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Abstract—Virtually all processors today employ a store buffer
(SB) to hide store latency. However, when the store buffer is full,
store latency is exposed to the processor causing pipeline stalls.
The default strategies to mitigate these stalls are to issue prefetch
for ownership requests when store instructions commit and to
continuously increase the store buffer size. While these strategies
considerably increase memory-level parallelism for stores, there
are still applications that suffer deeply from stalls caused by
the store buffer. Even worse, store-buffer induced stalls increase
considerably when simultaneous multi-threading is enabled, as
the store buffer is statically partitioned among the threads.

In this paper, we propose a highly selective and very aggressive
prefetching strategy to minimize store-buffer induced stalls. Our
proposal, Store-Prefetch Burst (SPB), is based on the following
insights: i) the majority of store-buffer induced stalls are caused
by a few stores; ii) the access pattern of such stores are
easily predictable; and iii) the latency of the stores is not
commonly hidden by standard cache prefetchers, as hiding their
latency would require tremendous prefetch aggressiveness. SPB
accurately detects contiguous store-access patterns (requiring just
67 bits of storage) and prefetches the remaining memory blocks
of the accessed page in a single burst request to the L1 controller.
SPB matches the performance of a 1024-entry SB implementation
on a 56-entry SB (i.e., Skylake architecture). For a 14-entry SB
(e.g., running four logical cores), it achieves 95.0% of that ideal
performance, on average, for SPEC CPU 2017. Additionally, a
20-entry store buffer that incorporates SPB achieves the average
performance of a standard 56-entry store buffer.

I. INTRODUCTION

Memory latency continues to limit the performance of
modern out-of-order cores, despite the efforts to hide load
and store latency. Load latency is hidden thanks to two well-
known techniques [13]: out-of-order execution of loads and
prefetching mechanisms. Out of order execution of loads is
achieved either by relaxing the consistency model provided
by the system (e.g., ARM and IBM Power), or through
speculative execution mechanisms when strong consistency
guarantees are provided (e.g., Intel’s and AMD’s total store or-
der – TSO) [13]. Regarding prefetching, considerable research
efforts have been dedicated to develop effective strategies for
the different cache levels across the memory hierarchy [2]–[4],
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[16], [17], [19], [21], [28]. Store latency has been traditionally
hidden by the store buffer (SB), which allow stores to commit
as long as the SB is not full. Stores are delayed in the SB while
other instructions (e.g., loads) can commit, effectively relaxing
the consistency model of the system (e.g., x86-TSO [25]).
However, when the SB fills (e.g., due to a cache miss), the
processor stalls. This scenario is common on store bursts,
shifting the processor bottleneck to the SB [9], [12], [23].

Research efforts regarding the efficient management of
stores in TSO focus on both store coalescing and performing
stores out of order without affecting consistency, but that
comes at the cost of increased complexity [24], [31]. Never-
theless, little effort has been directed at quantifying the impact
of store prefetching, usually by blindly applying the same
load prefetching strategies for stores. Specific techniques for
stores are almost absent in the literature, and focus mostly
on requesting the ownership (i.e., write permission) of the
memory block to be written before the write takes place but
after the actual store address is computed [13], [29].

Store prefetching [13], [29] is a fundamental technique for
enabling memory-level parallelism (MLP) for stores (more
specifically, store-level parallelism – SLP), especially in pro-
cessors that enforce the store→store order as the write-
permission request can safely resolve out of order. Intel’s
approach, as far as we can tell from published material,
consists of issuing the request for ownership when the store
instruction commits [15]. SLP increases using this technique,
but only for the stores that fit in the SB, which correspond to
only a few different memory blocks.

Even with the currently implemented store prefetching
strategies, the SB becomes a critical component in memory-
bound applications, reaching up to a third of the CPU stall
cycles on database applications [22]. Indeed, the SB size keeps
growing to prevent stalls, but its maximum size is limited
by CAM (content-addressable memory) access latency, since
every load must associatively search the SB for a matching
store [11]. For example, the number of entries of the SB in
Intel processors has increased from 32 to 56 in just 10 years,
which is significant considering the cost involved in enlarging
CAM structures. In fact, SB stalls are so critical that Intel has
specifically classified them in their Top-Down model under
the memory-bound classification [33].
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Fig. 1: Ratio of stall cycles due to a full SB for SPEC
CPU 2017. “All” represents the average of all applications
in the benchmark suite while “SB-Bound” represents those
applications that exhibit more than 2% SB-induced stalls for
a 56-entry SB. Simulation details are given in Section V.

Furthermore, on processors that support simultaneous multi-
threading (SMT), the effective size of the SB is divided by the
number of hardware threads as the SB is statically partitioned
across threads (Section 2.6.9 of Intel’s optimization man-
ual [15]). This partitioning is related to the consistency model,
and in particular, to store atomicity semantics as dictated by
the read-own-write-early-multiple-copy atomic model (rMCA)
that is followed in actual x86-TSO implementations [1], [30].
SMT is usually enabled by default, so when not used some of
the processor resources are underutilized. Figure 1 shows how
the percentage of SB-induced stalls increases as the size of
the SB is reduced from 56 entries to one fourth (14 entries),
as it would happen in a SMT-4 processor.

In this work we propose Store Prefetch Burst (SPB), a
prefetching technique tailored to store instructions, that ef-
fectively removes SB-induced stalls. Our proposal is based on
three insights: i) only a few store instructions are responsible
for the majority of SB-induced stalls; ii) the access pattern of
the store instructions blocking the SB is easy to predict as they
frequently correspond to sequential memory-block accesses
(often as a consequence of data movement code); and iii) the
stores require a very aggressive prefetch degree, i.e, a large
amount of consecutive memory blocks have to be prefetched,
in order to hide their write latency. The latter is the reason
why standard prefetchers are unable to transform the majority
of store misses into hits, but, at best, into a limited number of
late prefetches, i.e., prefetches that should have been issued
earlier to hide the full latency.

SPB detects contiguous store access patterns in the SB and
predicts that the pattern will continue for instructions that are
not currently in the SB (due to size limits). At that point,
it triggers a store-prefetch burst in the L1 controller that
requests write permission for all the remaining memory blocks
within the current page. This prediction, differently from non-
predictive techniques [13], [29], allows SLP to be exploited
outside the code scope delimited by the SB.

Although in this work we present SPB on top of a TSO-
like SB, it can be generally applicable to SBs that relax the
store→store order, e.g., the ones implemented in ARM and
IBM Power architectures.

Our results show that a 56-entry SB, with the default
prefetch policy, is maximally-sized for today’s processors to
yield a 98.1% of the performance of an ideal (no-stalls) SB
implementation. With a simple implementation and minimal
hardware requirements (67 bits of storage), SPB achieves a vir-
tually identical performance than the ideal SB implementation
(100%). More importantly, SPB excels when SB resources are
limited, which makes it essential for both SMT and energy-
efficient designs. In fact, when halving the SB size (i.e., the
per-thread size of the SB if SMT-2 was enabled), the default
store prefetching strategy only achieves 93.6% of the ideal
SB performance, while SPB reaches 98.9%. For a 14-entry
SB (i.e., the per-thread size of the SB with 4 SMT threads, as
in Intel’s Knights Landing, IBM Power 9 or the rumored AMD
Zen 3 family), the default prefetching strategy achieves 85.9%
of the potential performance, while SPB achieves 95.4%, on
average, for all SPEC CPU 2017 applications (including those
that are not limited by SB-induced stalls). Alternatively, SPB
offers an opportunity to reduce the SB size for energy-efficient
implementations. Indeed, a 20-entry SB with SPB achieves the
same average performance than a standard 56-entry SB.

The main contributions of this paper are:

• First comparison of store prefetchers [13], [29], after an
accurate implementation in gem5.

• Deep analysis of the reasons for SB-induced stalls.
• A simple and efficient proposal to alleviate SB stalls.
• Analysis with standard and small SB sizes, showing that

SPB approaches ideal SB performance in all cases.
• Analysis of SPB with aggressive prefetching schemes,

showing that SPB is orthogonal to other prefetching
strategies, proving to be a good addition for improved
accuracy with minimal hardware resource requirements.

II. BACKGROUND

SB stalls can be critical when running memory-bound appli-
cations, especially those that require constant data movements
(e.g., databases, video compression, rendering). There are
three main alternatives to reduce SB-induced stalls: to increase
the effective size of the SB, to minimize the latency of the
stores via prefetching, and to allow stores to execute out-of-
order. The pros and cons of the first alternative have been
elaborated in the introduction and the last alternative will be
discussed in the related work. This section focuses therefore
on existing dedicated prefetching techniques for stores, which
we will use to compare our proposal with.

Two main alternatives for store prefetching initiated by
the processor can be found in the literature. In the first
one, proposed by Gharachorloo et al. [13], the prefetch for
ownership request is initiated as soon as the address of a store
instruction is computed. We will refer to this approach as at-
execute as addresses are commonly computed at the execute
pipeline stage. In the second one [15], [29], the prefetch is
initiated once the store instruction commits and it is inserted
in the SB. We name this alternative at-commit. In both cases
we assume that the prefetch will allocate the block with write
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Fig. 2: Accesses to consecutive blocks in a 56-entry SB

permission in the L1 cache. Both techniques rely on the actual
address to perform the prefetch.

At-execute is the earliest time that a non-predicted prefetch
can be issued. The main advantage of this approach is that it
increases the chances that the ownership is ready at the L1
cache when the store reaches the head of the SB. However,
this policy issues prefetches when the store is still speculative
since stores may be later squashed for a several reasons,
e.g., stores belong to an incorrect path of execution due to
branch miss-prediction. This means that both energy and cache
resources may be wasted by moving unnecessary data through
the memory hierarchy. In addition, bringing the ownership of
the data to the L1 cache too early can lead to other accesses
evicting the block before the store performs.

On the other hand, the store prefetch requests sent at-
commit are not speculative, and it is certain that the store
will be performed (when it reaches the head of the SB).
Therefore, only useful data is stored in cache with this policy.
The drawback is that prefetching at commit can increase the
number of late prefetches when comparing to at-execute, thus
causing more stalls in the processor.

Both techniques, at-execute and at-commit, favor MLP,
allowing to bring more memory blocks in parallel to L1 cache.
Unfortunately, they limit the parallelism. At-execute can just
exploit parallelism for stores that have been executed and have
not yet been performed. At-commit exploits parallelism for a
lower number of stores, the ones committed but not performed
yet. In general, the window of opportunity to hide miss latency
is small for both approaches since prefetches are issued close
to the end of the instruction’s life cycle. In contrast, we
expand the prefetch window by accurately predicting future
store addresses.

III. MOTIVATION

A. Limitations of prefetching techniques

When no prefetching mechanism is employed stores are
serialized making the SB a serious bottleneck. Figure 2 shows
a common access pattern in which a large number of stores
perform 8-byte writes to contiguous addresses. If the store at
the head of the SB misses (block B0), the SB may fill up,
thus, stalling the processor pipeline.

Prefetching techniques for both loads and stores are usually
applied to all cache levels. Cache prefetchers can easily predict
a stride access pattern, bringing one or more memory blocks
depending on an adaptive throttling mechanism [28]. However,
the prefetching degree of the lower cache levels is usually low,
since, in the event of a prefetch misprediction, the cache can
be seriously polluted [14]. For example, an L1 prefetcher may
only prefetch the next block when the cache is accessed [15].
In that case, and following the example in Figure 2, when the
store in entry 0 performs (block B0), it will just prefetch block
B1. Block B2 will only be prefetched when the store in entry
8 (block B1) performs, which will be after bringing the block
B1 from memory to L1.

Store prefetch techniques such as at-execute and at-commit
further improve MLP, since several blocks are prefetched to the
L1 cache in parallel. Indeed, all the memory blocks required
by stores in the SB can be prefetched in parallel, as long as
hardware resources allow it. For example, assuming the same
example of a store instruction in a tight loop that generates
sequential stores to memory locations of 8 bytes, an at-commit
policy for a 56-entry SB will prefetch 7 blocks, assuming
64-byte blocks (Figure 2). When the oldest entry in the SB
is freed, a store instruction that uses block B7 is inserted.
At that point an at-commit prefetcher will request block B7
and, when the prefetch request succeeds, the L1 prefetcher
will also bring block B8, but that is as far as it will go. The
prefetching degree of at-commit and at-execute can be higher
than the one employed by prediction-based cache prefetchers.
However, assuming a best case scenario where all stores hit
in the L1 cache, only one entry from the SB will be released
every cycle. This means that the prefetcher will bring a new
block to L1 every 8 cycles (we assume 8 writes per memory
block in the example), going back to serialization and missing
MLP. In essence, having a big SB is especially useful on sparse
codes, but of limited gain on dense codes with store bursts.

B. Characterization of SB-induced stalls

We performed a detailed analysis of SB-bound applications
which revealed that: i) a limited number of program coun-
ters (PCs) caused most SB-induced stall cycles, ii) the code
sections where these PCs belong are mostly in the operating
system and system libraries, and iii) these codes write large
chunks of contiguous data.

In effect, Figure 3 shows that some of the SB-bound
applications spend most time stalled on stores that belong
to library calls (memcpy, memset, calloc) or the operating
system (clear page orig1). All these functions produce large
store bursts when applied to big data structures, causing stalls
in the pipeline once the SB fills up.

On the other hand, for applications like deepsjeng or roms,
most SB-induced stall cycles are produced by PCs from the
application itself. Indeed, store bursts are created by manually
moving data between data structures, or resetting a memory
allocation to constant values (e.g., 0).

1This function is called by the OS every time a page is assigned to user
code. It sets a memory page to zero for security reasons.
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Fig. 3: Location of stores causing SB-induced stalls for SB-
bound applications in SPEC CPU 2017

In addition, it is important to note that applications that rely
on STD containers (vectors, maps, etc), would be constantly
moving data around to resize the containers when required.
This issue will be exacerbated in big data applications, where
most of the data footprint does not fit in the last level cache.
The same will apply to high-level development environments
that manage memory transparently at runtime, such as Java
or C#, if they need to reallocate data or use their garbage
collection while the user application is running.

IV. STORE-PREFETCH BURSTS

In this section we describe the concept and implementation
of SPB, based on the motivation and observations presented
in the previous section. The goal of SPB is to detect store
bursts to contiguous addresses and prefetch as many blocks as
possible within the current memory page.2

A first approach could be to detect a contiguous store access
pattern based on the memory addresses of stores. However,
we observed that detecting such contiguous access pattern is
very restrictive and misses many opportunities. The reason is
that store addresses are indeed shuffled by the compiler (e.g.,
reordering after a loop unrolling), and even though memory
blocks are fully accessed, addresses themselves do not follow
a contiguous accesses pattern.

In order to capture complex patterns, such as shuffling
and interleaving, while keeping an elegant implementation,
we propose to detect accesses to contiguous memory blocks
within a certain time frame (or number of stores). This allows
SBP to tolerate a certain degree of interleaving and shuffling,
as long as all accesses still map to the same memory block.
Once a contiguous access pattern is detected, SPB predicts
that this pattern will repeat for the whole memory page. Then
SPB issues a prefetch request for write permissions to the L1
controller for the remaining blocks in the page (forwards).

A. Micro-architecture

The implementation of SPB requires minimal hardware
modifications and resources. Figure 4-(top) shows a diagram of
the proposed micro-architectural extensions. SPB employs just
three registers to detect when to trigger the prefetch burst (a

2We did not explore in this work prefetching beyond page boundaries
despite our prefetcher can work with virtual addresses and overcome the
limitation of cache-level prefetchers: consecutive virtual pages could not map
to consecutive physical pages.
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gem5 MESI coherence protocol states and messages.

total of 67 bits). The first register, last block, stores the address
of the block being written by the last store that committed (58
bits). The second register is a saturated counter that tracks
consecutive blocks (4 bits). The last register, store count, keeps
the number of stores considered by SPB (5 bits).

When a store commits, SPB gets the address of the block
to be written by the store (omitting the six least significant
bits of the target memory address for 64-byte blocks) and
computes the difference with respect to the block address
of the last committed store (Figure 4-(1)). If the difference
is 0, both stores access the same block and the saturated
counter is not modified. If the difference is 1, the stores access
consecutive blocks, and the saturated counter is increased. In
any other case, the saturated counter is reset. After each store
computes the difference, the last block register is updated with
the current block address and the store count is increased.



Every N stores (where N is a configurable parameter), we
check the saturation counter (Figure 4-(2)). If the saturation
counter shows that we have accessed N/8 blocks (as a 64-byte
block can have 8 consecutive 8-byte stores), we infer that we
are storing data to consecutive locations and we predict that
there will be a store burst. It is relatively simple for SPB to
prefetch backward store bursts (e.g., to prefetch data from the
stack). However, we found no evidence that backward store
bursts cause SB stalls, so this extension is not considered in
this work, as it would not provide perceptible performance
improvements for the evaluated applications.

B. Running example
Figure 4-(bottom) shows a running example considering

the consecutive access pattern of 64-bit stores used in the
motivation section. To simplify the example, we assume that
the processor commits one instruction per cycle, that all stores
miss in L1, and that the L1 and L2 latencies are 1 and 4 cycles,
respectively. If SPB is configured to check the saturation
counter every 8 stores (N = 8), the differences computed
by SPB would be 0, 0, 0, 0, 0, 0, 0, 0, and 1 (Figure 4-
(1)). This means that we have accessed two different blocks
in the last 8 stores, and therefore, the saturation counter is
incremented by 1. During each cycle the SB continues to send
write prefetch requests using the default at-commit policy, that
will be discarded (PopReq) when they find that the requested
block is already in L1. Per-cycle coherence protocol state
transitions and messages are also shown in Figure 4. After 8
stores (T8), the saturation counter is compared to (8/8, Figure
4-(2)). Since the results match, SPB sends a prefetch burst
request to the L1 controller (Figure 4-(3)).

C. Sensitivity to parameters
We performed a sensitivity analysis with respect to the

choice of N. We found that the optimal N value varies
depending on the SB size, more specifically, optimal N is 48
for a SB of 14 entries, 24 for an SB of 28 entries, and 48 for
a SB of 56 entries. In general, values between 24 and 48 lead
to high performance. For our evaluation, we chose a value of
48 for N as the variability of the results for the 28-entry SB
is minimal, for N between 24 and 48.

We also considered an SPB variant that dynamically adapts
to different data sizes, not systematically assuming 8-byte
stores. That is, the saturation counter is not tested against
N/8, but to a dynamically adjusted threshold N/S, where S
depends on the data size of the stores in that window. Our
results showed that this variant performs worse than the simple
SPB presented in the previous subsection, due to adaptation
hysteresis and lost opportunity.

D. Discussion: Software alternative
An alternative to SPB would be to perform aggressive

software prefetching in code sections where the programmer
thinks that there would be store bursts (e.g., system libraries
or kernel functions).

However, there are several reasons why a hardware imple-
mentation is a better choice. First, programmers may not rely

TABLE I: Configuration parameters

Chip details
Core 1 and 8 out-of-order cores, 2.0GHz

Core details
Fetch, decode, rename width 4 instructions
Dispatch, issue, commit width 4 instructions
TLB 8 way, 1KB
Branch predictor L-TAGE 64KB
Branch target buffer 8K+8K entries
Fetch buffer, decode buffer 16B, 56-µops
Fetch, load and store queues 32 entries, 72 entries, 56 entries
Physical registers 180 integer + 180 floating point
Issue queue, re-order buffer 97 entries, 224 entries
Functional units 1 Int ALU + 3 Int/FP/SIMD ALU
Instruction latencies (int) add (1c.), mul (4c.), div (22c.)
Instruction latencies (fp) add (5c.), mul (5c.), div (22c.)
L1 instruction cache 32KB, 8-way, latency: 1 cycle
L1 data cache 32KB, 8-way, latency: 4 cycle
L1 prefetcher Stream prefetcher (stride)
L2 cache 1MB, 16-way, latency: 14 cycle
L3 unified cache 16MB, 16-way, latency:36 cycle
MSHR entries 64 per cache (per bank at L3)

on library calls, performing the memory copies manually with
”for” loops (e.g., deepsjeng and roms). Second, introducing
many software prefetching instructions would fill the pipeline
with ”useless” instructions (e.g., 64 prefetch instructions per
memory page). Third, software prefetches will not have any
effect if they entail page faults. Fourth, software prefetchers
would bring the block to cache, but not necessarily this write
permission.

V. METHODOLOGY

We employ the widely used gem5 [6] simulator modeling a
x86 full-system environment. We simulate single- and multi-
core processors using the detailed out-of-order CPU and
memory hierarchy of gem5. Table I summarizes the main sim-
ulation parameters The simulated system runs Ubuntu 16.04
with Linux kernel 4.9.4. We developed extensions to simulate
an x86 Skylake-X processor. Execution and issue latencies
are modeled as measured on real hardware by Fog [10]. We
modified gem5 to support pipelined L1 accesses for stores.

Energy consumption is evaluated with McPAT [18] using
a process technology of 22nm (minimum available in the
current version), a voltage of 0.6V and the default clock gating
scheme. We incorporate the changes suggested by Xi et al. [32]
to improve the accuracy of the models. We model the extra
accesses to the L1 and the prefetch requests generated by SPB.
The cost of the registers introduced by SPB and the logic to
calculate the block difference is negligible compared to the
rest of the structures in the core.

gem5 does not include a specific store prefetching (but a
generic L1 stream prefetcher for both loads and stores). The
lack of a dedicated store prefetcher causes serialization of the
stores, and leads to sub-optimal performance. We have imple-
mented an at-commit prefetch strategy [15], [29], according
to the specification from the Intel optimization manual (Sec.
2.1.5.1), showing speedups of 15%, on average, for SPEC
CPU 2017 and the system configuration described in Table I.
We employ the at-commit implementation as our baseline



system as it is the default option available in real hardware.
We also implemented the at-execute prefetch policy [13] as
an academic alternative. Finally, we also compare our results
against an ideal SB implementation (Ideal) that has no stalls
due to SB capacity issues and all blocks in the SB are
prefetched for permissions in parallel.

In addition to the three different prefetching strategies (at-
commit, at-execute and SPB), we consider three different SB
sizes in our evaluation: a 56-entry SB (SB56), a 28-entry SB
(SB28), and a 14-entry SB (SB14).

We run the whole SPEC CPU 2017, compiled using GCC
5.5 with -O2 optimization flags. Statistics are gathered for the
Region of Interest (ROI) of the benchmarks. The ROI begins
after the initialization phase of the application and ends before
any final output. We simulate 2 billion instructions inside the
ROI, after a brief warm-up of the caches for 100 million cycles
within the ROI.

We define as SB-bound applications those that show more
than 2% of SB-induced stalls for our baseline configura-
tion: bwaves, cactuBSSN, x264, blender, cam4, deepsjeng,
fotonik3d, and roms. For the sake of clarity we only show per-
application results for SB-bound benchmarks. Nevertheless,
all figures include a bar that represents the geometric mean
for all (ALL) benchmarks in the SPEC CPU 2017 suite, as
well as a bar that isolates only the SB-bound (SB-BOUND)
benchmarks.

In addition, we run all the applications from the PAR-
SEC [5] multi-threaded benchmark suite with eight threads and
simlarge inputs (except freqmine and raytrace that did not run
correctly under gem5). We measure performance within the
region of interest (ROI), that is, all instructions executed after
initialization and before output. Statistics are gathered after
100 million cycles within the ROI to warm up the caches.
The SB-bound applications in PARSEC are bodytrack, dedup,
ferret, and x264, according to our criteria of more than 2%
SB-induced stalls in the baseline configuration.

VI. EVALUATION

In this section we show in detail how SPB outperforms
all previous prefetching strategies in terms of both execution
time and energy consumption. In addition, we show how all
prefetching approaches behave regarding the reduction of SB-
induced stall cycles at issue, as well as how reducing SB
stalls affects overall issue stalls due to other resources (e.g.,
registers, reorder buffer, load queue, etc). Next, we show how
SPB behaves as a prefetcher, showing the success rates as well
as the increment in prefetch network traffic and L1 accesses
(to tags). Finally, we show how this increment in traffic and
L1 accesses affects the performance of the applications. To
do so, we rely on Intel’s Top-Down model information [33].
More specifically we will focus on execution stalls while there
are L1D misses pending. This statistic is used to define the
level of memory-boundness of the application [20].

A. Performance and energy
Figure 5 shows the execution time normalized to an ideal

1024-entry SB for all the evaluated prefetching strategies and
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Fig. 5: Norm. performance to Ideal for different SB sizes

different SB sizes. For a SB of 56 entries, our proposal
achieves 100.5% of the performance of an ideal SB. This
provides an additional 2% performance improvement over
Intel’s strategy (at-commit - 98.1%). The performance gap
between at-commit and SPB increases to 6.8% for SB-bound
applications, where SPB also achieves 102.3% of the the
ideal SB performance. This super-linear speedup comes from
the predictive nature of SPB. Although initially unintended,
SPB brings cache blocks to L1D that are also used by loads
in the application. This reduces the average wait time of
loads (as we will see later in Figure 14), and that results
in a reduction of misspeculated instructions. Indeed, up to
10% misspeculated instructions are no longer executed, since
branches are resolved faster with SPB.

When we move to SB28, SPB can provide additional 5.2%
performance when compared to at-commit for all SPEC CPU
2017. For this SB size we manage to achieve 98.9% of the
ideal SB performance. If we focus only on SB-bound applica-
tions, SPB outperforms at-commit by 13.80% (98.7% of ideal).
Finally, in the case of SB14, the use of advanced prefetching
strategies becomes critical. In this scenario, the at-commit
strategy barely reaches 85.9% or the ideal SB performance,
70.1% if only SB-bound applications are considered. On the
other hand, SPB raises those numbers to 95.4% and 92.6%,
respectively. This translates into an improvement of around
9.5% for all the SPEC CPU 2017, and 22,5% for SB-bound
applications.

The advantages of SPB are, therefore, clear. SPB allows
for smaller SB sizes while keeping performance levels much
closer to an ideal implementation. Indeed, a 20-entry SB with
SPB suffices to achieve the same average performance as a
standard 56-entry SB.

Figure 6 shows the per-benchmark performance improve-
ments for SB-bound applications. For cactuBSSN, blender,
cam4, deepsjeng and fotonik3d, the SB can be shrunken down
to 14 entries without major performance penalties. However,
for the rest of applications, having a 14-entry SB will pose
a serious performance penalty. There are several applications
that show better performance for SPB than the ideal SB. As
mentioned previously, this is due to a beneficial side effect
on L1 load hit rate for some configurations. In roms the
compiler has interleaved many stores from loop unrolling,
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Fig. 6: Performance of SB-Bound applications normalized to
an ideal SB

and prefetches by SPB produce additional L1 misses (conflict
misses more specifically).

Finally, Figure 7 shows the effects of SPB in cache dynamic
energy consumption, total core dynamic energy consumption
and overall core energy consumption (dynamic + static).
SPB slightly reduces the dynamic energy consumed by all
cache levels. While SPB increases prefetching traffic and
block replacements (between 0.4% and 1.1%), there is also
a significant reduction on L1D cache accesses coming from
misspeculated instructions. Given that we are executing less
misspeculated instructions, the overall dynamic energy is
reduced. Therefore, the net energy savings for all SB sizes
are positive. Moreover, the reduction in total leakage energy
due to the performance improvements given by SPB offsets the
increase in cache dynamic energy, thus further reducing energy
consumption. More specifically, net savings for SB sizes of 14,

ALL SB-BOUND ALL SB-BOUND ALL SB-BOUND
Cache Dynamic Energy Total Dynamic Energy Total Energy 
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Fig. 7: Normalized energy to at-commit (less is better).
Breakdown in cache dynamic energy (L1+L2+L3), total core
dynamic energy and total energy (dynamic + static)
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Fig. 8: Normalized SB stalls to at-commit for several SB sizes
(less is better)

28 and 56 entries are 6.7%, 3.4% and 1.5% respectively. The
benefits reach 16.8%, 9% and 4.3% respectively for SB-bound
applications. This shows that SPB is not only faster than at-
commit and at-execute strategies, but also saves energy (both
static and dynamic). At-Execute (Exe. in the Figure) barely
has any impact on energy consumption, with savings around
1%.

B. Impact on SB-induced stalls

The next step is to show the reduction of SB-induced stalls
on the processor. Figure 8 shows the normalized SB stalls to at-
commit strategy for different SB sizes. SPB manages to drop
the average SB related stalls by 24% (worst, SB56) to 37%
(best, SB28). However, we are still far from completely re-
moving SB-induced stalls. Most of the remainder SB-induced
stalls are either ”cold” stalls (before SPB detects the pattern),
late prefetches (to be discussed later), or code sections that
do not follow a pattern we can capture. Figure 9 shows the
normalized stalls for SB-bound applications.

Looking at performance numbers in the previous section, we
can observe that removing additional SB related stalls (Ideal
SB) would only move the bottleneck to a different resource.
Indeed, Figure 10 shows the normalized issue stalls to at-
commit for all the studied SB sizes. The normalized values
are broken down based on the source of the stalls, that can
be either the SB, or another resource (Other) (e.g., reservation
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Fig. 9: Per SB-Bound application normalized SB stalls to at-
commit for different SB sizes

stations, reorder buffer, load queue, registers, etc). For exam-
ple, for a SB of 14 entries (Figure 10-a), and considering
the geometric mean of all SPEC CPU 2017, the ideal SB
manages to reduce the total issue stalls by 69.3% compared to
at-commit. The source of that reduction comes solely from SB
stalls. At the same time, the ideal SB increases the total issue
stalls by 22.1% because of lack of other resources. This leads
to a net stall reduction of 47.2% at issue stage. On the same
scenario, SPB is able to reduce 31% issue stalls related to
the SB, while also decreasing issue stalls due to lack of other
resources by 3.7%. This is related to the super-linear speedup
of some applications (e.g., fotonik3d), since store prefetches
reduce the wait times of future loads that would otherwise miss
in L1, thus releasing ”Other” resources faster than the ideal
SB. This leads to a net stall reduction of 34.7%, 12.5% below
the Ideal SB. Figures 10-b and 10-c also show net savings
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Fig. 10: Normalized issue stalls to at-commit for different SB
sizes. X axis breaks down the source of the stalls, as well as
shows the net stall reduction.

very close to the ideal SB, even outperforming this approach
for SB-bound applications when using a SB of 56-entries.

C. Accuracy and overheads

We have described how SPB affects performance and issue
stalls. The next step is to break down how it behaves as a
prefetcher compared to our default strategy (at-commit).

Figure 11 shows successful, late and early prefetches (either
from invalidation or replacement), and never used blocks. For
all applications SPB outperforms at-commit strategy in terms
of accuracy. Success rate reaches 45% to 50% on SB-bound
applications, while when considering all applications in the
SPEC CPU 2017 suite, the success rate drops to around 30%.
This is much higher than the success rates of at-commit, that
ranges between 5 and 10%. Indeed, most prefetches performed
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Fig. 11: Breakdown of store requests at L1D level (first bar
for at-commit, second for SPB).

by at-commit are late prefetches, since the prefetch request
is generated at the end of the store’s live cycle. On the
other hand, SPB prefetches blocks much earlier assuming a
sequential access pattern, increasing success rate (and also
early prefetches by 2.5%). Note that this Figure considers all
stores in the application, not only those that stall the pipeline.

It is also interesting to consider the impact on network traffic
that SPB generates. A possible drawback of SPB would be the
extra traffic generated by “false positive” prefetch requests.
Our evaluation showed that over 97% of the prefetched bytes
in each store burst are completely written by the application,
while around 2% are almost completely written (98% of the
bytes prefetched in the burst are actually written).

Figure 12 shows normalized prefetch block requests incre-
ment (to at-commit) from the CPU to the L1 controller (REQ).
All these requests will check the tags to find a matching block.
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Fig. 12: Normalized prefetch traffic. Requests sent by the CPU
(REQ) and blocks requested to the L2 (MISS)
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Fig. 13: Normalized L1 overhead (TAG accesses in L1D)

However, only those that miss will generate a L2 request and
network traffic along the memory hierarchy (MISS). In relative
terms (accounting prefetch accesses to the L1D cache), SPB
generates additional 3.4% tag checks compared to at-commit
for a SB of 14 entries, 7.7% for a SB of 28 entries and 3.5% for
a SB of 56 entries (Figure 13). Prefetch traffic is higher for SB-
bound applications, since SPB is enabled more often. In this
scenario, prefetch traffic increases by 8.6%, 18.9% and 8.8%
for SB sizes of 14, 28 and 56 entries respectively. However,
since we are significantly reducing the amount of load requests
to the L1D cache from the wrong path of execution, the overall
access count to the L1D is reduced. Indeed, for store buffers
of sizes 14 and 28, the average L1D access reduction is close
to 1% for SPB. For a 56-entry store buffer, the net L1D access
reduction reaches 2%. This, as we have seen, decreases slightly
the power used by the L1D cache.

In order to show if SPB has any negative impact on L1D
stalls due to additional network traffic we will rely on Intel’s
Top-Down model information. More specifically, in the metric
execution stalls while there are L1D misses pending. Figure
14 shows how SPB additional traffic not only does not affect
performance for most applications, but it also has a positive
effect on the total amount of execution cycles the processor
is stalled while waiting for L1D misses to be attended.
Indeed, for a SB of 14 entries SPB reduces execution stalls
by 27.2% compared to at-commit for all SPEC CPU 2017.
When focusing on SB-Bound applications, the difference is
significantly higher, reaching 52.8%. For a SB of 28 entries
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Fig. 14: Execution stalls with L1D misses pending

execution stalls are reduced by 12.2% and 30.4% respectively,
while for a SB of 56 entries we reach some reasonable 3.9%
and 12.6% reduction on execution stalls while there are L1D
misses pending to be attended.

Figure 15 shows the per SB-bound application breakdown
of execution stalls with L1D cache misses pending. As ex-
pected from the performance results, all the SB-bound ap-
plications except roms benefit from SPB. This is due to an
artifact/pathology caused by SPB, that forces useful memory
blocks out of the L1D in roms. More specifically, conflict
misses increase by 10.3% for roms compared to the 1.2% on
average for all SPEC CPU 2017 for a SB of 28 entries (10.6%
to 1.9% for a SB of 56 entries).

D. Aggressive cache prefetchers

SPB is a highly selective and aggressive prefetching mech-
anism tailored to reduce SB-induced stalls. SPB requires
little hardware modifications compared to other aggressive or
adaptive prefetching schemes, such as the ones presented by
Srinath et al. [28]. Moreover, these prefetching mechanisms
apply load strategies blindly to stores.

This section compares SPB to sophisticated prefetching
techniques presented in the literature [28]. For the technique
in [28], we implement both the aggressive scheme and the
adaptive prefetcher with the specified thresholds and modes.

These cache prefetchers obtain better performance than our
baseline stream (stride) prefetcher. Our goal is, however, to
show that the use of SPB is still necessary to reduce SB-
induced stalls even on top of aggressive cache prefetchers.

Figure 16 normalizes the performance to our ideal SB with
the same generic prefetcher (stream, aggressive or adaptive).
This way, we can see how far is each configuration from the
ideal case, for each prefetcher and for at-commit and SPB.

The aggressive and adaptive prefetchers do not have much
impact in reducing the SB-induced stalls. These prefetching
schemes still suffer from the same limitation as the stream
prefetcher: prefetching requests are limited to those generated
by the stores in the SB. The only difference is that they ”shift”
the prefetching window depending on how aggressive they are.
On the other hand, SPB prefetches blocks for all addresses
within the currently accessed memory page, going beyond the
scope of the SB and performing an aggressive, yet controlled,
prefetching only when a store burst is detected.
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Fig. 15: Per SB-Bound application normalized (to at-commit)
execution stalls with L1D misses pending.

TABLE II: Configurations for the sensitivity analysis

Name ROB IQ LQ SQ Width
SLM 32 15 10 16 4
NHL 128 32 48 36 4
HSW 192 60 72 42 8
SKL 224 97 72 56 8
SNC 352 128 128 72 8

E. SPB and core aggressiveness

This section discusses the effects of SPB on different core
configurations, from simple and energy-efficient to complex
high-performance cores. For this evaluation we consider 5 core
configurations: Silvermont (SLM), Nehalem (NHL), Haswell
(HSW), Skylake (SKL) and Sunny Cove (SNC). Sizes for the
reorder buffer (ROB), the issue queue (IQ), the load queue
(LQ), the store queue (SQ) and the back-end per-stage width
(width) are shown in Table II.
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Fig. 16: Normalized execution time to Ideal + Prefetcher (stream, aggressive, adaptive) respectively
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Fig. 17: Normalized execution time to Ideal for different core configurations

Figure 17 shows the normalized execution time (to an ideal
SB), for the at-commit and SPB prefetch strategies. Results
show that the performance gap between the ideal SB and the
at-commit strategy increases as we move to energy-efficient
core designs. However, SPB maintains ideal performance
levels regardless of the architecture for the default SB size, and
near ideal levels for a SB of half the size. Interestingly, SPB
slightly outperforms the ideal SB for SNC, SKL and HSW-
like configurations. As we showed in Section VI-C, this is
because SPB reduces the waiting time of L1D misses (and that
includes loads). SPB, as opposed to the ideal SB, aggressively
prefetches memory blocks that are speculative, while both
at-commit and ideal only prefetch memory blocks as stores
commit. For reduced SB sizes, SPB delivers at least 89% of
the ideal SB performance, while for that same configuration
at-commit only manages to yield 67% of the ideal.

F. SPB in parallel applications

This section evaluates SPB for the parallel applications of
the PARSEC benchmark suite for the purpose of showing that
(i) multi-threaded applications also contain store bursts and
(ii) SPB does not introduce a negative coherence effect.

Figure 18 shows the average performance both for all and
for just the SB-bound PARSEC applications (i.e., bodytrack,
dedup, ferret, and x264). As it happens for the sequential
applications, SPB outperforms at-commit by 1% on average,
and 1.1% if we only consider SB-bound applications. For a
reduced SB size of 14 entries, SPB achieves 18.5% improve-
ments for SB-bound applications, and around 4.3% on average
for all benchmarks. There is no benchmark that suffers from
performance degradation compared to the baseline for SPB,
which shows that SPB is coherence-friendly. The reason is that
(i) SPB is only enabled on a store burst scenario and (ii) store
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Fig. 18: Normalized execution time to Ideal for PARSEC
benckmarks with 8 threads

bursts do not happen for contended memory addresses, at least
for the analyzed PARSEC benchmarks and inputs. Moreover,
SPB does not produce cache pollution (at least for 8 threads),
that would otherwise slow down performance.

VII. RELATED WORK

A. Aggressive prefetchers

Cache prefetchers are usually applied over addresses that
have been requested by either loads or stores. This means
that they help to reduce issue stalls caused by both the filling
of the load buffer or the SB. These prefetchers commonly
employ a throttling mechanism to adjust the aggressiveness
(degree) of the data prefetcher dynamically. Some prefetchers
opt for being aggressive by default and reduce aggressiveness
on cache pollution [28]. Other prefetchers on the other hand
start with a low prefetching degree and seek for opportunities
to increase aggressiveness over time [14]. SPB is always
aggressive but highly selective, as it is specialized on a
particular access pattern (stores to contiguous blocks), this it
is less frequently triggered than generic cache prefetchers.



Spatial prefetchers are aggressive by default [7], [8], [27].
They collect the accessed blocks within a page and prefetch
them again on the first access to that page. On the other hand,
SPB targets stores to contiguous blocks that may happen due
to a memory copy or a memory initialization. This may happen
only once in the execution of a program, so learning the page
is not an effective mechanism for SPB. Additionally the size
of our prefetcher is minimal as it does not requires the tracking
of previously accessed pages.

An alternative to prefetching blocks closer to the core is to
send all data blocks directly to the last-level cache. That is the
case of the store miss accelerator (SMA) [9]. In this proposal,
the last-level cache serves as a buffer to stores that have an
off-chip miss. When the associated block arrives to the last-
level cache, the store data is combined with it. In contrast, we
achieve virtually the same benefits (with respect to SLP) as
SMA with a far simpler and cost-effective approach.

B. Reducing SB-induced stalls

There are other alternatives for reducing SB-induced stalls.
The scalable store buffer (SSB) [31] eliminates stalls in the SB
by maintaining stores in a large FIFO structure (1K entries).
These stores write directly in the L2 cache. However, this
alternative requires many hardware changes, including the
coherence protocol, to address the invalidation of modified
blocks in a cache.

Another alternative is to detect stores to blocks at compile
time that can safely be performed out of order [26]. However,
in the case of prefetch burst, all stores will miss in the L1
cache (and probably L2 and L3 too), and little benefit can
be obtained from reordering. Finally, coalescing stores [24]
can reduce the number of entries occupied by stores in the
SB. Coalescing up to a memory block size, however, would
entail to increase the size of the SB significantly. In contrast,
we obtain performance figures very close to the ideal with
minimal hardware overhead.

VIII. CONCLUSIONS

The size of the store buffer has been a critical factor for
performance. Proof of this is the increment in SB size in
Intel processors (from 32 to 56 entries) in just 10 years. Store
prefetching is a fundamental technique for enabling MLP for
stores. However, this MLP is restricted to the stores that fit in
the store buffer, corresponding to just a few memory blocks.

Store Prefetch Burst (SPB) improves MLP outside the code
scope delimited by the SB size. It detects the few store
instructions that are responsible from most SB stalls, which are
those that access contiguous memory blocks as a consequence
of a memory copy or initialization. Then, it triggers an highly
selective but aggressive prefetch request to the L1 controller
that asks for all the remaining memory blocks in the current
page. SPB is able to remove practically all SB-induced stalls
and it is orthogonal to other cache prefetching strategies,
proving to be a good addition for improved accuracy with
a memory overhead of just 67 bits.

With SPB, a 56-entry SB reaches 100.5% of an ideal SB,
and a 20-entry SB achieves the performance of a 56-entry
SB with an at-commit prefetching policy. SPB excels for
limited SB sizes. In a 14-entry SB scenario, prefetching at
commit only achieves 85.9% of the ideal performance, while
SPB achieves 95.4%, on average. SPB improvements are not
limited to performance, but also apply to energy efficiency
as it can achieve energy savings of 6.7% for a 14-entry SB,
reaching 16.8% for SB-bound applications.
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