field and has the potential to help
current and new researchers, and we hope to see it getting
adopted by the community.
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