
ITSLF: Inter-Thread Store-to-Load Forwarding in
Simultaneous Multithreading

Josué Feliu1, Alberto Ros1, Manuel E. Acacio1, and Stefanos Kaxiras2

1 Computer Engineering Department, University of Murcia, Murcia, Spain
2 Department of Information Technology, Uppsala University, Uppsala, Sweden

Email: josue.f.p@um.es, aros@ditec.um.es, meacacio@um.es, stefanos.kaxiras@it.uu.se

ABSTRACT
In this paper, we argue that, for a class of fine-grain,
synchronization-intensive, parallel workloads, it is advan-
tageous to consolidate synchronization and communication
as much as possible among the threads of simultaneous mul-
tithreading (SMT) cores. While, today, the shared L1 is the
closest coherent level where synchronization and communi-
cation between SMT threads can take place, we observe that
there is an even closer shared level, entirely inside a single
core. This level comprises the load queues (LQ) and store
queues (SQ) / store buffers (SB) of the SMT threads and to
the best of our knowledge it has never been used as such. The
reason is that if we allow communication of different SMT
threads via their LQs and SQs/SBs, i.e., inter-thread store-
to-load forwarding (ITSLF), we violate write atomicity with
respect to the outside world, beyond the acceptable model of
read-own-write-early multiple-copy atomicity (rMCA).

The key insight of our work is that we can accelerate syn-
chronization and communication among SMT threads with
inter-thread store-to-load forwarding, without affecting the
memory model—in particular without violating rMCA. We
demonstrate how we can achieve this entirely through spec-
ulative interactions between LQs and SQs/SBs of different
threads, while ensuring deadlock-free execution. Without
changing the architectural model, the ISA, or the software,
and without adding extra hardware in the form of a special-
ized accelerator, our insight enables a new design point for
a standard architecture. We demonstrate that with ITSLF,
workloads scale better on a single 8-way SMT core (with
the resources of a single-threaded core) than on a baseline
SMT (with or without optimizations), or on 8 single-threaded
cores.

1. INTRODUCTION
Synchronization and transfer of critical data from thread to

thread has always been a centerpiece concern for the per-
formance of shared-memory parallel workloads. A vast
body of work aims to make synchronization algorithms
more performant and more efficient— [37] provides a good
review—but we do not expand on it here as it is orthogo-
nal to the perspective we take in this paper. Despite these
advances, synchronization tends to be avoided whenever pos-

sible due to its detrimental effects on performance and scala-
bility. It is telling that traditional parallel benchmark suites
such as SPLASH [36, 43] and PARSEC [7] are relatively
synchronization-poor [5].

While many workloads similar to SPLASH [36, 43] and
PARSEC [7] scale well in modern multicores, a different class
of fine-grain, synchronization-intensive, parallel workloads
performs poorly, progressively underutilizing core resources
with more cores. For example, workloads such as those that
implement graph and tree algorithms [13] or write-intensive
transaction processing [40] belong to this class. Recently, this
class of workloads has become increasingly relevant in many
research areas, including, for example, memory persistency
work, e.g., [22]. A critical reason for this is that the farthest
synchronization has to reach, the more expensive it becomes.
For example, synchronizing two cores via their shared last-
level cache (LLC) is more expensive than synchronizing two
simultaneous multithreading threads via their shared L1. This
not only holds for the actual synchronization operations, but
equally important, for the transfer of critical data from thread
to thread (the reason why synchronization was needed in the
first place).

Trying to scale fine-grain, synchronization-intensive work-
loads is often an exercise in frustration as the more resources
(cores) we allocate to run, the more expensive thread synchro-
nization becomes. The key reason is that synchronization in
shared memory is fundamentally achieved as a data race of
conflicting accesses that exposes the order between them. As
such, the conflicting accesses participating in the data race
must be globally inserted in the memory order to be visible by
all synchronizing parties. This implies that synchronization
must be achieved via a common coherent level of the mem-
ory hierarchy. Because of the hierarchical cluster structure of
modern systems (core clusters inside multicores, processor
packages, NUMA nodes, etc.), chances are, the more cores
we use, the farther away their common coherent level will be
found, making synchronization increasingly expensive.

Research Question: This opens up the main question we
tackle in this paper. How can we bring communication and
synchronization even closer to the executing threads? Spe-
cialized synchronization instructions and additional helper
hardware structures have been proposed to accelerate syn-

1

chronization in other settings, e.g., in processing in memory
MiSAR [27] and SynCron [20]. However, our aim is to ex-
amine the problem without changing the architectural model,
or the ISA, or the software, and without adding any new
hardware structures. This opportunity is afforded by Simul-
taneous Multithreading (SMT) [42].

Key Insight: The key observation of our work, and one that
as far as we know has not been exploited before, is that the
first shared level between threads in an SMT architecture is
not the L1 cache (as it is usually done) but the Store Queues
(SQ) / Store Buffers (SB) that serve each of SMT threads.
In other words, if we were allowed to forward data from
the stores in the SQ/SB of one thread to the loads of another
thread, we could then achieve faster and more efficient in-core
synchronization and communication, through inter-thread
store-to-load forwarding (ITSLF 1).

Why ITSLF has not been done before? There are a few
reasons that prevented the closer examination of inter-thread
store-to-load forwarding in the past:

• Stores in the SQ/SB are not in the memory order
yet. This has significant implications for the mem-
ory model. Specifically, allowing inter-thread store-
to-load forwarding violates the acceptable read-own-
write-early multiple-copy atomic (rMCA) model [1,41]
(Section 3). This is also the reason why the SB is logi-
cally partitioned (irrespective of its physical organiza-
tion) amongst threads for memory models that require
rMCA.

• While speculative enforcement of multiple-copy atomic
(MCA), as a consequence of speculative enforcement
of sequential consistency (SC), is known [8, 18, 21],
it was not until recently that it was shown, in related
work, that efficient implementations can hone in on
the specific situations that cause MCA violations and
effectively enforce it only when it is needed [34]. We
draw inspiration from the ideas in [34] but our main
contribution is to build a comprehensive approach to
address a multitude of issues stemming from ITSLF
(Section 3).

• It is not required in SMT scenarios where independent
threads are running (no chance for forwarding). In fact,
even for synchronization-poor parallel SMT threads run-
ning on the same core, the opportunities for forwarding
are few: Consider that modern parallel software is data-
race-free (DRF) and communication between threads
during large synchronization-free regions is simply non-
existent. The value of forwarding, however, becomes
apparent in synchronization-intensive workloads such
as the ones we examine here: first, for the synchroniza-
tion variables themselves, but more-so for the critical
section data that need to be transferred from the stores
of one thread to the loads of another after a successful
lock hand-off.

What are our main results?

1Pronounced as itself, as it is the own microarchitecture–using the
SB–which sends data from one thread to another, instead of the L1.

• We demonstrate effective store-to-load forwarding from
the SQ/SB of SMT threads, leading to significant in-
crease in performance for a number of synchronization-
and write-intensive workloads (Section 5).

• Furthermore, contrary to the prevailing view that SMT
is not worth scaling beyond two or four threads per
core, we show that, for these workloads, a “Super-SMT”
approach of up to 8 (or potentially more) threads is ben-
eficial for scaling performance even with the resources
of the baseline non-SMT core (we only scale the archi-
tectural state with the number of threads but nothing
else–see Sections 2 and 5). In SMT implementations,
two threads with moderate ILP experience only a small
speed up as they compete for the same resources. In our
case, however, our target workloads are dominated by
synchronization and communication latencies, which
is exactly what multithreading can hide by increasing
the utilization of the core’s resources with more threads.
This is the same phenomenon exploited by GPUs when
they switch to a different thread when issuing long-
latency memory operations.

Overall, we demonstrate a straightforward approach to pro-
vide increased performance and better scaling to a class of
workloads that traditionally have been difficult to accelerate.
We do not resort to a synchronization accelerator solution that
incurs significant changes (it would require additional hard-
ware and changes in the architectural model, ISA, and soft-
ware). Instead, our approach leaves the architectural model
unchanged and is orthogonal to software and synchronization
optimizations. We bring synchronization and communication
one level closer than the L1 to the executing threads.

What are our main contributions?

• For the first time (as far as we know) we solve the
problems that arise with ITSLF in an SMT setting. In
particular, we determine the point when a store becomes
locally visible to SMT threads, we safeguard write se-
rialization for same-address stores while they are only
locally visible in the SMT (but not globally visible out-
side the SMT), and we efficiently maintain rMCA both
within and outside the SMT using speculation (Sec-
tion 3).

• We demonstrate how our efficient implementation of
ITSLF reduces the number expensive CAM searches
compared to the non-ITSLF SMT-baseline (Section 5).

• Finally, we show that synchronization-intensive work-
loads consistently benefit from ITSLF, by scaling
well beyond the SMT-baseline or even its load queue
search filtering optimizations that were previously pro-
posed [23] (Section 5).

2. BACKGROUND
In a Simultaneous Multithreading core most of its re-

sources are shared among multiple threads so they can si-
multaneously execute as if they were placed in independent
“virtual” cores (see Figure 1).

A design choice to minimize the overhead of implementing
SMT is to time-share the fetch, decode, rename, dispatch,

2

Fetch Decode Rename Dispatch Memory CommitExecute Stores write

Blue: Partitioned
Orange: Completely Shared
Green: Time Shared Stages
Dashed: Logical Structures

Thread0 SQ/SB Thread1 SQ/SB ThreadN SQ/SBSQ/SB

Data cache

Reservation Stations

LQ

ROB

Figure 1: SMT Model.

and commit stages among threads so that they operate with
a single thread each cycle (as in a non-SMT core). This
approach resembles Intel’s implementation of SMT [14] and
is the one we assume in this work (see Figure 1). Only few
resources need to be replicated for each thread (e.g., the
program counter, the Register Alias Table, the return stack)
and the size of the physical register file grows to account for
the increase in the architectural registers while leaving the
same number of physical registers to hold renamed state.

The rest of the physical resources of the baseline non-SMT
core are shared among threads without increasing their size,
as also done by Intel in its SMT processors [14]. These
resources include: the execution units, the reorder buffer
(ROB), the load queue (LQ), the store queue (SQ) and the
store buffer (SB). Besides the execution units that form a
common pool for all threads, sharing of a physical resource
creates multiple smaller logical copies of the resource, one
for each thread (see Figure 1). This is accomplished either
dynamically by using thread_ID tags to discriminate its en-
tries, or statically by physically partitioning the resource to
the different threads. We take the second approach but this
choice is orthogonal to our proposal.

Finally, we distinguish between the SQ and the SB: the
SQ contains stores that may have been executed but not yet
committed, the SB contains stores that have committed but
have not yet been performed (written in the L1), i.e., not yet
inserted in the global memory order. In some implementa-
tions, the SQ and SB are the same physical structure (circular
FIFO queue) and the distinction between them exists only via
a pointer that marks the entries belonging to the SQ and to
the SB respectively [24]. This implementation is orthogonal
to our approach.

Atomic instructions typically empty the SB when they can
execute and commit [29]. In SMT, an atomic instruction
empties the SB of its own thread before executing but has no
effect on other SBs.

2.1 Speculative support for memory ordering
Today’s cores issue memory operations speculatively out-

of-order. Correctness is ensured in presence of out-of-order
execution by checking that (1) memory dependencies and (2)
load→load ordering are respected. These checks require fre-
quent associative searches on the LQ and the SQ/SB. These
queues are implemented as CAMs (content addressable mem-
ories) and are among the most expensive processor structures.
More importantly, these structures pose a critical trade-off:
On one hand, their size (in number of entries) should be in-
creased enough to prevent stalls due to capacity limitations.

This is especially important in a market environment where
newer generations of commercial processors increase the
number of in-flight instructions (see, for example, Intel Ice
Lake [31] or Apple’s M1 [17]). On the other hand, these
CAM structures need to be searched fast, which limits their
size (or alternatively, larger size makes them slower).

Memory dependencies are respected when loads read the
latest value written by a store in the same thread to the same
address, if no other thread wrote that location in the interim.
However, out-of-order processors speculatively issue loads
over older stores that have not been performed (written to
cache), or even not issued i.e., have not computed their target
addresses. Overall, to respect memory dependencies, three
types of CAM searches, detailed in the paragraphs below, are
needed: i) loads must search the SQ/SB; ii) stores must search
the LQ; and iii) external stores, that manifest as invalidations
reaching the core, must also search the LQ.

Loads searching the SB: To retrieve the data from com-
mitted but non-performed stores, the SB2 is searched by every
load, in parallel to the access to memory. On a hit in the SB,
the store forwards the data to the load. To maintain the high-
est performance, a parallel search of the SB implies that the
SB: i) should have at least the same number of ports as the
L1 cache has for read operations (usually two); ii) should be
searched with a latency not larger than the L1 latency, so as
to not incur a penalty on hits; and iii) should be segmented,
to allow executing additional search operations per cycle. A
recent study reports that no fewer than four cycles are needed
to forward data from a store to a load in an Intel Skylake, and
no fewer that five cycles in an Intel Ice Lake [16].

Stores searching the LQ: Since there may be stores with
unresolved addresses when a load snoops the SQ/SB, every
store needs to snoop back the LQ once it computes its address.
Loads that have executed in the presence of an older unre-
solved store, are called Data-Speculative (D-Speculative).
When a store snoops the LQ, if there is a match with a younger
D-Speculative load, the load and subsequent instructions are
squashed and re-executed as the D-Speculative load breaks
a memory dependence. This is a rare event due to accurate
memory dependence prediction [12] that exists today in most
architectures, that prevents memory dependent younger loads
to execute in the presence of the unresolved older stores. In
processors where a single store is issued per cycle, the LQ
can implement a single search port, allowing it to be larger
than the SQ/SB with a similar latency. Interestingly, CACTI-
P [26] reports similar search latency for a 128-entry CAM
with 1 port than for a 72-entry CAM with 2 ports, sizes of
the LQ and the SQ/SB, respectively, of an Intel Ice Lake
processor [31].

External stores searching the LQ: Load→load order is
required for loads to the same address to guarantee coher-
ence [15], and for loads to different addresses in systems
that provide strong consistency guarantees [19], such as x86-
TSO [38]. To respect the load→load order semantics, the
LQ is searched when receiving an invalidation, as another
core’s write may be exposing a speculative load reordering.
Cache evictions are conservatively treated as potential inval-
idations (also searching the LQ) as any actual invalidation

2We include here, for the same thread, the stores (older than the
load) that may still be in the SQ.

3

1.05

1.10

1.15

1.20

1.25

1.30

32 40 48 56 64 72 80 88 96 104 112 120 128

O
ve

rh
ea

d

Number of entries

Latency Energy

Figure 2: Search latency and energy consumption overheads
of adding a second search port to the LQ (CACTI-P results).

would never reach the LQ in this case. If a match occurs,
the load that is caught violating the load→load order, called
Memory-Speculative (M-Speculative) load, and all subse-
quent instructions are squashed and re-executed. Since these
searches are not frequent, it is preferable not to add an extra
search port to the LQ, but just perform the searches when
the LQ port is free, potentially delaying invalidations or evic-
tions. As shown in Figure 2, adding an extra port increases
search latency, especially for queues with a large number of
entries, risking a negative impact on performance. Energy
consumption of the LQ is negatively impacted as well.

2.2 Speculative support for memory ordering
in SMT architectures

Consider, now, an SMT core where each hardware thread
only “sees” its own logical LQs and SBs. This is currently
how SMT implementations work and we will explain in the
next section what mandates this behavior. In this case, a
speculative reordering that violates load→load order in one
thread could be exposed by stores performed by a second
hardware thread in the same core. However, coherence in-
validations to the LQ of the first thread, emanating from the
stores of the second thread, are not forthcoming by default as
both threads share the same coherent state of the cachelines
in the L1.

A naïve solution is to force the behavior of an invalidation
by performing an LQ search on each of the threads in the core
whenever any store is written from a SB to the cache. This
LQ search can be performed in parallel to the store writing
to cache. On a match, on any LQ, the matching speculative
load and the subsequent instructions of the corresponding
thread should be squashed. Note that, in contrast to inval-
idations where the whole cacheline range of addresses is
searched in the LQ (as invalidations work at the granular-
ity of a cacheline), stores just search for loads matching the
exact address that they write, thus removing false-sharing
effects. Alexander et al. [3] focus on an SMT processor with
a strongly ordered consistency model and propose to trigger
byte-precise LQ and SQ searches for each executed load and
store, respectively, to avoid potential consistency violations.
As discussed in the previous section, adding a second port to
the LQ negatively impacts search latency. Using the existing
port for inter-thread searches, may also negatively impact per-
formance too, as inter-thread searches are far more frequent
than external invalidations or even evictions.

2.2.1 LQ snoop filtering in SMT architectures

The naïve solution searches the LQs of the other SMT
threads on every store. A possible optimization is to filter
LQ searches by adding “LQ directory” information to the
L1 cachelines, to track whether any other thread is reading
a cacheline [23]. When a store is written from the SB to the
L1, it checks the LQ directory of the cacheline. If a different
thread has read the cacheline since the last time it was written,
the LQ of that thread is searched looking for a matching
load to squash, and the thread is marked as not reading the
cacheline anymore. We can view that information as a “need
LQ search” bit per hardware thread [23]. If no other thread
has read the cacheline, no LQ search is needed. In case of
a cache miss, no LQ-directory information exists, but no
LQ snoop is required as any LQs were already searched, if
required, when the cacheline was last evicted.

The LQ directory approach significantly reduces the num-
ber of LQ searches when stores write to memory, as many
cachelines are not shared by different threads. Consequently,
it reduces contention in the LQ snoop port and saves energy.
However, this approach increases the complexity of cache
writes. Since the LQ-directory information has to be retrieved
from the cacheline tag, the LQ snoop cannot be initiated until
the L1 access is performed. We give advantage to the filtering
baseline with an idealized implementation and optimistically
assume that reading the bitvector and determining if an LQ
snoop is needed does not lengthen tag lookup and thus the
write still performs in the same L1D access latency. If an LQ
snoop is indeed needed, the write is immediately relaunched
in parallel with the LQ snoop and complete together. The
cache latency for such a write doubles. Other, already started,
writes to the L1 are optimistically delayed just enough to
prevent store-store ordering violations within the same thread.
Because of this, and despite our idealized implementation,
the LQ-directory solution is not consistently better than the
baseline, leading in some cases to performance degradation
as we show in Section 5. In addition, storing the LQ-directory
information along the L1 cachelines, also incurs an overhead
of N bits per cacheline, with N equal to the number of sup-
ported SMT threads in the core.

3. ISSUES AND SOLUTIONS WITH ITSLF
Allowing inter-thread store-to-load forwarding from a

thread to another in the same core in a SMT architecture has
the potential to accelerate communication between threads.
Inter-thread forwarding can be simply enabled by not restrict-
ing the SQ/SB search performed by loads to just the stores
belonging to the same thread. We allow atomic operations
to forward the data to loads from any thread in the core but,
to simplify the design, do not allow atomics to read the data
from the SB.

However, as stated by Nagarajan et al. [29], a thread cannot
read a value written by another thread on the same core before
the store has been made “visible” to threads on other cores
(i.e., globally ordered). This implies that a thread cannot get
the value forwarded from another SQ/SB in the same core,
but it has to wait until the store is inserted in memory order.
As we show here, the reason is that allowing inter-thread
forwarding exposes store values before they are inserted in
global order, not just to loads from the same thread, but
also from other threads in the same core. This breaks: i)

4

ld x (1)

Initially: x = 0

PO st x,1

ld x (0)

Thread 1 Thread 2

ITSLF

ld x (1)

PO

ld y (0)

st y,1

PO

st x,1

Thread 1 Thread 2

ITSLF

Initially: x = 0

(a) Coherence (b) TSO

1

1

2

2

3

4

2

3

1

3

4

FR FR

Figure 3: Coherence (a) and TSO examples (b).

coherence, ii) TSO, iii) write serialization, and iv) rMCA
which is respected by most vendors (e.g., x86-TSO [38],
ARMv8 [33]), resulting in a more complex non-MCA model
where stores are not globally ordered. To the best of our
knowledge, this is the first discussion in the literature about
the coherence/consistency impact of inter-thread forwarding
in SMT.

3.1 Point of Local Visibility
In the single thread case, stores that resolve their address

squash D-Speculative younger loads on the same address
that have executed speculatively, bypassing the unresolved-
address store. A store, by squashing such younger D-
Speculative loads, ensures that it will be the one visible to all
of them when they re-execute. More importantly, stores make
their presence known to other threads when they write to
memory via invalidations that search the LQs of other threads
(in other cores) to squash speculative loads that may be violat-
ing memory model semantics. If we allow ITSLF in an SMT
core, we lack an analogous mechanism to prevent scenarios
such as the coherence (Figure 3(a)) and TSO (Figure 3(b))
problems, presented below.

Single-Address Coherence Example.
Consider the simple coherence problem depicted in Fig-

ure 3(a), the same example as in Dubois et al. [15]. Note that
this example applies to every memory model. The value in
between parenthesis in the loads is the value read by them.
The number before each instruction indicates the memory or-
der for the depicted execution. This execution could happen
in single-thread cores, or in SMT, and the solution is always
the same (search LQ and squash – see below). Assume that
the loads in this example are speculatively reordered. The
second load performs before st x, 1 is visible to thread 1
and reads the value 0, creating a from-read happens before
dependence with the store. Then st x, 1 computes the ad-
dress and becomes a potential forwarder. Finally, in an SMT
with ITSLF, the first load executes getting the value (1) for-
warded from the store, creating a read-from happens before
dependence with the store. A dependence cycle is created
when considering program order and this execution breaks
the coherence expectations for variable x.

TSO Example.
A similar problem appears also when we have multiple

addresses and forwarding. Consider the mp litmus test shown
in Figure 3(b). In this example TSO is violated by ITSLF. If
initially x, y = 0, then getting in thread 1 x == 1 and y == 0
is not allowed by TSO. Imagine that thread 1 executes ld y

out-of-order before ld x. Thread 2 has not issued any store
yet. Clearly ld y reads speculatively the value 0. Now, thread
2 executes (computes the target address) st y, 1 and st x, 1
so they are visible to other threads in the core. Now, ld x
executes, getting the value (1) forwarded from st x, 1. But
this would create a cycle when considering the program order,
thus breaking TSO.

ITSLF Solution.
We define a store to be locally visible when its value can

be forwarded to another thread in the same core. The three
fundamental requirements for forwarding are (1) the store
address has been computed, (2) the store value is available,
and (3) the store is still in the SB (not inserted in global order
yet).

To fix both the coherence and TSO problems, we combine
the single-thread store-to-load forwarding and the external in-
validation approaches of the baseline SMT in a single ITSLF
approach: A store must search the LQs of other threads, and
squash the matching M-speculative loads, in order to become
visible to these threads. Because the store is not ordered
in relation to the instructions of other threads, it squashes
any matching M-Speculative load (same address) without
having a concept of “younger.” But to its own thread, the
store behaves normally and squashes only younger matching
D-Speculative loads.

In the baseline SMT, a store searches the LQs of other
threads only after it writes to the L1 and becomes globally
visible. This is equivalent to an external invalidation due to
a store of another core. The question is: at what point do we
allow a store to squash loads in ITSLF? There are two choices.
If we allow forwarding from the point the stores compute
their address, then they should search the LQs of other threads
at that time. Note that, in the same thread, younger loads
always see the thread’s own stores from the time their address
is available, i.e., from when the stores resolve their address
in the thread’s SQ. If we allow forwarding to other threads
for non-speculative stores, either retired in the SB or bound-
to-retire in the SQ, the stores should search other LQs at the
point when they become non-speculative. A key realization to
make both local thread store-to-load-forwarding and ITSLF
work seamlessly together, in a single LQ snoop, is that: it is
always correct for a store to wait until it is ready to commit,
in order to perform the squash to its own-thread younger D-
Speculative loads.3 At that point the store combines its local
LQ squash with the squash of other thread M-speculative
loads in other LQs. We arrive, then, at the following invariant:

Invariant: Stores become locally visible to SMT threads
when they become non-speculative and bound-to-retire. At
that point, they squash the younger matching D-speculative
loads in their own thread and any matching M-speculative
load in all other threads. When a store becomes locally
visible it can forward its data to loads of other threads.

It is now straightforward to see that in the coherence exam-
ple (Figure 3(a)), when st x, 1 becomes visible, it triggers an
LQ snoop that squashes ld x (0), breaking the dependence
cycle and ensuring that the next time the load executes, it
reads the new value. Similarly, the dependence cycle is bro-

3As a thought experiment, imagine that the address of a store always
becomes available when the store is at the head of the ROB.

5

RF

FR

ld x (1)

PO

ld x (2)

st x,1 st x,2

Initially: x = 0
Thread 1 Thread 2

ITSLF

Thread 3

ITSLF
RF

ld x (1)

SMT Core2SMT Core1
Initially: x = 0, y = 0

PO PO
WS

FR

st y, 2

st x, 2ld y (0)

st x,1

ITSLF

Thread 1

Thread 2

Thread 3
RF

ld x (1)

SMT Core1

PO

FR

st y,1st x,1

ld y (0)

ld y (1)

PO

ld x (0)

SMT Core2

ITSLF

Initially: x = 0, y = 0

Thread 1

Thread 2

Thread 4

Thread 3

ITSLF

FR

Write
Serialization
(WS)

(b) n6-ITSLF (c) IRIW

RF RF

RF: read-from
FR: from-read
PO: Program-order

WS
1

2

4 3

(a)

1

2

4

3

5

1

24

5

3

6

Figure 4: Write serialization (a), n6-ITSLF (b), IRIW (c).

ken in the TSO example (Figure 3(b)) when st y, 1 becomes
visible.

An alternative is to squash earlier (as soon as the store
address is available) and allow forwarding to all threads from
a store that is still in the SQ, i.e., a store that might be spec-
ulative (e.g., from branch prediction). This leads to higher
complexity and we have not found strong evidence that it
offers better performance, therefore we leave it for future
examination. For these reasons, and for the rest of the pa-
per, we consider that ITSLF concerns only non-speculative
(bound-to-retire or retired) stores.

Cost: Establishing a unique point of squash for a store,
when it becomes locally visible, does not incur any additional
cost over the baseline: a store still snoops, a single time, the
same total number of LQ entries in the single-thread-baseline
(ST-baseline) or in SMT mode (the thread LQs in SMT add
up to the single LQ in the ST-baseline). To efficiently de-
termine when stores become non-speculative, we leverage a
mechanism similar to the one proposed by Sakalis et al. [35]
to track speculative instructions.

3.2 Local Store Order
Establishing a point of local visibility for each store is not

enough to solve a separate problem: write serialization (two
stores to the same address by any two threads are observed in
the same order by all threads). Consider the example below.

Write Serialization.
In Figure 4(a), both stores are locally visible. Assume that

ld x (2) executes and reads 2. Then, st x,2 performs and
exits the SB. ld x (1) reads 1. Finally st x,1 performs and
the memory is left with the final value of 1. The problem
is that the SBs of threads 2 and 3 are not ordered, and if
thread 3 writes to cache first, we have the IRIW problem (two
observers do not agree about the order of the stores—assume,
for example, a coherent observer in another core).

ITSLF Solution.
The problem here is that for the same address we need

to decide which store is younger. Same-address stores in

the same SB are either ordered (TSO) or coalesced (relaxed
models). The effect is the same: only the younger store
forwards. But across the SBs of multiple threads no relative
order exists for locally visible same-address stores. Worse:
the global order is established only when the stores are written
in the L1 and it is irrevocable after that. (In the SMT model
we use, we allow the heads of the SBs to be written in the L1
in arbitrary order.) This means that it is impossible to decide
on a local order without first knowing the global order.4

To solve this problem, we allow only one store (of a par-
ticular address) to forward to loads based on local visibility
order (LV order)—or LQ snoop order. When a load snoops
all SBs and matches several candidates, in more than one
SB, these candidates are ordered by their LV order. Right
at that point the load selects the “youngest-to-LV” store for
forwarding.

Now, combine this approach with the Invariant of the Point
of Local Visibility, discussed above: Whenever a store be-
comes non-speculative, it snoops the LQs of the other threads
and squashes all speculative loads on the same address that
may have forwarded from older-to-LV stores. This store be-
comes the youngest-to-LV and prevents all older-to-LV stores
from ever forwarding again while they are in the SB.

Invariant: Only a single store on a particular address,
the youngest-to-local-visibility (youngest to become non-
speculative), can forward to loads.

At this point you may be concerned that the LV order of the
stores may be different from their eventual global order. This
can be true but it does not matter. As we will see next, the
key idea that puts everything together (solving the multiple
address and rMCA problems) is that the loads that “see” a
store (through forwarding) are obliged to commit only after
the store is inserted in the global order (written from the SB to
the L1) and must remain speculative (exposed to squashing)
until that time.

Cost: Similar functionality already exists in the ST-
baseline unified FIFO SB (for TSO): all stores of the same
address are matched by a load and the youngest store is se-
lected to do the forwarding. In the SMT case, a load can
match multiple stores in multiple SBs (that all add up to the
ST-baseline SB). We select the youngest-to-LV. We extend
the SQ entries with a field to store their LV order. This field
requires dlog2(SB entries)e + 1 (sorting-bit). The sorting
bit [10] is a low-cost implementation of a monotonically in-
creasing number that uses the SQ position augmented with
an extra bit called “sorting” bit to handle wrap-around 5. In
an Ice Lake core with a 72-entry store buffer, this accounts
for 8 bits per SQ entry (576 bits in total for the SQ).

3.3 Multi-Copy Atomicity
Finally, we address the main culprit that prevents ITSLF in

4In addition, there is a deadlock danger if we try to establish a local
order for more than one address that turns out to be the opposite
order in the global order.
5As stores become non-speculative and snoop the LQ, their LV order
is set appending a sorting bit of 0 to an order counter of dlog2(SB
entries)e bits and, after that, the counter is incremented. When the
counter wraps around to value 0, all sorting bits are set to 1 in the
SQ. These steps guarantee that new stores that snoop the LQ commit
will have a lower LV order than older stores that snooped the LQ
earlier.

6

current systems: violation of MCA. Informally, in memory
models that demand MCA, all threads should see stores in
global memory order at the same time. In an SMT with
ITSLF, local threads can see each other’s stores even if these
stores have not been inserted in the global memory order, i.e.,
are still in their SBs. Obviously, this would violate MCA in
SC, TSO, or even in relaxed memory models.

In recent work, Ros and Kaxiras [34] show that a detection
of an MCA violation that stems from store-to-load forward-
ing, appears as loads observing stores in a different order. Of
course, this behavior, if it stems from a same-thread store-to-
load forwarding, is incorporated in memory model definitions
such as x86-TSO [38] or ARMv8 [33] and is known as read-
own-write-early multiple-copy atomicity, (rMCA). In other
words, stores appear at the same time to all threads, except
to the own thread where they might appear earlier (before
inserted in the global order). However, if the forwarding
is from another thread then the same behavior would be a
violation of rMCA.

It is straightforward to show using two classic litmus tests
that ITSLF leads to violations of rMCA. More specifically,
the cycles that appear in n6-ITSLF (a variation of n6 [38],
Figure 4(b)) and IRIW [9] (Figure 4(c))—discussed below—
are not due to read-own-write-early —they are forwardings
from other threads— and, therefore, violate rMCA.

n6-ITSLF Litmus Test.
Consider the n6-ITSLF litmus test running in Thread 2 and

Thread 3 in Figure 4(b). The difference with n6 is that the
store-to-load-forwarding is ITSLF. In x86-TSO it is not possi-
ble this outcome: [x]==1; [y]==2; x==1; y==0; since that
would create a cycle by allowing Thread 2 to see the store
of Thread 1 before that store is globally ordered with respect
to Thread 3. Seeing this cycle would mean that either the
loads or the stores are reordered, or alternatively, rMCA is
not respected, i.e., the system is non-MCA. Executing the
first two threads in the same SMT core, and allowing ITSLF
obviously allows this to happen.

IRIW Litmus Test.
Similarly, ITSLF also breaks the Independent Reads In-

dependent Writes (IRIW) litmus test by creating a cycle, al-
lowing local threads to see stores earlier than remote threads,
thus violating rMCA. The cycle means that two independent
stores (writes) cannot be ordered which is not (generally) true
from the point of view of an outside observer.

ITSLF Solution.
When a load gets the data forwarded from a store, it records

the position (log2(SB entries)) of the forwarding store in the
SB. Note that in a partitioned SB, the position also indicates
the hardware thread the entry belongs to. A load at the head
of the ROB, checks if the entry of the store still contains the
forwarding store, or otherwise, the store has been written to
L1 and the entry is freed. In the first case, the load will not be
committed. To know if the store is still in the SB, we leverage
the concept of the sorting-bit proposed by Buyuktosunoglu
et al. [10]. You can think of using a sorting-bit as being
equivalent of having a monotonically-increasing numbering
for stores. The technique is explained in [10]. The sorting-bit

augments the store’s position in the SB and it is sent to the
load on forwarding. If the bit stored by the load matches the
one of the SB entry, then the store is still present in the SB.
Checking on one single bit lets the load decide if can commit
or not.

Invariant: A load receiving forwarded data from a differ-
ent thread: i) cannot retire from the ROB (commit) until the
forwarding store becomes globally visible; and ii) until it re-
tires, the forwarded load makes all younger loads in its thread
store-atomicity-speculative, therefore subject to squashing
from conflicting stores.

Based on the previous invariant, in the n6-ITSLF litmus
test, ITSLF does not allow ld x (1) to retire until st x, 1
does, and so it remains speculative and is squashed when
st x, 2 is made visible. Similarly, in the IRIW litmus
test, ITSLF does not allow ld x (1) (thread 2) and ld y (1)
(thread 4) to retire until their forwarding stores do, leaving
ld y (0) and ld x (0), respectively, exposed to squashes due
to invalidations.

Cost: ITSLF entails negligible storage overhead. We ex-
tend each LQ entry with two fields: i) a single-bit field to
indicate if the load was forwarded from a different thread, and
ii) a field to store the augmented position of the forwarding
store. The latter only needs dlog2(SB entries)e + 1 (sorting-
bit) bits. In an Ice Lake core with a 72-entry store buffer, 8
bits per LQ entry are needed (1024 bits in total for the LQ).
Overall, the storage overhead of ITSLF on Ice Lake is 1600
bits (200 bytes).

3.4 Summary
Table 1 summarizes the main actions performed by the

ST-baseline, SMT-baseline, and ITSLF along the different
execution steps of loads and stores. Two key differences con-
tribute to make an SMT core with ITSLF support better than
the baseline SMT. First, when loads execute, they search the
SQ/SB of all threads and read the data from the youngest store
among same-thread stores in the SQ/SB and other-thread
non-speculative stores in the SQ/SB Second, ITSLF merges
the two LQ snoops that stores perform (the first one, when
they execute, to squash same-thread D-speculative loads and,
the second one, when they write to memory, to squash M-
speculative loads from other threads) into a single one. This
reduces LQ snoop port contention and helps improve the SMT
performance when running synchronization-poor workloads.

ITSLF does not increase the amount of work done by the
baseline single-threaded or SMT cores significantly. In terms
of CAM searches, stores search the entire LQ during their
execution in one LQ search (ITSLF and the single-threaded
baseline) or in two LQ searches (SMT baseline) and loads
search the entire SQ in ITSLF and the single-threaded base-
line. While loads could search only the own thread SQ seg-
ment in the SMT baseline, selectively searching partitions
of the LQ requires additional logic that might not be imple-
mented in current commercial processors.

The filtering mechanism in the SMT-baseline discards a
number of LQ snoops when stores write to the L1 [23];
however, it suffers from several issues, discussed in Sec-
tion 2.2.1. Despite our idealized implementation of the fil-
tering approach, these issues compromise its performance
in synchronization-intensive workloads, as our experimental

7

Table 1: Summary of the actions performed by the ST-baseline, SMT-baseline, and ITSLF for load & store execution.

ST-baseline SMT-baseline ITSLF
Search SQ/SB. Search (own-thread) SQ/SB. Search SQ/SB.

LD exec Forward data from Forward data from same-thread most recent-matching ST. Forward data from most-recent ST in own-thread SQ or from unique
most-recent matching ST. Read locked lock from the L1 when other thread is about to free it. (youngest-to-local-visibility) ST in SQ/SB (all threads).

Read other thread freeing the lock directly from the SB!
If forwarded, wait for ST to perform.LD retire – – A load forwarded from a different thread cannot retire until the store writes.

Search LQ. Search (own-thread) LQ. Search-LQ functionality deferred to the moment the store becomesST exec
Squash matching younger LDs. Squash same-thread matching younger LDs. non-speculative and bound-to-retire (for non-speculative forwarding)

Search (all threads) LQ.ST becomes
– – Squash matching speculative LDs from any thread (only younger from ownnon-speculative

thread).
Write L1. Search (all threads, except own) LQ. Write L1.

ST performed Write L1. (Filtering: Search LQ only if other threads share the cacheline.) (Forwarded load(s) waiting the store to write will now be able to retire.)
Squash matching LDs from other threads.

Table 2: System Configuration.

Processor (Ice Lake like)
Fetch width 5 instructions
Issue width 10 uops
Reorder buffer 352 entries
LQ 128 entries
SQ/SB 72 entries
Branch predictor L-TAGE [39]
Memory dep. predictor Store-set [12]

Memory hierarchy
Private L1 Instruction and
Data caches

L1I: 32KB, 8 ways, 4 cycles.
L1D: 48KB, 12 ways, 5 cycles.
Pipelined. Stride prefetcher [4].

Private L2 cache 512KB, 16 ways, 12 cycles
Shared L3 cache (16 banks) 1MB per bank, 8 ways, 35 cycles
Memory access time 160 cycles

results show, where LQ snoops are more frequent, and results
in a worse performance than the SMT-baseline in half of the
workloads. In addition, it also needs to store and update the
LQ directory information in the L1D cache blocks.

4. EXPERIMENTAL SETUP
We evaluate our proposal using a detailed in-house out-

of-order core model, which faithfully models simultaneous
multithreading. The core model is driven by a Sniper [11]
front-end. We model the memory hierarchy, including the
cache coherence protocol, using the cycle-accurate GEMS
simulator [28], and the interconnect with GARNET [2].

We simulate a multicore processor consisting of 16 cores,
with microarchitecture parameters resembling the Intel’s Ice
Lake microarchitecture [31]. Table 2 shows the main archi-
tectural parameters of the simulated system. When SMT is
enabled, the ROB, LQ and SQ-SB entries are statically parti-
tioned among threads. In addition, a single thread is allowed
to fetch, decode, rename, dispatch and commit instructions
per cycle using a round robin policy.

We focus the evaluation on a suite of six fine-grain,
synchronization-intensive, parallel benchmarks [22,25]. Con-
current Queue (CQ) inserts and removes elements in a shared
thread-safe queue, resembling write ahead logs widely used
in databases and journaled file systems [32]. Persistent Cache
(PC) – updates entries in a shared hash table –, RB-tree (RB)
– inserts and removes nodes in a red-black tree –, and Array

Swaps (SPS) – randomly swaps elements in an array –, are
similar to implementations in NV-Heaps [13]. Finally, TATP
and TPCC, execute the update location transactions of the
TATP database workload [30] and the new order transaction
in a TPCC database [40], respectively. We run the bench-
marks using from 1 to 16 threads. The number of operations
is fixed (ranging from 0.4M in RB to 1.6M in TPCC) and it is
evenly divided among all threads. In addition, we present re-
sults for the SPLASH-3 [36] and PARSEC 3.0 [6] workloads,
which are relatively synchronization poor.

5. EVALUATION

5.1 Performance impact of ITSLF in
synchronization-intensive workloads

Figure 5 shows how performance varies when increasing
the number of threads from one to sixteen in seven different
setups. The four dashed setups correspond to multicore se-
tups. In the "Single-threaded Multicore" setup, each thread
is allocated to a different core of a single-threaded multicore.
The three remaining dashed setups correspond to multicores
with 2-way SMT cores, where two threads are allocated to
each core. The "2-way SMT Multicore", "2-way Filtering
SMT Multicore", and "2-way ITSLF Multicore" correspond
to multicores with baseline SMT cores, SMT cores imple-
menting the LQ-directory approach [23] (see Section 2.2),
and SMT cores implementing ITSLF, respectively. The three
setups with solid lines correspond to singlecore setups with an
X-way SMT core, where X equals the number of threads. The
"x-way SMT Singlecore", "x-way Filtering SMT Multicore",
and "x-way ITSLF Singlecore" correspond to a baseline SMT
core, an SMT core implementing the LQ-directory approach,
and a SMT core implementing ITSLF. Performance is nor-
malized to the single-thread singlecore execution. Hence, a
value above 1 for the normalized performance means that the
setup outperforms the single-threaded singlecore execution.

As we already anticipated, trying to improve the perfor-
mance of fine-grain, synchronization-intensive workloads by
increasing the number of cores is pointless. The performance
of some of these workloads directly drops when increasing
the number of threads in the single-threaded singlecore setup
compared to running the workload with a single thread (e.g.,
TATP and CQ). Synchronization is somehow lighter in other
workloads such as PC or SPS, which allows scarce perfor-

8

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

1 2 4 8 16

N
o

rm
al

iz
ed

 p
er

fo
rm

an
ce

Number of threads

Single-threaded Multicore 2-way SMT Multicore x-way SMT Singlecore 2-way SMT Filtering Multicore x-way SMT Filtering Singlecore 2-way ISTSLF Multicore x-way ITSLF Singlecore

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

1 2 4 8 16

N
o

rm
. p

er
fo

rm
an

ce

Number of threads

(a) CQ

0.0

1.0

2.0

3.0

4.0

5.0

1 2 4 8 16

N
o

rm
. p

er
fo

rm
an

ce

Number of threads

(b) PC

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 4 8 16

N
o

rm
. p

er
fo

rm
an

ce

Number of threads

(c) RB

0.0

1.0

2.0

3.0

4.0

5.0

1 2 4 8 16

N
o

rm
. p

e
rf

o
rm

an
ce

Number of threads

(d) SPS

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

1 2 4 8 16

N
o

rm
. p

er
fo

rm
an

ce

Number of threads

(e) TATP

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

1 2 4 8 16

N
o

rm
. p

er
fo

rm
an

ce

Number of threads

(f) TPCC

Figure 5: Performance normalized to single-thread execution times when increasing the number of threads in the multicore ST,
baseline SMT, filtering SMT, and ITSLF setups.

mance benefits when increasing the core count (1.57× for
SPS and 1.43× for PC). This is not productive taking into ac-
count the additional resources (and power consumption) each
core adds. TPCC is the workload whose performance scales
better with the number of cores (2.34×) since it uses multiple
locks and thus threads need to synchronize through the LLC
less frequently. Conversely, RB has all threads synchronizing
in the same lock and threads spend most of their time exe-
cuting long critical sections, which explains its performance
insensitivity when increasing the core count.

A 2-way SMT multicore improves the performance of the
single-threaded multicore since part of the synchronization
occurs within an SMT core through the L1 cache. Despite
the performance gains are not negligible, this setup is clearly
beaten by the x-way SMT singlecore setup because, as we
discuss next, synchronization always occurs through the L1 in
the later. The only exception is TPCC, where synchronization
is less frequent, and still in this case an 8-way SMT core
outperforms a 2-way SMT 4-core setup.

Executing all the threads in a single SMT core allows for
a more efficient synchronization through the L1 cache. It is
worth noting, however, that these threads will share all the
resources of the core, otherwise available to a single thread
and, therefore, they will execute at a lower pace. In addition
to that, the baseline SMT core also needs each store to trigger
a search in the LQs of the other threads to prevent expos-
ing a load→load ordering violation. This search increases
contention in the LQ snoop port.

Faster thread synchronization clearly outweighs the SMT
performance-limiting factors. For instance, the normalized
performance of PC and SPS grows up to 3.75× and 3.49×,
respectively, compared to the single-thread execution. Only
in RB and TPCC the baseline SMT performs worse than the
single-threaded multicore. As discussed before, these work-
loads benefit less from a faster synchronization and, in this
case, the performance-limiting factors of SMT execution kill
the benefits. The filtering SMT baseline significantly reduces
the number of LQ snoops when stores write to memory but
that comes at the cost of making store writes slower when the
LQ snoop is actually required, as discussed in Section 2.2.1.

Therefore, its potential benefits in synchronization-intensive
workloads, where sharing cachelines is relatively frequent,
are limited. In fact, compared to the baseline SMT, it only im-
proves significantly the performance of TPCC (from 1.91×
for the baseline SMT to 2.54× for the filtering SMT). In two
of the workloads (PC and TAPT) the filtering SMT baseline
can lead to slowdowns compared to the SMT baseline! The
benefit of the the filtering baseline, therefore, is not consistent,
which is a major disadvantage.

ITSLF brings synchronization inside the core (between
the SQ/SB and the LQ), further accelerating synchronization
compared to the baseline SMT core where it is done through
the L1 cache. Besides, it does not require stores to snoop
the LQs of other threads when writing to memory, which
reduces LQ snoop port contention. Consequently, ITSLF
outweighs all other setups. More importantly, it outperforms
the multicore setup, where each thread is allocated to a dif-
ferent core in all workloads, unlike the baseline and filtering
SMT cores. Despite ITSLF benefits excel when running all
threads of a synchronizations-intensive workload in the same
core, it is not restricted to a single core and also improves the
performance of 2-way SMT multicores for the same reasons
explained before. However, because synchronization also
involves threads running in different cores, which should be
done through the LLC, performance benefits are significantly
lower.

Independent of the interest to observe how performance
varies when increasing the thread count, a system adminis-
trator aims to run each workload with its optimal number
of threads and setup. That is, two threads for CQ, RB, and
TATP, and eight threads for PC, SPS, and TPCC running in
a single SMT core6. From now on, we will report results
for the optimal number of threads for each workload in the
single-core SMT setups.

Figure 6 shows the performance benefit of the studied se-
tups, compared to the x-way SMT singlecore, considering

6Despite a 2-way SMT multicore with 4/8 cores achieves the highest
performance for TPCC, the performance benefits are small consid-
ering the cost and power of the additional cores.

9

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

CQ PC RB SPS TATP TPCC AvgN
o

rm
al

iz
ed

 p
er

fo
rm

an
ce

Single-threaded Multicore 2-way SMT Multicore
x-way SMT Singlecore 2-way Filtering SMT Multicore
x-way Filtering SMT Singlecore 2-way ITSLF Multicore
x-way ITSLF Singlecore

Figure 6: Performance benefit with optimal number of threads
for synchronization-intensive workloads compared to the x-
way SMT Singlecore setup.

the optimal number of threads for each workload. Therefore,
the figure highlights the maximum performance each setup
provides. For the sake of clarity, in the multicore setups, we
consider a minimum of two cores. With the only exception of
TPCC (discussed earlier) multicore setups do not improve the
performance of the singlecore setup and the highest perfor-
mance is achieved when all threads of the workload run in a
single core. The filtering SMT setup performs slightly better
than the baseline SMT (5% performance benefit on average)
and it does not consistently improve its performance across
all workloads. ITSLF consistently outperforms both the base-
line SMT and filtering SMT, as well as, the single-threaded
multicore setup, across all workloads. ITSLF is, on average,
13% and 8% better than the baseline SMT and filtering SMT,
respectively, and outperforms the single-threaded multicore
by 2.41×.

5.2 Where does performance come from?

ITSLF accelerates synchronization.
The more obvious way ITSLF accelerates synchronization-

intensive workloads is by making the transfer of critical syn-
chronization data from thread to thread faster. This makes
the data values visible significantly earlier than in the base-
line SMT core, where they are communicated through the L1
cache. Note that to make a value visible to other threads in
the baseline SMT processor, the store should be the oldest
store of the thread in the SB and it should be the turn of the
thread to write to the L1. The situation can be worse with
the filtering baseline, since it should perform an LQ snoop
after it determines if it is required. If a snoop is required
(which is common in the synchronization-intensive work-
loads), the propagation of the write must be delayed until the
snoop is completed. This is in sharp contrast with ITSLF,
which makes the data value available for the other threads in
the core as soon as the store becomes non-speculative and
bound-to-retire.

To quantify how much ITSLF accelerates lock acquires,
Figure 7 shows the number of cycles elapsed from when a
contended lock is released to the time it is acquired when
running the workloads with their optimal number of threads
in a single core. We define a contended lock as a lock where
there is at least one thread spinning to acquire it when it
is released. Compared to the baseline SMT, the filtering

0

25

50

75

100

CQ PC RB SPS TATP TPCC Avg

C
yc

le
s

x-way SMT Singlecore x-way Filtering SMT Singlecore
x-way ITSLF Singlecore

Figure 7: Average lock acquire time after lock release for
contended locks.

baseline increases the average lock acquire time. This is
caused by the cachelines containing the synchronization data,
which frequently require stores to snoop the LQ when writing
to the L1. Note that not only this store is on the critical
path of the lock release but it also doubles the L1D access
latency. On average, the lock-acquire latency grows from 48
cycles in the baseline SMT core to 57 cycles in the filtering
SMT core. Thanks to directly communicating the lock values
within the core and merging both LQ snoops into a single one
performed before the critical point for a store of becoming
the head of the SB, ITSLF greatly reduces the lock-acquire
latency, which drops to only 36 cycles. Lock-acquire cycles
are on the critical path of each thread and most of the cycles
saved directly contribute to reducing workload execution
time. Note, however, that how they impact performance of a
workload also depends on the length of the critical section.

ITSLF accelerates synchronization because threads spin-
ning on a lock execute loads that read the synchronization
data from the SQ/SB of the thread releasing the lock. Fig-
ure 8a shows the number of loads per lock acquire that read
the data from the SQ/SB of another thread. CQ, RB, and
TATP are extremely synchronization-intensive and no perfor-
mance benefit is reached with more than two threads. This is
reflected in these results: there is a higher probability, rang-
ing from 0.4× to 0.6×, that a thread is spinning on the lock
when it is released and reads the value from the SQ/SB of
the thread releasing the lock. PC, SPS, and TPCC are less
synchronization-intensive because threads synchronize with
multiple locks. That explains their performance scalability up
to eight threads, which is also reflected in these results. The
number of threads that read the synchronization data from the
SQ/SB of a different thread in their case ranges from 0.2× to
0.3×, per lock acquire, which means that, more often, locks
are released without any thread waiting to acquire them.

Finally, Figure 8b shows the percentage of loads that re-
ceive the data through forwarding from a different thread with
ITSLF. Obviously, the percentage is low since only loads in-
volved in synchronization can actually read data through
another thread SQ/SB. In data-race-free software, commu-
nication between threads during large synchronization-free
regions is non-existent. Only a fraction of these loads need
to wait for the forwarding store to write (0.3% on average).
Note, however, that it is better to read a lock-free value and
wait to commit, than reading a lock-busy value, commit, and
do another iteration of the loop again.

ITSLF reduces contention in the LQ snoop port.

10

0.0

0.2

0.4

0.6

0.8
N

u
m

b
er

 o
f

lo
ad

s

(a) Number of loads per lock
acquire

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

P
er

ce
n

ta
ge

 o
f

lo
ad

s

No wait Wait

(b) Percentage of loads

Figure 8: Loads reading a value from the SQ/SB of a different
thread.

0

20

40

60

80

CQ PC RB SPS TATP TPCC Avg

C
yc

le
s

x-way SMT Singlecore x-way Filtering SMT Singlecore
x-way ITSLF Singlecore

0.0

0.2

0.4

0.6

0.8

1.0

C
Q P
C

R
B

SP
S

TA
TP

TP
C

C

R
at

io
 o

f
LQ

 s
n

o
o

p
s

(a) Ratio of LQ
snoops

0%

10%

20%

30%

40%

%
 o

f c
yc

le
s

CQ PC RB SP
S

TA
TP

TP
CC

(b) Write stalls

0.0%

0.1%

0.2%

%
 o

f c
yc

le
s

CQ PC RB SP
S

TA
TP

TP
CC

(c) Dispatch stalls

Figure 9: Ratio of LQ snoops when stores write per store,
Percentage of cycles where there is a write stall due to LQ
port contention, and Percentage of dispatch stalls with a store
doing a LQ snoop at the head of the ROB.

In the SMT baseline, as discussed in Section 2.2, all stores
search the LQ twice; when they execute and when they write
to memory, which affects performance and increases energy
consumption. The filtering SMT baseline tackles this problem
using the LQ-directory, and only triggers LQ snoops when
required. Unlike these approaches, ITSLF does not need to
snoop the LQ of any threads when stores write to memory.

Figure 9a shows the ratio of LQ snoops when stores write
for the three SMT setups. While all stores snoop the LQ
when they write with the non-filtering baseline, as the figure
shows, the filtering SMT baseline reduces the ratio of snoops
per store to between 1% (RB) and 16% (PC). An interesting
observation that shows how the additional LQ snoops im-
pacts performance is that in the workloads where the filtering
SMT avoids almost all LQ snoops, it clearly outperforms
the baseline SMT (except for RB, due to the reasons alluded
before). In contrast, when the LQ snoops exceed 10% of the
stores, the filtering SMT performs worse than the baseline
SMT (or similarly). As discussed, ITSLF does not trigger
any LQ snoop when stores write, which clearly contributes
to its superior performance.

Given that, in the SMT baseline, the LQ snoop port should
be shared by stores that execute and stores writing to the
L1, it is possible to find stores at both stages requiring the
use of the LQ snoop port in the same cycle. When this
happens, we simply stall the execution of the store by a cycle
giving priority to the store that writes. Figure 9b shows

the percentage of cycles where a thread executing a store
suffers a stall because the LQ snoop port is used by a store
writing to the L1. Note that the situation does not occur
with ITSLF since no LQ search is required when stores write
to memory. With the baseline SMT, three workloads (PC,
SPS, and TPCC, the ones that we execute with eight threads)
suffer store execution stalls due to contention in the LQ snoop
port in more than 20% of the execution cycles. TPCC is the
workload that suffers the highest percentage of stalls (38%)
which contributes to the low relative performance that the
SMT baseline achieves in this workload. The filtering SMT
reduces the LQ snoops required when stores write and thus,
reduces the number of stalls, which fall below 5% of the
cycles in all workloads.

Finally, Figure 9c shows that delaying the store snoop to
the own LQ (to merge it with the snoop to other threads’ LQ)
has a negligible impact on performance. Only 0.03% of the
cycles suffer a dispatch stall with a store doing a LQ snoop
at the head of the ROB. This percentage is similar for the
filtering SMT and higher for the SMT baseline due to store
writes delaying the execution of other stores, as previously
discussed.

5.3 Performance impact of ITSLF in
synchronization-poor workloads

Now, we evaluate other parallel workloads that are rela-
tively synchronization-poor. Therefore, the faster synchro-
nization provided by ITSLF marginally translates into perfor-
mance benefits. However, ITSLF also avoids the LQ snoops
that stores perform when they write to memory in the base-
line SMT processor, which can have an important impact on
performance in some workloads.

Figure 10 shows the performance of the filtering SMT and
ITSLF compared to the baseline SMT across the SPLASH-3
and PARSEC 3.0 workloads. The figure presents results for
singlecore and 8-core processors; in each case, performance
is normalized compared to a processor with the same number
of (baseline) SMT cores. For each workload and setup, the
optimal number of SMT threads is selected. Despite this
synchronization-poor scenario does not align favorably to
gain performance via inter-thread store-to-load forwarding,
it is very interesting to observe that avoiding the LQ snoop
when stores write to memory also brings important perfor-
mance benefit in many workloads. For instance, focusing on
the singlecore setups, ITSLF and filtering SMT outperform
the SMT baseline on barnes (where LQ snoop port contention
strongly hurts performance in the SMT baseline), radix, and
fft by 81%, 35%, and 30%, respectively. On average, in
the singlecore setups, ITSLF improves performance by 12%
compared to the baseline SMT core across all SPLASH and
PARSEC workloads. Since the performance benefit of ITSLF
(and the filtering SMT) for synchronization-poor workloads
comes from reducing LQ snoop contention and not from
accelerating synchronization, the performance benefit com-
pared to the baseline SMT remains similar, on average, in the
8-core setup.

In this synchronization-poor scenario, the filtering SMT
performs almost as good as ITSLF. Since synchronization is
infrequent, the performance benefit achieved by ITSLF comes
mostly from reducing the LQ snoop port contention, some-

11

0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

N
o

rm
. P

er
f.

 w
rt

 t
o

 x
-w

ay

SM
T

w
it

h
 s

am
e

co

re
s x-way Filtering SMT Singlecore x-way ITSLF Singlecore x-way Filtering SMT 8-core x-way ITSLF 8-core

Figure 10: Normalized performance (to the baseline SMT) across SPLASH-3 and PARSEC 3.0 workloads.

thing that the filtering SMT baseline also achieves. However,
it is important to empathize that the filtering SMT comes with
an area overhead in the L1 cache since it requires storing LQ-
directory information for each cacheline (one bit per SMT
thread per cacheline) used to determine if the LQ of other
threads should be searched. In addition, despite our idealized
implementation, the filtering approach requires checking the
LQ-directory to know if it should search the LQ of any thread
(as discussed in Section 2.2.1) and thus, the latency of store
writes is larger when the LQ snoop is finally required. This
makes its performance not consistently better than the SMT
baseline in synchronization-intensive workloads. The lower
overhead and superior performance in all synchronization-
intensive workloads clearly makes ITSLF a better approach
than the filtering SMT.

6. CONCLUSION
Trying to scale fine-grain, synchronization-intensive work-

loads is often an exercise in frustration. The more cores
we allocate to run, the farther away their common coherent
level is found, making their synchronization increasingly ex-
pensive. This makes SMT an attractive choice to run these
workloads: While threads running in a multicore need to
synchronize through the cache hierarchy, threads running in
an SMT core can do so through the L1 cache. Interestingly,
even though it has never been used as such, in this work we
show that there is an even closer shared level that can be used
to accelerate thread’s synchronization within an SMT core:
the store queue / store buffer.

We propose inter-thread store-to-load forwarding (ITSLF)
and address problems that arise when allowing a thread to
read the data from the store queue / store buffer of another
thread, earlier than when such data become globally visible.
We define the point where a store becomes locally visible
to other threads in the core and a visibility order for same-
address stores from different threads, and show how ITSLF
guarantees rMCA using speculation, with minor changes in
the architecture and negligible cost.

Our results show that ITSLF accelerates the transfer of crit-
ical synchronization data from thread to thread, which trans-
lates into an average performance benefit of 13% compared
to a baseline SMT when running fine-grain, synchronization-
intensive workloads. Furthermore, ITSLF also avoids the
second search that stores perform (when writing to the L1)
in the LQs of other threads in an SMT core. This reduces
contention in the LQ snoop port and helps improve the per-
formance of synchronization-poor workloads, where ITSLF

outperforms the baseline SMT by 12% on average.

ACKNOWLEDGMENTS
This work was supported by the Spanish MCIU and AEI, as
well as European Commission FEDER funds, under grant
RTI2018-098156-B-C53, the European Research Council
(ERC) under the Horizon 2020 research and innovation pro-
gram (grant agreement No 819134), the Vetenskapsradet
project 2018-05254, and the European joint Effort toward
a Highly Productive Programming Environment for Hetero-
geneous Exascale Computing (EPEEC) (grant No 801051).
Josué Feliu is supported by a Juan de la Cierva Formación
Contract (FJC2018-036021-I).

7. REFERENCES
[1] Sarita V. Adve and Kourosh Gharachorloo. Shared memory

consistency models: A tutorial. IEEE Computer, 29(12):66–76,
December 1996.

[2] Niket Agarwal, Tushar Krishna, Li-Shiuan Peh, and Niraj K. Jha.
GARNET: A detailed on-chip network model inside a full-system
simulator. In Int’l Symp. on Performance Analysis of Systems and
Software (ISPASS), pages 33–42, April 2009.

[3] Khary J. Alexander, Christian Jacobi Jonathan T. Hsieh, and Martin
Recktenwald. Load and store ordering for a strongly ordered
simultaneous multithreading core. U.S. Patent US14511408, October
2014.

[4] Jean-Loup Baer. Microprocessor Architecture: From Simple Pipelines
to Chip Multiprocessors. Cambridge University Press, 1st edition,
2009.

[5] Nick Barrow-Williams, Christian Fensch, and Simon Moore. A
communication characterisation of Splash-2 and Parsec. In Int’l Symp.
on Workload Characterization (IISWC), pages 86–97, October 2009.

[6] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis,
Princeton University, January 2011.

[7] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li.
The PARSEC benchmark suite: Characterization and architectural
implications. In 17th Int’l Conf. on Parallel Architectures and
Compilation Techniques (PACT), pages 72–81, October 2008.

[8] Colin Blundell, Milo M.K. Martin, and Thomas F. Wenisch.
Invisifence: Performance-transparent memory ordering in
conventional multiprocessors. In 36th Int’l Symp. on Computer
Architecture (ISCA), pages 233–244, June 2009.

[9] Hans-J. Boehm and Sarita V. Adve. Foundations of the C++
concurrency memory model. In 2008 Conf. on Programming
Language Design and Implementation (PLDI), pages 68–78, June
2008.

[10] Alper Buyuktosunoglu, Ali El-Moursy, and David H. Albonesi. An
oldest-first selection logic implementation for non-compacting issue
queues. In 15th Annual Int’l ASIC/SOC Conference, pages 31–35,
September 2002.

[11] Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. Sniper:
Exploring the level of abstraction for scalable and accurate parallel

12

multi-core simulations. In Conf. on Supercomputing (SC), pages
52:1–52:12, November 2011.

[12] George Z. Chrysos and Joel S. Emer. Memory dependence prediction
using store sets. In 25th Int’l Symp. on Computer Architecture (ISCA),
pages 142–153, June 1998.

[13] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp,
Rajesh K. Gupta, Ranjit Jhala, and Steven Swanson. Nv-heaps:
Making persistent objects fast and safe with next-generation,
non-volatile memories. In 16th Int’l Conf. on Architectural Support for
Programming Language and Operating Systems (ASPLOS), pages
105–118, March 2011.

[14] Martin Dixon, Per Hammarlund, Stephan Jourdan, and Ronak Singhal.
The next-generation Intel core microarchitecture. Intel Technology
Journal, 14(3):8–28, March 2010.

[15] Michel Dubois, Murali Annavaram, and Per Stenström. Parallel
Computer Organization and Design. Cambridge University Press,
2012.

[16] Agner Fog. The microarchitecture of intel, amd and via cpus: An
optimization guide for assembly programmers and compiler makers.
https://www.agner.org/optimize/microarchitecture.pdf,
March 2021.

[17] Andrei Frumusanu. Apple announces the Apple silicon M1: Ditching
x86 - what to expect, based on A14.
https://www.anandtech.com/show/16226/apple-silicon-
m1-a14-deep-dive/2, November 2020.

[18] Kourosh Gharachorloo. Memory consistency models for
shared-memory multiprocessors. Research report 95/9, Western
Research Laboratory, December 1995.

[19] Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. Two
techniques to enhance the performance of memory consistency
models. In 20th Int’l Conf. on Parallel Processing (ICPP), pages
355–364, August 1991.

[20] Christina Giannoula, Nandita Vijaykumar, Nikela Papadopoulou,
Vasileios Karakostas, Ivan Fernandez, Juan Gómez-Luna, Lois Orosa,
Nectarios Koziris, Georgios Goumas, and Onur Mutlu. Syncron:
Efficient synchronization support for near-data-processing
architectures. 27th Int’l Symp. on High-Performance Computer
Architecture (HPCA), February 2021.

[21] K. Gniady, B. Falsafi, and T. Vijaykumar. Is SC + ILP = RC? In 26th
Int’l Symp. on Computer Architecture (ISCA), pages 162–171, May
1999.

[22] Vaibhav Gogte, Stephan Diestelhorst, William Wang, Satish
Narayanasamy, Peter M. Chen, and Thomas F. Wenisch. Persistency
for synchronization-free regions. In 39th Conf. on Programming
Language Design and Implementation (PLDI), pages 46–61, June
2018.

[23] Andrew D. Hilton and Amir Roth. SMT-directory: Efficient load-load
ordering for SMT. IEEE Computer Architecture Letters, 9(1):25–28,
January 2010.

[24] Intel. Intel® 64 and ia-32 architectures optimization reference manual.
www.intel.com, June 2016.

[25] Aasheesh Kolli, Vaibhav Gogte, Ali Saidi, Stephan Diestelhorst,
Peter M. Chen, Satish Narayanasamy, and Thomas F. Wenisch.
Language-level persistency. In 44th Int’l Symp. on Computer
Architecture (ISCA), pages 481–493, June 2017.

[26] Sheng Li, Ke Chen, Jung Ho Ahn, Jay B. Brockman, and Norman P.
Jouppi. Cacti-p: Architecture-level modeling for sram-based structures
with advanced leakage reduction techniques. In 2011 Int’l Conf. on
Computer-Aided Design (ICCAD), pages 694–701, November 2011.

[27] Ching-Kai Liang and Milos Prvulovic. Misar: Minimalistic

synchronization accelerator with resource overflow management. In
42nd Int’l Symp. on Computer Architecture (ISCA), pages 414–426,
June 2015.

[28] Milo M.K. Martin, Daniel J. Sorin, Bradford M. Beckmann,
Michael R. Marty, Min Xu, Alaa R. Alameldeen, Kevin E. Moore,
Mark D. Hill, and David A. Wood. Multifacet’s general
execution-driven multiprocessor simulator (GEMS) toolset. ACM
SIGARCH Computer Architecture News, 33(4):92–99, September
2005.

[29] Vijay Nagarajan, Daniel J. Sorin, Mark D. Hill, and David A. Wood. A
Primer on Memory Consistency and Cache Coherence, Second
Edition. Synthesis Lectures on Computer Architecture. Morgan &
Claypool Publishers, 2020.

[30] Simo Neuvonen, Antoni Wolski, Markku Manner, and Vilho Raatikka.
Telecom application transaction processing benchmark.
http://tatpbenchmark.sourceforge.net/, 2011.

[31] Irma E. Papazian. New 3rd gen Intel® Xeon® Scalable processor
(Codename: Ice Lake-SP). In 32nd HotChips Symp., pages 1–22,
August 2020.

[32] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. Memory
persistency. In 41st Int’l Symp. on Computer Architecture (ISCA),
pages 265–276, June 2014.

[33] Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit
Sarkar, and Peter Sewell. Simplifying ARM concurrency:
Multicopy-atomic axiomatic and operational models for ARMv8. In
45th Symp. on Principles of Programming Languages (POPL), pages
19:1–19:29, January 2018.

[34] Alberto Ros and Stefanos Kaxiras. Speculative enforcement of store
atomicity. In 53rd Int’l Symp. on Microarchitecture (MICRO), pages
555–567, October 2020.

[35] Christos Sakalis, Stefanos Kaxiras, Alberto Ros, Alexandra Jimborean,
and Magnus Själander. Efficient invisible speculative execution
through selective delay and value prediction. In 46th Int’l Symp. on
Computer Architecture (ISCA), pages 723–735, June 2019.

[36] Christos Sakalis, Carl Leonardsson, Stefanos Kaxiras, and Alberto
Ros. Splash-3: A properly synchronized benchmark suite for
contemporary research. In Int’l Symp. on Performance Analysis of
Systems and Software (ISPASS), pages 101–111, April 2016.

[37] Michael L Scott. Shared-memory synchronization. Synthesis Lectures
on Computer Architecture, 8(2):1–221, 2013.

[38] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli,
and Magnus O. Myreen. x86-TSO: A rigorous and usable
programmer’s model for x86 multiprocessors. Communications of the
ACM, 53(7):89–97, July 2010.

[39] André Seznec. The L-TAGE branch predictor. The Journal of
Instruction-Level Parallelism, 9:1–13, May 2007.

[40] Tpc benchmark b. http://www.tpc.org/tpc_documents_
current_versions/pdf/tpc-c_v5-11.pdf, 2010.

[41] Caroline Trippel, Yatin A. Manerkar, Daniel Lustig, Michael Pellauer,
and Margaret Martonosi. TriCheck: Memory model verification at the
trisection of software, hardware, and ISA. In 22nd Int’l Conf. on
Architectural Support for Programming Language and Operating
Systems (ASPLOS), pages 119–133, April 2017.

[42] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous
multithreading: Maximizing on-chip parallelism. In 22nd Int’l Symp.
on Computer Architecture (ISCA), pages 392–403, June 1995.

[43] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal
Singh, and Anoop Gupta. The SPLASH-2 programs: Characterization
and methodological considerations. In 22nd Int’l Symp. on Computer
Architecture (ISCA), pages 24–36, June 1995.

13

https://www.agner.org/optimize/microarchitecture.pdf
https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2
https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2
www.intel.com
http://tatpbenchmark.sourceforge.net/
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5-11.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5-11.pdf

	Introduction
	Background
	Speculative support for memory ordering
	Speculative support for memory ordering in SMT architectures
	LQ snoop filtering in SMT architectures

	Issues and Solutions with ITSLF
	Point of Local Visibility
	Local Store Order
	Multi-Copy Atomicity
	Summary

	Experimental Setup
	Evaluation
	Performance impact of ITSLF in synchronization-intensive workloads
	Where does performance come from?
	Performance impact of ITSLF in synchronization-poor workloads

	Conclusion
	References

