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Abstract—Shared-memory architectures have become predom-
inant in modern multi-core microprocessors in all market
segments, from embedded to high performance computing.
Correctness of these architectures is ensured by means of
coherence protocols and consistency models. Performance and
scalability of shared-memory systems is usually limited by the
amount and size of the messages used to keep the memory
subsystem coherent. Moreover, we believe that blindly keeping
coherence for all memory accesses can be counterproductive,
since it incurs in unnecessary overhead for data that will
remain coherent after the access (i.e., private and read-only
shared data).

Having this in mind, in this paper we propose the use of
dedicated caches for private (+shared read-only) and shared
data. The private cache (L1P) will be independent for each
core while the shared cache (L1S) will be logically shared
but physically distributed for all cores. This separation should
allow us to simplify the coherence protocol, reduce the on-chip
area requirements and reduce invalidation time with minimal
impact on performance. The dedicated cache design requires
a classification mechanism to detect private and shared data.
In our evaluation we will use a classification mechanism that
operates at the operating system (OS) level (page granularity).
Results show two drawbacks to this approach: first, the selected
classification mechanism has too many false positives, thus
becoming an important limiting factor. Second, a traditional
interconnection network is not optimal for accessing the L1S,
and a custom network design is needed. These drawbacks lead
to important performance degradation due to the additional
latency when accessing the shared data.

1. Introduction

Modern chip multi-processors feature a mix of latency
and throughput oriented cores running both sequential, mul-
tiprogrammed and multithreaded applications. These archi-
tectures usually share a common memory space that is kept
coherent at a hardware level. While coherence and memory
consistency are key aspects to ensure the correct execution
of the applications on the system, they usually incur in a
performance overhead proportional to the size of the system
(i.e., number of cores, interconnection characteristics, etc).
In addition, the implementation details of the coherence
protocol have a huge impact on the scalability of the system,

not only in terms of network traffic, but also area and energy
requirements.

Applications show a wide range of data sharing degrees1,
from constant data exchange to independent behavior along
threads/tasks. This property is mainly influenced by the
programming methodology and the nature of the application.
However, coherence protocols maintain coherence in the
same way for all data accesses, regardless of the nature of
the data that is being accessed. Therefore, blindly doing
the same for all memory accesses can be counterproductive.
The coherence protocol incurs in unnecessary overhead
generating coherence messages and data transferences for
accesses to addresses that would remain coherent anyway
(i.e., private and read-only shared data).

In this work we aim to simplify the coherence protocol
by taking advantage of the nature of the data that is being
accessed. We will rely on the usage of multiple dedicated
caches: a private cache (L1P) and a shared cache (L1S).
The L1S may include different hierarchy levels. The private
cache will store only private and shared read-only data.
Coherence messages for this data are only required when
its nature changes from private to shared or vice versa. On
the other hand, the shared cache will be logically shared but
distributed for all cores. In this case, no coherence actions
are needed because there is only one copy of each data item.
We explore several layout designs both using a centralized
L1S and a tiled design (each tile stores a piece of the L1S).

Our proposal requires a classification mechanism that
detects private and shared data. There are many classification
mechanisms in the literature that work at different levels:
compiler, OS, coherence protocol, etc. We chose one mech-
anism used in several recent works [1], [2], [3] because of
its simplicity. This mechanism operates at the OS level (at a
page granularity). When a core accesses a page it is marked
private in the page table. A second access to a page (marked
as private) by a different core will force an interruption of
the first core to update the table state to shared.

With the dedicated cache design we expect to sim-
plify the coherence protocol and to reduce the overhead
caused by the coherence protocol on the interconnection
network, improving scalability with minimal performance
degradation. We will guide the readers through the design
process highlighting the benefits of the proposal as well

1. Fraction of shared data with regard to the total amount of data.



as the problems that lead us to negative results. The main
contributions of this paper include:

• A dedicated cache design for chip multiprocessors
that exploits the nature of the data accessed.

• Different layout implementations of the solution (in-
cluding a tiled layout, a tiled layout using a point to
point network and a custom layout design).

• Evaluation of the proposal in terms of performance,
network traffic and cache miss ratio.

• Discussion on the design flaws of the proposal and
specific scenarios where it works.

The benefits and drawbacks of this design are the fol-
lowing:

! Eliminates the need for a coherence directory, im-
proving scalability of the multi-core architecture.

! Reduces the pressure on the L1P (also reduces over-
all combined L1D2 cache misses).

! Reduces the amount of duplicated data in L1 caches.
% Increased latency when accessing the shared data

(requires using the network). This network may re-
quire high bandwidth.

% Requires a classification mechanism to detect the
nature of the data.

The rest of the paper is organized as follows: Section 2
describes other solutions that exploit the nature of the data
that can be found in the literature. Section 3 describes the
implementation details of our proposal. Section 4 explains
the evaluation environment, and provides details of the
analyzed processor configuration. Section 5 discusses the
main results of our research, before concluding with Section
6 and suggesting directions for further research.

2. Related Work

There are several proposals in the recent literature that
exploit the nature of data being accessed with the goal of
reducing both complexity and on-chip network traffic.

Snooping protocols offer great simplicity but have scal-
ability problems with high number of cores. The scalability
of such protocols can be improved by taking advantage of
a private-shared classification, as proposed by Kim et al.
[4]. This proposal eliminates the need of broadcasts for
private blocks. Other papers use data classification to miti-
gate the growing access latency in NUCA3 architectures as
core count increases. Private blocks can be placed in cache
banks near the requesting core, reducing access latency and
improving overall performance [3], [5], [6], [7].

On the other hand, directory-based protocols can like-
wise benefit from data classification. Alisafaee et al. [8]
try to find large private regions in order to compress the
directory information and save space. Other works [2],
[9] propose to deactivate coherence for data not requiring
it, which prevents directory caches from tracking private

2. Data L1.
3. Non-uniform Cache Architecture

blocks, thus reducing both directory occupancy and access
latency. SWEL [10] performs a private-shared classification
at a block level (directory) and maintains shared read-write
blocks at the shared last level cache. However, it incurs
in some performance penalty due to the additional latency
when accessing shared read-write blocks, since they skip the
first levels of the cache hierarchy (similarly to our proposal).
The main difference with our approach is that they handle
the classification at a directory level (with block granularity,
but requiring a coherence protocol) while we classify at a
OS level (page granularity).

Regarding the classification mechanisms, this paper re-
lies on the approach proposed by Cuesta et al. [2], used
in several works published in international conferences [1],
[11], [12]. The mechanism uses an additional bit on the
page table to keep the state of the page (private or shared).
The P/S bit is also included in the TLB4 entries to speed
up the access to the classification information. OS-based
classification mechanisms mark pages as private the first
time they are accessed after a TLB miss. On each access,
the classification mechanism looks for a match between the
keeper field and the current requestor. If they differ, the page
is marked as shared. The benefit of OS-based mechanisms is
that they require minimal hardware support, relying mainly
on the page table and TLBs to classify data. This mechanism
reduces the area requirements when compared with other
proposals that operate either at a block-level [8], [10], [13].
Alternative virtual memory level classification mechanisms
have been proposed in the literature [3], [4], [14]. Finally,
compiler-assisted approaches [6], [7], [9] have only limited
knowledge on what data is going to be shared and where
it will be processed (core), reducing the accuracy of the
prediction, and thus being less attractive for our proposal.

3. Proposal

In this paper we propose a dedicated cache design that
uses a private L1 cache (L1P) to store both private and
shared read-only data and a logically shared but physically
distributed L1 (L1S) to store shared data. The L1P works
much as a regular private L1 data cache. On the other hand,
the L1S works like a shared L2 in a tiled chip multiprocessor
(CMP), where each tile provides a bank for the global
L1S/L2. Coherence of shared addresses may require an
access through the interconnection network to the home tile
(L1S bank) that holds the data. The mapping from data to
banks is based on the lowest bits of the memory address
(like the shared L2). The selected classification mechanism
requires an additional bit that is included in the TLB entries
(and memory pages) to indicate the Private/Shared (PS bit)
status of the page.

When a core executes a memory instruction (e.g., load
or store), it reads the PS bit of the accessed page in the
TLB and uses it to decide if the memory request should
be sent to the L1P or forwarded to the L1S (Figure 1).
The L1S access latency would consist of three components:

4. Translation Lookaside Buffer.
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Figure 1. Dedicated cache design diagram.

1) request/response operation to/from the network buffer of
the tile, 2) transfer the request/data along the network and
3) the memory array access (e.g., 2 + Network + 4 cycles
in our evaluation). An 8-byte request message is sent to
the appropriate L1S bank and a 8+8-byte response message
(control+data word) is sent back to the network controller of
the requesting tile. The main benefits of this design include a
reduction on protocol complexity and on-chip area require-
ments and saving waiting time for L1D cache invalidations
of blocks with multiple sharers. The main drawback of this
multi-cache design is the extra latency of accessing the L1S,
which is not local to the core. Accessing the L1S requires
data to be transmitted through the interconnect, posing a
threat for the potential benefits of the proposal.

4. Evaluation Methodology

The proposed dedicated cache design has been evaluated
using the PIN [15] toolset and GEMS 2.1 [16] simulator.
Real system data accesses captured by PIN are used as input
for the simulation environment based on GEMS (similarly
to [17]). GEMS includes a detailed memory hierarchy model
(Ruby) that allows us to estimate performance, access laten-
cies, miss rates and other useful statistics. The interconnec-
tion network is modeled using the Garnet [18] simulator for
the tiled and custom layout designs (Sections 5.1 and 5.2).
The “simple” network model that comes with GEMS, an
idealized point to point (P2P) network that does not model
contention, is also used in our idealized evaluation (Section
5.3). The simulated architecture corresponds to a single chip
multiprocessor (tiled-CMP) featuring 16 cores (depicted in
Figure 2). The most relevant simulation parameters are
shown in Table 1.

The evaluation of the dedicated cache design is per-
formed against a traditional MESI directory-based coher-
ence protocol implemented in GEMS (MESI-Inclusive in
our figures). We evaluate our proposal using the applica-
tions from the SPLASH-2 benchmark suite with the recom-
mended input sizes [19]. Variability in the applications is
accounted by introducing random variations in each main
memory access on different runs [20].

CPU Core

L1P$L1I$

L2$
(Tags)

L2$ (Data)

R
outer

D
irectory

L1S$

Figure 2. Layout example for a 16-core tiled design.

TABLE 1. SYSTEM PARAMETERS.

Memory parameters
Block size 64 bytes
L1 cache (data & private & instr.) 32 KB, 4 ways
L1 access latency (data & private & instr.) 4 cycle
L1S (shared) (32 KB, 4 ways) per tile
L1S access latency 4 + Network
L2 cache (shared) 512 KB/tile, 16 ways
L2 access latency 12 cycle
Cache organization Inclusive
Directory information Included in L2
Memory access time 160 cycles

Network parameters
Topology Base: 2-D mesh (4×4)

Other: Custom/Simple Network
Routing method X-Y determinist
Message size 5 flits (data), 1 flit (control)
Link time 1 cycle
Bandwidth 1 flit per cycle

5. Results

This section summarizes our main results for different
implementations of the dedicated cache design.

5.1. Traditional 2D Mesh Tiled Layout

The first implementation to be evaluated is based on a
2D mesh tiled network design that models contention. This
layout is one of the most realistic designs since it provides an
scalable solution, reducing design and validation complexity.
Figure 3 shows the normalized runtime of the tiled dedicated
cache design against an standard MESI implementation. We
expected minimal performance impact with the dedicated
cache design (or even a slight speedup due to reduction
on the time spent during invalidations). However, we can
clearly see a huge slowdown on the overall performance of
the applications, reaching 3.7× on average for all SPLASH-
2 benchmarks (7.5× at worst for Cholesky and 1.2× at best
for Raytrace). Notice that there is great variability in the
results, meaning that some applications can hide this addi-
tional memory latency better than others. This is most likely
because shared accesses are located in the critical path of
the application. Additional hardware/software mechanisms
could be used to detect and reorder critical shared accesses
to minimize the latency penalty of the L1S.

In the end, despite the expected benefits of the dedicated
cache design in complexity, area and invalidation time,
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Figure 4. Normalized L1P+L1S cache misses (to unified/MESI L1D) for different cache configurations (sets and ways). 16 cores. Tiled design, 2D mesh
garnet network. CLH locks. Entries (e) equal sets*ways (w). (e.g., PS-512e-4w-256e-8w represents the dedicated cache design with a private cache of 512
entries and 4 ways and a shared cache of 256 entries and 8 ways).
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Figure 3. Normalized runtime (to unified/MESI L1D). 16 cores. Tiled
design, 2D mesh garnet network. CLH locks.
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Figure 5. Normalized L1P+L1S cache misses (to unified/MESI L1D). 16
cores. Tiled design, 2D mesh garnet network. CLH locks.

the additional latency from the network interconnect along
with other factors makes this design unfeasible for this
benchmark set. However, this behavior differs from similar
proposals that exploit the nature of the data being accessed,
like SWEL [10], where the impact of avoiding the first levels
of the memory hierarchy and accessing the network does not
translate into any noticeable performance degradation. The
next step in our quest was to discover why we experienced
this behavior while others did not, and how we could solve
this issue.

5.1.1. Effects of Dedicated Caches on Memory Accesses.
We started by analyzing the effects on cache accesses when
splitting data into two dedicated caches. This analysis was
performed in terms of cache accesses and misses in order to
discard other issues with the memory hierarchy. Since we
are doubling the potential capacity of the L1D and reducing
the number of replicated data in the L1S, we expected
a significant reduction on the cache misses. This premise
was validated by the results as shown in Figure 5. This
figure shows the normalized misses of the dedicated cache
design compared with the original design. In addition, while
the slowdown of some of the applications (e.g., Cholesky)
matches a high number of L1D cache misses (L1P+L1S),
other applications (e.g., Barnes and Water-Sp) experienced
an important reduction on the number of misses, but still
performed worse than the original design in terms of per-
formance. We can conclude that the extra combined capacity
of the L1D (L1P+L1S) causes a significant reduction on the
number of cache misses, but the extra latency of the L1S
makes shared accesses to cost as much as misses on the
private cache, so performance benefits are minimal. This
leads us to believe that the major issues in our proposal
should be elsewhere.

Furthermore, we also tested different configurations for
the L1S varying the number of sets as well as the associativ-
ity of the cache (Figure 4). Results show barely any benefit
from increasing the associativity of the L1S any further than
four ways, but also that the number of entries (e = sets ×
ways) should remain above 256 (per tile). In addition, using
a separate cache design outperforms the unified design when
it doubles its capacity (PS-512e-4w-512e-4w vs Base-1024e-
4w). We attribute this behavior to changes on the reuse
distance of the data when using dedicated caches and the
reduction of replicated data in the L1S. For the remaining
of the article we will limit our study to a 4-way 512-entry
L1S cache (per tile).

5.1.2. Network Traffic. Our next step was to check the
network traffic of our implementation. Figure 6 shows the
normalized number of flits sent along the interconnection
network. We can clearly see a huge increment on the net-
work usage as a result of the introduction of the shared
dedicated cache (around 13× on average). It is important
to note that the Water-Sp benchmark reaches an increment
of 57 times more network traffic than the unified L1D
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Figure 6. Normalized network traffic (to unified/MESI L1D). 16 cores.
Tiled design, 2D mesh garnet network. CLH locks.

design, while other benchmarks, like Ocean, experience
an increment of around 4×, but both experience similar
performance degradation. This supports our idea that the
performance effects on network traffic are only critical for
those applications that have shared accesses in their critical
path of execution. The increment in network traffic translates
into a noticeable performance degradation, given that any
access to the L1S has an average latency of around 46
cycles5 for our tiled 2D mesh configuration (as compared
to the 6 cycle latency for the original unified L1D design,
including misses). In addition, L1S misses for the dedicated
cache design have an average of 120 cycle latency (same as
the unified L1D design). So, even if we have less misses,
we may not be able to hide this extra access latency by ex-
ploiting memory level parallelism (MLP) if the application
does not provide enough outstanding misses.

5.2. Custom Layout (Centralized L1S)

At this point, we decided to check a different layout con-
figuration, where all the L1S banks are placed equidistant
to all tiles (right in the middle of the CMP processor). This
design divides the L1S in four banks, each with a routing
component. The interconnect is formed by connecting the
router in each tile either neighbor tile router or to the L1S
bank, as depicted in Figure 7. This configuration should
reduce the average number of hops to reach the L1S, and
we expected some improvement in L1S access latency.

Figures 8 and 9 show both the normalized runtime and
flits transmitted assuming this new layout. With this design,
network traffic is slightly decreased (as well as hops, as
expected), going down from 13× higher in the tiled design
to 10×. However, performance of the centralized design
behaves 3.9 times slower than the original unified cache
design, and slightly worse than the tiled design (3.7×). Miss
latencies increase slightly as compared to the tiled design,
rising from 120 to 123 for private accesses and reduced from
120 to 118 for shared accesses. Shared accesses latencies
that miss and write increase from 145 to 155 for this

5. Empirically obtained from our simulation environment.

L1S-Bank 0 L1S-Bank 1

L1S-Bank 2 L1S-Bank 3

Figure 7. Four bank L1S layout design for a 16-core CMP.
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Figure 8. Normalized runtime (to unified/MESI L1D). 16 cores. Custom
design, garnet network. CLH locks.
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Figure 9. Normalized network traffic (to unified/MESI L1D). 16 cores.
Custom design, garnet network. CLH locks.

design. This small latency variation happens because of the
contention on the network when cores need to access the
L1S. As a result, despite the decrease in network traffic,
this design experiences slightly worse performance than the
tiled design, and is definitely not worth implementing in
real hardware. Increasing the number of banks and adding
additional links may benefit this design, reducing the latency
of both accesses and misses, but we did not explore this idea
any further.
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Figure 10. Normalized runtime (to unified/MESI L1D). 16 cores. Tiled
design, simple P2P network. CLH locks.
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Figure 11. Normalized network traffic (to unified/MESI L1D). 16 cores.
Tiled design, simple P2P network. CLH locks.

5.3. Idealized Network (Tiled - Point to Point)

Our next step was use the original tiled design assuming
an incredibly fast network at our disposal, and analyze how
the dedicated cache design would perform in this unrealistic
scenario. This network, named Simple in our work, is a point
to point network with one cycle latency. We modeled this
network by using the default point to point network that
comes with GEMS, where each core is connected to all
L1S banks with a dedicated link.

By relying on a fast idealized network interconnect we
expected barely no performance degradation for the dedi-
cated cache design. However, as it can be seen in Figure 10,
our design still suffers from 25% worse average performance
than the unified cache design. Taking a look to the network
traffic (Figure 11), we can observe similar trends to those of
the previous interconnection networks that we have studied,
though the absolute numbers differ.

By using this simple network, both the average hit and
miss latencies are reduced considerably, dropping from from
45 to 8 and from 120 to 82 respectively when compared
to the tiled design. Nevertheless, even for this optimistic
configuration, the increase in network traffic for all the
accesses to the L1S coupled with the additional latency
of the interconnection network (compared with accessing
a local cache) outweigh whatever savings we can achieve
by simplifying the coherence protocol.

5.4. Discussion

Through Section 5 we have tried to improve our design
by altering the characteristics of the network interconnect,
without thinking about the reason for this huge increment in
network traffic. Figure 12 shows the distribution of accesses
to the L1P (loads and stores), served locally, and to the L1S,
sent along the network interconnect (forwards).

The first thing that caught our attention was an increase
in the total number of accesses. Some of the analyzed
applications rely on locks and barriers to access critical
sections of the code. These lock variables are stored in
shared memory addresses that need to be stored on the
L1S. Unfortunately, this means that the spinning process
is no longer done locally, and each core needs to access
the L1S through the network to try to acquire the lock. This
generates additional network accesses that are not present in
the original design. This problem could be ameliorated by
using better locking mechanisms that reduce busy waiting
(e.g., G-locks [21]).

Figure 13 shows the same distribution of accesses but us-
ing functional locks, that is, without simulating the memory
accesses that perform the active spinning. This eliminates
the extra accesses shown in Figure 12. We can now clearly
see what was causing this huge increment on the network
traffic: the large fraction of shared accesses due to the lack
of precision on the classification mechanism. Our current
implementation of the OS/TLB-based classification marks
more than half of the memory accesses as shared, thus
requiring an access to the L1S through the interconnection
network. In fact, for applications as LU-nc and Ocean-nc
more than 98% of the accesses target the L1S. This was a
surprising result since previous studies, such as SWEL [10],
report that less than 10% of the memory accesses correspond
to shared addresses (using a block-level classification).

Nevertheless, this low accuracy of the classification
mechanism has been corroborated by Esteve et al. [22]. The
main reason being that pages marked as shared never return
to their private state. In this work, the authors discuss an
enhancement to the classification mechanism that restores
the private nature of a memory page after a certain period of
non-usage (decay time). This new method boosts the number
of private accesses from 43% to 79% in their research study.

However, we are uncertain if this boost in accuracy
would be enough for a dedicated cache design to work. In
order to perform a study of the potential of our design,
regardless of the private access rate, we performed a linear
extrapolation (Figure 14) based on the access and miss laten-
cies obtained empirically from our simulation environment,
and shown in Table 2. This extrapolation is based on the
following formula:

((HitsP × Lat.P.Hit) + (MissesP × Lat.P.Miss)) +

((HitsS × Lat.S.Hit) + (MissesS × Lat.S.Miss)) −
(MissMultiple.Sharers × Lat.Miss+Write)



In other words, the application will experience a delay
based on the number of hits/misses of the private (P) and
shared (S) caches and their associated latency (if they cannot
be hidden by MLP/outstanding misses). On the other hand,
there is going to be a speedup proportional to the number
of invalidations that are no longer required in the dedicated
cache design, since this design eliminates the need for the
coherence protocol. This speedup would depend on the num-
ber of misses that happen to have several sharers multiplied
by the time it takes to perform the invalidation and writing
the data back to the first level of coherent unified memory
(L2 in our case).

Figure 14 shows that, even for ratios of L1S accesses
around 10% (e.g., achieved by using a block-level classifica-
tion like the one in [10]), there is going to be a considerable
performance degradation of the application (around 60%) if
the extra latency cannot be hidden by MLP or reordering
critical path accesses when using both custom and tiled
designs. This performance degradation can go down to 4%
using a P2P simple network. For a ratio of 50% shared
accesses the model predicts a performance degradation of
4×, the same we obtained empirically.

Nevertheless, there are working architectures that imple-
ment dedicated caches/memories that are handled by either
the compiler or the programmer (e.g., scratchpad memories
or NVIDIA Private/Shared L1 [?]). To the best of our knowl-
edge, latest NVIDIA architectures implement three memory
spaces: a thread-private (usually write-through) and a block-
shared memory space per SM6 plus a global address space
for all SMs. PTX 2.0 and onwards uses a unified address
space that combines all of the aforementioned memories, but
global coherency is not maintained by the hardware (Pascal
architecture may include this feature). The Kepler architec-
ture provides a reconfigurable shared memory + L1 cache
(16+48, 32+32 or 48+16 KB) per streaming processor. On
the other hand, the Maxwell architecture provides physically
separated shared memory (64-96KB) and L1 cache (12–
48 KB). The main differences between our dedicated design
with the NVIDIA architecture is that the programmer has
handle private (p local) and shared (p shared for sharing
within an SM and p global for among SMs) accesses,
while ours is transparent to the programmer. In addition,
coherency is not ensured by the hardware (at least with
current NVIDIA architectures), while our design ensures
coherency. Finally, GPUs are throughput oriented architec-
tures that can hide memory latency exchanging execution
threads, while we have evaluated our approach on latency
oriented architectures where we have seen that if suffers
from a substantial performance degradation.

6. Conclusion

In this work we analyze a dedicated cache design that
takes into consideration the nature of the data being ac-
cessed. Our proposal relies on the information provided by a
classification mechanism that divides memory accesses into:

6. Streaming Multiprocessor.
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Figure 12. Private/Shared ratios. 16 core, garnet network. CLH locks.

 B
ar

ne
s

 C
ho

le
sk

y
 F

FT
 F

M
M

 L
U

 L
U

-n
c

 O
ce

an
 O

ce
an

-n
c

 R
ad

io
si

ty
 R

ad
ix

 R
ay

tra
ce

 V
ol

re
nd

 W
at

er
-N

sq
 W

at
er

-S
p

 A
ve

ra
ge

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
em

. A
cc

es
s 

C
la

ss
ifi

ca
tio

n

Forward
Loads
Stores

1. MESI-Inclusive
2. Private-Shared

Figure 13. Private/Shared ratios. 16 core, garnet network. Functional locks.

a) private/shared read-only (sent to a local private caches)
and b) shared (sent to a logically shared but distributed
cache). This design would allow to simplify coherence
protocols and core design, easing the validation process and
improving scalability.

Our results show two main drawbacks that limit the
usability of our implementation: a) low accuracy on the
classification mechanism and b) huge increase of the latency
of shared accesses (due to the interconnection network). Im-
proved OS-Based mechanisms, like [22] or [?], can improve
accuracy to 80+%. Even so, it still can be further improved,
since other classification mechanisms that work at a virtual-

TABLE 2. L1S/P ACCESS LATENCIES FOR DIFFERENT NETWORK
INTERCONNECTS.

MESI-Tiled Tiled Custom Simple
Private Hit Latency: 4 4 4 4
Private Miss Latency: 120 120 123 75
Shared Hit Latency: - 45 45 8
Shared Miss Latency: - 120 118 62
Shared Miss+Write Latency: - 145 155 87
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Figure 14. Private/Shared ratio extrapolation. 16 core. CLH locks.

memory level show less than 10% shared accesses. On the
other hand, there is a huge gap in the average access latency
between our idealized peer to peer simple network and a real
world 2D mesh (from 6.75 to 23 cycles latency). We believe
there is also room for improvement by using a specialized
network since our design only requires 8 bytes to be sent as
control/request plus 16 bytes to be returned (control + data
word).

With improved accuracy for access clasisfication and
reduced network latency, we believe our approach can be-
come useful as the number of cores increases and coherence
protocols face more scalability issues. This is true as long
as the additional cores can balance for the performance
degradation due to the dedicated caches. Additional research
is needed to discover the number of cores required to
make the dedicated design feasible in terms of performance.
Throughput oriented cores (GPUs or accelerators like the
Xeon Phi) can also benefit from our design, since additional
memory latency is usually hidden in those systems by
swapping execution threads. This encourages us to continue
this line of research and propose alternative solutions that
take into account the nature of the data that is being accessed
in order to avoid unnecessary coherence operations.
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