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Abstract—As the core counts increase in each chip multiproces-
sor generation, coherence protocols should improve scalability in
performance, area, and energy consumption to meet the demands
of larger core counts. Directory-based protocols constitute the
most scalable alternative. A conventional directory, however,
suffers from an inefficient use of storage and energy. First, the
large, non-scalable, sharer vectors consume unnecessary area and
leakage, especially considering that most of the blocks tracked
in a directory are cached by a single core. Second, although
increasing directory size and associativity could boost system
performance, it would come at expenses of energy consumption.

This paper proposes the Dynamic Way Partitioning (DWP)
Directory, a directory structure that exploits three main workload
characteristics to achieve area and energy reductions. First, it is
widely known that even in parallel workloads most of the accessed
cache blocks are private. Second, most directory accesses target
the small number of shared blocks. Third, the shared/private
ratio of entries in the directory varies across applications and
across different execution phases within the applications. To take
advantage of these three characteristics, DWP-Directory reduces
the number of ways with storage for shared blocks and it allows
this storage to be powered off or on at run-time according to the
dynamic requirements of the applications.

DWP-Directory is compared to a conventional directory cache
with different associativity degrees and with two state-of-the-art
schemes: PS-Directory and Hybrid Representation. Experimental
results for 32-core CMPs show that DWP-Directory achieves
the best of both worlds: similar performance as a traditional
directory with high associativity, and similar area as recent
state-of-the-art schemes. In addition, DWP-Directory reduces
static and dynamic power consumption by 38.0% and 67.4%,
respectively compared to conventional sparse directories.

I. INTRODUCTION

As transistor technology miniaturizes, silicon resources be-

come more abundant. Consequently, the core count is con-

tinually increasing in current chip-multiprocessors (CMP).

These systems usually implement a shared memory program-

ming model and a cache coherence protocol to maintain

data coherence along the CMP memory hierarchy. Directory-

based protocols are the common approach used in current

systems over other alternatives such as snoop-based protocols,

which generate an important traffic overhead due to the use

of broadcast messages. Much research has concentrated on

improving the performance and energy of directory protocols,

both from the academia [1], [2], [3], [4], [5] and from the

industry in modern processors [6], [7], [8], [9], [10]. Directory-

based protocols require additional structures to keep track of

the cached block. Two main approaches can be followed:

Duplicate Tags [7] and Sparse Directories [11].

Sparse directories, implemented as a cache-like structure

with a relatively low associativity degree, are the preferred

design choice for a mid to high number of cores, since

Duplicate Tags require highly associative lookups to build

the sharer vector on each directory access and entail a high

energy consumption. The limitation of sparse directories is

that replacements are needed due to space constraints. Upon

a directory entry eviction, all copies of the block —being

tracked by such entry— in the cores’ private caches are

invalidated, regardless of whether the block is being used or

not. Therefore, subsequent accesses to these invalidated blocks

will rise the so-called coverage misses [12], which degrade

system performance.

An entry in a conventional sparse directory mainly stores

the owner of the block, required to find the provider of the

block, and a sharer vector, required to track all copies of a

shared block. While the owner field just requires log2C bits,

where C represents the number of cores, the sharer vector

typically utilizes one bit per core which is set when the core’s

cache holds a copy of the block. Thus, the size of the sharer

vector, and so that of the directory, grows linearly with the

number of cores. Consequently, as the current industry trend

is to increase the core count in each CMP generation, it is

expected that the directory size will present a worth on-chip

area and leakage overhead in future CMPs [13]. Therefore,

there is a need for new directory schemes that scale in terms

of area and power.

The key challenge when addressing scalability in sparse

directories lies on reducing the overhead in area and power

introduced by the sharer vector. This fact has been effectively

addressed based on the characteristics of the blocks being

tracked. Some previous works [3], [14] have realized that

most blocks are accessed by a single core. That is, a high

amount of blocks are fetched into the cache of a given core

and then no other core accesses it. These blocks are referred

to as private blocks in contrast to shared blocks, which are

accessed by multiple cores. This behavior means that most

directory entries keep track of private blocks, which do not

require from coherence actions, thus these entries do not use

the sharer vector field at all. Based on this finding, recent

proposals [15], [16], implement two kinds of entries in the

directory: shared and private. The former include storage for

a shared vector and can potentially track shared blocks, while

the latter save storage by not including sharing information

and are limited to track private blocks. The main drawback

of these schemes is that the number of private and shared

entries is fixed by design. However, as we show in this work



the requirements of private and shared directory entries widely

varies both across applications and intra application. To face

the mentioned drawback this paper proposes a directory that

adapts the number of shared entries according to the run-time

demands of each application.

This paper makes the following contributions:

• We perform a workload characterization and find that the

number of shared blocks widely varies at run-time both

intra and inter applications.

• We propose the Dynamic Way Partitioning (DWP) direc-

tory, to the best of our knowledge, the first directory that

dynamically chooses the proper number of shared entries

at run-time according to the workload requirements at

each phase of its execution.

• DWP-Directory achieves better performance than state-

of-the-art directory schemes that exploit asymmetric stor-

age for block tracking. Experimental results for 16- and

32-core CMPs show that compared to conventional di-

rectory schemes with the same number of entries, DWP-

Directory is able to achieve important area, dynamic and

static energy consumption reductions, while having an

almost negligible impact on performance.

II. BACKGROUND AND MOTIVATION

A. Asymmetric Storage for Handling Shared and Private

Blocks

Different approaches have been proposed to reduce the

directory size. Recently, some works [17], [15], [16], [18], [19]

have focused on providing asymmetric storage for handling

shared and private blocks. Area savings come from making the

directory narrower by using shorter entries —the sharer vector

is not implemented— to track private blocks. These works

demonstrate that actively differentiating shared and private

entries can yield the system to area and energy improvements

over a conventional one-type entry directory.

The PS-Directory [15], [18] provides a fast and small (low

number of entries) directory in SRAM for the reduced number

of frequently accessed shared entries, and a larger (more

entries) and slower directory in a denser eDRAM cache for

infrequently accessed private entries. This approach allows

entries to move from the private directory to the shared

one, which is the most frequently accessed. Once one entry

becomes shared, however, it does not return to the private

directory even if the block being tracked is only stored in a

single core. The rationale behind this design feature is that

a block that has been shared has a high probability of being

shared again, and moving it from one directory to the other

consumes extra energy and does not translate into performance

improvements.

The Hybrid Representation directory [16], [19] also consid-

ers a different representation for private and shared entries. The

key difference, however, is that the latter approach proposes

a single-cache directory and both types of entries are mingled

in the same cache structure. Unlike the previous scheme, the

contents of a private entry are permitted to move to a shared

one and vice versa, according to the state of the block.

Both aforementioned approaches conclude that, based on

the average workload behavior, the most efficient directory is

that providing a quarter of its entries to track shared blocks and

three quarters to track private ones. The main drawback in both

approaches is that both shared and private entries are limited

by design, that is, private blocks compete among them for

private ways and analogously shared blocks for shared ways.

Therefore, if the run-time requirements of a given application

exceeds the budget of ways available for a given type of block,

that requirement cannot be satisfied by design so yielding the

system to performance drops.

In summary, although discerning among shared and private

entries can bring important benefits in terms of area and

energy, static designs like PS-Directory or Hybrid Represen-

tation cannot adapt to the different shared-private ratio of

parallel applications and to every execution phase within the

application, thus providing sub-optimal performance.

B. Motivation

This section characterizes the applications used in our eval-

uation (Section IV) by studying the dynamic requirements of

shared entries at run-time. The study shows that while at some

point in time some applications may require a single shared

entry in a set, some others may require almost all the entries

in a set to track shared blocks. To deal with this behavior,

this paper proposes a flexible structure that dynamically varies

the number of active shared entries according to the run-time

demands of the workloads.

As a first design step, we analyze the dynamic requirements

of shared directory entries across a representative subset of

parallel workloads in order to find out how many shared

entries should be supported to achieve the same performance

as a conventional directory. For this purpose, we ran parallel

workloads and for each of them we measured the number

of entries actually tracking shared blocks along the execution

time (see Section IV for simulation details).

According to dynamic variability in the run-time demands

of shared entries, there are some differences between ap-

plications, yet some general observations can be concluded.

Figure 1 plots the dynamic evolution of the number of shared

entries averaged across all the directory sets and banks, and

the maximum number of shared entries in any set for each

application assuming a 8-way directory cache.

It can be observed that, a static approach with S = 2 and

P = 6, the best one in PS-Directory and Hybrid Represen-

tation, fails to adequate to specific directory sets at a given

point in time, since typically there is always one (i.e. labelled

as Max in the plots) or some sets that require more than

two ways for shared entries. Yet, most of the applications

have scarce set requirements, on average, to track shared

blocks. Only Radiosity and LU require on average more

associativity to track shared blocks than the deployed in the

aforementioned proposals, but only during a small fraction of

its execution time. This will inevitably lead to performance

losses. Therefore, the solution to improve performance lies on

adding extra shared entries. However, this way also would be

at cost of area and energy expenses, thus, key challenge lies

on investigating the number of entries an efficient directory

should deploy in order to achieve the best area and energy

savings while sustaining the performance of a conventional all

shared-entry directory. On the other hand, notice that there are

also many other applications which do not need more than one
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Fig. 1: Average and maximum number of shared entries per

set over the execution time across all the directory banks.

shared entry per set for most of its execution time (i.e. FFT,

Ocean, Radix, Tomcatv and Waternsq). The additional

shared associativity in the directory is not required in these

cases, which in turn brings additional energy consumption and

area that could be otherwise avoided.

To provide deeper insights in the most adequate number

of ways, we quantified the fraction of time the directory is

keeping track any given number of shared blocks. Figure 2

shows the results across the studied benchmarks.

It can be seen that, on average, two or less directory cache

ways able to keep track of shared blocks are required during

93.8% of the execution time, while only during a 3% of it more
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Fig. 2: Fraction of time with # shared entries in a set.

than four shared entries are in demand. Regarding maximum

requirements in individual sets, it can be appreciated that, on

average, during 76.8% of the execution time, there are no

individual sets requiring more than four shared entries. This

value makes sense since by definition, a shared block must be

stored in at least two L1 caches, but since workloads are not

ideally balanced, sometimes the accesses may concentrate on

specific directory banks or sets. We experimentally found that

these happens in some workloads like Radiosity.
The previous analysis, as well as experimental results will

confirm, shows that a directory with a quarter or half of

its ways providing storage for shared blocks are the most

interesting design choices, and can provide the best tradeoff

between performance, area and energy.
In accordance to these results, we analyze two approaches in

which a quarter or half of the cache ways in a 8-way directory

provide support for shared entries, while the remaining ways

only support private entries. Since most of the time at most

two shared ways are required, this only incurs performance

losses during a negligible percentage of time. This results

in important benefits in terms of area and energy, especially

leakage, as discussed in the next section.

III. DWP-DIRECTORY

The design of DWP-Directory is mainly motivated by two

observations discussed in Section II: i) there are applications

that need more than 3 or 4 shared ways during some phases

of their execution and ii) there are applications that require

nearly all the ways to track private blocks. These observations

are not supported for state-of-the-art directory approaches.
Keeping these observations in mind, the main goal of DWP-

Directory is to provide support for both of them. Figure

3 depicts the structure of a generic DWP-Directory. Two

types of entries are deployed: those having storage space to

contain the sharer vector and those lacking the sharer vector.

The directory deploys N shared entries and M − N private

entries per set, where M is the total associativity. Three areas

can be appreciated: the most-left way is always shared, the

M − N most-right ways are always private and the rest of

the ways in the middle may contain shared or private entries

(i.e. repartitionable area, highlighted in gray). An entry in the

repartitionable area include the On/Off bit that is set when

the associated way is tracking shared blocks and reset when

it tracks private blocks.
When the bit is reset, the voltage supply to the sharer vector

is disabled since private blocks do not need it. Notice that this

allows energy savings, mainly leakage, with no performance

penalty. In other words, with this design i) the private blocks

do not consume the energy dissipated to hold the sharer



Fig. 3: The DWP-Directory architecture.
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vector, and ii) the directory size becomes smaller due to the

removal of the sharer vector in part of its ways. An entry in

a traditional directory for a MOESI protocol, apart from the

tags, is comprised of an owner and a sharer vector field that

require (log2(C)+C) bits, being C the number of cores in the

CMP. The higher the number of cores the larger the number

bits that can be saved with our proposal, i.e. (M−N)×C bits

per set. To this amount, we should subtract a few N bits per

set required for On/Off bits. The higher the number of

cores the wider the sharer vector field since it requires one bit

per core. Hence, DWP-Directory scales much better in terms

of energy and area than sparse directories.

In summary, unlike existing proposals, which hardly limit

the number of shared ways to 2 and private ways to 6, DWP-

Directory implements a flexible sparse directory that can use

all the ways to track private blocks, and is able to track as

many shared blocks as deployed sharer vectors.

A. Basic Working Behavior

DWP-Directory includes two types of entries: private and

shared. Private entries are short, do not include the sharer

vector, and are only able to keep track of private blocks.

Shared entries are wider, implement the sharer vector, and

can keep track of either shared and private blocks. Figure

4 depicts a flow chart that summarizes how DWP-Directory

handles private and shared entries. On a miss in the L1 cache

of a given core, the directory is accessed in order to maintain

coherence. In a traditional directory, all the cache ways in the

directory are accessed in parallel which translates into highly

consuming searches.
To reduce dynamic energy consumption, the first lookup

in DWP-Directory only accesses the subset of ways tracking

shared blocks. The reason to look up first these ways is that

most of the accesses to the directory are to shared blocks [18];

thus, it is more likely to find the required block in the shared

entries. Moreover, as discussed in Section II, the number of

active shared entries in the directory is on average lower or

much lower than the number of private ways, so important

energy savings can be achieved.
Upon a miss in the first lookup, DWP-Directory searches

the target block in the remaining entries, i.e. private entries.

If there is a hit in any of these ways, this means that the

requesting core differs from the owner of the block, thus the

block should become shared and the entry moved to a shared

way. In case no shared entry is available, an entry should

be evicted and all the copies of the block in the processor

caches should be invalidated. Even though DWP-Directory has

potentially no limitation in the minimum number of shared

ways, this work does not evaluate the option of supporting no

shared ways since the complexity of the coherence protocol

increases. Notice that if there is no active shared way (i.e.

all sharer vectors are deactivated), the previous owner of the

block is invalidated and the new owner updated accordingly.

New transitions are required in the protocol to take this

case into account, while DWP-Directory ensuring at least one

shared way can work directly with the conventional coherence

protocol. This case would be accounted as a shared entry

eviction for the repartitioning algorithm as explained below.
If both directory lookups miss, a new entry is allocated. This

entry is set as private since it only tracks a single copy. If the

directory has an available entry, the new entry is allocated on

it, prioritizing private entries over shared entries in case there

are several available entries. If all the entries are busy, the

directory controller has to evict one of them. In such a case,

the least recently used way, independently of being private or

shared, is selected for eviction.

B. Repartitioning Approach

DWP-Directory dynamically repartitions the number of

shared entries enabled to keep track of shared and private

blocks considering the run-time application needs. In other

words, some of the shared entries by design are considered

as private and its sharer vector field powered off for leakage

savings. After a given number of accesses to the directory,

DWP-Directory analyzes the eviction ratio between shared and



private blocks and the number of private ways is readjusted

taking into account the physical constraints.
The repartitioning mechanism is implemented with neg-

ligible hardware with only three main parameters. These

parameters help the algorithm in decision taking about when

a repartitioning should be triggered as a consequence of an

increase or decrease of the demand of shared ways: a interval

length (IL), a shared threshold (ST) and a private threshold

(PT). The selection of IL is quantified in number of accesses

to the directory.
Algorithm 1 summarizes the pseudocode of the reconfigu-

ration mechanism. This algorithm is called on every directory

access. Two global counters are used: directory accesses and

ctr. The former accounts for the number of accesses to the

directory. The latter is an up/down counter that saturates at

an upper threshold PT and at a lower threshold ST. Small

top/down counters have a low implementation complexity and

have been widely applied in the past, hence this design choice

has been selected.

/ / For e v e r y a c c e s s t o t h e d i r e c t o r y
d i r e c t o r y a c c e s s e s ++;
i f ( c t r != PT && c t r != ST ) { / / C t r n o t s a t u r a t e d

i f ( p r i v a t e e v i c t i o n r e q u i r e d ) {
c t r ++;

} e l s e i f ( s h a r e d e v i c t i o n r e q u i r e d ) {
c t r −−;

}
}

i f ( d i r e c t o r y a c c e s s e s == IL ) {
i f ( c t r == PT && shared ways > 1) {

p r i v a t e w a y s ++;
shared ways −−;

} e l s e i f ( c t r == ST && shared ways < N) {
p r i v a t e w a y s −−;
sha red ways ++;

}
r e s e t ( ) ; / / R e s e t s a l l c o u n t e r s

}

Algorithm 1: Repartitioning algorithm

The algorithm works as follows. When the directory is

accessed for IL times, the repartitioning logic checks the value

of the ctr counter to decide if the number of shared ways

should be increased, decreased or remain in its actual value.

• Each time a private entry is evicted from the directory,

the ctr counter is increased and is decreased each time a

shared entry is evicted.

• When the directory accesses counter reaches IL:

– If the counter saturates at its lower threshold ST,

then additional shared entries are required. Thus,

the most-left shared entry tracking a private block

(Figure 3) is set as shared and its shared vector

activated.

– If the counter saturates at PT, then directory needs

additional private ways in detriment of shared ones.

In such a case, the most-right shared way in the

repartitionable area (Figure 3) is set to private. Thus,

its sharer vector is powered down and all sharers but

the owner are sent an invalidation message.

– If the counter is not saturated, then the system

remains in its actual state for further IL accesses.

– ctr and directory accesses are reset to 0.

TABLE I: System parameters

Memory Parameters
Cache hierarchy Non-inclusive
Cache block size 64 bytes
Split L1 I & D caches 64KB, 4-way (256 sets)
L1 cache hit time 2 cycles
Shared single L2 cache 512KB/tile, 8-way (1024 sets)
L2 cache hit time 2 (tag) and 6 (tag+data) cycles
Single directory cache 256 sets, 4 ways (same as L1)
Single directory cache hit time 2 cycles
Memory access time 160 cycles

Network Parameters
Topology 2-dimensional mesh (4x4)
Routing technique Deterministic X-Y
Flit size 16 bytes
Data and control message size 5 flits and 1 flit
Routing, switch, and link time 2, 2, and 2 cycles

This algorithm allows the proposal to dynamically adapt

to the application phases, providing leakage savings without

affecting performance. The reconfiguration of a way is done

in all sets of the directory simultaneously in order to minimize

complexity and to guarantee a very simple first lookup in the

directory. Notice that the cost of evicting shared entries is

higher than the cost of evicting private entries, but that is taken

into consideration when choosing the PT and ST values.

IV. SIMULATION ENVIRONMENT

DWP-Directory is evaluated using full-system simulations

with Simics [20] and GEMS [21], which enables detailed

simulation of multiprocessor systems. The interconnection

network is modeled using GARNET [22]. We evaluate both

16- and a 32-core CMPs comprised of a cache hierarchy with

private L1 caches and a shared L2 NUCA distributed among

all tiles. A MOESI directory-based cache coherence protocol

keeps coherence for the data within the private caches. L1 and

L2 caches are non-inclusive, that is, some blocks stored in the

L1 caches may not have an entry in the L2 cache but they will

have in the directory. Our base directory scheme is an on-chip

distributed sparse directory with a bit-vector sharing code in

each entry. Other baseline system parameters are shown in

Table I. We use CACTI 6.5 [23] to estimate access time, area

requirements and power consumption of the different cache

structures for a 32nm technology node.

DWP-Directory is evaluated using a wide range of scien-

tific applications. FFT (64K complex doubles), FMM (16K

particles), LU (512×512 matrix), Ocean (514×514 ocean),

Radiosity (room, -ae 5000.0 -en 0.050 -bf 0.10), Radix

(512K keys, 1024 radix), Volrend (head), and Water-Nsq (512

molecules) are from the SPLASH-2 benchmark suite [24].

Tomcatv (256 points) and Unstructured (Mesh.2K) are two

scientific benchmarks. The experimental results reported in

this work correspond to the parallel phase of the evaluated

benchmarks.

DWP-Directory is sensitive to both the directory config-

uration and the threshold parameters. We have tested many

configurations, however, given the analysis shown in Section

II-B only results for two most effective configurations are

presented. One configuration implements half of its 8 ways

without the sharer vector field, hereby noted as DWP-Directory

(4:4), while the other implements the sharer vector in two of
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Fig. 5: Performance normalized with respect to a single-cache directory with 4 ways and 16 cores.

them, hereby noted as DWP-Directory (2:6). Both configura-

tions share an interval length (IL) of 500 directory accesses,

a shared threshold (ST) of 10 and a private threshold (PT) of

100. These thresholds were tuned to the studied workloads,

showing minor differences for thresholds relatively high, but

due to space constraints no sensitivity analysis is presented.

V. EXPERIMENTAL EVALUATION

This section evaluates DWP-Directory against a 4-way

conventional or single-cache directory (which acts as the

baseline), a 8-way conventional directory, and two state-of-

the-art architectures: PS-Directory and Hybrid Representation.

Unlike our proposal, the directory space assigned to each

type of block in the aforementioned approaches is fixed and

cannot be changed at run-time according to the needs of each

particular workload during its execution.

Notice that all evaluated schemes, with the only exception

of the baseline, implement a 8-way directory associativity.

Both state-of-the-art architectures dedicate two ways to track

shared blocks and the remaining ones to track private blocks

(2:6 configuration). Since some workloads require a single

shared way most of its execution time, as shown in the

next section, a 1:7 configuration is also implemented for

comparison purposes.

A. Impact on Performance

The impact of the proposal on performance has been eval-

uated by analyzing the L1 Misses per kilocycles (MPKC) and

the execution time. Every time a directory entry is evicted,

invalidation messages are sent to the corresponding processor

caches keeping a copy of the block being tracked in order

to be able to maintain cache coherence. These invalidations

will cause coverage misses upon a subsequent memory request

to those blocks, thus impacting on the final performance.

Figure 5a shows the L1 MPKC, which matches the number

of directory accesses per kilocycles, with respect to a 4-way

single-cache directory in the studied 16-core CMP. The misses

have been categorized in three types: 3C (capacity, compulsory

and conflict), coherence and coverage.

The different evaluated schemes have negligible impact on

3C and coherence misses over the baseline. On the other hand,

the aggregated associativity degree of the directory, as ex-

pected, has a big impact on the number of coverage misses. An

increase from 4 to 8 ways in a single cache greatly decreases

the number of coverage misses, approaching to the optimum

performance that an ideal directory can achieve. The additional

associativity allows more flexibility when keeping track of

both shared and private entries in a set. Notice that even though

most of the blocks are private and would hence require a higher

number of entries, they are scarcely accessed, in comparison

to shared ones, so they can be prematurely evicted due to

an LRU replacement policy, when space constraints problems

arise. Thus, additional associativity mitigates this problem.

Regarding the state-of-the-art schemes, the PS-Directory

reduces the number of misses by 34.5% and 40.6% for the 2:6

and 1:7 configurations, respectively. Hybrid Representation re-

duces this number by 34.3% and 38.2%. These reductions are

achieved due to the different treatment of private and shared

blocks. Since the associativity degree is partitioned, entries

do not have the same allocation flexibility as a single-cache

directory with the same associativity. Notice that configuration

1:7 obtains the best results, since as discussed above, most of

the applications present a low associativity requirement for
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Fig. 6: Performance normalized with respect to a single-cache directory with 4 ways and 32 cores.

shared entries. Yet, there are some exceptions in which the

2:6 configuration works best, e.g. in LU and Unstructured for

the Hybrid Representation. Hence it can be seen that there is

no optimal static configuration that satisfies every workload.

DWP-Directory, which unlike the aforementioned schemes

has the ability to adapt the private-shared partition size dy-

namically at run-time, obtains better results, reducing the

number of misses by 49.8% and 50.4% in the 2:6 and

4:4 configurations, respectively. It performs similar as an 8-

way single cache, with only 1% degradation. Notice that

following the characterization presented in section II-B, those

applications with a higher maximum number of shared ways

benefit the most from our proposal, compared to the state-

of-the-art schemes. On the other hand, applications with low

shared requirements, do not benefit as much. The dynamic

adaptability allows DWP-Directory a similar flexibility as the

single-cache directory, while also keeping or improving most

of the benefits that provide the differentiation between shared

and private entries in terms of area and energy reduction, as

will be discussed below.

Reducing the number of L1 misses translates into a lower

execution time of the applications, as shown in Figure 5b.

The reduction of misses achieved by the 8-way single-cache

directory improves the execution time by 12.3%. The PS-

Directory and Hybrid Representation both reduce the appli-

cations average execution time by 8.9%. Meanwhile, DWP-

Directory reduces the execution time by 12.1% and 12.7%
in the 2:6 and 4:4 configurations, respectively. As expected,

applications with low MPKC values are the ones that have

a lesser improvement in their execution time. Power-up and

power-down delays of the proposal are taken into account in

these results.

To explore how the proposal behaves on a higher number

of cores, we launched experiments for a CMP with 32 cores.

Figure 6a and Figure 6b show the L1 MPKC and the execution

time, respectively. Results are similar as those presented for

16 cores. While the 8-way single cache reduces misses by

51%, DWP-Directory 2:6 and 4:4 reduce them by 50.4%
and 50.1%, respectively. The difference between our proposal

and the 8-way single cache is smaller. In terms of execution

time it translates into a reduction of 7.9%, 7.7% and 7.7%,

respectively. The state-of-the-art architectures achieve lower

reductions, but as with 16 cores, a 1:7 shared-to-private way

ratio performs on average slightly better than a 2:6 one.

B. Impact on Energy Consumption

Typically, static or leakage energy dominates the total

energy consumption of the directory structure. Figure 7a shows

the normalized leakage energy consumed by the directory

structure with respect to the 4-way single cache.

As can be seen, the 8-way single-cache directory reduces

leakage by 7.1%, mainly due to the smaller execution time of

the applications. The PS-Directory and the Hybrid Representa-

tion (2:6) achieve better energy savings by 20.3% and 27.2%,

respectively, even though their execution time is slightly worse

than the 8-way single-cache directory. These energy savings

are the result of both schemes lacking the sharer vector field in

some ways, namely those designated to keep track of private

blocks, regardless if they are in a separate structure, like in the

PS-Directory, or in the same set, as in Hybrid Representation.

This allows the directories to consume less static energy, while

the execution time of the application is not severely harmed as
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Fig. 7: Normalized energy consumed with respect to a single-cache directory with 4 ways and 16 cores

shown in the previous section. For this reason, configurations

1:7 consume even less energy, since the sharer vector is present

in one way less. DWP-Directory reduces the static energy

consumed by 31.5% and 28.9% for 2:6 and 4:4 configurations,

respectively, which are the highest reductions of the evaluated

directories. Notice that these leakage savings over state-of-the-

art proposal come thanks to its repartitioning mechanism that

allows DWP-Directory provisioning more shared ways when

needed of even actually using none of them.

Results for the dynamic energy are shown in Figure 7b,

also normalized with respect to a 4-way single cache. All

the studied schemes, apart from DWP-Directory, achieve on

average a similar energy savings falling in between 44%
and 50% over the baseline. The best scheme regarding this

parameter greatly fluctuates between the applications, so there

is no definitive best approach. Meanwhile, with the only

exception of FFT, DWP-Directory always achieves the better

results. The consumption is reduced by 59.9% and 59.5% for

the 2:6 and 4:4 configurations, respectively.

With 32 cores, in addition to maintaining similar perfor-

mance ratio as in 16 cores, the proposal is able to achieve

even better energy savings, offering a much scalable solution.

Figure 8a and Figure 8b show the static and dynamic energy

consumed in the 32 core CMP and normalized with respect

to the 4-way single-cache. The leakage energy consumed by

the 8-way single cache is only 1.1% better, despite the lower

execution time. Meanwhile, the PS-Directory and Hybrid

Representation 2:6 are able to reduce up to 29.3% and 31.3%,

respectively, of this consumption. The energy savings are

higher than those of the 16 core CMP mainly due to the

larger amount of deployed sharer vectors. Since the mentioned

schemes rely on the removal of the shared entry field, and this

field increases its size with the number of cores, the overall

number of bits that are eliminated is also higher. Lastly, DWP-

Directory is able to reduce up to 38% and 34.6% of the leakage

energy consumed by the directory structure for the 2:6 and 4:4

configurations, respectively.

Regarding dynamic energy, DWP-Directory is able to re-

duce up to 67.4% and 66.2% for the 2:6 and 4:4 config-

urations, respectively, of the dissipated power, which is the

highest across all the evaluated schemes.

C. Impact on Area Requirements

The on-chip area required to implement these directory

structures is also analyzed in this section. Results obtained

with CACTI are shown in Figure 9 for a conventional or

single directory cache, the PS-Directory, Hybrid Representa-

tion and the proposal. With a higher number of cores, the

area requirement difference between the single cache and the

proposal grows more and more. DWP-Directory 4:4 requires

only the 82.9%, 74.4% and 66.8% area that a single cache

would need. The PS-Directory, Hybrid Representation and

DWP-Directory 2:6 scale better and similar to each other,

specially with 64 cores, than the 4:4 configuration, though.

This is mainly because DWP-Directory 4:4 evaluated has a

maximum of 4 shared ways, while the others only have 2.

As results have shown, for a lower number of cores (i.e. 16

cores) 4 shared ways offer the best best performance albeit
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Fig. 8: Normalized energy consumed with respect to a single-cache directory with 4 ways and 32 cores

with a small energy and area penalty with respect to a DWP-

Directory with just 2 shared ways. Overall, DWP-Directory

with the 2:6 configuration offers the best tradeoff between

performance, energy and area.

VI. RELATED WORK

In shared memory systems where multiple cores are allowed

to access the same memory blocks, cache coherence is a

necessity. This work focuses on directory-based protocols,

which are the commonly adopted solution for a medium to

large core count.

Traditional directory schemes do not scale properly with

the number of cores. One of today’s major design concerns

is the implementation of directories that scale to hundreds of

cores in terms of power and area. Directory implementations,

both in academia and industry, follow two main approaches:

duplicate-tag directories and sparse directories.

Duplicate-tag directories keep a copy of the tags of all

tracked blocks. Therefore, this approach does not raise any

directory-induced invalidation nor coverage miss. Duplicate-

tag directories have been implemented in modern small CMP

systems [6], [8] and is the focus of recent research works

[25], [13]. Although being area-efficient, obtaining the sharer

vector requires multiple directory entry lookups, equal to the

product of the number of core caches by the associativity of

such caches [26]. That means that in a system with 64 8-way

L1 caches, a directory access requires a 512-associative search.

Hence, this approach becomes prohibitive for a larger number

of cores.

Sparse directories [11] are organized as a set-associative

cache like structure indexed by the block address. By reducing
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increasing number of cores.

the directory associativity, this approach becomes more power-

efficient than duplicate-tag directories. Sparse directories can

reduce area by reducing the number of directory entries. This

is done at the expense of performance, since each directory

eviction due to lack of space, forces invalidations at the core

caches of the blocks being tracked. Some works [27] employ

block replication and migration to enhance performance.

Previous research works have focused on reducing the direc-

tory area by focusing on the entry size. Some approaches have

used compression [28], [29], [30], [31] to shorten the entry

size. In [28], [32] a two-level cache directory is proposed.

In the first level, the typical sharer vector is stored as usual,

while the second level uses a compressed code instead. In

these schemes, area is saved at expenses of using an inexact

representation of the sharer vector when using compression.

This induces potential performance losses.

Guo et al. [33] proposed a hierarchical representation of the

sharer vector, also for entry size reduction purposes. Latency

increases in these hierarchical organizations however, since

they impose additional lookups on the critical path.



Others, like SCD [4], use different entry formats of the same

length in order to solve the scalability problem. Unlike typical

sparse directories where all lines share the same format, lines

with one or few sharers use a single directory entry while

shared lines employ several cache lines (multi-tag format)

using hierarchical bit vectors. The proposed scheme entails

extra complexity and directory accesses for managing the

dynamic changes (expanding/contracting) in the entry format.
Multi-grain directories (MGD) [5] also use different entry

formats of same length and track coherence at multiple differ-

ent granularities in order to achieve scalability. Each entry in

the MGD tracks either a single cache block with any number

of sharers, as usual, or a temporarily private memory region.
Finally, Coherence Deactivation [3], [34], [35], [36], [37]

improves the efficiency of the directory through OS-, TLB-,

and compiler-based techniques, by removing the need of track-

ing private data at the directory. Differently, DWP-Directory

focuses on shared entries and is transparent to these aspects.

VII. CONCLUSIONS

This work has identified that the current needs of multi-

threaded applications, regarding shared and private data access

from the directory point of view, varies dynamically with

execution time. Static private-shared structures are not able to

properly adapt to this dynamic variation and, instead, dynamic

strategies are in demand. Based on these observations, we have

introduced the Dynamic Way Partitioning(DWP) Directory, a

sparse directory that sacrifices the sharer vector field from part

of its ways in order to gain in both area and energy scalability.

Furthermore, the implemented sharer vectors can be powered

off or on as required according to wether the need of more

shared ways rises or drops at run time, respectively.
Experimental results for a 16-core CMP show that, com-

pared to a conventional directory cache with the same number

of entries, DWP-Directory reduces the static and dynamic en-

ergy consumed by 31.5% and 59.9%, respectively, while hav-

ing an almost negligible performance penalty when compared

to a more energy and area demanding 8-way conventional

cache, and having a lower execution time than a more power-

efficient 4-way directory.
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