
Rebasing Microarchitectural Research with Industry Traces

Josué Feliu1 Arthur Perais2 Daniel A. Jiménez3 Alberto Ros4

1Universitat Politècnica de València, València, Spain
2Univ. Grenoble Alpes, CNRS, Grenoble INP∗, TIMA, Grenoble, France

3Texas A&M University, College Station, USA
4University of Murcia, Murcia, Spain

Abstract

Microarchitecture research relies on performance models
with various degrees of accuracy and speed. In the past
few years, one such model, ChampSim, has started to gain
significant traction by coupling ease of use with a reasonable
level of detail and simulation speed. At the same time,
datacenter class workloads, which are not trivial to set up and
benchmark, have become easier to study via the release of
hundreds of industry traces following the first Championship
Value Prediction (CVP-1) in 2018. A tool was quickly created
to port the CVP-1 traces to the ChampSim format, which, as a
result, have been used in many recent works. In this paper, we
revisit this conversion tool and find that several key aspects
of the CVP-1 traces are not preserved by the conversion. We
therefore propose an improved converter that addresses most
conversion issues as well as patches known limitations of
the CVP-1 traces themselves. We evaluate the impact of our
changes on two commits of ChampSim, with one used for the
first Instruction Championship Prefetching (IPC-1) in 2020.
We find that the performance variation stemming from higher
accuracy conversion is significant.

1. Introduction

Any computer engineer or scientist is familiar with
the idiom garbage in, garbage out. Contextualized for the
computer architecture research community, this means that
the evaluation of an idea is only as good as the workloads
used in the evaluation. The definition of good is already
ambiguous, as it can entail relevant (to users, industry,
academia) or representative (of different enough classes of
algorithms or behaviors), or both. Once good workloads
have been chosen, they are usually simulated via emulation,
e.g., QEMU [1], gem5 [2], or by extracting traces and feeding
those traces to the simulator, e.g., ChampSim [3]. In both
approaches, some information may be lost in translation,
such that a good workload is incorrectly simulated because
either instruction semantics are not correctly implemented,
or the information contained in the trace is intrinsically
incorrect, or incorrectly processed.

Crafting and bringing up good workloads is an arduous
task, as exemplified by the fact that most microarchitectural
work remains focused on the SPEC CPU benchmarks [4, 5].

*Institute of Engineering Univ. Grenoble Alpes

Thus, the release of good workloads e.g., by industry, is a
boon for the research community, as it provides relevant and
–a priori– representative workloads that require a minimal
amount of work to bring up.

Over the past two decades, many microarchitecture
championship workshops took place at flagship confer-
ences to encourage research in branch prediction [6–10],
cache replacement policies [11, 12], data prefetching [13–
15], instruction prefetching [16], value prediction [17]
and memory scheduling [18]. While each championship
generally used its own infrastructure, several of the more
recent ones elected to rely on the ChampSim [3] trace-
based simulator [12, 15, 16, 19]. ChampSim began as an
internal effort at Intel before being taken over by the
current maintainers at Texas A&M University. Intel has
been involved in many of the recent microarchitectural
competitions, so it was natural for ChampSim to be used.
Indeed, the name “ChampSim” is an abbreviation for
“Championship Simulator.” The convergence to ChampSim
is especially interesting to the community as it provides
a reasonably complex simulator that models a non-trivial
pipeline and features state-of-the-art cache replacement
policies and data/instruction prefetchers, and is therefore
quite convenient for the first order study of those “bolt-on”
microarchitectural structures. Case in point, several papers
published in top-tier conferences have used ChampSim as
their experimental workbench [20–29].

Nevertheless, several championships were organized –
mostly– by industry members of the research community,
e.g., Intel [8, 9, 11, 14–16], Samsung [10], and Qualcomm
[17]. This aspect is of particular interest as, in some
cases, organizers provided an infrastructure and especially
program traces generated from non-standard workloads [6,
9–11, 17].

The traces used for the Fifth Branch Prediction Cham-
pionship [10] are also from industry: they were donated
by Samsung as a distilled subset of the traces used in
the design of the Samsung Exynos M-series of SoCs [30].
These traces are not quite as useful as the traces Qualcomm
released after the first Championship Value prediction (CVP-
1) [17], since they focus on mobile workloads and only
contain information about branch instructions, not other
instructions. Thus, they can be used to measure statistics
related to front-end performance such as L1i cache misses,
branch mispredictions, and instruction address translation

behavior, but they cannot be used to measure instructions-
per-cycle, data cache misses, or instruction-level parallelism.

Conversely, the CVP-1 “public” [31] and “secret” [32]
Aarch64 traces generated at Qualcomm are of large interest
to the research community as i) They are numerous (135
and 2013 traces respectively) ii) They cover a wide range
of workloads of interest to industry: Compute INT/FP,
cryptography and datacenter/server iii) They embed output
register values, allowing studies that rely on actual program
values and iv) They include system activity, which is
typically not the case for traces obtained with Pin [33].
Unfortunately, those traces are anonymized, meaning that
the actual workload is not known, and some information
has been removed from the traces (e.g., Execution Level and
Address Space IDentifier, instruction bytes, exact opcode,
addressing mode, etc.).

Given those two observations, being able to run CVP-1
traces in ChampSim would provide the research community
with a large amount of good traces running on an easy to
use infrastructure. In fact, a trace converter, cvp2champsim,
is already available in the ChampSim repository, and a
subset of the CVP-1 traces were converted for the first
Instruction Prefetching Championship (IPC-1) [16], which
used ChampSim as infrastructure. However, ChampSim was
initially designed to read x86 traces, and, as our findings
show, the conversion phase from Aarch64 is non-trivial.

Moreover, the CVP-1 traces README describes a hand-
ful of limitations that can lead to inaccuracies, although
most can in fact be patched [31, 32]. This is of particular
interest as a careful understanding of traces is fundamental
to model their execution properly. For example, such an
issue was patched in the –cancelled– CVP-2 [34] simulator
to improve simulation fidelity over CVP-1. In a nutshell,
the trace format does not allow attaching a latency or an
operation type to an output register: The information is
attached to the instruction. This is problematic for loads
that use Pre/Post Indexing Increment addressing mode, in
which the base register used for address calculation is also
updated by the instruction. A first issue is that in the
CVP-1 simulator, the total access size of the instruction
is computed as the transfer size times the number of
output registers. However, since one of the output is not
populated from memory, the total access size is actually
incorrect, leading to an incorrectly modeled data memory
footprint. Second, updating the base register requires a
simple addition, such that the updated base register should
be made available to dependents immediately after address
calculation. However, since it is treated as being populated
from memory, it becomes available to dependents when data
comes back from the memory system. This hinders memory
level parallelism as any instruction depending on the base
register may, in the worst case, have to wait for a DRAM
access to compute its address. This limitation was made
known to the ChampSim community in January 2021,1 but
is currently not addressed in the existing cvp2champsim
converter.

1. https://github.com/ChampSim/ChampSim/issues/112

In that spirit, this paper revisits the CVP-1 traces and
performs a thorough analysis allowing a better conversion
of the CVP-1 traces to the ChampSim format. During
this analysis, we discovered some design decisions in the
initial conversion to the IPC-1 format affecting performance
and even the final outcome of the IPC-1. One example
is that a very high misprediction rate was observed for
return instructions in 10 IPC-1 workloads out of 50, despite
ChampSim implementing a Return Address Stack (RAS)
[35]. These additional mispredictions were in fact caused by
incorrectly converting the CVP-1 traces. Other examples are
register dependencies that do not survive the conversion in
specific cases and the absence of load/store pairs handling.

Using the latest develop version of ChampSim (see
Section 4 for the experimental framework details) and com-
paring the traces converted with the original cvp2champsim
converter and our improved converter, we find that the IPC
differs by more than 5% in 51 out of the 135 CVP-1 public
traces. This illustrates the importance of analyzing and
understanding freely available traces to accurately convey
the characteristics of the original applications to a particular
simulation infrastructure.

2. Design Decisions in the Original

cvp2champsim

The original cvp2champsim converter program was writ-
ten out of a requirement of being able to model workloads
with interesting front-end behavior in ChampSim. The
intent was to study instruction cache and branch predictor
optimizations, for which the Aarch64 to x86 conversion is
comparatively straightforward. Some of the CVP-1 work-
loads had been identified as having very large instruction
working sets, the kind of which were as yet unavailable
in other open benchmarks. The original emphasis of the
converter was therefore to generate ChampSim traces that
captured this particular front-end behavior.

Specifically, ChampSim deduces branch type using x86-
specific registers, while CVP-1 encodes Aarch64 instructions,
so great care was taken to make converted instructions
appear to follow the x86 semantics for branches, as we
will detail in the next Section. Unfortunately, this did not
prevent the introduction of a bug that causes some call and
return pairs not to align properly, leading to an inordinate
number of return target mispredictions in ChampSim.

Conversely, the converter put less emphasis on correct
conversion of aspects of execution unrelated to the front-
end. For example, the converter fails to properly handle
instructions that have more than one destination register.
Moreover, the CVP-1 traces themselves are known to be
inaccurate with respect to certain kinds of dependencies
due to an ambiguity in the tracing methodology. This flaw
does not affect front-end studies (e.g. branch prediction,
icache replacement, icache prefetching, iTLB management,
and BTB management) but is important for data-intensive
workloads. The CVP-1 traces come with an explicit warning
about this limitation [31, 32].

TABLE 1: Summary of the proposed trace conversion improvements.

Instruction type Improvement name Modifications to the converter

Memory

mem-regs Convey all dependencies between the registers written by memory instructions and
the instructions that read from them.

base-update Make base registers available after the latency of an ALU instruction rather than after
the latency of the memory access.

mem-footprint Access all cachelines accessed by the instruction.

Branch

call-stack Fix the identification of returns.

branch-regs Convey all dependencies between the registers read by branch instructions and the
instructions that generate them.

flag-reg Add the flag register as dethe stination of ALU and FP instructions that do not have
any destination register so that branches reading from flags depend on them.

The converter was used to produce the traces used in the
IPC-1 championship [16], resulting in traces that correctly
modeled front-end behavior (modulo return misses) but
were inaccurate with respect to workloads with a high
sensitivity to instruction-level parallelism. Unfortunately,
the deficiencies in the converter were not addressed and
researchers began using it for more general-purpose mi-
croarchitectural studies, which compounds with the intrinsic
limitations of the CVP-1 traces.

3. Analysis of Traces and Translation Deci-

sions

ChampSim traces have a fixed format, with each instruc-
tion occupying 64 bytes. These bytes are organized in: i)
instruction pointer (8B), ii) “is branch” (1B), iii) branch taken
(1B), iv) destination registers (2×1B), v) source registers
(4×1B), vi) memory destinations (2×8B), and vii) memory
sources (4×8B). The trace format is strict: an arithmetic
instruction will still occupy the 64 bytes even if it does
not have any memory source or destination. Fortunately,
ChampSim traces tend to be highly compressible so this
format does not necessarily require exorbitant storage.

It is worth noticing that the ChampSim trace format
does not include a field to indicate the operation type. Only
a flag (the is branch field takes a byte but it is used as a
boolean) indicates if the instruction is a branch or not. To
determine if the instruction is a load or a store, ChampSim
looks, respectively, at the memory sources and destinations.
Instructions that are not branches, loads, or stores are
considered arithmetic instructions. Furthermore, the trace
format does not encode the branch type. ChampSim resolves
the type of the branch based on the registers from which
the branch instructions read from or write to. For example,
if an x86 instruction reads and writes both the stack pointer
and instruction pointer, but does not read other registers,
it must be a direct call instruction.

Next, we discuss different issues we have identified
in the original cvp2champsim converter and describe the
improvements we propose to make the ChampSim traces
converted from the CVP-1 traces more accurate. Table 1
summarizes these improvements.

3.1. Memory Instructions

The Aarch64 ISA, as any other ISA, implements memory
operations with multiple addressing modes. Two examples
are LDR X1, [X0, #12]!, a load with pre-indexing incre-
ment addressing that adds the immediate to X0 and uses
the result as the address to load 8 bytes into X1, and LDP
X1, X0, [X0], a load pair that uses addresses X0 and
X0+8 to load 8 bytes into X1 and the next 8 bytes into X0.
The CVP-1 traces, however, do not encode the addressing
mode. They only contain the memory address, access size
for one register, and source and destination registers for
the instructions. This limitation makes the two previous
instructions seemingly indistinguishable: both are loads
with one source register (X0) and two destination registers
(X1 and X0). Consequently, the original cvp2champsim
converter handles both instructions in the same way: It
generates a load with two source registers (X0 and X1), one
destination register (X1), and one source memory address
(the one stored in the CVP-1 instruction).

This conversion therefore makes three approximations.
First, it only includes one destination register when both
instructions write two. Second, there is no distinction
between the memory-loaded register and the base register.
Third, they use a single address as a memory source,
independently of how many memory accesses are performed
and what is their size. This will typically misrepresent
accesses that cross cachelines.

3.1.1. Improvement mem-regs: Keep All Destination

Registers (and Only Them) From the CVP-1 Traces.

The CVP-1 traces comprise instructions with a number
of destination registers ranging from zero to three. Prefetch
loads and some stores have no destination register in
the CVP-1 traces. Stores that perform base update or
that are store exclusive have a destination register. In
addition, because the CVP-1 traces only include the general
purpose registers as source and/or destination registers,
many arithmetic instructions that modify the flag register
appear in the CVP-1 trace with no destination register at all.
They will be discussed in Section 3.2.3. Instructions with
multiple destination registers are loads that either update
the base register (e.g., the LDR in the previous example),
are load pairs (e.g., the LDP in the previous example), or

are vector loads (e.g., LD2, LD3, and LD4) and may involve
multiple memory accesses.

Despite this variety in the number of destination regis-
ters across different instructions, the original cvp2champsim
converter forces all instructions except branches to have a
single destination register. In the case of prefetch loads and
stores that do not have any destination register, register
X0 is added. This creates dependencies between these
instructions and younger instructions that read from register
X0 that do not exist in the original CVP-1 trace. Similarly, for
loads with multiple destination registers, only the first one
is preserved. As a result, dependencies between these load
instructions and younger instructions that read from the
missing destination registers are missing from the converted
traces.

To address these issues, our improved cvp2champsim
converter does not add any destination register for prefetch
loads and stores with no destination register and preserves
all the destination registers specified in the CVP-1 traces.2
For example, the two sample loads introduced earlier now
feature both X0 and X1 as destination registers, while they
only featured X1 with the original converter.

3.1.2. Improvement base-update: Dependencies Re-

solved with Different Latency for Destination Regis-

ters of Memory Instructions.

Taking the previous example, after fixing the number
of destination registers, our converter would generate a
load with one source (X0) and two destination registers
(X1 and X0) for both the LDR and LDP. That is, in both
cases, registers X0 and X1 would only be available for
dependent instructions after the load completion. From the
point of view of the trace, this is accurate for the load
pair, as both registers should only be available after the
corresponding memory accesses complete, whatever their
latency. However, this is not accurate for the pre- and
post-indexing increment LDR as, in that case, X0 should
be available to dependent instructions after the latency of
the arithmetic operation that updates the base register X0.

To make the converted traces more accurate regarding
memory operations that update the base register, we attempt
to infer their addressing mode and determine if a particular
instruction performs a base update. To this end, we leverage
the heuristic proposed by the trace maintainer [36] with
minor improvements. The heuristic infers the addressing
mode based on the source and destination registers, the
output value for the destination registers present in the
CVP-1 trace, and the current value of the registers kept
in a data structure in the trace reader and updated with
the value written to the destination registers by the trace
instructions. In short, this inference is done by checking the
number of source and destination registers, whether any of

2. A handful instructions include more than four source registers (e.g.,
compare and swap pair). However, ChampSim only allows four of them
by default. Because these instructions are very infrequent and we aim to
limit our changes to ChampSim, our converter only conveys the first four
source registers to the ChampSim traces in these cases.

the source registers is also a destination, and whether the
effective address difference compared to the value written
to the candidate base register fits within an immediate
offset. Note that this inference is best effort as it is not
always possible to get the exact answer.

Once the addressing mode has been obtained, we further
differentiate between pre- and post-indexing increment to
determine if the arithmetic operation that updates the base
register should come before the memory instruction, or
after. To this end, we only need to compare the effective
address of the memory instruction with the value written
to the base register: if they match, the base register is
updated before the memory access is performed; otherwise,
the base register is updated after the memory instruction
takes place. Luckily, the CVP-1 trace instructions include
the value written to the destination registers, making this
comparison straightforward.

Finally, the converter writes the two instructions to the
trace file. We assign the PC of the CVP-1 trace instruction
to the first instruction (i.e., the base register update ALU in
case or pre-indexing increment or the memory instruction
in case of post-indexing increment) and assign PC + 2 to the
second instruction (i.e., the memory instruction in case of
pre-indexing increment and the base register update ALU in
case of post-indexing increment). The only inaccuracy this
conversion could cause is that it encourages the simulator
to handle the instructions as two micro-ops, occupying
two entries in the ROB and IQ and requiring double the
bandwidth across the pipeline even though a particular
microarchitecture could implement that behavior within
a single micro-op. This is not a fundamental issue as the
simulator logic could identify this and bundle the two trace
instructions together.

The importance of this improvement lies in making
base register available to dependent instructions after the
latency of the ALU operation. Notice that without this
improvement, in the case of a load that performs base update
and results in a main memory access, the base register
would only become available after the memory access is
completed, delaying the execution of younger instruction
that depend on the base register. Correctly identifying pre-
and post-indexing increment loads also enables to better
convey the applications’ data memory footprint, which is
the improvement we describe next.

3.1.3. Improvement mem-footprint: Improving the

Memory Footprint.

Finally, we look at the access size of the memory in-
structions. Inherent limitations of the CVP-1 and ChampSim
trace formats make it hard to correctly convey the memory
footprint of the original applications to ChampSim. First, the
CVP-1 trace format merges, within the destination registers
of load instructions, registers populated from memory with
address registers updated before or after the memory access.
Furthermore, the Aarch64 ISA, hence the CVP-1 traces,
include load pairs and vector loads that may result in two
64B cacheline accesses. Consequently, computing the total

access size of the instructions as the transfer size –which is
what the CVP-1 trace contains– times the number of output
registers would overestimate the total memory access size.
Even worse, ChampSim does not model the access size of
memory operations and so ChampSim traces do not include
that information altogether.

Our solution to improve on this and better convey
the data memory footprint of the original applications to
ChampSim is to make the converter determine the memory
transfer size of instructions and whether this transfer size
involves single or multiple 64B cachelines. To this end, we
first identify the memory addressing mode and determine if
the instruction updates the base register or not, which is an
extension of the logic added for improvement base-update
(Section 3.1.2). This allows us to correctly calculate the
transfer size of the instructions. After that, if a memory
operation spans two cachelines, we add the address of the
second cacheline as a second memory source or destination
in the converted instruction, depending on whether it is a
load or a store.

In addition to that, our converter also identifies 64B
stores as DC ZVA instructions, which zeroes a naturally
aligned block of 64 bytes. Even though we did not find
any case across the CVP-1 public traces, the instruction
is architecturally allowed to have a non-aligned address.
Thus, since DC ZVA instructions, by definition, touch a
single cacheline, our converter always aligns their effective
address to a cacheline boundary.

3.2. Branch Instructions

ChampSim models a relatively detailed processor front-
end, including a branch target buffer (BTB). Modern BTBs
usually store the branch type in the main BTB table and
implement separate structures to predict the targets of
indirect branches and returns more accurately. ChampSim
differentiates among different types of branches even though
the ChampSim traces do not encode the branch type directly.
ChampSim resolves the type of branches based on the
registers from which the branch instructions read from
or write to. For example, a conditional branch reads from
and writes to the instruction pointer register, reads the
flag register, and does not read nor write the stack pointer
register.

The CVP-1 traces only distinguish between three dif-
ferent types of branches (conditional, unconditional direct,
and unconditional indirect), ChampSim differentiates among
six types. To further refine the branch type provided in
the CVP-1 traces, the cvp2champsim converter checks the
instruction class and whether it reads from and writes to
register X303 or not. In the original converter, a branch
instruction reading from register X30 is classified as a return.
Otherwise, the branch is either a call, if it writes to register
X30, or a jump, if it does not. Calls and jumps are further
classified as direct or indirect depending on the instruction
class.

3. The link register in the Aarch64 ISA

This conversion first misclassifies some calls as returns.
Second, it does not convey the original source registers of
branches in the CVP-1 traces to the converted traces. Third,
it ignores that some arithmetic instructions that modify
the flag register do not report that register among their
destination registers.

3.2.1. Improvement call-stack: Fixing the Call Stack.

The branch type identification of the original
cvp2champsim is based on the use that branches make of
register X30 and on the type of branch encoded within the
CVP-1 trace instruction. The converter correctly identifies
the types of the branches in most cases but fails to correctly
classify branches that read and write to register X30. These
branches are classified as returns when they are actually
calls. This misclassification could go unnoticed in many
traces that have no indirect calls reading from register X30
(or a negligible number of them). However, in other traces
such as srv_3 or srv_62, this misclassification results in a
relatively high target misprediction rate for returns. This
was unexpected as a large enough Return Address Stack is
expected to provide close to perfect return target prediction.

Our improved cvp2champsim converter makes sure that
only unconditional branches that read from register X30
and do not write to any register are identified as returns.
Otherwise, if they write to register X30, they are classified as
calls, either direct or indirect depending on the instruction
type in the CVP-1 trace. Unconditional branches that are
neither calls nor returns are classified as direct or indirect
jumps, as done in the original cvp2champsim converter.

3.2.2. Improvement branch-regs: Keeping the Original

Dependencies of Branches with Older Instructions.

When converting a branch instruction from the CVP-1
trace, the original cvp2champsim sets the instruction pointer,
stack pointer, and flag registers as source and/or destination
registers adequately so that ChampSim correctly identifies
the branch type. In this process, however, the original source
registers present in the CVP-1 trace are not preserved.
This affects some conditional branches (tb(n)z, cb(n)z),
indirect calls, and indirect jumps, which have general
purpose source registers in the CVP-1 trace. Consequently,
the dependency between these branch instructions and
producer instructions in the CVP-1 trace is lost. This issue
might not impact performance significantly in many cases
as it is likely that, depending on a previous instruction
or not, the branch can still be resolved in the shadow of
the execution of older instructions. However, there is a
particular case in which the impact on performance can
be high: A branch that depends on a long-latency load. In
this case, the situation is completely different depending on
whether the load-to-branch dependency is preserved or not.
If the dependency is kept, a branch misprediction could
only be corrected after the long latency load is resolved,
exposing the branch misprediction penalty on the critical
path. Conversely, if the dependency is not kept, the branch

misprediction penalty could be hidden in the shadow of
the memory access. Furthermore, the negative impact on
performance can be aggravated with a decoupled front-end
and frequent BTB misses, as the prefetching effect of the
decoupled front-end can be drastically reduced.

Our improved cvp2champsim converter preserves all the
register dependencies among instructions present in the
CVP-1 trace. To this end, in the case of branches, it adds
the source registers present in the CVP-1 trace instruction
to the required (depending on the branch type) instruction
pointer, stack pointer, and flag registers.

More precisely, we make the following changes. For
indirect jumps and calls, we add the source register of the
CVP-1 trace instructions as source register of the converted
instruction and avoid adding register X56, which was added
by the original cvp2champsim to convey the reads other
register information to ChampSim so that it can identify
these branch types correctly. Note that these branches did
not depend on the older instruction generating register X56
in the original trace.

For conditional branches, we distinguish two cases.
If the CVP-1 trace instruction has a source register, we
add the source register to the converted instruction and
avoid adding the flag register as the original cvp2champsim
does. These branches are likely cb(n)z and tb(n)z, which
jump based on the content of a general-purpose register.
Otherwise, if the CVP-1 trace instruction does not have
any source register, we keep adding the flag register, as
done in the original converter. These branches should jump
based on the content of the flag register but, because the
CVP-1 traces do not include special-purpose registers, such
information is missing. This missing dependency will be
addressed in the next section.

To convey the register dependence between a condi-
tional branch and the instructions that generate its source
registers, we opted for allowing conditional branches to
depend on any register. However, this does not align with
x86 semantics for branches, as conditional branches always
depend on the flag register. An alternative implementation
would be to split these conditional branches into two
instructions: an arithmetic instruction taking the source
registers of the branch and writing the flag register, and a
conditional branch that reads from the flag register. This
resembles our solution for the base-update improvements.
Nevertheless, in this case, we consider that increasing the
instruction count and resource occupancy by splitting these
conditional branches into two instructions brings more
inaccuracy than working around x86 semantics for branches.

Replacing the flag register with the source register in the
trace instruction for some conditional branches, conflicts
with the way ChampSim identifies branches. ChampSim
deduces that a branch is conditional when it reads and
writes the instruction pointer, does not write the stack
pointer, reads flags, and does not read anything else. The
only way we can address this shortcoming is by patching
ChampSim to change the current condition of reading flags
and not reading any other register to identify a conditional
branch, to reading either flags or other registers.

In addition, we also need to modify the way ChampSim
deduces indirect jumps. ChampSim checks if a branch is an
indirect jumps before checking if it is a conditional branch,
and a branch is deduced as an indirect jump if it writes the
instruction pointer, does not read the stack pointer, does
not read flags, and reads anything else. Based on these
conditions, the new conditional branches that do not read
from the flag register but read from other registers would be
misclassified as indirect jumps. To address this shortcoming,
we propose adding the does not read the instruction pointer
check to the conditions that a branch should meet to be
identified as an indirect jump by ChampSim. The change
should be safe, as x86 indirect branches are always absolute
and thus should not read the instruction pointer. Finally,
adding the source register from the CVP-1 trace to indirect
calls and jumps does not affected their identification as
they already read from other registers.

A known limitation of this improvement is that we
cannot keep register X30 as a destination register of calls
since they should write to the instruction pointer and
stack pointer registers in order for ChampSim to identify
them correctly and, by default, the maximum number of
destination registers in ChampSim is two. Seeking to limit
our changes to ChampSim, we decided to not increase the
number of destination registers and miss the dependency
between calls and the following consumers that read X30
(until a non-branch instruction writes it). This dependency
only affects, on average, 0.87% of the instructions across
the CVP-1 public traces and never affects the (possible)
dependency between calls and returns, which is preserved
through the stack pointer register (written by calls and read
by returns).

3.2.3. Improvement flag-reg: Adding the Missing Flag

Register as Destination of ALU and FP Instructions

with No Destination Registers.

In both Aarch64 and x86, the flag register is a special-
purpose register that contains information about the status
of arithmetic and logic operations. Among others, it indi-
cates if the result of an operation is negative, zero, or if
it resulted in an overflow. Consequently, it is widely used
by conditional branches, which can determine whether a
branch should be taken or not depending on the flag register,
updated by a previous arithmetic or logical operation.
Despite its importance, the CVP-1 traces only include the
general purpose registers as source and destination regis-
ters of the instructions, and therefore many dependencies
between branches and previous instructions are missing in
the CVP-1 traces themselves.

Because ChampSim assumes that conditional branches
always read from the flag register, the original
cvp2champsim converter sets ChampSim’s flag register as
the source register for conditional branches. This does not
solve the problem of the missing dependencies of condi-
tional branches in the CVP-1 trace as no instruction writes
to the flag register. To properly establish the dependencies
between arithmetic and logical operations, and conditional

branches, we add the flag register as the destination register
of all ALU instructions that have no destination registers,
as recommended by the CVP-1 traces’ README [31, 32].
This is slightly pessimistic as syscall instructions will be
marked as generating the flags, but those are relatively rare
and in any event should cause a pipeline flush so having
them generate flags would not be likely to affect dynamic
scheduling. In addition, and although they are significantly
less frequent, we add the flag register to (arithmetic) FP
instructions without a destination register. With this change,
we recover the dependency of conditional branches from
previous instructions through the flag register that is not
present in the CVP-1 trace.

4. Methodology and Results

After translating the CVP-1 traces to ChampSim format
with our enhanced converter, we evaluate the impact of the
modifications using the current version of the main branch
of ChampSim [37] (commit 2bba2bd). Our changes on the
front-end include a 16K-entry BTB and 64KB ITTAGE [38]
and TAGE-SC-L [39] predictors. We model an ip-stride
prefetcher at the L1D cache and a next-line prefetcher
at the L2 cache, in an attempt to mimic Intel’s Icelake
prefetching mechanism [40].

We focus first on the impact of the modifications on
public CVP-1 traces [31] performance, although the secret
CVP-1 traces [32] can also be translated and characterized
using our enhanced cvp2champsim trace converter. We run
the traces until the end without warm-up (Section 4.1).
Using the same methodology, we then analyse the impact
of the most significant trace improvements (Section 4.2).

Through personal communication with the organizers of
IPC-1 we were able to match the 50 IPC-1 traces back to the
original CVP-1 secret traces. With that information we first
perform a characterization of the IPC-1 traces (4.3). Then
we evaluate the eight prefetchers accepted at IPC-1, using
the same traces as in the championship but after our fixes.
For this study we employ the ChampSim version provided
in IPC-1, and we warm up for 50 million instructions and
report statistics for 50 million instructions more, as was
done in the contest. (Section 4.4)

4.1. Impact on Projected Performance

Figure 1 shows the IPC variation of the geometric mean
of IPC for the proposed improvements compared to the
original traces across the CVP-1 public traces. Starting
with the memory improvements, we observe that making
the base register in memory operations available after the
latency of an ALU operation (imp. base-update) allows
dependent instructions to execute earlier. This accelerates
the back-end and improves the IPC, by 1.9%, on average.
Improving the memory footprint of the converted traces by
adding a second memory address to memory instructions
that involve two cachelines (imp. mem-footprint) has a very
small negative impact on performance (–0.04%) because
most memory operations access a single cacheline. Finally,
strictly keeping the original destination registers of loads

-6%

-5%

-4%

-3%

-2%

-1%

0%

1%

2%

m
em

-r
eg

s

b
as

e-
u

p
d

at
e

m
em

-f
o

o
t.

M
em

 im
p

s

ca
ll-

st
ac

k

b
ra

n
ch

-r
eg

s

fl
ag

-r
eg

B
ra

n
ch

 im
p

A
ll

im
p

s

Memory improvements Branch improvements

IP
C

 v
ar

ia
ti

o
n

Figure 1: IPC variation of the geometric mean IPC across the

CVP-1 public traces when applying the different improve-

ments compared to the original cvp2champsim converter.

(imp. mem-regs) also has a negligible impact on IPC (0.01%).
Overall, the memory improvements altogether increase the
IPC by 1.9% on average.

Regarding the branch improvements, we observe that
adding the flag register to ALU and FP instructions without
any destination register (imp. flag-reg) and keeping the
original source and destination registers of branches in the
CVP-1 trace (imp. branch-regs) have a significant negative
impact on performance. On average, improvements flag-
reg and branch-regs reduce IPC, respectively by 4.7% and
3.7%. On the contrary, fixing the call stack (imp. call-stack)
improves performance, on average, by 0.8%. As we will
discuss later, the performance impact of this improvement
is higher but only affects a subset of the traces. The
three branch improvements altogether reduce IPC by 5.3%
on average. When putting all memory and branch fixes
together, IPC reduces by 3.5% on average across the CVP-1
public traces.

It is worth noting that the performance impact that
improvements branch-regs and flag-reg have in isolation
overlaps when they are applied together. Improvement
flag-reg adds the flag register as a destination register for
all ALU and FP instructions without one. Thus, it makes
all conditional branches depend on an older ALU or FP
instruction. However, when applying branch-regs, in the
case of conditional branches that have a source register in
the CVP-1 instructions, it replaces the flag register with
such a register, thus reducing the impact that flag-reg has
in isolation.

The average provides a general picture of how the
different improvements affect performance but does not
clearly reflect their impact, as the improvements affect the
distinct traces in an irregular way. Figure 2 shows the
IPC variation caused by the different improvements when
applied individually and all together to each CVP-1 public
trace. Notice that the traces are sorted from highest IPC
increase to highest IPC reduction in each case.

The highest IPC variation is caused by restoring the
dependency of branches from previous instructions either
through the flag register (imp. flag-reg) or through other
general purpose registers (imp. branch-regs). These changes

-30%

-20%

-10%

0%

10%

20%

0 13. 5 27 40. 5 54 67. 5 81 94. 5 108 121.5 135

IP
C

 v
ar

ia
ti

o
n

Sorted traces

mem-foot.
flag-reg

mem-regs
call-stack

base-update
branch-regs
All imp

Figure 2: IPC variation when applying the different improve-

ments to the cvp2champsim converter. Traces are sorted

from highest IPC increase to highest IPC decrease for each

improvement.

increase the impact of the branch misprediction penalties,
as they are more easily exposed on the critical path.
Consequently, they reduce the IPC: improvement flag-reg
reduces IPC above 5% for 48 out of the 135 traces and
up to 31% for trace compute_int_46 while improvement
branch-regs reduces IPC above 5% for 41 traces and up
to 12% for trace compute_int_23. The trend of decreasing
IPC is similar even though improvement flag-reg impacts
performance more severely in the worst cases.

On the other hand, making the base register of memory
operations available after the latency of an ALU instruction
rather than after the memory access (imp. base-update)
causes the highest IPC increases. This improvement accel-
erates the processor back-end, improving the IPC above
5% in 13 traces. The other improvement that improves
performance noticeably is fixing the call stack (imp. call-
stack). It affects only a subset of the traces, as not all of
them had misclassified calls. This improvement reduces the
branches MPKI and thus accelerates the processor front-end,
increasing the IPC of 15 traces above 5%.

The remaining improvements have a minor impact
on performance, at least in our ChampSim configuration
with a decoupled front-end. Still, they make the converted
traces more accurate and could impact performance in
other processor configurations. Considering the proposed
improvements altogether, the IPC of the converted traces
differs by more than 5% from that of the original traces in
43 out of the 135 CVP-1 public traces. This showcases the
importance of analyzing and understanding freely available
traces and how well both the traces and the trace reader
convey the characteristics of the original applications to a
simulation infrastructure.

4.2. Discussion of Trace Improvements

Improvements branch-regs and flag-reg. With the
original cvp2champsim converter, conditional and indirect
branches missed almost all register dependencies with older
instructions as branches only read from special purpose
registers that non-branch instructions do not write. The
improved converter restores these dependencies through

0

2

4

6

8

10

12

14

0%

5%

10%

15%

20%

25%

30%

35%

0 20 40 60 80 100 120

B
ra

n
ch

 M
P

K
I

Sl
o

w
d

o
w

n

Sorted traces

flag-reg (slowdown) branch-regs (slowdown)
Branch MPKI

Figure 3: Slowdown due to improvements branch-regs and

flag-reg compared to the original converter. Traces are

sorted in increasing branch MPKI order (shown in the

dashed line and right y-axis).

improvements branch-regs and flag-reg, slowing down the
processor front-end and reducing the IPC. The impact on
performance, however, is not directly correlated to the
number of dependencies restored. With a decoupled fetcher,
the branch predictor and BTB, when accurate, hide the
negative impact that delaying the execution of branches
could have. Furthermore, other stalls at the front-end
or back-end also affect whether the penalty of delaying
branches is exposed or not.

Figure 3 presents the slowdown caused by improvements
branch-regs and flag-reg compared to the traces converted
with the original cvp2champsim. The traces are sorted from
lowest to highest branch MPKI (plotted with the dashed
line and right y-axis). As discussed previously, we cannot
expect a perfect correlation. Yet, the Figure shows that as
the branch MPKI of the traces grows, so does the slowdown
caused by these improvements. In general, the slowdown
caused by the two improvements is similar along the
traces. However, there are some cases where improvement
flag-reg has a significantly higher impact. These traces
combine a higher percentage of ALU instructions without a
destination register, to which improvement flag-reg adds the
flag register as a destination, with a higher percentage of
conditional branches reading from flags, which diminished
the impact of improvement branch-regs.

Improvement base-update. Making the base register
of memory operations available after the latency of an ALU
operation rather than waiting for the memory operation to
complete allows younger dependent instructions to execute
earlier, accelerating the processor back-end and increas-
ing performance. Figure 4 shows the speedup achieved
by improvement base-update, with the traces sorted by
increasing percentage of loads with base update compared
to the dynamic number of executed instructions. We focus
on loads and omit stores in this figure because they usually
complete quickly (the actual write can be delayed in the
store buffer but the destination registers become available to
dependent instructions earlier) and do not delay dependent
instructions as much as long-latency loads do. The figure
shows that the speedup grows with the percentage of loads
with base update, with a couple of exceptions where making

0%

5%

10%

15%

20%

0%

5%

10%

15%

20%

25%

0 20 40 60 80 100 120

Lo
ad

s
w

it
h

 b
as

e
u

p
d

at
e

Sp
ee

d
u

p

Sorted traces

base-update (speedup) Base update loads

Figure 4: Speedup due to improvement base-update. Traces
are sorted in increasing percentage of load instructions that

perform base register update (dashed line and right y-axis)

with respect to the overall number of instructions.

the base register available earlier has a stronger impact even
with a lower number of loads that perform base update.

Improvement call-stack. Figure 5 shows how the
improved converter reduces the return’s MPKI for the traces
that suffered a high return MPKI with the original converter
and the resulting IPC variation. As discussed in Section 3.2.1,
branches reading and writing to register X30 should be
classified as calls but were incorrectly identified as returns
in the original converter. The figure shows that this issue
does not affect all traces but only a subset of them which
have a number of return mispredictions per kilo instruction
one order of magnitude higher than the other traces. The
improved converter brings back return target mispredictions
to a reasonable number, which results in an IPC increase
ranging approximately from 7% to 3%.

Improvement mem-footprint. An important limita-
tion to accurately conveying the memory footprint of
the original workloads to ChampSim is the absence of
the memory access size in the ChampSim trace format.
Access size would be required to accurately model memory
disambiguation, including store-to-load forwarding. With
this limitation, our cvp2champsim converter enhances the
memory footprint of the converted traces by adding the
memory address of the second cacheline when an access
crosses cachelines. However, on average, only 0.3% of the
instructions are memory instructions that access two cache-
lines. Given the low percentage and the facts that the second
cacheline will be likely accessed anyway by a different
instruction and that the access pattern is easily predictable
for a simple next-line prefetcher, this improvement does
not significantly affect performance in our setup.

Improvement mem-regs. This improvement affects
9.4% of the instructions, which are memory instructions
with no destination register in the CVP-1 trace, to which
our improved converter does not add any, and 5.2% of
the instructions, which are loads with multiple destination
registers that our improved converter now keeps. Based on
the number of instructions affected, we could expect this
improvement to have a significant impact on performance.
However, this is not the case. Two reasons explain this
behavior. First, many instructions to which the original

0.0

0.5

1.0

1.5

2.0

0%

1%

2%

3%

4%

5%

6%

7%

8%

0 17 34 51 68 85 102 119

R
A

S
M

P
K

I

Sp
ee

d
u

p

Sorted traces

Original (RAS MPKI)Imp call-stack (speedup)
Imp call-stack (RAS MPKI)

Figure 5: Speedup due to the call-stack improvement and

RAS MPKI for the original and improved traces (dashed

lines and right y-axis). Traces are sorted from highest to

lowest RAS MPKI with the original traces.

cvp2champsim converter adds register X0 as destination ap-
pear in the trace consecutively, without any instruction that
actually depends on them. Thus, only the last instruction
introduces a spurious dependency, with negligible impact
on performance. Nevertheless, notice that improving the
traces in this aspect would be important if ChampSim
modeled a finite physical register file. Second, keeping the
original destination registers of the instructions does not
have an always positive or negative impact on performance,
as it depends on each specific case. For example, adding
register X0 as a destination of an instruction that did not
have it originally can make X0 available to dependent
instructions earlier or later, depending on which was the
previous instruction producing that register. The same thing
happens when adding all destination registers to loads.

4.3. Characterization of IPC-1 traces

The mappings are disclosed in Table 2. The first column
is the trace name in IPC-1 and the second column its
corresponding (secret) trace in CVP-1. In the remaining
columns, we perform a characterization of traces, once all
fixes have been incorporated using the develop branch of
ChampSim and the setup described in Section 4. For each
trace, the table reports: IPC, branches MPKI, and MPKI
across all the levels of the memory hierarchy. Regarding
branches MPKI, we report the MPKI considering both the
direction and target predictions (overall), considering only
the direction prediction, and considering only the target
prediction for taken branches.

The metric that sees the highest impact with the con-
verter improvements is the target MPKI for branches, which
reduces by 13%, on average, compared to the original traces.
This reduction is caused by the call-stack improvement. As
we have already discussed for the CVP-1 public traces,
it mainly impacts some particular traces, whose branch
target MPKI reduce by up to 78% (server_001). On average,
IPC reduces by 2.4% and the IPC of 19 out of the 50
traces differs by more than 5% compared to the original
traces. Because most of the performance difference comes
from better conveying the register dependencies among
instructions, the performance variations are not significantly

TABLE 2: CVP-1 to IPC-1 trace mapping and characterization with the improved converter.

Branches MPKI Memory hierarchy MPKI

IPC-1 trace CVP-1 trace IPC Overall Direction Target L1I L1D L2 LLC

client_001 secret_int_294 2.37 2.56 2.11 1.54 10.0 19.5 8.3 3.2
client_002 secret_int_316 3.26 0.70 0.44 0.50 13.9 13.1 6.4 1.1
client_003 secret_int_729 2.11 2.55 1.82 1.70 14.3 29.1 8.3 3.9
client_004 secret_int_965 1.87 7.10 4.30 5.04 14.6 19.2 9.0 2.5
client_005 secret_int_349 1.82 3.16 2.15 2.13 16.9 22.0 9.4 5.5
client_006 secret_int_279 1.95 1.87 1.55 1.06 18.9 24.9 13.9 6.0
client_007 secret_int_591 2.49 2.16 1.41 1.45 25.7 25.4 5.8 2.8
client_008 secret_int_338 2.55 1.94 1.38 1.26 35.2 36.8 12.7 2.7
server_001 secret_srv160 2.25 0.43 0.31 0.30 16.8 22.1 13.9 6.3
server_002 secret_srv571 3.54 0.36 0.11 0.33 23.8 1.1 0.8 0.5
server_003 secret_srv757 1.48 4.84 3.25 3.38 29.7 28.9 30.0 5.7
server_004 secret_srv194 1.74 2.35 1.39 1.74 31.9 48.4 32.6 4.1
server_009 secret_srv551 2.17 0.93 0.44 0.73 36.8 39.0 36.4 2.9
server_010 secret_srv364 2.22 0.82 0.39 0.64 38.9 34.0 38.8 2.9
server_011 secret_srv617 1.92 2.19 1.33 1.60 39.5 25.6 39.1 3.8
server_012 secret_srv255 2.25 0.86 0.41 0.67 41.4 25.8 40.2 2.9
server_013 secret_srv442 2.16 0.89 0.44 0.69 43.0 26.1 43.1 3.3
server_014 secret_srv685 3.35 0.42 0.14 0.37 44.7 1.8 1.3 0.8
server_015 secret_srv238 3.78 0.22 0.04 0.20 46.2 0.4 0.3 0.2
server_016 secret_srv513 3.46 0.40 0.26 0.27 55.4 28.0 19.2 0.7
server_017 secret_srv155 0.61 0.71 0.69 0.59 64.1 129.3 52.4 25.7
server_018 secret_srv58 0.63 0.74 0.72 0.62 64.1 128.8 52.1 25.4
server_019 secret_srv564 0.61 0.67 0.64 0.57 64.6 129.8 52.8 26.0
server_020 secret_srv405 0.66 0.38 0.36 0.27 67.3 131.2 52.2 25.1
server_021 secret_srv174 0.70 0.20 0.18 0.13 68.5 133.4 52.6 24.4
server_022 secret_srv490 0.70 0.20 0.17 0.12 68.9 133.3 52.6 24.3
server_023 secret_srv152 3.31 0.53 0.34 0.37 73.1 37.3 27.4 1.0
server_024 secret_srv181 3.30 0.55 0.35 0.38 74.6 37.5 28.2 1.0
server_025 secret_srv301 3.44 0.45 0.24 0.33 76.3 36.4 29.9 0.7
server_026 secret_srv344 3.32 0.54 0.29 0.41 80.0 39.9 33.1 0.8
server_027 secret_srv428 3.43 0.47 0.25 0.35 81.1 38.8 31.0 0.7
server_028 secret_srv535 2.83 0.59 0.44 0.38 85.0 52.1 30.9 1.2
server_029 secret_srv91 2.82 0.58 0.45 0.37 85.8 52.5 29.9 1.3
server_030 secret_srv263 3.44 0.40 0.25 0.28 86.9 51.3 30.4 0.5
server_031 secret_srv656 2.78 0.62 0.48 0.40 89.2 47.1 27.1 1.3
server_032 secret_srv592 3.58 0.34 0.21 0.24 93.3 42.2 23.0 0.3
server_033 secret_srv7 3.45 0.14 0.12 0.09 98.6 21.3 7.5 0.9
server_034 secret_srv630 3.78 0.11 0.09 0.07 99.3 20.0 3.9 0.3
server_035 secret_srv374 2.42 0.11 0.08 0.07 98.2 21.9 8.8 4.3
server_036 secret_srv340 3.60 0.15 0.10 0.12 116.4 1.2 0.8 0.5
server_037 secret_srv680 3.28 0.17 0.13 0.14 116.8 14.9 6.9 0.8
server_038 secret_srv373 3.31 0.17 0.13 0.14 117.5 15.2 7.2 0.8
server_039 secret_srv154 3.83 0.14 0.06 0.13 121.8 2.0 0.1 0
spec_gcc_001 secret_int_118 1.88 7.79 6.62 4.53 10.6 19.4 6.2 1.9
spec_gcc_002 secret_int_345 0.20 0.52 0.48 0.28 16.4 178.6 131.4 78.2
spec_gcc_003 secret_int_123 0.16 0.35 0.31 0.19 21.2 143.1 136.3 96.2
spec_gobmk_001 secret_int_416 2.36 6.34 6.23 3.13 9.6 12.9 3.8 0.9
spec_gobmk_002 secret_int_121 2.39 6.89 6.82 3.50 12.9 3.4 1.1 0.7
spec_perlbench_001 secret_int_116 2.42 1.78 1.47 1.03 9.2 10.3 4.6 2.6
spec_x264_001 secret_int_919 3.59 1.20 1.19 0.62 8.5 4.4 0.9 0.6

reflected in the MPKI metrics. However, as a side effect of
the base-update improvement, which increases the number
of instructions in the traces, all MPKIs for the branches
and memory hierarchy, are slightly reduced (1% – 4%).

4.4. Impact of the trace changes on IPC1

Having uncovered the mapping between CVP-1 and IPC-
1 traces, we can perform a re-evaluation of the instruction
prefetchers submitted to IPC-1 using the new traces.4 The

4. This experiment is performed without the mem-footprint improvement
because the version of ChampSim used at IPC-1 did not complete the
execution of traces including instructions with multiple memory sources.
Disabling this improvement should not introduce a significant performance
deviation as it has a negligible impact on the current version of ChampSim.

purpose of this evaluation is to check if the changes can
affect the conclusions of a micro-architectural study, but not
to reflect the outcome of a hypothetical IPC-1 with improved
traces, as the submitted prefetchers were heavily tuned for
the traces given at that time.

Table 3 shows the results of the IPC-1 championship
(left part) and the results with the enhanced traces
(right part). The prefetchers evaluated are D-JOLT [41],
JIP [42], MANA [43], FNL+MMA [44], PIPS [45], EPI [46],
Barça [47], and TAP [48]. This evaluation is performed
using the ChampSim version employed in IPC-1, with the
addition of the branch identification code modification
described in Section 3.2.2.

TABLE 3: IPC-1 ranking

Competition traces Fixed traces

Rank Prefetcher SpeedUp Rank Prefetcher SpeedUp

1 EPI 1.2951 1 EPI 1.3818
2 D-JOLT 1.2884 2 D-JOLT 1.3696
3 FNL+MMA 1.2861 3 JIP 1.3588
4 Barça 1.2832 4 Barça 1.3570
5 PIPS 1.2799 5 FNL+MMA 1.3517
6 JIP 1.2768 6 PIPS 1.3444
7 MANA 1.2658 7 MANA 1.3092
8 TAP 1.2351 8 TAP 1.2915

Our first observation is that in general, the performance
improvements are higher with the new traces. The main
reason, as previously discussed in this evaluation, is the
acceleration in the back-end due to the base-update im-
provement and the delay in the resolution of branches due
to the branch-regs and flag-reg improvements. On one hand,
accelerating the back-end puts more pressure on the front-
end. On the other hand, resolving hard-to-predict branches
later increases the misprediction penalty, which can be
compensated with a good instruction prefetcher. The call-
stack improvement does not influence the championship
as the version of ChampSim used modeled an ideal target
predictor.

Our second observation is that there are some differ-
ences in the hypothetical ranking with the improved traces.
For example, JIP moves from the 6th position to the 3rd ,
which demonstrates that a careful translation of traces
is fundamental for trustable research. Obviously, further
prefetcher tuning could be done for the new traces, but this
is out of the scope of this work. We also run the version of
FNL+MMA submitted after the contest (same idea though
additional tuning was performed), obtaining a speed-up
with the fixed traces of 1.3812. That would move it to
second place, which again demonstrates the importance of
the tuning.

To conclude this study, we would like to emphasize
Ishii et al. [49, 50], which highlighted the importance
of modeling an industry-like decoupled front-end when
evaluating instruction prefetching techniques. Results using
a decoupled front-end would significantly reduce the per-
formance improvements presented in this section due to the
impact of including fetch-directed instruction prefetching
[51] in the baseline. Our preliminary results are consistent
with the previous work showing a much more modest
speedup from dedicated instruction prefetchers from IPC-
1 that we have been able to port to the new version of
ChampSim. However, since these prefetchers have not been
designed with a decoupled front-end in mind or other large
changes to ChampSim since the IPC-1 contest, we decline
to disclose those numbers here as they are of dubious value.

In that context, we recommend that a new instruction
prefetching competition be held. The methodological prob-
lems pointed out by Ishii et al. as well as the inaccurate
trace conversion we mitigate in this study call into question
the magnitude of the contribution of the original IPC-1.

Instruction prefetchers designed in using a now available
more robust simulation environment could result in impor-
tant and practical improvements in prefetching research
state of the art.

4.5. Are the new traces more accurate than the

original ones?

A fair but hard-to-address question is whether the traces
generated with the improved converter reflect the original
CVP-1 traces more accurately than the ones generated
with the original cvp2champsim converter. Qualitatively, we
have identified fundamental shortcomings and proposed
solutions, giving us confidence that the overall quality of
the converted traces has increased. In fact, improvements
such as call-stack are a clear indicator that instruction
categorization has improved. However, given the fact that
the base material itself is flawed (CVP-1 traces have been
stripped from some information), we cannot compare the
converted traces against a ground truth (detailed ARMv8
traces), because that ground truth is not available to us.

5. Conclusion

At a broader level, this study highlights the need for
carefully vetting the tools used to conduct research. Indeed,
while we wholeheartedly advocate for sharing tools, some
are built with very specific uses in mind and using them for
a different purpose can lead to significant inaccuracies. It
is reasonable for researchers to start with a tool that might
have inaccuracies to get a good estimate of the potential
of microarchitectural optimizations. Indeed, some of us
who have worked in industry have observed that even
the very detailed performance models used for exploration
sometimes do not correlate with the baseline RTL they
are intended to model. However, for the sake of pursuing
realistic improvements in processor design, it behooves us to
model the behavior of workloads and processors as faithfully
as possible, continuously improving our methodology.

Acknowledgments

This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
No 819134), from the MCIN/AEI/10.13039/501100011033/
and the “ERDF A way of making Europe”, EU (grants
PID2021-123627OB-C51 and PID2022-136315OB-I00) and the
European Union NextGenerationEU/PRTR (grants RYC2021-
030862-I and TED2021-130233B-C33/C32), from the National
Science Foundation (grants CNS-1938064 and CCF-1912617),
as well as generous gifts from Intel. Portions of this research
were conducted with the advanced computing resources
provided by Texas A&M High Performance Research Com-
puting.

References

[1] “QEMU, A Generic and Open Source Machine Emulator and Virtual-
izer,” https://www.qemu.org/.

[2] J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger,
M. Andreozzi, A. Armejach, N. Asmussen, B. Beckmann, S. Bharadwaj,
G. Black, G. Bloom, B. R. Bruce, D. R. Carvalho, J. Castrillon, L. Chen,
N. Derumigny, S. Diestelhorst, W. Elsasser, C. Escuin, M. Fariborz,
A. Farmahini-Farahani, P. Fotouhi, R. Gambord, J. Gandhi, D. Gope,
T. Grass, A. Gutierrez, B. Hanindhito, A. Hansson, S. Haria, A. Harris,
T. Hayes, A. Herrera, M. Horsnell, S. A. R. Jafri, R. Jagtap, H. Jang,
R. Jeyapaul, T. M. Jones, M. Jung, S. Kannoth, H. Khaleghzadeh,
Y. Kodama, T. Krishna, T. Marinelli, C. Menard, A. Mondelli,
M. Moreto, T. Mück, O. Naji, K. Nathella, H. Nguyen, N. Nikoleris,
L. E. Olson, M. Orr, B. Pham, P. Prieto, T. Reddy, A. Roelke, M. Samani,
A. Sandberg, J. Setoain, M. D. S. Boris Shingarov, T. Ta, R. Thakur,
G. Travaglini, M. Upton, N. Vaish, I. Vougioukas, W. Wang, Z. Wang,
N. Wehn, C. Weis, D. A. Wood, H. Yoon, and Éder F. Zulian, “The
gem5 simulator: Version 20.0+,” arXiv preprint arXiv:2007.03152, 2020.

[3] N. Gober, G. Chacon, L. Wang, P. V. Gratz, D. A. Jimenez, E. Teran,
S. Pugsley, and J. Kim, “The championship simulator: Architectural
simulation for education and competition,” CoRR, vol. abs/2210.14324,
Oct. 2022.

[4] Standard Performance Evaluation Corporation, “SPEC CPU2006,”
2006. [Online]. Available: http://www.spec.org/cpu2006

[5] ——, “SPEC CPU2017,” 2017. [Online]. Available:
http://www.spec.org/cpu2017

[6] “The 1st Championship Branch Prediction (CBP-1) @ MICRO,”
https://jilp.org/cbp/, Oct. 2004.

[7] “The 2nd Championship Branch Prediction (CBP-2) @ HPCA,” Feb.
2006.

[8] “The 3rd Championship Branch Prediction (CBP3, JWAC-2) @ ISCA,”
https://jilp.org/jwac-2/program/JWAC-2-program.htm, Jun. 2011.

[9] “The 4th Championship Branch Prediction (CBP4, JWAC-4) @ ISCA,”
https://jilp.org/cbp2014/, Jun. 2014.

[10] “The 5th Championship Branch Prediction (CBP-5, JWAC-5) @ISCA,”
https://jilp.org/cbp2016/, Jun. 2016.

[11] “The 1st Cache Replacement Championship (CRC-1, JWAC-1) @
ISCA,” https://jilp.org/jwac-1/, Jun. 2010.

[12] “The 2nd Cache Replacement Championship (CRC-2) @ ISCA,”
https://crc2.ece.tamu.edu/, Jun. 2017.

[13] “The 1st Data Prefetching Championship (DPC-1) @ HPCA,” Feb.
2008. [Online]. Available: https://jilp.org/dpc/

[14] “The 2nd Data Prefetching Championship (DPC-2) @ ISCA,” Jun.
2015. [Online]. Available: https://comparch-conf.gatech.edu/dpc2/

[15] “The 3rd Data Prefetching Championship (DPC-3) @ ISCA,” Jun.
2019. [Online]. Available: https://dpc3.compas.cs.stonybrook.edu/

[16] “The 1st Instruction Replacement Championship (IPC-1) @ ISCA,”
https://research.ece.ncsu.edu/ipc/welcome/, Jun. 2020.

[17] “The 1st Championship Value Prediction (CVP-1) @ ISCA,”
https://microarch.org/cvp1/cvp1online/rules.html, Jun. 2018.

[18] “The 1st Memory Scheduling Championship (MSC-1, JWAC-3)
@ISCA,” https://users.cs.utah.edu/ rajeev/jwac12/, Jun. 2012.

[19] “Ml prefetching competition @isca,”
https://sites.google.com/view/mlarchsys/isca-2021/ml-prefetching-
competition, Jun. 2021.

[20] G. Vavouliotis, G. Chacon, L. Alvarez, P. V. Gratz, D. A. Jiménez, and
M. Casas, “Page Size Aware Cache Prefetching,” in 55thInt’l Symp.
on Microarchitecture (MICRO). IEEE, 2022, pp. 956–974.

[21] A. Navarro-Torres, B. Panda, J. Alastruey-Benedé, P. Ibánez, V. Viñals-
Yúfera, and A. Ros, “Berti: an Accurate Local-Delta Data Prefetcher,”
in 55thInt’l Symp. on Microarchitecture (MICRO). IEEE, 2022, pp.
975–991.

[22] S. Jiang, Q. Yang, and Y. Ci, “Merging Similar Patterns for Hardware
Prefetching,” in 55thInt’l Symp. on Microarchitecture (MICRO). IEEE,
2022, pp. 1012–1026.

[23] G. Vavouliotis, L. Alvarez, B. Grot, D. A. Jiménez, and M. Casas,
“Morrigan: A composite instruction tlb prefetcher,” in 54th Int’l Symp.
on Microarchitecture (MICRO), Oct. 2021, pp. 1138–1153.

[24] A. Ros and A. Jimborean, “A cost-effective entangling prefetcher for
instructions,” in 48th Int’l Symp. on Computer Architecture (ISCA),
Jun. 2021, pp. 99–111.

[25] S. Song, T. A. Khan, S. Mahdizadeh-Shahri, A. Sriraman, N. K.
Soundararajan, S. Subramoney, D. A. Jiménez, H. Litz, and B. Kasikci,
“Thermometer: Profile-guided btb replacement for data center appli-
cations,” in 49th Int’l Symp. on Computer Architecture (ISCA), Jun.
2022, pp. 742–756.

[26] R. Bera, K. Kanellopoulos, A. Nori, T. Shahroodi, S. Subramoney,
and O. Mutlu, “Pythia: A customizable hardware prefetching frame-
work using online reinforcement learning,” in 54th Int’l Symp. on
Microarchitecture (MICRO), Oct. 2021, pp. 1121–1137.

[27] R. Bera, K. Kanellopoulos, S. Balachandran, D. Novo, A. Olgun,
M. Sadrosadat, and O. Mutlu, “Hermes: Accelerating long-latency
load requests via perceptron-based off-chip load prediction,” in 55th
Int’l Symp. on Microarchitecture (MICRO), Oct. 2022, pp. 1–18.

[28] T. Asheim, B. Grot, and R. Kumar, “A storage-effective BTB organiza-
tion for servers,” in 29th Int’l Symp. on High-Performance Computer
Architecture (HPCA), Mar. 2023, pp. 1153–1167.

[29] S. M. Ajorpaz, E. Garza, S. Jindal, and D. A. Jiménez, “Exploring
predictive replacement policies for instruction cache and branch
target buffer,” in 45th Int’l Symp. on Computer Architecture (ISCA),
Jun. 2018, pp. 519–532.

[30] B. Grayson, J. Rupley, G. D. Zuraski, E. Quinnell, D. A. Jiménez,
T. Nakra, P. Kitchin, R. Hensley, E. Brekelbaum, V. Sinha, and
A. Ghiya, “Evolution of the samsung exynos cpu microarchitecture,”
in 47th Int’l Symp. on Computer Architecture (ISCA), Jun. 2020, pp.
40–51.

[31] A. Perais, “1st Championship Value Prediction Public Traces,”
https://doi.org/10.18709/perscido.2023.02.ds382, Jun. 2018.

[32] ——, “1st Championship Value Prediction Secret Traces,”
https://doi.org/10.18709/perscido.2023.02.ds384, Jun. 2018.

[33] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” in 2005 Conf.
on Programming Language Design and Implementation (PLDI), Jun.
2005, pp. 190–200.

[34] “The 2nd Championship Value Prediction (CVP-2),”
https://microarch.org/cvp1/index.html, Feb. 2021.

[35] D. R. Kaeli and P. G. Emma, “Branch history table prediction of
moving target branches due to subroutine returns,” in 18th Int’l
Symp. on Computer Architecture (ISCA), 1991, pp. 34–42.

[36] A. Perais, “CVP Trace Reader,” https://gricad-gitlab.univ-grenoble-
alpes.fr/tima/sls/projects/cvptracereader/-/tree/master, Oct. 2022.

[37] “ChampSim simulator,” http://github.com/ChampSim/ChampSim, May
2020.

[38] A. Seznec, “A 64-Kbytes ITTAGE indirect branch predictor,” in 2nd
JILP Workshop on Computer Architecture Competitions (JWAC-2):
Championship Branch Prediction, Jun. 2011.

[39] ——, “TAGE-SC-L branch predictors again,” in 5th JILP Workshop on
Computer Architecture Competitions (JWAC-5): Championship Branch
Prediction (CBP-5), Jun. 2016.

[40] I. E. Papazian, “New 3rd gen Intel® Xeon® Scalable processor
(Codename: Ice Lake-SP),” in 32nd HotChips Symp., Aug. 2020, pp.
1–22.

[41] T. Nakamura, T. Koizumi, Y. Degawa, H. Irie, S. Sakai, and R. Shioya,
“D-jolt: Distant jolt prefetcher,” in The 1st Instruction Prefetching
Championship (IPC1), May 2020.

[42] V. Gupta, N. S. Kalani, and B. Panda, “Run-Jump-Run: Bouquet
of Instruction Pointer Jumpers for High Performance Instruction
Prefetching,” in The 1st Instruction Prefetching Championship (IPC1),
May 2020.

[43] A. Ansari, F. Golshan, P. Lotfi-Kamran, and H. Sarbazi-Azad, “MANA:
Microarchitecting an Instruction Prefetcher,” in The 1st Instruction
Prefetching Championship (IPC1), May 2020.

[44] A. Seznec, “The FNL+MMA Instruction Cache Prefetcher,” in The 1st

Instruction Prefetching Championship (IPC1), May 2020.
[45] P. Michaud, “PIPS: Prefetching Instructions with Probabilistic Scouts,”

in The 1st Instruction Prefetching Championship (IPC1), May 2020.
[46] A. Ros and A. Jimborean, “The Entangling Instruction Prefetcher,”

in The 1st Instruction Prefetching Championship (IPC1), May 2020.
[47] D. A. Jiménez, G. Chacon, N. Gober, and P. Gratz, “Barça: Branch Ag-

nostic Region Searching Algorithm,” in The 1st Instruction Prefetching
Championship (IPC1), May 2020.

[48] N. Gober, G. Chacon, D. A. Jiménez, and P. Gratz, “Temporal Ancestry
Prefetcher,” in The 1st Instruction Prefetching Championship (IPC1),
May 2020.

[49] Y. Ishii, J. Lee, K. Nathella, and D. Sunwoo, “Rebasing instruction
prefetching: An industry perspective,” IEEE Computer Architecture
Letters, Oct. 2020.

[50] ——, “Re-establishing fetch-directed instruction prefetching,” in Int’l
Symp. on Performance Analysis of Systems and Software (ISPASS), Mar.
2021, pp. 172–182.

[51] G. Reinman, B. Calder, and T. Austin, “Fetch directed instruction
prefetching,” in 32nd Int’l Symp. on Microarchitecture (MICRO), Dec.
1999, pp. 16–27.

[52] J. Feliu, A. Perais, D. A. Jiménez, and A. Ros, “Code arti-
fact: Rebasing microarchitectural research with industry traces,”
https://zenodo.org/record/8265979, Aug. 2023.

[53] ——, “Data artifact: Rebasing microarchitectural research with indus-
try traces,” https://zenodo.org/record/8269409, Aug. 2023.

Appendix

1. Abstract

The key part of our artifact is the cvp2champsim con-
verter, which implements all the improvements discussed
in the paper. However, to allow the reproduction of our
results, we also include the original CVP-1 public traces
used in the paper. Finally, we include two versions of
ChampSim. The first one is derived from the main branch
at commit 2bba2bd and includes the changes to branch
type identification described in Section 3.2.2, a TAGE-SC-L
prefetcher, and some additional statistics. The second one
is the ChampSim version used for the IPC-1 contest with
the evaluated prefetchers.

2. Artifact check-list (meta-information)

• Compilation: gcc

• Data set: CVP-1 public traces and IPC-1 traces.
• Run-time environment: Linux
• Output: All results presented in the paper.
• How much disk space required (approx): 500GB
• Code license: Apache 2.0 License

• Data license: Creative Commons Attribution 4.0

International (CC BY 4.0)

• Archived: Code artifact: 10.5281/zenodo.8265979

Data artifact: 10.5281/zenodo.8269409

3. Description

3.1. How to access. The artifact is divided into two parts:
Code [52] and Data [53], which are permanently archived
on Zenodo. In addition, we made a pull request on the
ChampSim GitHub repository [37] to include the improved
cvp2champsim converter.

3.2. Software dependencies. We run the experiments
using Ubuntu 22.04 LTS. The cvp2champsim converter can
be compiled with g++ version 7.5.0 (probably also with
older versions). In addition, to compile the main version of
ChampSim, we should install make, curl, and pkg-config
(the latest two required by vcpkg). Compiling the IPC-
1 version of ChampSim does not require any additional
software. We provide scripts to launch the trace conversion
and ChampSim executions sequentially and in parallel using
Slurm, as well as scripts to gather the results presented in
the paper. Some of these scripts use python.

3.3. Data sets. The data artifact includes the entire set
of CVP-1 public traces and the subset of the CVP-1 secret
traces used in the IPC1-1 championship. These are all the
CVP-1 traces used in the paper.

4. Installation

First of all, we should extract the two artifact files and
the Champsim compressed tars included within the code
artifact:

$ tar -xvf Artifact_code.tar
$ tar -xvf Artifact_data.tar
$ tar -xzvf ChampSim.tar.gz
$ tar -xzvf ChampSim-IPC1.tar.gz

From the root directory of the artifact, the cvp2champsim
converter can be compiled with:

$ g++ cvp2champsim.cc -o cvp2champsim

To compile the main version of ChampSim, we should
first install vcpkg and then configure the compilation with
the champsim_config_IISWC.json file, which includes the
processor setup used in the experiments:

$ cd ChampSim
$./vcpkg/bootstrap-vcpkg.sh
$./vcpkg/vcpkg install
$./config.sh champsim_config_IISWC.json
$ make

The IPC-1 version of ChampSim should be compiled
setting each of the prefetchers evaluated in the competition.
We provide a simple script that performs this process:

$./build_ipc1.sh

5. Experiment workflow

First of all, we should convert the traces with the
improved cvp2champsim converter. The program template
is:

$./cvp2champsim -t trace [-i improvement]

We can select the trace to convert and the improvements
to apply, respectively, with the –t and –i options. The
list of available improvements includes the individual im-
provements (i.e, imp_mem-regs, imp_base-update, imp_mem-
footprint, imp_call-stack, imp_branch-regs, or imp_flag-regs),
three sets of improvements (i.e., All_imps, Memory_imps, or
Branch_imps), and no improvements (i.e., No_imp), which re-
sorts to the conversion performed by the original converter.
The converted trace will be written to the standard output.
Converted traces are big but also compression-friendly.

For example, to convert srv_0.gz applying all improve-
ments and, then, compress it with xz, we should run:

$./cvp2champsim -i All_imps -t
../CVP1_public_traces/srv_0.gz | xz -c >
srv_0.champsimtrace.xz

The trace conversion is quick (1–3 minutes), but its
compression with xz takes long (up to 1 hour).

To automatize the trace conversion, we provide the
script convert_traces.sh:

$./scripts/convert_traces_seq.sh improvement suite
[benchmark]

where improvement can refer to the same improvements
listed before, and the suite can be either CVP1public or IPC1.
The benchmark argument is optional: If a benchmark is
indicated, only that benchmark will be converted; otherwise,
all the benchmarks from the suite will be converted. This
script converts traces sequentially and requires several
hours to convert a suite.

To accelerate trace conversion, we also provide a python
script that launches the trace conversion jobs in parallel
using Slurm. The sequential script can be executed with:

$./scripts/convert_traces_paral.sh improvement
suite

Finally, the script convert_ALL_traces_paral.sh
takes no input parameters and launches, using Slurm all
trace conversion jobs required to reproduce the results of
the paper.

6. Evaluation and expected results

After the traces are converted, the ChampSim simula-
tions should be launched. As done for the conversion, we
provide scripts to launch them sequentially and in parallel
using Slurm:

$ run-champsim-seq.sh ChampSim_binary improvement
suite [benchmark]

$ run-champsim-paral.py ChampSim_binary improvement
suite

For example, we can run all CVP-1 public traces with
all trace conversion improvements using the main version
of ChampSim with:

$ run-champsim-paral.py ChampSim/bin/champsim
All_imps CVP1public

Unlike trace conversion, ChampSim executions are
quick (a few minutes each) and do not have any
disk space requirement. We also provide the script
run_ALL_champsim_paral.sh, which takes no input pa-
rameter, to launch all the ChampSim executions needed to
reproduce the results of the paper.

Finally, we provide a set of scripts to
obtain all the results reproduced in the paper:
results_fig1.sh, results_fig2.sh, results_fig3.sh,
results_fig4.sh, results_fig5.sh, results_tab1.sh,
and results_tab2.sh. The scripts assume that all required
ChampSim executions are already completed. The scripts
take no input parameter and give as output the data
plotted in the corresponding figures.

