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Abstract—It is commonly stated that a directory-based coher-
ence protocol is the design of choice to provide maximum per-
formance in coherence maintenance for shared-memory many-
core CMPs. Nevertheless, new solutions are emerging to achieve
acceptable levels of on-chip area overhead and energy consump-
tion to also meet scalability. In this work, we propose the Express
COherence NOtification (ECONO) protocol, a coherence protocol
aimed at providing high performance with minimal on-chip area
and energy consumption for superior scalability. To maintain
coherence, ECONO relies on express coherence notifications
which are broadcast atomically over a dedicated lightweight and
power-efficient on-chip network leveraging state-of-the-art tech-
nology. We implement and evaluate ECONO utilizing full-system
simulation, a representative set of benchmarks, and compare
it against two contemporary coherence protocols: Hammer and
Directory. While ECONO achieves slightly better performance
than Directory, our proposal does not need to encode sharer
sets like in Hammer, saving significant on-chip area and energy
even when considering the extra hardware resources required
by ECONO. Projections for a 1024-core CMP reveal that, in
comparison to one of the most scalable directory-based protocols
to date, ECONO entails more than 2× less on-chip storage
overhead while keeping with reasonable power dissipation.

I. INTRODUCTION

Many-core CMP architectures with a network-on-chip
(NoC) have emerged as the next-generation of chip-
multiprocessors or CMPs [1], [2]. To reduce programming
complexity, a shared-memory programming model is chosen
relying on a hardware coherence protocol to deal with block
sharing in a safe way. Nevertheless, as core count increases,
developing efficient coherence protocols constitutes a great
challenge because the more block sharers the costlier coher-
ence activity will be required. Besides, apart from high perfor-
mance, an efficient coherence protocol should also deal with
other important aspects, including resulting complexity and
requirements in terms of on-chip area and energy consumption.

Directory-based, write-invalidate coherence protocols are
recognized as the design of choice to provide high performance
and scalability in future many-core CMPs [3]. To exemplify
the difficult decision-making process to address the previous
aspects at once, we choose Hammer [4] and Directory [5]
protocols. In ensuring coherence, Hammer relies on sending
as many coherence messages as the number of all private
caches in the system, meanwhile Directory keeps track of
exact coherence information about sharers (through a full bit

vector) to send coherence messages just to those private caches
with a valid copy of the memory block. Therefore, Directory
is more efficient in terms of performance and energy con-
sumption since it only injects the required coherence messages
into the CMP’s interconnection network. Besides, Hammer is
minimizes on-chip area overhead, because it does not devote
any extra hardware resources to encode a sharer list for every
memory block.

Efficient cache coherency is also related to efficiency of
the NoC employed. For instance, the MIT RAW processor’s
NoC dissipates 40% of the overall chip power [6] and then,
all coherence-related traffic may lead to significant energy
consumption. Whereas most prior work examined NoC effi-
ciency at architectural level (e.g., new topologies or improved
network routers), other researchers have opted to allocate
NoC resources based on characteristics of network traffic. For
instance, Volos et al. [7] propose a heterogeneous NoC with
two sub networks optimized to efficiently transmit request
and response messages. Likewise, as we can see, we have
analyzed network traffic to devise a dedicated NoC to improve
transmissions of those coherence-related messages with higher
impact on the critical path of cache misses (e.g., invalidations
of all copies of a shared memory block).

In this work, we propose Express COherence NOtification
(ECONO) protocol, a cache coherence protocol tailored to
future many-core CMPs. ECONO is basically a directory-based
protocol similar to Hammer, but it obtains performance results
similar to Directory. Besides, our proposal outperforms both
Hammer and Directory in terms of energy efficiency. ECONO
ensures coherence by relying on atomic broadcasts that are
transmitted over a lightweight dedicated on-chip network lever-
aging G-Lines technology [8] for maximum performance and
scalability. Those atomic broadcasts stem from the most critical
coherence-related traffic above explained. Projections for a
1024 core system reveals that our on-chip network entails more
than 2× less on-chip storage than one of the most efficient and
scalable directory-based coherency to date (SCD [3]), while
keeping with reasonable power dissipation (5× power of a
single read port in a 512-KB L2 cache bank).

The rest of the paper is organized as follows. Section II de-
scribes our proposal. A comprehensive evaluation of ECONO
is carried out in Section III. Finally, Section IV shows our
conclusions and future work.



(a) Invalidation of block sharers (b) Data recovery in 4 hops (c) Data recovery in 3 hops

Fig. 1: Coherence maintenance in ECONO. Messages depicted above fine black arrows travel through the main interconnection
network, whereas thick pink arrows illustrate the ACN messages through the GecNetwork.

II. ECONO CACHE COHERENCE PROTOCOL

A. Design

To develop a cost-effective coherence protocol, we take
advantage of the minimal area overhead required by the Ham-
mer protocol, that does not store the list of sharers for every
memory block. This is the reason why our proposal makes
use of broadcasting to accomplish the coherence actions. We
decided to convey all broadcast messages through a dedicated
on-chip network in order to avoid compromising QoS of
applications. Notice that, neither Hammer nor Directory, nor
the vast majority of protocol designs operate in this way.
Moreover, due to coherence messages are commonly very short
(i.e., the combination of the requested block’s address and type
of coherence operation could be enough), ECONO’s network
features a very lightweight and low-bandwidth infrastructure
to minimize its impact on on-chip area as much as possible.
Broadcast messages are transmitted in ECONO atomically. In
consequence, we obtain simpler protocol specifications which
is of paramount importance to reduce design complexity and
protocol verification [9]. From now on, these atomic broadcast
messages will be referred to as Atomic Coherence Notification
messages (ACN messages). Finally, for superior efficiency,
we implement the ECONO’s network by using G-Lines tech-
nology [8] that, as we will see, leads to minimal on-chip
area overhead, extremely fast broadcast coherence messages
and minimal energy consumption. This special network will
be so-called the G-Line-based express coherence Network
(GecNetwork).

B. Baseline Operation

To illustrate how ECONO would operate, we assume
a many-core CMP architecture composed of a number of
replicated tiles where each tile contains a private L1 cache
and a slice of a shared L2 cache (further details in Sec-
tion II-D). Moreover, as baseline implementation we consider
MESI state machines for the L1 caches, and a very simple
request-response operation mode in which home tiles do not
delegate coherence responses to L1 caches (i.e., no forward
messages are employed that would increase complexity at
L1 caches and directory controllers). Additionally, every ACN
message contains all the information required for the coherence
operation: the address of the requested block and the type of
ACN message (e.g., invalidation of block sharers).

Fig. 1 exemplifies how our proposal would operate under
two typical scenarios for the maintenance of coherence: invali-
dation of block sharers, and data recovery from a block owner.

Notice that, when coherence activity is not necessary (e.g.,
the home tile delivers its valid copy of the memory block to
the requesting core), our protocol would behave exactly as the
Hammer protocol, conveying the required network transactions
through the main CMP’s network. The first scenario is depicted
in Fig. 1a. The figure shows the case of a particular memory
block that is being shared among different L1 caches (multiple
copies of the block, each one in S state), and a requesting core
(R) that gets a write miss in its L1 cache and sends a write
request (1.GetW) to the home tile (H). In this case, the proper
coherence action would be the invalidation of all cached copies
before delivering the valid home’s copy and write permission
to the requester. In ECONO, since home tiles do not store a
list of sharers for every memory block, a coherence operation
similar to what is done in Hammer should be performed. More
precisely, in Hammer the home tile sends as many invalidation
messages as the number of L1 caches in the system just to
make sure that all L1 sharers (S) invalidate their copies. After
an L1 cache (S or I) receives the latter message, it replies with
an acknowledgement message towards the requester (R). In the
meantime, the requester collects all the acknowledgements and
the home’s memory block. Then, upon receiving all messages,
the write cache miss is completed and the requester sends an
unblock message to the home tile. Note that, like Hammer and
Directory, ECONO uses unblock messages in order to handle
races in a simple way [10].

Our coherence protocol improves the latter process as illus-
trated in Fig. 1a. First, instead of sending as many invalidation
messages as L1 caches in the system, ECONO makes use of
a unique ACN message (see 2.b INV) which is broadcast
through a special on-chip network (i.e., the GecNetwork),
thereby saving traffic from the main CMP’s network and
energy. And second, differently to Hammer, the requester does
not waste time waiting for the acknowledgement messages
because our coherence protocol can safely operate without
them. It is accomplished by transferring the ACN messages
atomically with a predictable and constant propagation latency.
As a result, after a certain amount of time, the home tile
precisely knows that all L1 caches have received the ACN
message, thereby its copy of the block and write permission
can be delivered to the requester. In the figure, we represent
the atomic transmission with three different steps. First, before
starting the coherence action, the home tile must acquire the
use of the GecNetwork in mutual exclusion (see 2.a) because,
as discussed later, this network is shared among all home tiles
in the system and is conceptually like a bus. Second, the ACN
message is broadcast to invalidate all L1 caches (2.b). And



third, after a certain amount of time (the time required to reach
all L1 caches), the home knows that all cached blocks have
been removed and it can release the GecNetwork (2.c). The
rest of the process would be the same as commented above
(3.Data and 4.Unblock).

In Fig. 1b, we show the actions performed in the second
scenario1. Here, there exists only one modified copy of the
block in a single L1 cache (i.e., the owner or M in the figure)
and a requesting core that wants to write or read (see 1.GetX
for the general case) the block. The process would be the same
as before but now the owner would invalidate (for a write miss)
or downgrade (for a read miss) its copy, and it would send the
block to the home tile (3.Data). Next, the home would send
the block to the requester (4.Data) and so on. It is worth
noting that the home tile can distinguish between whether it
must expect a Data message from the owner or can send its
copy of the memory block (e.g., Fig. 1a), depending on the
L2 cache state stored for the particular memory block, as it is
done in the Hammer protocol.

C. Extensions to the Baseline ECONO Protocol

As explained above, the baseline ECONO implementa-
tion makes use of a request-response operation mode that
involves up to four hops in the critical path of a cache
miss (see Fig. 1b). From now on, this implementation will
be called 4-hop ECONO. Hammer and Directory optimize
this situation by reducing the number of hops to three using
forward messages transmitted from the home tiles to the owner
caches. Fig. 1c) illustrates this optimization when considering
our ECONO protocol. As we can see, through a forward
ACN message (2.b FWD), the home tile would delegate the
coherence action to the particular block owner (see M) which
will ultimately send its copy of the block to the requesting core
(3.Data), thereby saving one hop in the critical path of the
cache miss. Hence, a shorter critical path involves a slightly
higher protocol complexity and a larger ACN message that
must include the requester’s ID needed by the block owner.
This implementation will be referred to as 3-hop ECONO.

Figure 2a illustrates the format of an ACN message. As
we can observe, it is made up of two different fields: the
head, that is used to identify the type of action to be applied
(e.g., invalidation or forward); and the payload, that stores
the information required to identify the cached blocks that
will be affected by the coherence action (e.g., the block
address). Modifications to the ACN format define another
group of extensions for the two implementations considered
for ECONO. On the one hand, regarding the baseline 4-
hop ECONO, according to Section II-B, the head field needs
to cover two coherence actions: invalidation and downgrade.
In particular, we have also considered two subtypes for the
invalidation case2 depending on whether the action involves
a single owner (M in Fig. 1b), or multiple sharers (S in
Fig. 1a). Note that, like in Directory, the home tile readily
would identify both cases by means of different states at the L2
cache. Therefore, to cover all possible cases, this field contains
2 bits. Furthermore, the payload field contains the block

1As explained in Section II-C, Fig. 1c illustrates an optimized version of
the second scenario.

2This will be necessary to support the state filter explained below.

(a) Format of the ACN messages.

(b) 4-hop ECONO: BlockAddress, Index and
Index+ExtraBits.

(c) 3-hop ECONO: ID+BlockAddress.

Fig. 2: Format of the ACN messages for both implementations
of ECONO.

address of the ACN operation. This configuration is called
BlockAddress and is outlined at the top of Figure 2b. While
this is the most precise way to perform a coherence action,
since the block address unequivocally identifies every copy in
the L1 caches, we could consider a smaller number of bits
in order to reduce propagation latency of the ACN messages
as we will show in Section II-D. For example, every ACN
message could contain a subset of the entire block address that
would identify the cache entry where the block would be (i.e.,
the index). Nonetheless, the problem with this configuration,
called Index and shown in the center of Figure 2b, would be
when the L1 caches do not follow a direct-mapped scheme. For
instance, in a N-way set-associative scheme, up to N cached
blocks could be invalidated which may entail extra L1 cache
misses that would degrade performance. To alleviate such an
issue, we propose two different optimizations.

The first optimization will be referred to as
Index+ExtraBits and is depicted at the bottom of
Figure 2b. Here, apart from including the index field, we
could incorporate some extra bits taken from the block
address to check against the same bits stored in the tag
address of every L1 cache entry. So, the more extra bits
included the lower probability of invalidating wrong cached
blocks. As a second optimization, we propose to apply
two types of filters at the L1 caches aimed at reducing the
number of cached blocks affected by the imprecision that
the ACN messages entail. The state filter, that prevents from
invalidating cached blocks with irrelevant stable states: in
downgrade or invalidation actions on owners’ caches, stable
states different to M or E; and for invalidations of multiple
sharers, stable states other than S. Moreover, we propose the
sharing filter, that would exclude all private blocks in the
particular L1 cache entry from the coherence operations, due
to coherence is only maintained for shared blocks. To this
end, we assume an OS-based classification similar to [11].

On the other hand, as to the 3-hop ECONO, the head
field needs to cover three coherence actions. First, invalidation,
which is used to invalidate all shared copies in the system



Fig. 3: 3×3-tile CMP system and main components of a tile.

(e.g., for a write cache miss in Fig. 1a). Second, forward-
downgrade, which is used to downgrade the owner’s copy and
forward the data to the requesting core (for a read cache miss
in Fig. 1b). And third, forward-invalidate, where the owner
forwards and invalidates its copy (for a write cache miss in
Fig. 1b). Consequently, in the 3-hop ECONO, the head also
requires 2 bits. Finally, for the payload field, we will only
consider an ACN message in which the block address is used
along with the requester’s ID to identify the destination of
the forward message. This configuration will be referred to as
ID+BlockAddress and is shown in Figure 2c. The number
of bits required by the ID will depend on log

2
(T iles) in the

system (e.g., 4 bits for the 16-tile configuration assumed in this
work). Besides, in this ECONO implementation, we will not
make use of shorter and imprecise ACN messages. Imprecise
forwards would be very difficult to manage because there may
be forwards to wrong owners, forwards to the correct owner
on wrong blocks, or even data responses to wrong requesters
from correct or wrong owners.

D. Physical Implementation

To develop our proposal, we choose a conventional tiled
CMP architecture composed of a number of replicated tiles
interconnected by means of a tightly integrated point-to-point
2D-mesh network (see Fig. 3 for a 3×3-tile layout). Each tile is
comprised of a CPU core, two levels of an inclusive hierarchy
of caches (private L1s and a logically-shared physically-
distributed last-level L2 cache or L2 bank) with their respective
L1 and L2 controllers, and a network interface or router that
connects all tiles to the main network. Moreover, we use the
less significant bits of the block address to determine the home
tile for every memory block.

The architecture of ECONO is made up of two dedi-
cated on-chip networks: the GecNetwork, to transmit the ACN
messages; and the GLock, to guarantee atomicity for the
transmissions. Both networks are implemented by assuming
the G-Lines technology for superior efficiency. This technology
was conceived to mitigate the well-known performance limita-
tions in terms of latency, area overhead and power consumption
of conventional RC-wires as feature sizes shrink [12]. In short,
every G-Line is a long wire that enables extremely fast 1-bit
communications across one dimension of the chip. That is the
reason why our on-chip networks will be composed of global
1-bit width links as building blocks.

1) GecNetwork: To broadcast the ACN messages, this
dedicated on-chip network outlined in Fig. 4a is made up of
horizontal and vertical G-Lines, and two types of controllers:
Tx, that a particular home tile uses to transmit an ACN
message; and Ry, that all the remaining tiles utilize (i.e.,

(a) GecNetwork (b) GLock

Fig. 4: Dedicated networks required for a 9-tile CMP. Every
circle represents a tile, thick gray lines constitute the main
2D-mesh interconnect, and finer lines are for the ECONO’s
networks with their respective controllers depicted as boxes.

their corresponding L1 caches) to receive the transmitted ACN
message. In this way, Tx controllers are co-located with the
L2 controllers, whereas Ry controllers are co-located with
the L1 controllers (see Fig. 3). The transmission of the ACN
messages follows an efficient pipelined three-phase scheme.
First, a particular Tx controller writes a message into its
horizontal line. Then, the horizontal line in which the Tx is
attached to broadcast the message to all the Ry controllers
attached to the same line. Second, a vertical line is devoted to
broadcast this message to the remaining horizontal lines. And
third, these horizontal lines broadcast the message to the rest
of Ry controllers. To shorten propagation latency of the ACN
messages, we could employ lines of n-G-Lines to transmit n
bits in parallel in every of the three phases.

2) GLock: To perform the atomic transmissions of the ACN
messages, there may be multiple home tiles competing for the
GecNetwork ownership. Therefore, it would be necessary to
use a fair and efficient mechanism to resolve these possible
scenarios. Due to its similarity to the problem of efficiently
managing highly-contended locks in parallel applications, we
adapt the GLock proposal in [13] to manage contention at L2-
bank level (i.e., at every home tile). As outlined in Fig. 4b,
our GLock comprises a set of manager and local controllers
(called C for simplicity) which are interconnected by means of
horizontal and vertical G-Lines. In short, the local controllers
are in charge of requesting, receiving and releasing the Gec-
Network ownership, meanwhile manager controllers arbitrate
for fairly granting the ownership. Since the GLock is utilized
by home banks, the C controllers are co-located with the L2
controllers (see Fig. 3).

III. EVALUATION

A. Methodology

As testbed, we use full-system simulation by means of
Virtutech Simics [14] (running Solaris 10) extended with
Wisconsin GEMS toolset [15]. The latter provides detailed
simulation of multiprocessor systems along with precise mod-
eling of timing and energy consumption for the interconnec-
tion network, through GARNET [16] and ORION 2.0 [17]
components, respectively. Moreover, energy consumed by the
cores in the simulated 16-core CMP has been modeled with
McPAT [18]. Table I summarizes the values of the main
configurable parameters assumed in this work.



TABLE I: CMP baseline configuration.

Tiles 16

CPU Core 3 GHz, in-order, single-issue

Cache Hierarchy Cache line size: 64 Bytes

L1 I/D-Cache: 32 KB, 4-way, 2 cycles

L2 Cache Bank: 512 KB, 8-way, 12+4 cycles

Memory access time 250 cycles

Network configuration Topology: 2D-mesh

Routing: X-Y Dimension Ordered

Packet size: 72 Bytes (Data); 8 Bytes (Control)

Bandwidth: 48 GB/s

Flit size: 16 Bytes

Link bandwidth: 1 flit/cycle

TABLE II: Benchmarks and input sizes.

Benchmarks Input Size

Barnes 8192 bodies, 4 steps

FFT 64K complex doubles

Ocean 258×258 ocean

Radix 1048576 radix

Raytrace-opt Teapot

EM3D 38400, degree 2, 15%, 50 steps

Tomcatv 256 points, 5 time steps

Unstructured Mesh.2K, 5 time steps

Swaptions simmedium

As benchmarks, we use nine multi-threaded applications:
five from the SPLASH-2 benchmark suite [19], one from the
PARSEC benchmark suite [20], and three additional scientific
applications. Table II shows them and their respective problem
sizes. As we will discuss, these applications were chosen
because they exhibit different communication patterns ranging
from small coherence activity like in Barnes to high activity
like in Swaptions. All experimental results reported in this
work are for the parallel phase of the benchmarks under study.

To quantify the performance benefits derived from our
proposal, we compare the best-performing configurations for
4-hop and 3-hop ECONO against the two contemporary
coherence protocols considered in this work: Hammer and
Directory. To determine the optimal settings, we explored the
efficiency of all the extensions discussed in Section II-C. From
this study, omitted in this work for the sake of brevity, we
conclude the following:

1) The GecNetwork must be comprised of three G-Lines
resulting in a 3-bit width network.

2) Two GecNetworks for ECONO is enough to provide
marginal contention.

3) The 4-hop ECONO with a Index+5 payload
presents the best choice because this imprecise con-
figuration has marginal extra L1 cache misses, while
taking benefit from shorter propagation latencies (i.e.,
ACN messages with less bits to transfer).

4) The 3-hop ECONO protocol with the
ID+BlockAddress payload constitutes the
best option because imprecise ACN messages leads
to high complexity in the protocol as we will explain.

5) We must implement both the state and sharing filters
(further details in Section II-C).

Fig. 5: Coherence activity in the Directory protocol.

To ensure a fair comparison in terms of performance,
all protocols share a common specification that consists of
write-invalidate policy, MESI state machines for the first-level
caches, and inclusive cache hierarchies with write-back caches
and an invalidation-on-eviction policy for L2 replacements. In
consequence, the Hammer implementation evaluated in this
work is an optimized version of [4] because of having precise
knowledge about the memory blocks that are cached. Note that,
otherwise, broadcasts would always be sent to both on-chip
caches and memory in order to obtain the requested data. This
would generate extra traffic into the interconnect when data is
off-chip, and important performance degradation waiting for
off-chip responses when no needed. Moreover, Directory has
been implemented by using upgrade requests. This entails an
optimization in terms of network traffic because an upgrade is
used to request write permission for a cached block with only
read permission. If the requester still remains as a sharer at
home’s coherence information, an acknowledgement message
from the latter would be sent instead of the home’s copy
of the block, thereby saving network traffic (i.e., 8 vs. 72
bytes according to Table I). Note that, the rest of protocols
evaluated in this work do not store the list of sharers so that
this optimization cannot be applied.

B. Performance Results

Before starting with the evaluation part, we depict in
Fig. 5 a characterization of the different coherence actions
performed by the Directory protocol in order to understand
where the improvements come from. We choose Directory
because this protocol distinguishes a more diverse set of
coherence actions to perform, what provides more information
for the performance comparison.

As we can observe in the figure, each bar is broken down
into four categories depending on the percentage of coherence
actions devoted to: forward messages, that comprehend all
coherence messages transmitted from the home tiles to the
owners in order to recover the single valid copy of the
requested block (Fwd in the figure); upgrade actions, that
result from granting write permission to a requesting core
that has a read-only copy of a cached block (i.e., it implies
invalidation of sharers and an acknowledgement sent to the
requester, or Inv&Ack); coherence activity devoted to grant
write permission to a requester that does not have a block
that is shared at the home tile (i.e., it involves invalidation of
sharers and delivery of the home’s block copy to the requester,
or Inv&Data); and finally, those actions that only require



Fig. 6: Normalized execution times w.r.t. Hammer.

sending the requested data to the requesting core (i.e., Data).
Note that, we do not expect to find significant performance
differences among the four protocols for benchmarks that
are dominated by coherence actions belonging to the Data

category (i.e., all but Raytrace, Swaptions and Unstructured),
because in such benchmarks all the protocols would behave in
the same way.

1) Execution Time: Fig. 6 shows the normalized execution
times with respect to those obtained when Hammer is con-
sidered. As expected, Directory achieves important reductions
in execution time (14% on average) because of using precise
coherence information which entails less coherence messages
to be transmitted (e.g., Invalidations) and to wait for (i.e.,
Acknowledgements). More specifically, the magnitude of these
savings depends on the number of coherence operations opti-
mized by Directory (i.e., those that fall into Fwd, Inv&Ack
and Inv&Data categories in Fig. 5). This is the reason why
negligible performance improvements are obtained in all but
Raytrace, Swaptions and Unstructured benchmarks. Besides,
the highest improvements are achieved in Swaptions because in
this benchmark roughly 50% of the coherence actions involve
a single point-to-point forward message (see Fwd category
in Fig. 5). Conversely, in Hammer, a number of messages
equal to the number of L1 caches in the system is required.
This increases execution time mainly because of the higher
contention at the main interconnect, and the more time spent
at requesting cores waiting for all the acknowledgements.

Regarding our ECONO implementations, by relying on a
single ACN message transmitted in broadcast over a dedicated
and very fast G-Line-based on-chip network, both implemen-
tations outperform the Hammer protocol. Nevertheless, the
4-hop ECONO requires one more hop when data recovery is
necessary as we discussed in Figure 1b, and then, it cannot
outperform Directory, that manages this situation much more
efficiently than Hammer does as follows. First, similar to
ECONO, Directory would require a single coherence message
sent to the particular owner that eventually would be in
charge of sending the data to the requester. Second, similar
to ECONO, the requester would not spend any time waiting
for acknowledgement messages. In particular, Raytrace and
Swaptions report the higher performance gap between the
4-hop ECONO and Directory because, as shown in Fig. 5,
these benchmarks have a fraction of approximately 30% and
50% devoted to forward messages, respectively (see the Fwd

category). Finally, when analyzing the execution times reported
by 3-hop ECONO, using less number of hops leads to slightly

Fig. 7: Normalized network traffic w.r.t. Hammer.

better results than Directory (2% on average). Note that, this
improvement is expected to be higher for larger many-core
CMPs because ECONO always transmits a single ACN mes-
sage through its extremely fast GecNetwork, whereas Directory
would require more and more coherence messages transmitted
through the ever-larger packet-switched CMP’s interconnect.

2) Network Traffic: Fig. 7 shows the total network traffic
depending on the implementations discussed above, normal-
ized with respect to Hammer. In particular, each bar plots the
number of bytes transmitted through the interconnection net-
work (the total number of bytes transmitted by all the switches
of the interconnect). As expected, Directory outperforms Ham-
mer (27% on average) because of using precise information
of cached blocks that removes all unnecessary coherence
messages from the interconnect. According to our character-
ization in Fig. 5, these improvements come as consequence
of the aggregate fraction of Fwd, Inv&Ack and Inv&Data

categories, since for such coherence actions Directory always
performs better than Hammer: Fwd and Inv&Data would
require sending as many point-to-point transmission as the
number of L1 caches in the system; and Inv&Ack would be
implemented as Inv&Data since an efficient implementation
of upgrade operations requires keeping track of the sharer list
for every memory block, so that a home tile always knows if
the requester still remains as a sharer in order to successfully
reply with the Ack. In this way, neither Hammer nor ECONO
implement upgrade messages.

Regarding the ECONO implementations, recall that our
protocol removes an important amount of coherence-related
traffic from the main CMP’s network (i.e., the home tiles
transmit ACN messages over the GecNetwork rather than
invalidation or forward messages over the main interconnect,
and no acknowledgements are necessary), so that it must lead
to significant reductions in network traffic. Considering the
4-hop ECONO implementation, we can observe that it does
not outperform Directory (degradation of 3% on average).
The reason is that requiring indirection to the home tiles for
data recovery (see Fig. 1b) implies more hops and then, more
messages are injected into the main interconnect to convey
data blocks to the requesting cores. Note that, according to
the simulation parameters shown in Table I, control messages
are one-9th of the size of data messages, and then injecting
more data messages to reach the requester’s cache nullifies the
benefits of removing all coherence requests and acknowledge-
ments for almost all the benchmarks.



Fig. 8: Normalized Energy Consumption w.r.t. Hammer.

TABLE III: Projection of peak power dissipated by ECONO
protocol.

Cores Transmitters Receivers Power(W)

128 350 1,082 0.642

256 696 2,160 1.281

512 1,386 4,326 2.562

1024 2,762 8,654 5.118

As to the 3-hop ECONO protocol important reductions are
reported, due to the fact that forwarding operations are enabled.
As we can observe in Fig. 7, this implementation saves network
traffic by 3% compared to Directory. In particular, applications
such as Swaptions or Raytrace, that present frequent inval-
idation of sharers and forward operations (see Inv&Data,
Inv&Ack and Fwd categories in Fig. 5), report the highest
improvements. Moreover, Unstructured reports similar results
to Directory because, in this benchmark almost 40% of the
coherence activity observed in Directory is optimized by
using upgrade petitions that replace data responses with the
shorter acknowledgement messages (see Inv&Ack category
in Fig. 5).

3) Energy Consumption: We quantify the peak power
dissipated by the G-Line-based ECONO architecture. To this
end, we employ the same power dissipation parameters for
a 65-nm CMOS process described in [8]: 0.6 mW per T

controller; and 0.4 mW per R controller. Moreover, according
to [8] no static power is dissipated by the G-Line circuitry.
We obtained that the total peak power dissipated by ECONO
using two GecNetworks is equal to 87.6 mW . More precisely,
31.8 mW for a single 3-G-Line GecNetwork and 12 mW for
its GLock. Utilizing CACTI [21], the magnitude of 87.6 mW
is approximately one-4th of the power dissipated per read port
in the L1 caches simulated (see Table I). Moreover, Table III
illustrates how the 3-G-Lines 2-GecNetworks ECONO would
scale as the core count grows from 128 to 1024 cores. Since
every G-Line can support up to seven controllers as much [8]
(i.e., 7×7-core CMPs using a 2D-mesh topology), for larger
CMPs we connect groups of 7×7 cores in a hierarchical
scheme. The total amount of transmitters and receivers is
also shown in every case with the total power dissipated by
them. As we can observe, for a 1024-core system, 5.118 W
are dissipated. By using CACTI [21], we obtain that this
magnitude is roughly 5× the power dissipated by a read port
in an L2 cache (see Table I) that is not very much taking into
account this large number of cores.

We conduct an energy comparison for the four protocols
and the 16-core CMP system. For that, both ORION 2.0
and McPAT tools have been configured to provide energy
results for a 65-nm CMOS process to be consistent with the
G-Line technology. Fig. 8 illustrates the normalized energy
consumption normalized with respect to Hammer protocol
considering both static and dynamic energy. Each bar is broken
down into three categories depending on the percentage of
energy devoted to: our ECONO infrastructure, taking into
account the power dissipation results exposed above; the
main interconnection network (Network); and all tiles in the
simulated system (Tiles). As we can observe, reductions in
the energy consumed are directly related to the reductions
in execution time and network traffic already exposed for
Directory and both ECONO implementations (see Tiles and
Network categories respectively). For instance, the Network
category is considerably reduced in case of Raytrace, Swap-
tions and Unstructured due to the important reductions in
network traffic reported in Fig. 7. Likewise, Tiles category is
also improved due to the reductions in execution time plotted in
Fig. 6. Moreover, due to the negligible extra power dissipation
required by the ECONO infrastructure for a 16-core CMP, the
ECONO category represents a marginal fraction of the energy
consumed for the full system. Consequently, 4-hop ECONO
is more energy efficient than Hammer (18% on average), and
that 3-hop ECONO is the most energy efficient design (3%
better than Directory on average).

4) On-Chip Area: In this section, we compare on-chip area
overhead required by ECONO against Directory. For that, we
analyze different types of encoding representations ranging
from the full-map employed in Directory to those optimized
representations of Hierarchical [22] and SCD [3]. The former
allows an exact and area-efficient representation of sharer
sets where a hierarchy of two levels of directories are used:
each first-level directory encodes the sharers of a subset of
caches, and the second level tracks directories of the previous
one. SCD constitutes one of the most efficient directories
to date. It encodes exact sharer sets by using variable-size
representations: lines with one or few sharers use a single
directory tag, while widely shared lines use additional tags. To
increase performance it also leverages novel highly-associative
caches as in Cuckoo Directory [23].

Table IV shows the storage overhead depending on the
three directory organizations considered (Full-map Directory,
Hierarchical and SCD) from 128 to 1024 cores. Area over-
head is given as a percentage of the total area required by
aggregating all L2 caches in every case (we use the L2
cache size shown in Table I). We base the percentage on
the study carried out in [3]. Last column accounts for our
ECONO protocol. In this case, the percentages stem from the
ECONO on-chip area overhead considering the 3-G-Lines 2-
GecNetworks configuration. To obtain such values, we follow
the specifications given in [8]: 7-mm G-Lines and a differential
pair width of 5.6 µm. This leads to 0.0392 mm2 per G-Line
including its controllers, actually 0.0292 mm2 if we share the
ground shield every two pairs. The table illustrates that our
ECONO infrastructure considerably reduces the on-chip area
overhead of a Full-map Directory (10×-27×), and save more
than 2× area with respect to the most efficient an scalable SCD
protocol. From this study, we can also affirm that ECONO is
the most scalable design in terms of on-chip area overhead.



TABLE IV: Storage requirements for different Directory protocols against the 3-G-Lines 2-GecNetworks ECONO protocol.

Cores Full-map Hierarchical SCD ECONO Full-map vs ECONO SCD vs ECONO

128 34.18% 21.09% 10.94% 2.44% 10.25× 4.48×

256 59.18% 24.22% 12.50% 2.91% 17.16× 4.29×

512 109.18% 26.95% 13.87% 5.23% 19.11× 2.65×

1024 209.18% 30.86% 15.82% 7.22% 27.71× 2.19×

IV. CONCLUSIONS AND FUTURE WORK

In this paper we propose ECONO, an efficient and scalable
coherence protocol for many-core CMPs. To keep coherence,
our proposal relies on express coherence notifications (ACN
messages) which are broadcast atomically over a dedicated
lightweight on-chip network leveraging G-Lines technology.
We study a baseline implementation for our coherence protocol
and propose two different extensions. First, 4-hop ECONO
with imprecise coherence information to shorten the size of
ACN messages, hence operation latency. And second, we also
consider a 3-hop optimization to reduce the number of hops
and save network traffic. Detailed execution-driven simulations
of a 16-tile CMP suggest that the best option to implement
ECONO consists of the 3-G-Lines 2-GecNetworks fabric.
Moreover, when considering imprecise coherence information,
Index+5, that comprises both the index field and five extra
bits taken from the block address, is the preferred choice.
To quantify the performance benefits of our proposal, we
compare the best-performing configurations for 4-hop and
3-hop ECONO against two contemporary coherence protocols,
Hammer and Directory. Our study reveals that our proposed
protocol improves considerably Hammer in terms of execution
time and network traffic, outperforms significantly Directory
in on-chip area, and constitutes the most energy efficient de-
sign. Projections for a 1024-core system reveals its promising
scalability since ECONO requires 2× less space overhead in
comparison to the most efficient SCD protocol to date, while
keeping with reasonable power dissipation.

As future work, we plan to minimize impact on energy
consumption for those ACN messages transmitted when there
is a single block owner or a reduced number of block’s
sharers. For that, we would incorporate broadcast filtering
at GecNetwork level to reach only the required L1 caches.
Moreover, we will investigate the possibility to include the
identity of the next block owner into the ACN messages. In
this way, every atomic broadcast would notify all L1 caches
regarding the block owners for their cached blocks, thereby a
subsequent L1 cache miss could be resolved directly by the
particular cache owner avoiding indirection to its home tile.

ACKNOWLEDGMENT

This work was supported by the Spanish MINECO under
grant TIN2012-38341-C04-03. This work was done while
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