
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2015; 00:1–12
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

A dedicated private-shared cache design for scalable
multiprocessors

Juan. M. Cebrián1,∗ Ricardo Fernández-Pascual1, Alexandra Jimborean2,
Manuel E. Acacio1 and Alberto Ros1

1 Computer Engineering Department, Universidad de Murcia, Murcia, Spain
2 Department of Information Technology, Uppsala Universitet, Uppsala, Sweden

SUMMARY

Shared-memory architectures have become predominant in modern multi-core microprocessors in all market
segments, from embedded to high performance computing. Correctness of these architectures is ensured
by means of coherence protocols and consistency models. Performance and scalability of shared-memory
systems is usually limited by the amount and size of the messages used to keep the memory subsystem
coherent. Moreover, we believe that using the same mechanism to keep coherence for all memory accesses
can be counterproductive, since it incurs unnecessary overhead for private data and read-only shared data.
Having this in mind, in this paper we propose the use of dedicated caches for two kinds of data. The private
cache (L1P) will be independent for each core and will keep data that can be accessed without contacting
other nodes (i.e., private data and read-only shared data), while the shared cache (L1S) will be logically
shared but physically distributed for all cores and will keep modifiable shared data. This separation should
allow us to simplify the coherence protocol, reduce the on-chip area requirements and reduce invalidation
time. This dedicated cache design requires a classification mechanism to detect private and shared data.
Results show two drawbacks to this approach: first, the accuracy of the classification mechanism has a huge
impact on performance. Second, a traditional interconnection network is not optimal for accessing the L1S,
increasing register-to-cache latency when accessing shared data.
Copyright c© 2015 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Coherence protocols, private data, shared data, separate caches

1. INTRODUCTION

Modern chip multi-processors feature a mix of latency and throughput oriented cores running both

sequential and multithreaded applications and mixed workloads. These architectures usually share

a common memory space that is kept coherent through hardware mechanisms. While coherence

and memory consistency are key aspects to ensure the correct execution of the applications on

the system, they usually incur performance overheads proportional to the size of the system (i.e.,

number of cores, interconnection characteristics, etc). In addition, the implementation choice of the

cache coherence protocol has a considerable impact on scalability in terms of area requirements,

application execution time and energy expenditure.

Data accessed by applications show a wide range of data sharing degrees, from thread local data

to data shared by multiple cores. The sharing degree is mainly influenced by the programming

methodology and the nature of the application. However, traditional coherence protocols maintain

coherence in the same way for all data accesses, regardless of the nature of the data that is being

∗Correspondence to: jcebrian@ditec.um.es

Copyright c© 2015 John Wiley & Sons, Ltd.

Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]

2 J. M. CEBRIÁN, R. FERNÁNDEZ-PASCUAL, A. JIMBOREAN, M. E. ACACIO, AND A. ROS

accessed. In other words, blindly handling all memory accesses in the same way can be suboptimal,

since the coherence protocol incurs in unnecessary overhead for accesses targeting addresses that

would remain coherent anyway, such as private data [1] and read-only data [2].

Recent literature provides plenty of hardware optimizations that make use of the private or shared

nature of data or accesses. For example, Hardavellas et al. [3] and Li et al. [4, 5] employ the

classification to optimize distributed shared caches (NUCA: Non-uniform Cache Architecture),

Kim et al. [6] improve the efficiency of token-based protocols, and Cuesta et al. [1, 2] reduces

the pressure in the directory caches (see Section 5 for more examples).

The hardware optimizations based on the knowledge of the private or shared nature of the

data require mechanisms to detect and classify such properties. There are many classification

mechanisms in the literature that work at different levels: compiler [7, 4, 5, 8], operating

system (OS) [1, 3, 6], translation look-aside buffer (TLB) [9, 10], or at the coherence protocol

level [11, 12, 13].

This work explores a novel architecture design that takes advantage of the nature of the accessed

data. Our main objective is to provide simplicity and scalability in a multi-core design. In particular,

we rely on the usage of two dedicated caches: a private cache (L1P) and a shared cache (L1S).† The

L1P cache stores only private and shared-read-only data. Coherence actions for these data blocks are

only required when their nature changes from private or read-only to shared-read-write or vice versa.

These coherence actions are performed locally, without the need to communicate with other cores,

but with the next cache level. On the other hand, the shared cache is logically shared but distributed

across all cores, i.e., a NUCA cache. In this case, no coherence actions are needed because there is

only one copy of each data block at a particular level in the cache hierarchy. This way, the memory

coherence of the system is maintained without needing neither a directory, nor snooping requests.

With this dedicated private and shared cache design we expect to simplify the coherence protocol,

since the coherence actions are local to the core executing them, and to eliminate completely the area

overhead entailed by the coherence protocol, since no information about the data cached in other

cores is required. Our goal is therefore to improve scalability with none or negligible performance

degradation. We will guide the reader through the design process highlighting the benefits of the

proposal, the problems that led us to negative results, and the future research lines that derive from

this work. Our contributions include:

• A dedicated cache design for chip multiprocessors that exploits the nature of the accessed

data.

• Analysis of different implementations of the concept, including using a two-dimensional mesh

and a point-to-point network.

• Analysis of different private-shared classification techniques, explaining the benefits and

drawbacks of each approach.

• Evaluation of the proposal in terms of performance, network traffic and cache miss ratio using

several interconnects and classification techniques.

• Discussion on the design flaws of the proposal, conditions required by the architecture to be

efficient, and suggestions about future research lines.

The rest of the paper is organized as follows: Section 2 describes the implementation details of

our proposal. Section 3 explains the evaluation environment, and provides details of the analyzed

processor configuration. Section 4 discusses the main results of our research. Section 5 describes

state-of-the-art solutions that exploit the nature of accessed data and compares them to our proposal.

Finally, we conclude with Section 6 and suggest directions for further research.

†Although in this work we focus on a single level of local cache (per core), the proposed concepts are extensible to
several levels of local caches.

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

A DEDICATED PRIVATE-SHARED CACHE DESIGN FOR SCALABLE MULTIPROCESSORS 3

L1P
L1S

Bank

Router

Private Access
Shared Access

Core

(Classi�cation)

L2 Bank

......................

L1P
L1S

Bank

Router

Private Access
Shared Access

Core

(Classi�cation)

L2 Bank

......................

L1P
L1S

Bank

Router

Private Access
Shared Access

Core

(Classi�cation)

L2 Bank

......................

L1P
L1S

Bank

Router

Private Access
Shared Access

Core

(Classi�cation)

L2 Bank

......................

L1P
L1S

Bank

Router

Private Access
Shared Access

Core

(Classi�cation)

L2 Bank

......................

L1P
L1S

Bank

Router

Private Access
Shared Access

Core

(Classi�cation)

L2 Bank

......................

L1P
L1S

Bank

Router

Private Access
Shared Access

Core

(Classi�cation)

L2 Bank

......................

L1P
L1S

Bank

Router

Private Access
Shared Access

Core

(Classi�cation)

L2 Bank

......................

L1P
L1S

Bank

Router

Private Access
Shared Access

Core

(Classi�cation)

L2 Bank

......................

L1P
L1S

Bank

Router

Private Access
Shared Access

Core

(Classi�cation)

L2 Bank

......................

L1P
L1S

Bank

Router

Private Access
Shared Access

Core

(Classi�cation)

L2 Bank

......................

L1P
L1S

Bank

Router

Private Access
Shared Access

Core

(Classi�cation)

L2 Bank

......................

L1P
L1S

Bank

Router

Private Access
Shared Access

Core

(Classi�cation)

L2 Bank

......................

L1P
L1S

Bank

Router

Private Access
Shared Access

Core

(Classi�cation)

L2 Bank

......................

L1P
L1S

Bank

Router

Private Access
Shared Access

Core

(Classi�cation)

L2 Bank

......................

L1P
L1S

Bank

Router

Private Access
Shared Access

Core

(Classi�cation)

L2 Bank

......................

L1P
L1S

Bank

Router

Private Access
Shared Access

Core

(Classi�cation)

L2 Bank

......................

Figure 1. Dedicated cache design diagram.

2. SEPARATE CACHES FOR PRIVATE AND SHARED DATA

In this paper we propose a novel cache design that uses two separate caches to store two types of

data. A private L1 cache (called L1P) for each core is used to store both private and shared read-only

data, while a logically shared but physically distributed L1 (called L1S) is used to store modifiable

shared data. This design avoids having more than one copy of any modifiable data with the intention

of simplifying the task of guaranteeing memory coherence.

The L1P works much as a regular private L1 data cache, but it does not have to deal with external

requests from other cores. This significantly simplifies the implementation of the cache controller.

On the other hand, the L1S works like a NUCA cache in a tiled chip multiprocessor (CMP). Each

tile provides a bank for the global L1S and accesses to shared data may perform the look-up in

the L1S in the local bank or in a remote bank. The distributed nature of the L1S cache requires

an interconnection network to direct the request to the home tile (L1S bank) where the requested

data block maps. The L2 cache in our proposal has also a NUCA architecture, but it can store both

private and shared blocks as in most other designs.

In the proposed architecture, when a core executes a memory instruction (e.g., load or store), it has

to know the type of the access (see Section 2.1) before it is initiated in order to decide if the memory

request should be sent to the L1P or to the L1S (Figure 1). The access to the L1P is performed as in

standard implementations. However, the access to the L1S may require extra latency. In particular,

when the access is performed in a remote bank, an 8-byte (control) request message is sent to the

corresponding bank, and an 8+8-byte response message (control+requested word) is sent back to

the requesting core through the interconnect.

The main benefits of this design are the following:

✦ It eliminates the need for core-to-core communication (both directly or indirectly) to keep

cache coherence. No invalidation messages are issued upon write misses, because shared

read-write data always reside in a unique place in the shared cache. On the other hand, no

forwarding messages are required to read a copy cached by a different core, since the up-to-

date copy of the data is guaranteed to be in the shared cache. This considerably reduces the

complexity of cache controllers and the number of protocol transient states.

✦ It completely eliminates the need for a directory, since no invalidation or forwarding messages

are required. Provided that, typically, the area required by the directory structure is one of the

main limitations for building large-scale multi-core architectures, the scalability of multi-core

processors is largely improved by our proposal.

✦ It removes the indirection to the directory, thus resolving all cache misses in two hops, without

the need of waiting for invalidation acknowledgements.

✦ It reduces the pressure in the L1P, and therefore the number of cache misses, since private

data will not compete with shared data, which have completely different associativity

requirements [14, 15].

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

4 J. M. CEBRIÁN, R. FERNÁNDEZ-PASCUAL, A. JIMBOREAN, M. E. ACACIO, AND A. ROS

✦ It reduces the amount of memory required for the L1 caches, since shared blocks are not

duplicated in several L1 caches. In general, the L1 caches are better utilized.

✦ It allows specialized cache designs for private and shared data blocks.

However, this design does not come without drawbacks. The main disadvantages are the

following:

✪ It entails extra latency when accessing shared data, even when the access hits in the L1. A low

latency interconnect is necessary in order to overcome this drawback.

✪ The accesses to shared data are transmitted through the interconnect, thus increasing network

traffic. A high-bandwidth interconnect is necessary if the number of shared accesses becomes

predominant.

✪ It requires an effective classification mechanism to detect the nature of the accesses. This

mechanism should provide the information a-priori, that is, before accessing the L1.

The proposed design exhibits numerous advantages, nevertheless, the design of the interconnect

and the classification mechanisms are essential for the overall performance. A poor classification,

for instance, may cancel the benefits of the L1 split caches. In this work we analyze these important

design factors.

2.1. Classification mechanisms

Directory-based classification [11, 12, 13, 16, 17], despite providing high accuracy, is not suitable

for our proposal, since our architecture requires that the nature of the memory access is known

before the access is initiated. More importantly, using such techniques would require maintaining

hardware directories, which represent the main bottleneck in traditional coherence protocols, and

therefore were eliminated in our architecture design.

Similarly, TLB-based classification [9, 10] is able to detect a large amount of private pages, but

at the cost of extra complexity in the design of the TLBs. Since the main goal of this work is to

simplify the hardware required to maintain coherence, we discard the TLB-based approach. Next

subsections analyze the most promising classification mechanisms.

2.1.1. OS-based classification. The OS-based classification mechanism [1, 3, 6] operates at the OS-

level, hence at memory page granularity. This mechanism uses an additional bit in the page table to

mark the state of the page as private or shared. This P/S bit is also included in the TLB entries to

facilitate the retrieval of the classification information when performing a memory access to guide

the core accessing a block towards the cache that contains it.

OS-based classification mechanisms mark pages as private the first time they are accessed after

a page fault. The core ID of the node that requests the page is marked as the owner. Next, upon

each access, the classification mechanism first attempts to match the core ID of the owner and of the

core currently requesting the page. If they differ, an interruption of the first core is triggered, which

results in an update of the page table changing the state of the accessed page to shared.

The disadvantage of the OS-based classification is that it is highly conservative: (1) it operates on

a very coarse granularity marking as shared accesses that target distinct locations which reside in the

same memory page; and (2) it does not account for temporality and merely accumulates information

regarding accesses to the same memory page in different stages of execution. Thus, long running

programs yield a high degree of sharing, since eventually most of the pages will be accessed by

multiple cores.

2.1.2. Compiler-assisted classification. Compiler-assisted approaches inspect the code at compile-

time and conservatively classify accesses based on the nature of the target data [4, 5, 7] or based on

the nature of the code regions initiating the access [8].

Classifying data statically [4, 5, 7] poses monumental challenges for compilers due to

dynamic memory allocation, pointer chasing and other statically unknown events, yielding such

classifications either inaccurate, and thus not suitable for our proposal which must guarantee

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

A DEDICATED PRIVATE-SHARED CACHE DESIGN FOR SCALABLE MULTIPROCESSORS 5

Table I. System parameters.

Memory parameters

Block size & page size 64 bytes & 4 KB
L1 (or L1P) cache 32 KB, 4 ways, 4 cycles access latency
L1S cache (32 KB, 4 ways) per tile, 4 cycles + Network access latency
L2 cache (shared) 512 KB/tile, 16 ways, 12 cycles access latency
Memory access time 160 cycles

Network parameters

Topology 2-D mesh (4×4) & Point-to-point
Routing method X-Y deterministic
Message size 5 flits (data), 1 flit (control)
Switch-to-switch time 6 cycles (Garnet) & 1 cycle (Simple)
Bandwidth 1 flit per cycle

correctness, or highly conservative, which provides correctness guarantees but cancels the

optimization opportunities.

In contrast, compile-time classifications which exploit information regarding the nature of code

regions [8], namely data-race-free (DRF) and non-data-race-free (nonDRF) regions, are highly

accurate and do not resort to conservative decisions. Code region classification straightforwardly

stems: (1) from the programming paradigm, e.g. OpenMP parallel programming clearly delineates

DRF and non-DRF regions based on programmer’s annotations; (2) from the programming language

semantics, e.g. C++11 standards require DRF semantics; or (3) from compile-time analysis, e.g. in

automatically parallelized applications, the compiler has full knowledge of data sharing and of the

work distribution among the threads. Based on the code region classification, the compiler marks

accesses performed during the execution of DRF regions as private, while accesses within non-

DRF regions are shared. Hence, accesses targeting the same memory location at different stages of

execution may be marked differently.

3. EVALUATION METHODOLOGY

The proposed dedicated cache design has been evaluated using the cycle-accurate GEMS [18]

simulator. Our simulation infrastructure employs real system data accesses captured by a PIN [19]

tool, which are used as input for the GEMS simulator, similarly to other simulation tools [20, 21].

GEMS includes a detailed memory hierarchy model (Ruby) that enables us to estimate performance,

access latency, miss ratio, etc. The interconnection network is modeled using the two network

simulators included in GEMS. The Garnet simulator, which models accurately the network

contention, is used to simulate a tiled 2D-mesh design. The Simple network model, which does not

model contention, is used to model a more optimistic scenario that implements a point to point (P2P)

network. The simulated architecture corresponds to a chip multiprocessor (tiled-CMP) featuring 16

cores, as depicted in Figure 1. The most relevant simulation parameters are shown in Table I. The

evaluated multi-core systems implement two levels of on-chip caches.

The evaluation of the dedicated cache design is compared to a traditional MESI directory-based

coherence protocol that stores the directory information in the L2 cache (MESI-Inclusive in our

figures). We evaluate our proposal using the applications from the Splash-2 benchmark suite with

the recommended input sizes [22], and also using applications that can benefit from a compiler-

assisted classification, such as OpenMP codes from SpecOMP 2012 [23] (352.nab, 359.botsspar,

and 367.imagick —test input—) and Rodinia [24] (bfs —graph1MW 6.txt—, btree —mil.txt,

command.txt—, hotspot —1024 × 1024—, particlefilter —128 × 128 × 10, 10000 particles—,

and pathfinder —width 50000—).

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

6 J. M. CEBRIÁN, R. FERNÁNDEZ-PASCUAL, A. JIMBOREAN, M. E. ACACIO, AND A. ROS

 B
a
rn

e
s

 C
h
o
le

sk
y

 F
F
T

 F
M

M

 L
U

 L
U

-n
c

 O
ce

a
n

 O
ce

a
n
-n

c

 R
a
d
io

si
ty

 R
a
d
ix

 R
a
yt

ra
ce

 V
o
lr
e
n
d

 W
a
te

r-
N

sq

 W
a
te

r-
S

p

 A
ve

ra
g
e

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

L
1
 M

is
s
e
s
 (

N
o
rm

a
liz

e
d
)

Cold Capacity Conflict

1.5

1. MESI-Inclusive-32KB
2. MESI-Inclusive-64KB

3. Private-Shared-L1P-32KB-L1S-16KB
4. Private-Shared-L1P-32KB-L1S-32KB

Figure 2. Normalized L1P+L1S cache misses (to unified/MESI L1).

4. RESULTS

This section analyzes the pros and cons of the proposed dedicated cache design, focusing on

the two key factors that can affect negatively the performance of the proposed architecture: the

interconnection network and the classification of accesses. Our analysis assumes a classification of

accesses performed by the operating system, unless otherwise stated.

4.1. Impact of dedicated caches on cache misses.

We start our study by analyzing the effects on cache misses when splitting data into two dedicated

caches. Since we reduce the amount of replicated data in the L1S, we expect a significant reduction

on the cache misses. The results are shown in Figure 2, which plots the number of misses classified

in cold, capacity, and conflict, normalized with respect to a MESI configuration with 32 KB L1

caches (all caches employed in this study are 4-way associative). As a second configuration, it plots

the misses that would take place in a MESI configuration with 64 KB L1 caches. We can see that,

on average, the number of misses are reduced by 35% after doubling the cache size. Then, it shows

two configurations with dedicated L1P and L1S caches: the first one (third bar) has a 32 KB L1P

cache and a 16 KB L1S cache; and the second one (fourth bar) has a 32 KB L1P cache and a 32 KB

L1S cache, that is, the same capacity as the second configuration.

The most important result of this study is that a combined L1P+L1S with a capacity of only 48 KB

yields a number of cache misses comparable to a unified cache of 64 KB. Additionally, when moving

to an aggregate L1 cache capacity of 64 KB, the number of cache misses is reduced considerably.

We attribute this behavior to changes on the reuse distance of the data when using dedicated caches

and the reduction of replicated data in the L1S. This effect can improve the performance of the

applications if the accesses to the L1S cache can be performed with low latency. Note that an L1P

cache with the same capacity as the L1 cache in MESI can be accessed with the same latency.

4.2. Impact of the interconnection network

Since all references to shared data have to travel through the interconnection network before

accessing the L1S, the design of the interconnection network plays an important role in our

architecture. We analyze both a common 2D-mesh topology, which is scalable, and a point-to-point

network, which is optimal in terms of performance although not scalable.

4.2.1. 2D-mesh interconnect. Figure 3 presents performance results for an organization with a

2D-mesh interconnect normalized to a MESI implementation. Figure 3a shows the applications’

execution time. Results show a considerable slowdown on the overall performance of the

applications, reaching 3.7× on average for all Splash-2 benchmarks (7.5× at worst for Cholesky

and 1.2× at best for Raytrace). Notice that there is great variability in the results, meaning that

some applications can hide this additional memory latency better than others, where, most likely,

shared accesses are located on the critical path. However, programs should not be sensitive to a larger

latency for shared data when using dedicated caches, since real shared data entails communication

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

A DEDICATED PRIVATE-SHARED CACHE DESIGN FOR SCALABLE MULTIPROCESSORS 7

 B
a
rn

e
s

 C
h
o
le

sk
y

 F
F
T

 F
M

M

 L
U

 L
U

-n
c

 O
ce

a
n

 O
ce

a
n
-n

c
 R

a
d
io

si
ty

 R
a
d
ix

 R
a
yt

ra
ce

 V
o
lr
e
n
d

 W
a
te

r-
N

sq
 W

a
te

r-
S

p
 A

ve
ra

g
e

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

R
u

n
ti
m

e
 (

N
o

rm
a

liz
e

d
)

MESI-Inclusive
Private-Shared

(a) Execution time

 B
a
rn

e
s

 C
h
o
le

sk
y

 F
F
T

 F
M

M

 L
U

 L
U

-n
c

 O
ce

a
n

 O
ce

a
n
-n

c
 R

a
d
io

si
ty

 R
a
d
ix

 R
a
yt

ra
ce

 V
o
lr
e
n
d

 W
a
te

r-
N

sq
 W

a
te

r-
S

p
 A

ve
ra

g
e

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0

N
e

tw
o

rk
 T

ra
ff

ic
 (

N
o

rm
a

liz
e

d
) MESI-Inclusive

Private-Shared

(b) Network traffic

Figure 3. Performance results for a 2D-mesh network.

 B
a
rn

e
s

 C
h
o
le

sk
y

 F
F
T

 F
M

M

 L
U

 L
U

-n
c

 O
ce

a
n

 O
ce

a
n
-n

c
 R

a
d
io

si
ty

 R
a
d
ix

 R
a
yt

ra
ce

 V
o
lr
e
n
d

 W
a
te

r-
N

sq
 W

a
te

r-
S

p
 A

ve
ra

g
e

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

R
u
n
ti
m

e
 (

N
o
rm

a
liz

e
d
)

MESI-Inclusive
Private-Shared

(a) Execution time

0
2.5

5
7.5
10

12.5
15

17.5
20

22.5
25

27.5
30

N
e

tw
o

rk
 T

ra
ff

ic
 (

n
o

rm
a

liz
e

d
)

MESI-Inclusive
Private-Shared

B
ar

ne
s

C
ho

le
sk

y

F
F
T

F
M

M LU
LU

-n
c

O
ce

an
O

ce
an

-n
c

R
ad

io
si

ty
R

ad
ix

R
ay

tr
ac

e
V

ol
re

nd
W

at
er

-N
sq

W
at

er
-S

p
A

ve
ra

ge

(b) Network traffic

Figure 4. Performance results for a point-to-point network.

with other cores also in a MESI implementation. The reason for this slowdown is the imprecise

OS-based classification, marking as shared accesses that are actually private.

Figure 3b shows the normalized number of flits sent along the interconnection network. There

is also a significant increase in the network usage due to the introduction of the shared dedicated

cache (around 13×, on average). Water-Sp reaches an increment of 57× more network traffic than

the unified L1 design, while other benchmarks, like Ocean, experience an increment of around 4×,

but both result in similar performance degradation. This supports our idea that the performance

effects caused by network traffic are only critical for those applications that have shared accesses

on their critical path of execution, at least when the shared nature of the accesses is detected by an

OS-based classification.

4.2.2. Point-to-point interconnect. Figure 4 offers performance numbers for an idealized

organization with a point-to-point network with one-cycle link latency normalized to MESI.

Although this network provides low latency and high-bandwidth, this topology does not scale with

the number of nodes in the system. Figure 4a shows a performance degradation of 25%, on average,

compared to an unified cache design. Regarding the network traffic (Figure 4b), we observe similar

trends as with the 2D-mesh network, although the absolute numbers differ. Despite the memory

latency for shared blocks is reduced with this network topology, it is still increased for a large

number of accesses, some of which, perhaps, have been misclassified as shared. In an attempt to

mitigate this problem, next sections analyze the private-shared classification ratio of the OS-based

mechanism and compare it to more accurate classification techniques, such as compiler-assisted

ones.

4.3. Impact of the classification mechanism

In the previous sections, we have analyzed the impact of the interconnection network on the

performance of our proposal considering an OS-based classification. The next step in our analysis is

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

8 J. M. CEBRIÁN, R. FERNÁNDEZ-PASCUAL, A. JIMBOREAN, M. E. ACACIO, AND A. ROS

 B
a
rn

e
s

 C
h
o
le

sk
y

 F
F
T

 F
M

M

 L
U

 L
U

-n
c

 O
ce

a
n

 O
ce

a
n
-n

c
 R

a
d
io

si
ty

 R
a
d
ix

 R
a
yt

ra
ce

 V
o
lr
e
n
d

 W
a
te

r-
N

sq
 W

a
te

r-
S

p
 A

ve
ra

g
e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
L
1
 a

c
c
e
s
s
 r

a
ti
o

L1-L1P L1S1. MESI-Inclusive 2. Private-Shared-OS

(a) No classification vs. OS-based

 3
5
2
.n

a
b

 3
5
9
.b

o
ts

sp
a
r

 3
6
7
.im

a
g
ic

k

 b
fs

 b
tr
e
e

 h
o
ts

p
o
t

 p
a
rt
ic

le
fil

te
r

 p
a
th

fin
d
e
r

 A
ve

ra
g
e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

L
1

 a
c
c
e

s
s
 r

a
ti
o

L1P L1S1. OS 2. Compiler

(b) OS-based vs. Compiler-assisted

Figure 5. Private/Shared ratio for L1 cache accesses.

 B
a
rn

e
s

 C
h
o
le

sk
y

 F
F
T

 F
M

M

 L
U

 L
U

-n
c

 O
ce

a
n

 O
ce

a
n
-n

c

 R
a
d
io

si
ty

 R
a
d
ix

 R
a
yt

ra
ce

 V
o
lr
e
n
d

 W
a
te

r-
N

sq

 W
a
te

r-
S

p

 A
ve

ra
g
e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

L
1
 a

c
c
e
s
s
 r

a
ti
o

L1P L1S

1. Private-Shared-OS-4KB
2. Private-Shared-OS-1KB

3. Private-Shared-OS-256B
4. Private-Shared-OS-64B

Figure 6. OS-based private-readonly with different page sizes.

to compare the ratio of private and shared accesses of this classification mechanism and a compiler-

assisted one.

4.3.1. OS-based classification. In a MESI implementation, all memory accesses perform a look-up

in the L1 cache. In the dedicated private-shared architecture accesses go to the corresponding L1

cache (L1P or L1S). Figure 5a shows the distribution of accesses to the L1P (only private data),

served locally, and to the L1S, served through the interconnection network. It is clear that the cause

of the large increase in execution time and network traffic for the dedicated cache architecture is

the large fraction of shared accesses due to the lack of precision of the OS-based classification.

Our current implementation of the OS-based classification marks more than half of the memory

accesses as shared, thus requiring an access to the L1S through the interconnection network. In

fact, for applications as LU-nc and Ocean-nc more than 98% of the accesses target the L1S. This

is a surprising result since previous studies, such as SWEL [11], report that less than 10% of the

memory accesses correspond to shared addresses, although that study was performed using a block-

level classification, which is not suitable for our approach, as previously mentioned. To emulate

its behavior, we performed a study with different granularities for the page-based classificaton,

from 4 KB to 64 bytes (i.e., the block size) depicted in Figure 6. The precision of the OS-based

classification improves with smaller page sizes, but even with page sizes equal to the block size and

classifying both private and shared-read-only as private, it only achieves to classify approximately

74% of the accesses as private.

For OpenMP applications (Figure 5b), we can observe that the accuracy of the operating system

in classifying accesses is even lower. The main reason for this low accuracy is the way OpenMP

applications are parallelized. The iterations of a parallel for loop by default can be executed in

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

A DEDICATED PRIVATE-SHARED CACHE DESIGN FOR SCALABLE MULTIPROCESSORS 9

parallel on any core. Furthermore, the workload distribution can vary from one loop to another.

Namely, future parallel loops iterating over the same array might distribute differently the iterations

to threads. Consequently, the iterated array becomes shared, and all future accesses to the array will

be served through the L1S cache.

The conclusion of this analysis is that the OS-based classification is not precise enough for our

proposal. The reason why this technique works for other proposals is that they are commonly

targeting optimizations that get advantage of a large number of private blocks, but not private

accesses. It is common in parallel applications to find a small amount of highly accessed (OS-

)shared blocks. Although adaptive TLB-techniques [10] can improve the fraction of private accesses

detected, it can only rise it up to 79%. Perhaps with a combination of adaptivity and low granularity,

the accuracy in detecting private accesses can be improved up to the point that makes our

architecture effective. We plan to analyze how to achieve higher accuracy with a low-overhead

mechanism as part of our future work.

4.3.2. Compiler-assisted classification. The second classification technique that we evaluate is a

compiler-assisted approach. We focus in a recent proposal that targets OpenMP codes, SPEL [8].

The major advantage of this proposal is that it takes advantage of knowledge about the programming

model. There are, however, two disadvantages. The first one is that it is limited to data race free

codes (e.g. OpenMP). The second one is that a certain data block can be accessed as private at some

code region and as shared in another. This entails extra (local) coherence actions, that may require

evicting blocks from the L1P when changing from a private (DRF) to a shared (non-DRF) region,

or evicting blocks from the L1S when transitioning from a shared region to a private one. This

overhead is not noticeable in an OS-based classification, since pages change at most once during

their life in physical memory.

Figure 5b shows, however, that the advantages of the compiler-assisted classification can offset

its drawbacks. Using this classification, most accesses are performed in the faster L1P. Only

synchronization accesses, which inherently require communication, are performed through the L1S.

As a result, we can conclude that this classification, can be a good candidate for our architecture,

because it detects a large number of private blocks, and performs this detection before the access

to L1 (a-priori). There are, however, some important challenges that must be addressed in order to

adapt this technique to our proposal. First, the dedicated cache architecture requires modifications

to guarantee that stale data is not accessed. Second, the classification should be extended to more

general programming paradigms, in order to obtain performance benefits for a large range of

applications.

5. RELATED WORK

As mentioned in the introduction, there are a number of proposals in the recent literature that exploit

the nature of data being accessed with the goal of reducing both complexity and on-chip network

traffic. In this section we extend this description, and point out the differences with respect to our

work.

Some authors use data classification to mitigate the growing access latency in NUCA architectures

as core count increases. Private blocks can be placed in cache banks near the requesting core, thus

reducing access latency and improving overall performance [25, 3, 4, 5]. Our architecture inherently

retain this property of holding private data in the cache banks of the core that reference them. The

use of several levels of private caches (L1P, L2P, etc.) would allow reducing even more the latency

for private data.

Snooping protocols offer great simplicity but have scalability problems with high number of cores

due to the enormous energy consumption required. The reason for this energy consumption is the

issue of broadcast messages to all cores in the system on every write miss. The scalability of such

protocols, in particular token-based protocols, was improved in the Subspace Snooping approach [6]

by taking advantage of a private-shared classification and eliminating the need of broadcasts for

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

10 J. M. CEBRIÁN, R. FERNÁNDEZ-PASCUAL, A. JIMBOREAN, M. E. ACACIO, AND A. ROS

private blocks. We chose a radically different approach, by completely eliminating the invalidation

messages in the protocol due to write misses.

Directory-based protocols can likewise benefit from data classification. Spatio-Temporal

Coherence [13] tries to find large private regions in order to compress the directory information and

save space. Other works [7, 1, 2] propose to deactivate coherence for data not requiring it, which

prevents directory caches from tracking private blocks, thus reducing both directory occupancy

and access latency. Our architecture completely removes the need of a directory structure, thus

eliminating the scalability problem of the directory.

SWEL [11] performs a private-shared classification at a block level (directory) and maintains

shared read-write blocks at the shared last level cache. However, it incurs in some performance

penalty due to the additional latency when accessing shared read-write blocks, since they skip the

first levels of the cache hierarchy (similarly to our proposal). The main difference with our approach

is that they handle the classification at a directory level (with block granularity) while we classify

at a OS level (page granularity). Therefore, they require a directory cache to classify data, and

coherence messages to invalidate or forward locally cached data.

VIPS [26] achieve both simplicity and efficiency by employing a write-back policy for private

store operations and a write-through policy for shared store operations. While VIPS still employs a

directory cache, the VIPS-M version is able, like us, to completely remove the directory. However,

this is achieved at the cost of allowing incoherent data between synchronization points, resulting in

a weaker consistency model (SC-for-DRF). Our memory hierarchy is fully coherent, so the memory

model implemented by the processors is respected.

End-to-end SC [27] improves the efficiency of multi-cores by not enforcing sequential

consistency for thread-local (private) or read-only accesses. Our proposal is orthogonal to this

technique.

SPEL [8] employs a compiler-assisted classification of regions of code. The classification is

used to implement a coherence protocol with two different modes: one for (extended-)data-race-

free accesses, which enforces coherence only at the end of (extended-)data-race-free regions, the

other for racy accesses which maintain coherence with a directory-based protocol. Again, the main

difference with respect to SPEL is that our proposal removes the directory and the traffic related to

coherence.

Finally, there are working architectures that implement dedicated caches/memories that are

handled by either the compiler or the programmer (e.g., scratchpad memories or NVIDIA

Private/Shared L1). To the best of our knowledge, latest NVIDIA architectures implement three

memory spaces: a thread-private (usually write-through) and a block-shared memory space per

SM‡ plus a global address space for all SMs. PTX 2.0 and onwards uses a unified address space

that combines all of the aforementioned memories, but global coherency is not maintained by

the hardware (Pascal architecture may include this feature). The Kepler architecture provides a

reconfigurable shared memory + L1 cache (16+48, 32+32 or 48+16 KB) per streaming processor.

On the other hand, the Maxwell architecture provides physically separated shared memory (64–

96 KB) and L1 cache (12–48 KB). The main differences between our dedicated design with the

NVIDIA architecture is that the programmer has handle private (p local) and shared (p shared

for sharing within an SM and p global for among SMs) accesses, while ours is transparent to the

programmer. In addition, coherency is not ensured by the hardware (at least with current NVIDIA

architectures), while our design ensures coherency.

6. CONCLUSION

In this work we analyze a dedicated cache design that takes into consideration the nature of the

data being accessed. Our proposal relies on the information provided by a classification mechanism

that divides memory accesses into: a) private or read-only shared (sent to a local private caches)

and b) modifiable shared (sent to a logically shared but distributed cache). This design would

‡Streaming Multiprocessor.

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

A DEDICATED PRIVATE-SHARED CACHE DESIGN FOR SCALABLE MULTIPROCESSORS 11

allow to simplify coherence protocols and core design, easing the validation process and improving

scalability.

Our results show two main drawbacks that may limit the usability of our implementation: a) low

accuracy on the classification mechanism and b) high latency in the network connecting the first-

level shared caches. Improved classification mechanisms, like adaptive TLB-based approaches [10]

or compiler-assisted approaches [8], can improve the accuracy of the classification, leading to fewer

shared accesses. Still, these mechanisms have limitations, such as increasing complexity and traffic,

or not being applicable to all programming models. Further research to mitigate this limitations

seems a promising path to improve the results of proposals like ours.

On the other hand, there is a huge gap in the average access latency between our non-scalable

point-to-point network and a more scalable but with larger latency 2D-mesh. We believe that there

is also room for improvement by using a specialized network since our design only requires 8 bytes

to be sent as control/request plus 16 bytes to be returned (control + data word).

With improved accuracy for access classification and reduced network latency, we believe that

our approach can become useful as the number of cores increases and coherence protocols face

more scalability issues. Additional research is needed to discover the number of cores required to

make the dedicated design feasible in terms of performance. Throughput oriented cores (GPUs or

accelerators like the Xeon Phi) can also benefit from our design, since additional memory latency is

usually hidden in those systems by swapping execution threads. This encourages us to continue this

line of research and propose alternative solutions that take into account the nature of the data that is

being accessed in order to avoid unnecessary coherence operations.

ACKNOWLEDGEMENT

This work was supported by Fundación Séneca-Agencia de Ciencia y Tecnologı́a de la Región de Murcia
under the project Jóvenes Lı́deres en Investigación “18956/JLI/13”.

REFERENCES

1. Cuesta B, Ros A, Gómez ME, Robles A, Duato J. Increasing the effectiveness of directory caches by deactivating
coherence for private memory blocks. 38th Int’l Symp. on Computer Architecture (ISCA), 2011; 93–103.

2. Cuesta B, Ros A, Gómez ME, Robles A, Duato J. Increasing the effectiveness of directory caches by avoiding the
tracking of non-coherent memory blocks. IEEE Transactions on Computers (TC) Mar 2013; 62(3):482–495.

3. Hardavellas N, Ferdman M, Falsafi B, Ailamaki A. Reactive NUCA: Near-optimal block placement and replication
in distributed caches. 36th Int’l Symp. on Computer Architecture (ISCA), 2009; 184–195.

4. Li Y, Abousamra A, Melhem R, Jones AK. Compiler-assisted data distribution for chip multiprocessors. 19th Int’l
Conf. on Parallel Architectures and Compilation Techniques (PACT), 2010; 501–512.

5. Li Y, Melhem RG, Jones AK. Practically private: Enabling high performance cmps through compiler-assisted data
classification. 21st Int’l Conf. on Parallel Architectures and Compilation Techniques (PACT), 2012; 231–240.

6. Kim D, Ahn J, Kim J, Huh J. Subspace snooping: Filtering snoops with operating system support. 19th Int’l Conf.
on Parallel Architectures and Compilation Techniques (PACT), 2010; 111–122.

7. Meng J, Skadron K. Avoiding cache thrashing due to private data placement in last-level cache for manycore scaling.
Int’l Conf. on Computer Design (ICCD), 2009; 282–288.

8. Ros A, Jimborean A. A dual-consistency cache coherence protocol. 29th Int’l Parallel and Distributed Processing
Symp. (IPDPS), 2015; 1119–1128.

9. Ros A, Cuesta B, Gómez ME, Robles A, Duato J. Temporal-aware mechanism to detect private data in chip
multiprocessors. 42nd Int’l Conf. on Parallel Processing (ICPP), 2013; 562–571.

10. Esteve A, Ros A, Gómez ME, Robles A, Duato J. Efficient tlb-based detection of private pages in chip
multiprocessors. IEEE Transactions on Parallel and Distributed Systems (TPDS) Mar 2015; .

11. Pugsley SH, Spjut JB, Nellans DW, Balasubramonian R. SWEL: Hardware cache coherence protocols to map
shared data onto shared caches. 19th Int’l Conf. on Parallel Architectures and Compilation Techniques (PACT),
2010; 465–476.

12. Hossain H, Dwarkadas S, Huang MC. POPS: Coherence protocol optimization for both private and shared data.
20th Int’l Conf. on Parallel Architectures and Compilation Techniques (PACT), 2011; 45–55.

13. Zebchuk J, Falsafi B, Moshovos A. Multi-grain coherence directories. 46th IEEE/ACM Int’l Symp. on
Microarchitecture (MICRO), 2013; 359–370.

14. Valls JJ, Ros A, Sahuquillo J, Gómez ME, Duato J. PS-Dir: A scalable two-level directory cache. 21st Int’l Conf.
on Parallel Architectures and Compilation Techniques (PACT), 2012; 451–452.

15. Valls JJ, Ros A, Sahuquillo J, Gómez ME. PS directory: A scalable multilevel directory cache for CMPs Aug 2015;
71(8):2847–2876.

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

12 J. M. CEBRIÁN, R. FERNÁNDEZ-PASCUAL, A. JIMBOREAN, M. E. ACACIO, AND A. ROS

16. Davari M, Ros A, Hagersten E, Kaxiras S. The effects of granularity and adaptivity on private/shared classification
for coherence. ACM Transactions on Architecture and Code Optimization (TACO) Aug 2015; 12(3):26:1–26:21.

17. Davari M, Ros A, Hagersten E, Kaxiras S. An efficient, self-contained, on-chip, directory: DIR1-SISD. 24th Int’l
Conf. on Parallel Architectures and Compilation Techniques (PACT), 2015; 317–330.

18. Martin MM, Sorin DJ, Beckmann BM, Marty MR, Xu M, Alameldeen AR, Moore KE, Hill MD, Wood DA.
Multifacet’s general execution-driven multiprocessor simulator (GEMS) toolset. Computer Architecture News Sep
2005; 33(4):92–99.

19. Luk CK, Cohn R, Muth R, Patil H, Klauser A, Lowney G, Wallace S, Reddi VJ, Hazelwood K. Pin: Building
customized program analysis tools with dynamic instrumentation. 2005 ACM SIGPLAN Conf. on Programming
Language Design and Implementation (PLDI), 2005; 190–200.

20. Monchiero M, Ahn JH, Falcón A, Ortega D, Faraboschi P. How to simulate 1000 cores. Computer Architecture
News Jul 2009; 37(2):10–19.

21. Carlson TE, Heirman W, Eeckhout L. Sniper: Exploring the level of abstraction for scalable and accurate parallel
multi-core simulations. ACM/IEEE Conf. on Supercomputing (SC), 2011; 52:1–52:12.

22. Woo SC, Ohara M, Torrie E, Singh JP, Gupta A. The SPLASH-2 programs: Characterization and methodological
considerations. 22nd Int’l Symp. on Computer Architecture (ISCA), 1995; 24–36.

23. Standard Performance Evaluation Corporation. SPEC OMP2012. http://www.spec.org/omp2012. URL
http://www.spec.org/omp2012.

24. Che S, Boyer M, Meng J, Tarjan D, Sheaffer JW, Lee SH, Skadron K. Rodinia: A benchmark suite for heterogeneous
computing. Int’l Symp. on Workload Characterization (IISWC), 2009; 44–54.

25. Cho S, Jin L. Managing distributed, shared L2 caches through OS-level page allocation. 39th IEEE/ACM Int’l Symp.
on Microarchitecture (MICRO), 2006; 455–465.

26. Ros A, Kaxiras S. Complexity-effective multicore coherence. 21st Int’l Conf. on Parallel Architectures and
Compilation Techniques (PACT), 2012; 241–252.

27. Singh A, Narayanasamy S, Marino D, Millstein T, Musuvathi M. End-to-end sequential consistency. 39th Int’l
Symp. on Computer Architecture (ISCA), 2012; 524–535.

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOI: 10.1002/cpe

