
An Efficient, Self-Contained, On-Chip Directory: DIR1-SISD

Mahdad Davari∗, Alberto Ros†, Erik Hagersten∗ and Stefanos Kaxiras∗
∗Dept. of Information Technology

Uppsala University, Sweden
Emails: {mahdad.davari, erik.hagersten, stefanos.kaxiras}@it.uu.se

†Dept. of Computer Engineering
University of Murcia, Spain

Email: aros@ditec.um.es

Abstract—Directory-based cache coherence is the de-facto
standard for scalable shared-memory multi/many-cores and
significant effort is invested in reducing its overhead. However,
directory area and complexity optimizations are often anti-
thetical to each other. Novel directory-less coherence schemes
have been introduced to remove the complexity and cost
associated with directories in their entirety. However, such
schemes introduce new challenges by transferring some of
the directory complexity and functionality to the OS and
using the page table and the TLBs to store data classification
information.

In this work we bridge the gap between directory-based and
directory-less coherence schemes and propose a hybrid scheme
called DIR1-SISD which employs self-invalidation and self-
downgrade as directory policies for the shared entries. DIR1-
SISD allows simultaneous optimizations in area and complexity
without relying on the OS. DIR1-SISD keeps track of a single
—private— owner, or allows multiple-readers-multiple-writers
to exist simultaneously by transferring the responsibility for
their coherence to the corresponding cores. A DIR1-SISD self-
contained directory cache has a unique ability to minimize
eviction-induced complexities by allowing directory entries to
be evicted without maintaining inclusion with the cached data
(thus avoiding the complexities of broadcasts) and without
the need to have a backing store. Using simulation we show
that a small, self-contained, DIR1-SISD cache outperforms a
traditional DIRn-NB MESI protocol with a directory cache
embedded in the LLC (8% in execution time and 15% in
traffic) and, further, outperforms a SISD protocol that relies
on the OS to provide a persistent page-based directory (4% in
execution time and 20% in traffic).

Keywords-multicore; memory hierarchy; cache coherence;

I. INTRODUCTION

Hardware-based cache coherence has long served as
an enabling factor in harnessing the compute power
of multi/many-cores by providing an easy programming
paradigm through sparing programmers from dealing with
explicit cache and consistency management [1]. While
snoop-based coherence schemes allowed implementation
of shared-memory systems using conventional bus-based
networks [2]–[4], the need for scalable architectures, in-
corporating ever-increasing number of cores, necessitated
directory-based coherence schemes [5]–[10]. Directory-
based cache coherence, which has served in many shared-

memory chip multi-processor (CMP) designs, has been
extensively used and studied [11], [12].

At a higher level of abstraction, different directory
schemes are distinguished based on (i) how they keep track
of sharers, and (ii) which policy they employ to maintain
coherence across those sharers. The notation DIRi-X has
been used to describe directory schemes [11], [12], where
index i refers to how the sharers are tracked, and X denotes
the policy to maintain coherence across the sharers, such as
broadcast (B) or no-broadcast (NB). Directory policy, on the
other hand, defines how the directory scheme behaves with
respect to (i) maintaining single-writer-{single or multiple}-
reader invariant [11], [13], (ii) request forwarding [12], and
(iii) directory entry eviction —in case of using a directory
cache, which is often the case [8], [9]. Directory complexity
is mainly attributed to the complexities associated with the
directory policies. As an example, the directory scheme
DIRn-NB is the extreme case which seeks to eliminate
the complexities associated with write-induced invalidation
broadcasts and collecting acknowledgments in their entirety,
however it incurs area overhead by having to save a full-
map vector per directory entry. At the other extreme, a
hypothetical DIR0-B would incur no area overhead, but
every write request received at the directory would trigger an
invalidation broadcast, which translates into complexity [11],
[12]. Other directory techniques to optimize the area, falling
in between the two extremes, result in complex directory
mechanisms which significantly add to the verification cost
and potentially impact scalability [9], [10].

Besides write requests, directory evictions might as well
trigger invalidation broadcasts depending on directory poli-
cies. Today’s CMPs implement directories as on-chip sparse
directory-caches [8], [9], which makes them vulnerable
to loss-of-information problem. Although eviction-induced
invalidations can be eliminated by allocating a backing
store in main memory [8], adding backing store is contrary
to the goal of area-efficiency and low-complexity. As a
result, inclusion is maintained between cached data and
their corresponding directory entries, which consequently
adds to complexity by requiring invalidations —in form of
unicast, multicast, or broadcast— and acknowledgement col-

lection [14]. Furthermore, such invalidations can potentially
increase the miss rate and degrade the performance. It is
still possible to eliminate the eviction-induced invalidations
without requiring a backing store, however this introduces a
new type of broadcast upon each directory miss in order to
discover and re-build the sharing status [10].

At the other end of the spectrum, there are coherence
schemes that aim to eliminate the complexities associated
with the directories by removing the directories either in
part or in their entirety [15], [16]. By relying on data-
race-free (DRF) semantics, the need to obtain ownership
upon write accesses is eliminated. In order to maintain
data consistency under such protocols, cores perform self-
invalidation (SI) and self-downgrade (SD) of their level-one
(L1) cache shared data upon synchronization [17] —locks
and barriers. However, such schemes are heavily software-
dependent and partly delegate directory functions to other
system components such as the operating system (OS),
which in turn introduce new complexities and verification
challenges. As an example, VIPS-M coherence protocol [16]
delegates private/shared data classification at page granular-
ity to the OS that uses the page-table in main memory as a
backing store for TLB entries that hold the classification.
In essence the TLBs become directory caches and the
page table is the backing store. No directory information
is ever lost in VIPS-M and this is one of the properties that
contribute to its simplicity. In other words, it is impossible
to use a (classification) directory-cache in VIPS without
having a backing store of the whole directory or severely
compromising its simplicity by introducing broadcasts to
manage information loss from the directory [18]. DeNovo
[15] is another coherence protocol which reduces the direc-
tory to track only the writers of data. However, this scheme
is heavily application-dependent; furthermore, the last-level
cache (LLC) is delegated to keep track of the writer for each
cache line and perform request-forwarding when needed.

As the aforementioned examples show, VIPS-M and De-
Novo coherence protocols partly delegate directory function-
ality to other system components, despite the fact that they
advocate coherence simplicity by removing the directories in
their entirety or in part. Both protocols require a minimum
directory support to track a single owner for each piece of
data. Based on this observation, we propose a new directory-
based coherence scheme, called Dir1-SISD, that bridges
the gap between the conventional directory schemes [5]–
[7] and the novel DRF-based coherence schemes [15], [16].
The resulting directory scheme which adopts SI and SD as
directory policies, reconciles storage reduction techniques
with techniques to minimize coherence complexity.

Our approach essentially performs dynamic hardware-
based private/shared data classification at cache-line level:
a cache line with a single sharer is considered as private,
whereas a cache line with multiple sharers is classified
as shared. However, unlike conventional directory schemes

that enforce invalidations to maintain single-writer-multiple-
readers invariant [1], our approach allows multiple-writers-
multiple-readers to exist without invalidating any copies of
the cache line in L1 caches. This is achieved by giving
the sharers the responsibility to self-invalidate the shared
data when needed. While eliminating the write-induced
invalidations/broadcasts, our approach only requires tracking
of a single sharer per block, which reduces the area overhead
of the directory. In other words, Dir1-SISD either tracks
a single private owner or allows multiple sharers without
tracking them, as long as they self-invalidate and self-
downgrade. Thus, Dir1-SISD does not require broadcasts
and implements a simple coherence scheme.

Our approach also reduces the complexities associated
with eviction-induced invalidations/broadcasts. Under Dir1-
SISD scheme, a directory entry may be evicted without the
need to be backed-up or the need to maintain inclusion,
which eliminates eviction-induced invalidations/broadcasts
present in other protocols. Furthermore, as we later show
in Section V, our approach enables low-complexity dual-
granular directories, which further reduces area overhead by
requiring a single entry per private page in the directory.

Main contributions: We propose a simple Dir1-SISD
directory organization to support self-invalidation/self-
downgrade coherence that i) eliminates the reliance on the
OS, page tables, and TLBs for classification, and ii) intro-
duces no new protocol complexity such as broadcasts. This
is because our proposed directory scheme has a unique char-
acteristic not found in other directories: the on-chip directory
cache is a self-contained directory, meaning that it neither
needs to be backed-up externally nor enforces inclusion
upon directory evictions. We achieve this by exploiting the
self-invalidation and self-downgrade policies, as described
in Section III. Further, our directory is naturally extended
to multi-granular implementations as the information that is
mainly tasked to track (owners of private blocks) is easily
compressible to coarser granularities (e.g., regions, pages).

Why is our approach any different than what came
before: While conventional Dir1 directories either allow a
single sharer or require invalidation broadcasts, our proposed
scheme avoids both. We allow multiple sharers to exist
without being tracked —read or write accesses— and yet
we do not broadcast invalidations. Dir1-SISD achieves this
by giving the sharers the responsibility to invalidate and
downgrade when the degree of sharing exceeds one. Unlike
VIPS-M [16], which also uses self-invalidation and self-
downgrade as its main ingredients, Dir1-SISD does not
depend on page table and TLBs to perform and store the
data classification. Having a shared TLB to perform and
store data classification at page granularity which is backed-
up by page table upon TLB evictions, makes VIPS-M
heavily OS-dependent and architecture specific. Furthermore
unlike DeNovo [15], which also tracks a single private
owner and employs self-invalidation, our approach does

not require indirection and request-forwarding. In other
words, DeNovo only implements self-invalidation, whereas
our approach implements both self-invalidation and self-
downgrade. Self-downgrade obviates the need for core-to-
core communication and enables implementation of simple
networks that only require a two-way L1-to-LLC and LLC-
to-L1 communication.

Why would our approach be of any interest to anyone:
Being a SI-based protocol, Dir1-SISD addresses architec-
tures where DRF programming paradigm is considered as
the dominant programming model. This includes all archi-
tectures programmed in modern standardized high levels
languages (HLLs), such as C++11, Java, and OpenCL, where
DRF is the prevailing model. This, however, does not mean
that Dir1-SISD cannot support data races. It certainly can
do this as long as data races are intended and identified, in
which case, proper fencing with self-invalidation and self-
downgrade fences leads to correct code that can handle
any programming construct.1 An important aspect of Dir1-
SISD is that it does not pose any demands for OS support
as previous proposals do. Dir1-SISD is also addressed to
architectures where simplicity —fast verification— and ef-
ficiency —area and energy benefits without compromising
performance— might be tempting enough for designers to
consider such alternatives, instead of more complex and
more expensive coherence that supports sequential consis-
tency for workloads that do not require this support.

II. BACKGROUND

Censier and Feautrier et al. [6] were the first to pro-
pose distributed directory-based schemes in the late 70’s
as a solution to overcome scalability issues associated with
centralized directories proposed by Tang [5]. Subsequently,
Archibald et al. [7] and Lenoski et al. [19] also introduced
directory techniques in which memory and directory were
distributed and tiled instead of being centralized, which
enabled more flexibility and scalability. Directory-based
schemes have been extensively studied ever since [11], [12]
and have become common in the design of CMPs. Further-
more, Gupta et al. [8] introduced the coarse vector scheme
and the sparse directory technique to reduce directory area
overhead. More recently Cuesta et al. [20] proposed dynamic
private/shared data classification to reduce the directory
area. In their approach, private data is taken out of the
directory. In another recent attempt to reduce directory
area overhead, Zebchuk et al. [21] introduced a multi-grain
directory scheme which tracks sharing at region and cache-
line granularities. All the cache lines that belong to a private
region are tracked using a single region-entry, which results
in directory area reduction, but significant complexity. In this
section we briefly give a background on directory schemes

1This is no different than dealing with a relaxed memory model where
fences are required for correctness, and is typically the domain of expert
programmers who write library and system code.

that track a single sharer, which also forms the basis for
our proposed Dir1-SISD scheme. As Weber and Gupta show
[22], the degree of sharing in majority of applications is very
close to one and rarely goes beyond that. As a result, low
complexity and overhead make Dir1-X an appealing trade-
off between resource overhead and performance.

A. Dir1-NB

Dir1-NB is the most basic and simplest implementation of
Diri-X schemes [11]. It only uses one pointer per directory
entry to track a single sharer at any given time. Dir1-NB is
an extreme case where a block, regardless of read or write
access, is not allowed to reside in more than one core at
any given time. Although restrictive, this scheme eliminates
broadcasts in their entirety, which ties in closely with what
directory-based coherence is trying to achieve. However, this
scheme incurs higher miss rate for some workloads due to
higher rate of invalidations.

B. Dir1-B

Unlike previous scheme, Dir1-B allows many sharers to
exists simultaneously, provided that the reason for sharing
is read access, i.e., read-only sharing [11], [12]. This results
in lower miss ratio, since readers are not invalidated under
read-only sharing paradigm. However, this capability comes
at the expense of invalidation broadcasts. Since more than
one sharers are allowed to exist without being tracked, a
broadcast is required when a write request is received at the
directory and more than one reader exist. However, as Weber
and Gupta show [22], large fraction of invalidations come
from migratory data which require a single invalidation.
Although broadcasts caused by migratory sharing pattern
can be eliminated by applying migratory optimization tech-
niques, such as the one proposed by Stenström et al. [23],
such optimizations add to the complexity and overhead of
directory protocols.

C. Dir1-SW

As a solution to complexities associated with directory-
based cache coherence protocols, Hill et al. [24] address
hardware and software issues together and propose cooper-
ative shared memory. On the software side, they propose
the Check-In/Check-Out (CICO) programming performance
model. By inserting CICO annotations in the code, pro-
grammers can analyze the shared-memory communication
cost. This allows the programmers to explore different
design alternatives to lower the communication cost of
shared-memory applications with respect to cache coherence
protocols. On the hardware side, they propose a minimal
directory scheme, Dir1-SW, which delegates the complex
coherence actions to software. Dir1-SW uses a dual-purpose
pointer/counter field per directory entry, which either points
to a single writer, or counts the number of sharers if datum
is shared by more than a single core. Upon a conflict, a trap

bit is set and a software routine is invoked to resolve the
coherency issue by forwarding the data to the requesting
core. Programs that conform to CICO model or provide
explicit CICO directives to the coherence engine run at full
hardware speed, since they do not cause traps.

The essential feature of Dir1-SW in reducing hardware-
based coherence complexity is that no protocol transition im-
plemented in hardware requires more than a single request-
response message-pair and instead, software handles all the
complex cases where multiple messages are required. This
results in the elimination of transient states, or in other
words, the elimination of hardware protocol-races, which
account for the main source of complexity in hardware-based
coherence protocols.

D. SCI

Scalable Coherent Interface (SCI) [25] was a comprehen-
sive effort to address the limitations in the scalability of bus-
based systems. The standard covers both physical aspects —
including electrical and mechanical specifications— as well
as the logical aspects —such as the coherence scheme.

To solve the coherence scalability problem, SCI proposes
a directory scheme in which sharing information is dis-
tributed across the caches, implemented as a doubly-linked
list. The main memory directory holds a single pointer to the
last cache that shares a memory block. This cache becomes
the head of the sharing list (for that block) maintained by the
other caches participating in the sharing. As a Dir1 protocol
SCI deals only with the head of a sharing list, delegating the
responsibility of other coherence functionality to the caches
comprising the sharing list.

E. DeNovo

Similar to Dir1-SW scheme, DeNovo architecture [15]
also leverages concurrency-safety, language-level annota-
tions. However, unlike CICO annotations which are con-
sidered as an optional performance optimization for Dir1-
SW, DeNovo architecture critically depends on a disciplined
programming paradigm, such as Deterministic Parallel Java
(DPJ). Choi et al. show that replacing ad-hoc shared-
memory with disciplined shared-memory provides oppor-
tunities to design performance-, power-, and complexity-
scalable hardware-based coherence schemes.

Relying on deterministic parallelism which provides data-
race-freedom and explicit synchronization, an application’s
run-time is divided into parallel phases, with the guarantee
from software that only a single thread can modify a datum
in each parallel phase with no other thread accessing the
datum in that phase. This obviates the need for acquir-
ing ownership on a write, provided that each core self-
invalidates, before the beginning of the next parallel phase,
its L1 data that are likely to be modified by other cores.

On the other hand, writers should register themselves
at the LLC, so that the successor readers know where to

get the up-to-date data via request-forwarding/indirection.
Therefore, each LLC entry is augmented by a pointer field
(this field is smartly hidden in the space of the stale data
but that is besides the point—directory functionality still
exists). It is also possible that the writer performs a write-
back before a succeeding read request from a new core,
in which case the up-to-date data (non-stale) are present in
LLC, the pointer field is not needed, and the succeeding
read-requests are directly responded to by LLC.2

F. VIPS-M

VIPS-M [16] proposes self-invalidation and self-
downgrade as the basic mechanisms for a very simple
directory-less coherence protocol. Although advocating a
directory-less coherence scheme (Dir0-SISD), VIPS-M uses
the page table as directory (and the TLBs as directory
caches) to perform private-shared classification at page
granularity. Cores invalidate their L1 data that belong to
shared pages when the cores perform synchronization.
VIPS-M eliminates request indirection and forwarding —
present in DeNovo— by performing self-downgrade for the
shared data. VIPS-M uses write-through as a simple self-
downgrade mechanism. The majority of the write-through
traffic comes from the private data, and the write-through
traffic caused by shared data does not significantly add
to the network traffic. As a result, a write-back policy is
employed for private data and a write-through policy for
shared data. VIPS-M introduces an efficient implementation
of write-through by coalescing the writes in a write-through
buffer. A core passing a synchronization point —release—
forces the completion of all its pending write-throughs that
may linger in the write-through buffer.

Using page table as a directory and TLBs as directory
caches eliminates the loss-of-information problem when
entries are evicted from the TLBs, since TLB entries are
always backed-up in the page tables in memory. However,
this is also one of the weak points of VIPS-M: reliance
on OS support for coherence. Any attempt to break this
dependency brings up problems which introduces loss-of-
information problem, necessitating limitations such as en-
forcing inclusion via broadcasts, which may annul VIPS-M
main claim of simplicity.

G. VIPS-H

VIPS-H [26] is the hierarchical implementation of VIPS-
M. The similar OS-/TLB-based private/shared data classi-
fication is used to classify data across multiple clusters.
VIPS-H simplifies the self-invalidation and self-downgrade
in hierarchies of clustered designs by allowing a piece of
data to be classified as shared among the cores within a
cluster, while the same piece of data is seen as private
from outside the cluster, i.e., the data is private to a cluster,

2DeNovo can be thought of as a Dir1-SI protocol.

although shared within that cluster. Such classification limits
the self-invalidation and self-downgrade to a single cluster
and eliminates unnecessary inter-cluster communication and
data movement.

While VIPS-H is optimized for and targets hierarchical
clustered designs, our proposed Dir1-SISD scheme is a
base scheme which can either be used in flat organizations
or can recursively be applied to hierarchical clusters. In
this work we evaluate Dir1-SISD in its base form as a
flat coherence scheme, and we leave the hierarchical and
clustered evaluations for future work. Another area which
Dir1-SISD differs from VIPS-H is how the data classification
is handled. VIPS-H heavily relies on the OS, the page
table and the TLBs for the private/shared data classification.
However, Dir1-SISD performs the classification entirely in
hardware, makes it an ideal choice where interaction with
OS is not feasible. Furthermore, VIPS-H performs the data
classification strictly at page granularity, whereas Dir1-
SISD provides multi-granular data classification, spanning
from fine cache-line granularity to coarse-grain page-based
classification.

III. DIR1-SISD

In this section we introduce our directory scheme, Dir1-
SISD, which provides a hybrid solution by coupling together
the benefits of directory schemes and directory-less, DRF-
based coherence protocols.

Unlike DRF-based schemes, which advocate elimination
of directory in its entirety, we do recognize the value of
having a minimal directory. We find this necessary, as this
prevents the delegation of inevitable directory operations to
other system components —page table, TLBs, and OS—
which introduces hard-to-address complexities.

To keep both area overhead and complexity at minimum,
we choose our directory to be of Dir1 type. The key insight
is that our directory essentially performs data classification
to private and shared. It has no other functionality. When
the directory tracks a private block we need to know the
owner so we can force classification changes when needed.
Otherwise, if the block becomes shared, we do not care to
track the sharers. Our choice of Dir1 is also justified by the
fact that the degree of sharing is typically close to one [22].
On the other hand, in order to balance the opposing goals of
area and complexity reduction, Dir1-SISD takes advantage
of DRF semantics to eliminate the complexities attributed to
obtaining ownership or request forwarding (indirection).

A. Basic Protocol

Dir1-SISD performs dynamic private/shared classification
at cache-line granularity. By observing all the requests from
all the cores in the system, our directory knows if a cache
line is accessed by a single core or more cores. Each
directory entry contains a single pointer which tracks the
owner for private cache lines. The directory sends to the

cores, along with the data responses, the classification of the
data. Each core’s L1 cache has a bit per cache line which
stores the classification received from the directory.

Dir1-SISD allows multiple-readers and multiple-writers
to co-exist without incurring invalidations/broadcasts. Based
on DRF semantics, a cache line can be shared and written
by different cores simultaneously. DRF semantics guarantee
that during each parallel phase of the application, write
accesses by different cores affect different words/bytes in
a cache line. Based on this paradigm, Dir1-SISD imple-
ments deferred invalidation by giving the responsibility of
maintaining coherence to the sharers. Instead of having
the directory to invalidate the sharers, invalidation of the
shared data is deferred until the end of each parallel phase
marked by a synchronization, at which point each core
self-invalidates its shared data [15]–[17]. Furthermore, each
core self-downgrades its modified data on synchronization,
making the modified data available in a shared LLC to
other cores to access during the next parallel phase. Self-
downgrade is performed via an efficient implementation of
write-through policy for shared data proposed by our pre-
vious work [16]. In that implementation, writes are delayed
in a write-through buffer to allow coalescing. Because there
may exist multiple simultaneous writers for a cache line (as
allowed by DRF semantics), each modifying a different part
of the cache line, a write-through must communicate only
the modified data to the shared cache, i.e., send a diff of the
cache line since its last write-through. For this reason per-
byte dirty-bits are used but these bits are only needed while
a cache line is in the write-through buffer and is actively
modified. Each cache line also carries a single line-dirty bit
that is used to perform write-back for private data.

B. Private-to-Shared Transition

Dir1-SISD is tasked to track the owners of private blocks,
and in the case of shared blocks to distribute the responsi-
bility for self-invalidation and self-downgrade to the cores
that share the block. Thus, measures need to be taken when
Dir1-SISD receives a request for a private cache line, with
the requestor being different from the registered owner. At
this point, directory notifies the private owner to change its
local classification for the cache line from private to shared.
This notification, which we refer to as recovery [20], is in the
form of a unicast, which simplifies the network design. In
addition, the Dir1-SISD entry for the cache line transitions
shared and further accesses by other cores are responded as
such.

Upon receiving a recovery notification, a core may re-
spond in one of the following ways:

1) The core responds with a NACK message if it has
already evicted the cache line. This enables the direc-
tory to maintain the private classification for the block,
however with a new owner.

2) The core changes its classification for an unmodified
cache line from private to shared. This causes the
cache line to be self-invalidated at the next syn-
chronization performed by the core. The core then
responds with a clean ACK message, resulting in
the cache line being globally classified as shared by
the directory. The directory then responds to the new
requestor with shared data.

3) For a modified private cache line, the core goes
through the same steps as for a clean cache-line,
however the core responds to the directory with a dirty
ACK which includes the modified (whole) cache line.
This is necessary so that the new requestor receives
the up-to-date data.

We address the cost of recovery in section VII-B2.

IV. DIRECTORY EVICTION, SELF-CORRECTION, AND
ADAPTATION

Besides write-induced coherence actions, actions trig-
gered upon directory evictions also impact the complexities
associated with directories. Today’s large memory sizes
make it impractical to provide full directory coverage and
implement in-memory backing stores. As a result, measures
need to be taken to address the loss-of-information problem
when directory entries are evicted. Maintaining inclusion
between directory and L1 caches is a common practice in the
design of Dir1 protocols. In fact, L1–Directory inclusion has
also been used in directory caches for full-map directories,
as in the case of the SUN Microsystems Sunfire system
(Enterprise 6000). This certainly obviates the need for a
backing store, however invalidations for inclusion poten-
tially degrade the performance and require broadcast support
from the network. While silent eviction of directory entries
without a backing store is possible, this policy introduces a
new type of broadcast upon each directory miss, needed to
discover and re-build the sharing status [10], [18].

Reliance on DRF semantics provides a feature unique
to Dir1-SISD which, without a need for backing store,
allows the directory entries to be evicted without maintaining
inclusion. This is achieved by having the cores to maintain
the coherence, allowing the directory information to be
discarded without invalidating the corresponding cache lines.

As discussed in section III-A, no directory-side coherence
actions are invoked after data is classified as shared. Cores
perform self-invalidation and self-downgrade based on DRF
semantics, which guarantees data consistency for the shared
data. In other words, the role of Dir1-SISD directory in
maintaining coherence is only limited to private data and
handling the private-to-shared transition via the recovery
action. Coherence for the shared data is maintained via core-
side coherence actions, which include self-invalidation and
self-downgrade. Based on these properties, shared directory
entries can be evicted silently. For the private directory

entries, the responsibility of maintaining coherence is trans-
ferred to the cores before the directory entry can be evicted.
The process of forcing the classification of a cache line from
private to shared upon directory eviction does not add to the
complexity of the directory by introducing new coherence
mechanisms and actions. The force-sharing process is the
same as the recovery process described in section III-B,
which is already implemented. We discuss the cost of force-
sharing in section VII-B2.

To reiterate: shared directory entries are silently evicted,
private directory entries are converted to shared and then
silently evicted. In other words, we disguise private cache
lines as shared to avoid their immediate eviction. Of course,
private cache lines turned-to-shared are destined to be self-
invalidated at the next synchronization point of their corre-
sponding core, however the lease-of-life that this mechanism
allows is significant and makes a difference for Dir1-SISD
as we will show in section VII.

A. Self-Correcting Classification

We are now faced with the situation where shared cache
lines and private cache lines (intentionally misclassified as
shared) can exist without a corresponding directory entry.
What happens if such a directory entry is created again
as a result of an L1 miss in some other core? A new
directory entry is always created as Private, since we have
no other knowledge. The current private owner, assumes
that it is alone and refrains from self-invalidating and self-
downgrading, even in the presence of other shared copies —
genuinely shared or private-turned-shared— in the system.
However, this is allowed by DRF semantics and Dir1-SISD
self-corrects the classification as follows.

• Based on DRF semantics, a cache line can simultane-
ously be shared and written by multiple sharers, since
software guarantees that cores do not access same bytes
in a cache line during each parallel phase. Thus, even
when the current private owner modifies the data but
fails to self-downgrade them on synchronization, no
harm is done since the modifications could remain
invisible to any other core until that core passes a
synchronization point and self-invalidates. After the
synchronization, the modified data can be accessed via
the recovery process explained in section III-B, as the
directory holds the pointer to the private block. The
private owner is then corrected to shared.

• On the other hand, it is possible that a shared copy
self-downgrades while another core has received the
cache line as private. Again, based on DRF semantics,
data consistency is not violated. The private owner is
notified, via a recovery notification (see Sec.III-B) to
change the classification to shared, which means that it
will self-invalidate the line on its next synchronization
point after which it will be able to access the updated
data. The critical observation here is that the transition

from private to shared happens before the private owner
passes the synchronization point that makes the updated
data visible. This is enforced by DRF semantics: the
writer (shared copy) and the reader (private copy) must
be in a happens-before release-acquire order via their
synchronization. Thus, the private-to-shared transition
must happen before the release, which guarantees that
the private copy now corrected to shared cannot pass
the acquire point without self-invalidating. Again, the
correction of classification does not impose complex-
ities on the directory by requiring new actions, since
the already existing recovery mechanism is reused.

• If none of the above two cases occur, then the co-
existence of a private and one or more shared copies at
the same time is harmless: either there is no commu-
nication among them, or the shared copies eventually
self-invalidate on synchronization leaving the private
copy truly alone.

This self-correcting behavior of the Dir1-SISD, is enabled
by a simple classification invariant: it is impossible for the
same block to be private at different caches, although a
single private copy and several shared (SISD) copies is
allowed. We discuss the cost of self-correction in section
VII-B2 and show that self-correction is a rare event whose
cost is negligible.

B. Adaptive Classification through Directory Replacement

Having fewer data classified as shared mitigates the
penalty incurred by self-invalidation of shared data. Adaptive
data classification, in which a shared piece of data can be
reclassified as private, becomes critical in the performance of
systems based on self-invalidation. Alisafaee [27] proposes
spatiotemporal coherence tracking, in which a shared piece
of data can temporarily be considered as private. However,
such proposals require complex mechanisms that nullify the
benefits.

Directory eviction in Dir1-SISD provides a natural means
for adaptive classification with zero overhead, allowing the
next requestor to classify the data as private, since the
address is not found in the directory. As discussed in the
previous section, if the requestor is misclassified as private
the Dir1-SISD invariant and DRF semantics will soon correct
the classification. If however, a shared block transitions into
a period where it becomes private, then the shared copies
of the block will disappear by self-invalidation, leaving the
requestor as private. We emphasize again that this is without
cost.

One can go a step further and use this Dir1-SISD ca-
pability to manage the adaptivity rate by manipulating the
eviction rate of shared directory entries, for example by
giving preference to evicting shared entries, or by decaying
them after a period of inactivity, or even by appropriately
sizing the directory itself at run-time. While we did not ex-
plore active manipulation of the eviction rate, our evaluation

incorporates the natural adaptivity that results from a limited
directory size. We leave the more advanced techniques for
future work.

C. Thread Migration

A persistent problem in private/shared classification is
thread migration. Upon a thread migration, private data
become shared as they are now accessed from a differ-
ent cache. Thus, we end up self-invalidating and self-
downgrading thread-private data at great cost. Solutions have
been proposed for page-level classification [28] (essentially
flushing the private data and restarting the classification
after the migration), however these solutions add complexity
and become expensive in the case of frequent and intensive
migration. Adaptive classification on the other hand manages
thread migration by default as it turns shared data into pri-
vate. In the case of Dir1-SISD, this adaptation is costless and
comes from the eviction of the shared entries that correspond
to the thread private data. Distinguishing between CPU and
GPU domains helps to better address the thread migration
issue:

• CPU domain. Thread migration is not a common case
in CPU domain. Therefore, the shared data misclassi-
fication is not harmful even if left untreated. However,
there are a variety of techniques that can be used to
predict the dead cache-lines, and therefore maintain the
private data classification. As an example, cache decay
techniques [29], [30] can be used to detect the dead
blocks, resulting in a NACK to be sent in response to a
recovery (see III-B), enabling re-classification of data
as private after thread migration. Furthermore, we have
shown and evaluated how cache decay can be used as a
simple dead-block predictor in order to maintain private
classification upon recoveries [31]. Cache decay has
also been employed in TLBs seeking a more accurate
classification at page granularity [32], [33].

• GPU domain. Thread migration is more common in
GPUs. However, experiments reveal that replacement
rate of blocks in GPU caches is so high, which guaran-
tees that recoveries return NACKs with a high proba-
bility and therefore private classification is maintained
even without the need to employ dead-block predictors.

V. DIRECTORY COMPRESSION

In contrast to other directories, the primary functionality
of Dir1-SISD is to track private data and their owners, rather
than shared data. This is evident by the ease of evicting
shared directory entries that carry very little information
(simply that the line is shared) and their subsequent replace-
ment by private entries. However, private data are far more
common than shared data which means that Dir1-SISD may
face increased pressure compared to directories that aim to
track only shared data [20]. The realization that addresses
this issue is that, although private data are far more numerous

Page Tag Owner Line Tag Owner P/S

 Line Tag Owner P/S

Figure 1. Logical organization of a dual-grain directory implementation.
A page directory —on the left— keeps track of a page owner. Shared cache
lines within a private page, or private cache lines with an owner different
than the page owner are tracked by a line directory —on the right. Page
directory is chosen to be smaller than line directory, as it compresses all
the page’s tags into a single entry.

than shared, their directory information can be “compressed”
far more easily [21], [27] than the corresponding directory
information of shared data [34]. This leads to region di-
rectories or multi-granular directories where private data are
tracked at coarser granularities (typically the page size works
best).

A. Case-study: dual-grain directory

Although dual-grain directories have been proposed in the
past, such organizations require complex directory mecha-
nisms. As an example, Zebchuk et al. introduce the dual-
grain DGD directory [21] which allows both region and
block entries, each with a different format, to reside in
the same directory cache. However, in order to minimize
directory lookup latency, DGD deserializes region and block
entry lookups by imposing a restriction on how the entries
are mapped in the directory cache: the region entries are
required to be mapped to half of the ways, while the block
entries are mapped to the other half. This allows region
and the corresponding block entries to be found in a single
lookup, however this reduces lookup associativity. They fur-
ther try to mitigate this problem by employing replacement
policies aimed to minimize directory evictions, however such
replacement policies are based on more complex hashing
techniques [35], [36].

Dir1-SISD, however, lends itself very well to low-
complexity dual-grain directory organizations. In this orga-
nization, as shown in Fig.1, the directory is composed of a
line-directory and a page-directory (both operating as Dir1-
SISD with the only difference being the granularity). All the
cache lines belonging to a private page are represented by a
single entry in the page-directory. In a system with 64-line
pages, this translates into compression ratio of 1÷64, which
significantly reduces the directory area. Furthermore, page-
directory and line-directory are looked up simultaneously,
without incurring complexities associated with DGD.

What is important in this case is the interaction between
the two directories. First access to a page causes an entry
in the page-directory to be allocated. Therefore, the first
core accessing a page becomes the private owner of that
page. Further accesses by the page owner do not change the
directory state. Upon receiving an access from a core other
than the page owner, an entry in line-directory is allocated to

resolve the classification for the conflicting cache line. While
the entries in the page-directory always point to private
owners —the first core accessing a page,— entries in line-
directory might be classified as either private or shared. After
a conflict, a recovery (Sec.III-B) is performed to decide if
the cache line should be classified as private or shared in the
line-directory. If the recovery is successful, i.e., the specific
block being accessed by a new core also exists in the private
owner’s cache then both become shared and the entry in the
line-directory starts as shared. If, however, the line is not
found in the cache of the page-private owner, then it starts
as private (with the core that accessed the line as the new
owner) in the line-directory.

This decision could be taken without performing a recov-
ery, if we know which lines belong to the private owner. In
other words, if we enhance the page-directory entries with
a bit-map for the lines in the page, we can discern which
lines belong to the private page and which do not, simply
by accessing the page-directory entry. However, this adds
cost and slightly increases the complexity of handling page-
directory entries and we do not use it.

Line-directory entries that revert to the same owner as
the their page, are folded back to the corresponding page
only via eviction, similarly in philosophy to the adaptation
discussed above. The benefit is that folding back to the page-
directory entry comes for free, albeit after the end of the
lifetime of a line-entry. There is no other mechanism to
support this functionality.

Evictions (due to a replacement) from the page-directory
are correspondingly more expensive than line-directory evic-
tions. A page recovery concerns all the lines belonging
to a page that are resident in the cache of the private
owner. All such lines must be changed from private to
shared. Note that we do not need to install the corresponding
entries in the line-directory, as the Dir1-SISD concept allows
shared lines without a corresponding directory entry. In this
case also, a line bit-map in the page-directory entries can
be used to avoid evicting pages with many private cache
lines and lessen the overhead. Such a bit-map would allow
us to set a threshold of private lines in a page, under
which the entry can be selected for replacement. While this
optimization in the replacement policy can reduce the cost
of evicting page-directory entries (at the cost of increased
storage requirements and increased complexity), in practice
it may not be needed if the page-directory has a wide-enough
coverage. We leave this study for future work.

Fig.2 shows the steps involved in a directory look-up
for our proposed dual-grain directory implementation. In
section VII-B5 we evaluate the opportunities to compress
the directory using a dual-grain organization.

VI. DIRECTORY ORGANIZATION

In this section we describe the directory organizations that
we use in our evaluation.

Start

Line-dir.
entry exists?

Use the existing
line-dir. entry.

Present in
page-dir. ?

Allocate a
page-dir. entry.

Request
comes from

owner ?

Use the existing
page-dir. entry.

No Yes

No Yes

Yes No

Owner has
evicted the

line?

Yes No

Allocate a shared
line-dir. entry.

Allocate a private
line-dir. entry.

Figure 2. Dual-grain directory look-up routine.

Tag Data P/S Owner

(a) Coupled LLC-directory implementation: LLC tags are ex-
tended to hold private/shared classification. The owner field is
valid when a cache line is classified as private.

Tag Data
 Tag Owner P/S

(b) Decoupled LLC-directory implementation: directory area is
reduced —on the right— by having a directory cache indepen-
dent of LLC size.

Figure 3. Logical organization of Dir11-SISD directory.

A. In-Cache Directory.

As a simple organization, directory and LLC can be
coupled together [37], [38], referred to as static-bank-
directory. As shown in Fig.3a, each LLC tag is augmented
with a directory field which holds the classification for that
cache line. In this organization, an LLC entry replacement
forces the replacement of the corresponding directory entry
and vice versa. As a result, LLC and directory misses are
equivalent, which requires a simpler controller design.

B. Stand-Alone Directory Cache.

Despite its simplicity, the in-cache directory organization
incurs area overhead: each LLC tag should be augmented
with a directory field, whereas only a subset of all those
entries are required at any moment in time to perform
directory actions for the data cached by the cores in the
system. The area overhead becomes pronounced with the
increasing size of on-chip LLC. To address this problem, a
directory cache —independent of LLC size— can be used
[8]. In this organization, LLC replacements are decoupled
from the directory replacements. Although the resulting
organization requires a more complex controller design, the
area is significantly reduced (Fig.3b). As an example, for

Table I
BASE SYSTEM PARAMETERS

Memory Parameters
Processor frequency 3.0GHz
Block size 64 bytes
MSHR size 16 entries
Split L1 I & D caches 32KB, 4-way
L1 cache hit time 1 (tag) and 2 (tag+data) cycles
Shared unified LLC cache 8MB, 512KB/tile, 16-way
LLC bank cache hit time 6 (tag) and 12 (tag+data) cycles
L1-LLC inclusion policy Inclusive
MESI Directory Full-map in LLC tags
Memory access time 160 cycles
Page size 4KB (64 blocks)

Network Parameters
Topology 2-dimensional mesh (4x4)
Routing technique Deterministic X-Y
Flit size 16 bytes
Data and control message size 72 bytes (5 flits) data, 8 bytes (1 flit) control
Routing, switch, and link time 2, 2, and 2 cycles

a system configuration with 32 KB L1 cache and 512 KB
LLC cache per tile, a stand-alone organization only requires
64K directory entries with overprovisioning factor of two,
whereas an in-cache organization requires 512K directory
entries, eight times more than the stand-alone organization.

VII. EVALUATION

A. Setup

We evaluate Dir1-SISD (DRF semantics) against a Dirn-
NB protocol (MESI states) and also the VIPS-M (DRF
semantics) protocol which operates at page granularity with
the involvement of the OS, page table, and TLBs. We also
compare Dir1-SISD against an inclusive, adaptive, DRF-
based protocol which operates at cache-line granularity —
referred to as Adaptive, explained in section VII-B3— in
order to study the classification adaptation property of Dir1-
SISD. Our target system is a 16-tile chip multiprocessor.
We use the Simics full-system simulator [39], and model
VIPS-M, Adaptive, and Dir1-SISD protocols using the cycle-
accurate GEMS simulator [40]. We also employ the GAR-
NET network simulator [41] to model the interconnection
network. Furthermore, we model the target system using
Pin [42] in order to study the opportunities to compress
the directory using a dual-grain directory implementation
(Sec. VII-B5). Table I gives the main parameters of our base
system.

We employ a wide variety of parallel applications. Barnes
(16K particles), FFT (64K complex doubles), FMM (16K
particles), LU-CB (512×512 matrix), Ocean (514×514
ocean, contiguous partitions), Radiosity (room, -ae 5000.0
-en 0.050 -bf 0.10), Raytrace (teapot, optimized version
that removes unnecessary locks), Volrend (head), Water-Nsq
(512 molecules) and Water-Sp (512 molecules) belong to
the SPLASH-2 benchmark suite [43]. Tomcatv (256points,
5 time steps) is a shared-memory implementation of the
SPEC benchmark [44]. Blackscholes (simsmall), Canneal
(simsmall), Swaptions (simsmall), and x264 (simsmall) are
from the PARSEC benchmark suite [45]. We simulate the
entire applications, but collect statistics only from start to
completion of their parallel part.

barnes fft
fm

m lu
ocean

radiosity

raytra
ceOpt2

volre
nd

waternsq

watersp

tomcatv

blackscholes

canneal

swaptio
ns

x264

Average

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

N
o

rm
a

liz
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

MESI
VIPS-M
DIR1-SISD

Figure 4. Dir1-SISD performance comparison. Results are normalized to
MESI protocol. Dir1-SISD is implemented as an in-cache directory.

barnes fft
fm

m lu
ocean

radiosity

raytra
ceOpt2

volre
nd

waternsq

watersp

tomcatv

blackscholes

canneal

swaptio
ns

x264

Average

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

N
o

rm
a

liz
e

d
 N

e
tw

o
rk

 T
ra

ff
ic

MESI
VIPS-M
DIR1-SISD

Figure 5. Dir1-SISD network traffic comparison. Results are normalized
to MESI protocol. Dir1-SISD is implemented as an in-cache directory.

B. Results

1) DIR1-SISD vs. MESI vs. VIPS-M: Fig.4 and Fig.5
show the comparison of MESI (Dirn-NB), VIPS-M, and
Dir1-SISD protocols with respect to performance and net-
work traffic. Dir1-SISD and MESI are implemented as an
in-cache directories, shown in Fig.3a.

As Fig.4 shows, Dir1-SISD achieves a better performance
on average. Canneal is the only benchmark which Dir1-SISD
performs significantly worse than VIPS-M. The performance
loss is due to the fact that canneal is mostly comprised
of private data, with a very low amount of sharing. As a
result, the majority of directory evictions invoke the recovery
mechanism discussed in section IV. However, VIPS-M is not
vulnerable to loss-of-information problem. Since classifica-
tion information is always backed up by the page table in
main memory, VIPS-M silently replaces unmodified TLB
entries —Private TLB entries.

Dir1-SISD reduces the network traffic by about 12% on
average compared to MESI, as depicted by Fig.5. The MESI
protocol provided by GEMS is implemented using a full-
map directory, which eliminates the need for broadcasts
upon directory evictions and write misses at the expense of
directory area overhead. Even in the absence of broadcasts,
Fig.5 shows that Dir1-SISD reduces the traffic compared
to MESI. This is mainly due to the elimination of write-
induced invalidations. We expect to see more reduction in
the network traffic when Dir1-SISD is compared to a non-
full-map implementation of MESI protocol. On the other

barnes fft
fm

m lu

radiosity

raytra
ceOpt2

volre
nd

waternsq

watersp

tomcatv

blackscholes

canneal
x264

Average

0

10%

O
n
-c

h
ip

 N
e
tw

o
rk

 T
ra

ff
ic

Force-Sharing
Recovery-Ctrl
Recovery-Dat

Self-Correction-Ctrl
Self-Correction-Dat
Other

(a) Number of directory entries equals number of L1-cache
entries.

barnes fft
fm

m lu

radiosity

raytra
ceOpt2

volre
nd

waternsq

watersp

tomcatv

blackscholes

canneal
x264

Average

0

10%

O
n
-c

h
ip

 N
e
tw

o
rk

 T
ra

ff
ic

Force-Sharing
Recovery-Ctrl
Recovery-Dat

Self-Correction-Ctrl
Self-Correction-Dat
Other

(b) Number of directory entries is twice the number of L1-cache
entries.

Figure 6. Network traffic breakdown. The graph shows the traffic per-
taining to recovery (Sec. III-B), force-sharing (Sec. IV) and self-correction
(Sec. IV-A). The Y-axis shows up to 10% of the total network traffic, since
the rest of the network traffic is only composed of the other component
shown in white color.

hand, both VIPS-M and Dir1-SISD incur more network
traffic in raytrace and volrend benchmarks. This is explained
by referring to the larger amount of shared data and fre-
quent synchronizations in those benchmarks, which result
in invalidation of the shared data. The self-invalidated data
is accessed frequently in those benchmarks, which incurs
data movement due to frequent cache misses and also self-
downgrade for the shared data in the form of write-through
traffic.

As depicted in Fig.5, Dir1-SISD is consistent in reducing
the network traffic compared to VIPS-M. This is explained
by referring to the granularity at which the two protocols
operate. VIPS-M inclines to misclassify cache lines as
shared. This happens when a page is shared among threads
for only a few cache lines within the page. This results
in the whole page to be classified as shared, since VIPS-
M performs data classification at page level. On the other
hand, more shared data translates into more self-invalidation,
which incurs extra traffic if the invalidated data is reaccessed
frequently.

2) Recovery, directory replacement, and self-correction
cost: Fig.6a shows the network traffic associated with

recovery (Sec. III-B), force-sharing (Sec. IV) and self-
correction (Sec. IV-A) discussed earlier. As the figure shows,
the majority of the on-chip network traffic—all the traffic
from 10% of the total traffic up to the 100%, which is
not shown in the graph—pertains to regular GET and PUT
requests and the data transfers associated with them (referred
to in the figure as other). Traffic due to self-correction
(Sec. IV-A) is negligible. This traffic is so low that it
cannot be distinguished in the figure. This confirms that self-
correction is a rare event. Figure also shows that recovery
(Sec. III-B) corresponds to 1.4% of the total network traffic
on average. Recovery traffic is composed of control and
data components. The data component is associated with the
modified private blocks in L1 caches that are downgraded in
response to the recovery requests from the LLC. Recovery
requests and non-data responses (clean ACK or NACK) form
the control component of recovery. According to Fig.6a di-
rectory replacement, which we refer to as force-sharing (Sec.
IV), is more costly than the other two types of recoveries,
however it still has a low traffic contribution, equal to 2.3%
of the whole on-chip traffic. Force-sharing is only composed
of a control component, i.e., L1 caches never return data to a
directory replacement request, but only inform the directory
via a control message that the classification of the block is
internally changed to shared. It is still possible to alleviate
the cost of directory replacement by increasing the directory
coverage. As an example, Fig.6b shows that the network
traffic caused by directory replacements is reduced to 1.4%
by increasing the directory coverage from 1x to 2x.

3) Data classification adaptation: As discussed in section
IV-B, Dir1-SISD provides adaptive shared-to-private classifi-
cation as an intrinsic feature at no extra cost. This appealing
side effect is the result of directory evictions, which allows
the subsequent request to classify the data as private.

Coherence schemes have been proposed which provide
shared-to-private classification adaptation by allowing the
shared data to be temporarily classified as private [21],
[27]. Such schemes require mechanisms to explicitly per-
form adaptation. To evaluate the efficiency of Dir1-SISD
with respect to data classification adaptation, we implement
an adaptive DRF-based coherence protocol at cache-line
granularity. The Adaptive coherence protocol performs pri-
vate/shared classification in the LLC based on the observed
requests, similar to Dir1-SISD. However, Adaptive maintains
inclusion between LLC and the L1s, which requires invalida-
tions —unicast or broadcast, depending on the private/shared
classification of the evicted entry— to be sent to the L1s.
On the other hand, cores explicitly notify the LLC when
they replace cache lines. Unlike other adaptive proposals
which require explicit replacement notifications for all the
cache lines [1], [21], [27], we optimize Adaptive so that
replacement notifications are only required for the shared
data. This optimization significantly reduces the network
traffic overhead associated with replacement notifications.

barnes fft
fm

m lu
ocean

radiosity

raytra
ceOpt2

volre
nd

waternsq

watersp

tomcatv

blackscholes

canneal

swaptio
ns

x264

Average

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

N
o

rm
a

liz
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

MESI
ADAPTIVE
DIR1-SISD

Figure 7. Dir1-SISD performance compared to an adaptive DRF-based
protocol. Normalized to MESI protocol.

barnes fft
fm

m lu
ocean

radiosity

raytra
ceOpt2

volre
nd

waternsq

watersp

tomcatv

blackscholes

canneal

swaptio
ns

x264

Average

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

N
o

rm
a

liz
e

d
 N

e
tw

o
rk

 T
ra

ff
ic

MESI
ADAPTIVE
DIR1-SISD

Figure 8. Dir1-SISD network traffic compared to an adaptive DRF-based
protocol. Normalized to MESI protocol.

By tracking the number of requests for each cache line and
the number of received eviction notifications, LLC can detect
when a cache line transitions from shared to private.

As depicted in Fig.7 and Fig.8, Dir1-SISD performs
slightly better than Adaptive protocol and also reduces the
network traffic. The reduction in the network traffic is
explained by addressing the notification messages sent by
L1s to LLC upon each L1 eviction. Although the Adaptive
protocol results in more data classified as private, the impact
on performance is negligible due to the fact that the private
data is not reused. Dir1-SISD, however, results in more
private data that are in active use, without incurring eviction
notification from the L1s. In other words, the Adaptive
protocol and the similar proposals perform shared-to-private
adaptation based on the information received when the life-
time of data is finished. This requires that cores notify the
classification mechanism of the end of data life-time, which
in some cases results in private data that is not reused. Dir1-
SISD, on the other hand, begins new private classification
at the beginning of the life-time of data, which is already
signaled by data requests received from the cores, and when
the corresponding directory entry is already evicted from the
directory due to its inactivity without requiring any extra
information to signal the eviction. The latter guarantees that
the private data in the system is in active use, therefore skips
the overhead of private reclassification when the lifetime of
data has ended.

Fig.8 also shows that Dir1-SISD results in slightly more
network traffic than Adaptive protocol in FMM benchmark.

barnes fft
fm

m lu
ocean

radiosity

raytra
ceOpt2

volre
nd

waternsq

watersp

tomcatv

blackscholes

canneal

swaptio
ns

x264

Average

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

N
o

rm
a

liz
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

MESI
DIR1-InCache
DIR1-DirCache-1/8x

Figure 9. In-cache vs. directory-cache performance comparison. Normal-
ized to MESI protocol.

barnes fft
fm

m lu
ocean

radiosity

raytra
ceOpt2

volre
nd

waternsq

watersp

tomcatv

blackscholes

canneal

swaptio
ns

x264

Average

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

N
o

rm
a

liz
e

d
 N

e
tw

o
rk

 T
ra

ff
ic

MESI
DIR1-InCache
DIR1-DirCache-1/8x

Figure 10. In-cache vs. directory-cache network traffic comparison.
Normalized to MESI protocol.

This is explained by referring to the replacement policy
employed by Dir1-SISD. Based on Least Recently Used
(LRU) replacement policy, the private entries in the directory
are prioritized for replacement. This is due to the fact
that private data follow write-back policy —as opposed
to write-through policy for shared data— which results in
private entries of directory receiving less activity. Dir1-SISD
forces the private data in L1s to shared upon directory
evictions, which increases the amount of shared data in the
system, resulting in increased network traffic in the form
of write-through traffic. To remedy this counter-adaptation
effect, the replacement policy can be modified to prioritize
the shared entries over the private ones for eviction from
directory. Such a replacement policy, besides eliminating
the undesired private-to-shared adaptation, also allows silent
directory replacements by eliminating the recovery operation
associated with private entry evictions.

4) In-cache vs. stand-alone directory-cache: We also
compare the two directory organizations discussed in section
VI with respect to performance and network traffic, as shown
in Fig.9 and Fig.10, respectively.

We configure the directory cache to have eight times fewer
entries than the in-cache directory implementation. Each
LLC tile consists of 512 sets, each set being 16-way set-
associative. Therefore, our directory cache has 128 sets, each
set being 8-way set-associative. Since L1 instruction and
data caches are 128-sets 4-way each, our directory cache has
entries equal to the aggregate number of entries in instruction
and data caches.

As Fig.9 depicts, it is possible to maintain the same
performance by reducing the number of directory entries
eight times. Decoupling the directory from LLC allows
large LLCs to exist without incurring directory overhead.
Furthermore, Fig.10 shows that, on average, the network
traffic is only slightly increased outside the critical path.
The static-power savings due to directory area reduction
by the factor of eight makes the slightly increased network
traffic an acceptable trade-off. Moreover, the slight increase
in the network traffic can be further mitigated by choosing
directory area reduction factor of 4 or 2, instead of 8.

5) Area and Directory-Compression: It is self-evident
that Dir1-SISD has an area advantage over a Dirn-NB for the
same number of directory entries. Specifically, the pointer of
a Dir1 scales with system size N as log2(N), whereas the bit-
map of a Dirn only as N, offering the corresponding area
savings. More interesting however is the case of a stand-
alone directory cache implementation: whereas the number
of entries of the Dirn-NB should be over provisioned by 2x
with respect to the cache entries because of the inclusion
property [8], we do not have such a need because we do not
enforce inclusion. (The alternative for Dirn-NB is to resort to
highly-complex directory cache implementations [9], [21].)
This unique ability allows us to reduce the size of our direc-
tory cache by 8x without perceptible impact on performance.
In terms of total directory storage requirements, a page-
based directory reserves a pointer for all allocated pages,
and caches this information in the TLBs, so its hardware
storage requirements are a function of the total number of
TLB entries. In terms of hardware area overhead this is
comparable to our stand-alone Dir1-SISD implementation
and we do not require any backing storage. In addition to the
inherent area advantages of the Dir1-SISD, a multi-granular
approach can be used to further reduce its area requirements
for a given coverage or expand the coverage for a given
number of directory entries.

To investigate the opportunities to compress the directory,
we model a dual-grain directory discussed in Sec. V using
Pin tools [42]. We model a 16-core system with 128-sets 4-
ways L1 caches. We model 128-sets 16-ways line-directory,
which is the aggregate capacity of the L1 caches. We model
unlimited-size directories, which allows us to get insight into
true compression opportunities inherent in the applications
without the obfuscating effects of directory replacement.
Fig.11 shows the percentage of the line-directory allocations
that can be eliminated in presence of a page-directory.
Overall, on average for this set of benchmarks, total line-
directory allocations can be reduced by a significant factor
of 71.38%.

VIII. CONCLUSION

In this work we introduce a new directory, Dir1-SISD,
that uses self-invalidation and self-downgrade as its directory
policies. It tracks the private owner of a line or distributes

 0

 20

 40

 60

 80

 100

barnes

fft fm
m

lu-cb
ocean-cp

radiosity

raytrace

volrend

w
ater-nsq

w
ater-sp

blackscholes

canneal

sw
aptions

Average

to
ta

l
lin

e
-d

ir
e
c
to

ry
 a

llo
c
a
ti
o
n
s
 (

%
)

Redundant
Essential

Figure 11. Opportunities to compress the directory. Line-directory area
can be compressed by eliminating the redundant entries. Redundant entries
are compressed in a much smaller page-directory.

the responsibility of coherence to the cores if the line
becomes shared (accessed by more than one). This func-
tionality allows for some remarkable properties. It allows
us to build self-contained directory caches with the unique
ability of neither requiring a backing store nor enforcing
inclusion with cached lines. With correctness guaranteed by
DRF semantics, Dir1-SISD allows the temporary coexistence
of a single “private” line and multiple shared lines and
subsequently self-corrects the classification. It achieves this
without burdening the underline SISD protocol with any
additional complexity, while at the same time breaks the
reliance to the OS, page tables, and TLBs that previous
proposals have. We show that it performs better classification
than the OS at page granularity and than hardware at
line granularity with inclusion. Dir1-SISD naturally adapts
from shared to private via its directory evictions and does
this better than an adaptive classification that tracks cache
line evictions. Finally, Dir1-SISD can be straightforward
extended to multi-granular approaches without incurring any
additional protocol complexity.

ACKNOWLEDGMENT

This work was supported in part by the Swedish VR (grant
no. 621-2012-5332), Vinnova Vinn-Verifiering (award: VIPS
2013-01113), ”Fundación Seneca-Agencia de Ciencia y Tec-
nologı́a de la Región de Murcia” under grant ”Jóvenes
Lı́deres en Investigación” 18956/JLI/13, and by the Spanish
MINECO, as well as European Commission FEDER funds,
under grant TIN2012-38341-C04-03.

REFERENCES

[1] M. M. K. Martin, M. D. Hill, and D. J. Sorin, “Why on-
chip cache coherence is here to stay,” Communications of the
ACM, vol. 55, pp. 78–89, Jul. 2012.

[2] J. R. Goodman, “Using cache memory to reduce processor-
memory traffic,” in 10th Int’l Symp. on Computer Architecture
(ISCA), Jun. 1983, pp. 124–131.

[3] R. H. Katz, S. J. Eggers, D. A. Wood, C. L. Perkins, and
R. G. Sheldon, “Implementing a cache consistency protocol,”
in 12th Int’l Symp. on Computer Architecture (ISCA), Jun.
1985, pp. 276–283.

[4] M. S. Papamarcos and J. H. Patel, “A low-overhead coherence
solution for multiprocessors with private cache memories,” in
11th Int’l Symp. on Computer Architecture (ISCA), Jun. 1984,
pp. 348–354.

[5] C. K. Tang, “Cache system design in the tightly coupled
multiprocessor syste,” in AFIPS 76, 10th national computer
conference and exposition, NY, Jun. 1976, pp. 749–753.

[6] L. M. Censier and P. Feautrier, “A new solution to coherence
problems in multicache systems,” IEEE Transactions on
Computers (TC), vol. 27, no. 12, pp. 1112–1118, Dec. 1978.
[Online]. Available: citeseer.ist.psu.edu/context/1651/0

[7] J. Archibald and J. L. Baer, “An economical solution to the
cache coherence problem,” in 12th Int’l Symp. on Computer
Architecture (ISCA), Jun. 1985, pp. 355–362.

[8] A. Gupta, W.-D. Weber, and T. C. Mowry, “Reducing memory
and traffic requirements for scalable directory-based cache
coherence schemes,” in Int’l Conf. on Parallel Processing
(ICPP), Aug. 1990, pp. 312–321.

[9] M. Ferdman, P. Lotfi-Kamran, K. Balet, and B. Falsafi,
“Cuckoo directory: A scalable directory for many-core sys-
tems,” in 17th Int’l Symp. on High-Performance Computer
Architecture (HPCA), Feb. 2011, pp. 169–180.

[10] S. Demetriades and S. Cho, “Stash directory: A scalable direc-
tory for many-core coherence,” in 20th Int’l Symp. on High-
Performance Computer Architecture (HPCA), Feb. 2014, pp.
177–188.

[11] A. Agarwal, R. Simoni, J. L. Hennessy, and M. A. Horowitz,
“An evaluation of directory schemes for cache coherence,”
in 15th Int’l Symp. on Computer Architecture (ISCA), May
1988, pp. 280–289.

[12] D. A. Wood, S. Chandra, B. Falsafi, M. D. Hill, J. R. Larus,
A. R. Lebeck, J. C. Lewis, S. S. Mukherjee, S. Palacharla, and
S. K. Reinhardt, “Mechanisms for cooperative shared mem-
ory,” in 20st Int’l Symp. on Computer Architecture (ISCA),
May 1993, pp. 156–167.

[13] D. J. Sorin, M. D. Hill, and D. A. Wood, A Primer on Memory
Consistency and Cache Coherence, ser. Synthesis Lectures on
Computer Architecture, M. D. Hill, Ed. Morgan & Claypool
Publishers, 2011.

[14] E. Hagersten and M. Koster, “Wildfire: A scalable path for
SMPs,” in 5th Int’l Symp. on High-Performance Computer
Architecture (HPCA), Jan. 1999, pp. 172–181.

[15] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honar-
mand, S. V. Adve, V. S. Adve, N. P. Carter, and C.-T. Chou,
“Denovo: Rethinking the memory hierarchy for disciplined
parallelism,” in 20th Int’l Conf. on Parallel Architectures and
Compilation Techniques (PACT), Oct. 2011, pp. 155–166.

[16] A. Ros and S. Kaxiras, “Complexity-effective multicore co-
herence,” in 21st Int’l Conf. on Parallel Architectures and
Compilation Techniques (PACT), Sep. 2012, pp. 241–252.

[17] A. R. Lebeck and D. A. Wood, “Dynamic self-invalidation:
Reducing coherence overhead in shared-memory multiproces-
sors,” in 22nd Int’l Symp. on Computer Architecture (ISCA),
Jun. 1995, pp. 48–59.

[18] S. Kaxiras and A. Ros, “Efficient, snoopless, soc coherence,”
in 25th IEEE International System-on-Chip Conference (IEEE
SOCC), Sep. 2012, pp. 230–235.

[19] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber,
A. Gupta, J. L. Hennessy, M. A. Horowitz, and M. S.
Lam, “The stanford DASH multiprocessor,” IEEE Computer,
vol. 25, no. 3, pp. 63–79, Mar. 1992.

[20] B. Cuesta, A. Ros, M. E. Gómez, A. Robles, and J. Duato,
“Increasing the effectiveness of directory caches by deactivat-
ing coherence for private memory blocks,” in 38th Int’l Symp.
on Computer Architecture (ISCA), Jun. 2011, pp. 93–103.

[21] J. Zebchuk, B. Falsafi, and A. Moshovos, “Multi-grain coher-
ence directories,” in 46th IEEE/ACM Int’l Symp. on Microar-
chitecture (MICRO), Dec. 2013, pp. 359–370.

[22] W.-D. Weber and A. Gupta, “Analysis of cache invalidation
patterns in multiprocessors,” in 3th Int’l Conf. on Archi-
tectural Support for Programming Language and Operating
Systems (ASPLOS), Apr. 1989, pp. 243–256.

[23] P. Stenström, M. Brorsson, and L. Sandberg, “An adaptive
cache coherence protocol optimized for migratory sharing,”
in 20st Int’l Symp. on Computer Architecture (ISCA), May
1993, pp. 109–118.

[24] M. D. Hill, J. R. Larus, S. K. Reinhardt, and D. A. Wood,
“Cooperative shared memory: Software and hardware for
scalable multiprocessors,” ACM Transactions on Computer
Systems (TOCS), vol. 11, no. 4, pp. 300–318, Nov. 1993.

[25] D. B. Gustavson, “The scalable coherent interface and related
standards proyects,” IEEE Micro, vol. 12, no. 1, pp. 10–22,
Jan. 1992.

[26] A. Ros, M. Davari, and S. Kaxiras, “Hierarchical pri-
vate/shared classification: The key to simple and efficient
coherence for clustered cache hierarchies,” in 21st Int’l Symp.
on High-Performance Computer Architecture (HPCA), Feb.
2015, pp. 186–197.

[27] M. Alisafaee, “Spatiotemporal coherence tracking,” in 45th
IEEE/ACM Int’l Symp. on Microarchitecture (MICRO), Dec.
2012, pp. 341–350.

[28] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki,
“Reactive nuca: Near-optimal block placement and replication
in distributed caches,” in 36th Int’l Symp. on Computer
Architecture (ISCA), Jun. 2009, pp. 184–195.

[29] S. Kaxiras, Z. Hu, and M. Martonosi, “Cache decay: Exploit-
ing generational behavior to reduce cache leakage power,” in
28th Int’l Symp. on Computer Architecture (ISCA), Jun. 2001,
pp. 240–251.

[30] A.-C. Lai, C. Fide, and B. Falsafi, “Dead-block prediction
& dead-block correlating prefetchers,” in 28th Int’l Symp. on
Computer Architecture (ISCA), Jun. 2001, pp. 144–154.

[31] M. Davari, A. Ros, E. Hagersten, and S. Kaxiras, “The effects
of granularity and adaptivity on private/shared classification
for coherence,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 12, no. 3, Oct. 2015. [Online].
Available: http://dx.doi.org/10.1145/2790301

[32] A. Ros, B. Cuesta, M. E. Gómez, A. Robles, and J. Duato,
“Temporal-aware mechanism to detect private data in chip
multiprocessors,” in 42nd Int’l Conf. on Parallel Processing
(ICPP), Oct. 2013, pp. 562–571.

[33] A. Esteve, A. Ros, M. E. Gómez, A. Robles, and J. Duato,
“Efficient tlb-based detection of private pages in chip multi-
processors,” IEEE Transactions on Parallel and Distributed
Systems (TPDS), Mar. 2015.

[34] D. Kim, J. Ahn, J. Kim, and J. Huh, “Subspace snooping:
Filtering snoops with operating system support,” in 19th Int’l
Conf. on Parallel Architectures and Compilation Techniques
(PACT), Sep. 2010, pp. 111–122.

[35] D. Sanchez and C. Kozyrakis, “The zcache: Decoupling
ways and associativity,” in 43rd IEEE/ACM Int’l Symp. on
Microarchitecture (MICRO), Dec. 2010, pp. 187–198.

[36] ——, “SCD: A scalable coherence directory with flexible
sharer set encoding,” in 18th Int’l Symp. on High-Performance
Computer Architecture (HPCA), Feb. 2012, pp. 129–140.

[37] M. R. Marty and M. D. Hill, “Virtual hierarchies to support
server consolidation,” in 34th Int’l Symp. on Computer Ar-
chitecture (ISCA), Jun. 2007, pp. 46–56.

[38] C. Kim, D. Burger, and S. W. Keckler, “An adaptive, non-
uniform cache structure for wire-delay dominated on-chip
caches,” in 10th Int’l Conf. on Architectural Support for
Programming Language and Operating Systems (ASPLOS),
Oct. 2002, pp. 211–222.

[39] P. S. Magnusson, M. Christensson, J. Eskilson, D. Fors-
gren, G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and
B. Werner, “Simics: A full system simulation platform,” IEEE
Computer, vol. 35, no. 2, pp. 50–58, Feb. 2002.

[40] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty,
M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and
D. A. Wood, “Multifacet’s general execution-driven multi-
processor simulator (gems) toolset,” Computer Architecture
News, vol. 33, no. 4, pp. 92–99, Sep. 2005.

[41] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “GAR-
NET: A detailed on-chip network model inside a full-system
simulator,” in IEEE Int’l Symp. on Performance Analysis of
Systems and Software (ISPASS), Apr. 2009, pp. 33–42.

[42] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood,
“Pin: Building customized program analysis tools with dy-
namic instrumentation,” in 2005 ACM SIGPLAN Conf. on
Programming Language Design and Implementation (PLDI),
Jun. 2005, pp. 190–200.

[43] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta,
“The SPLASH-2 programs: Characterization and method-
ological considerations,” in 22nd Int’l Symp. on Computer
Architecture (ISCA), Jun. 1995, pp. 24–36.

[44] SPEC benchmark suite release 1.0, SPEC, Winter 1990.

[45] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec
benchmark suite: Characterization and architectural impli-
cations,” in 17th Int’l Conf. on Parallel Architectures and
Compilation Techniques (PACT), Oct. 2008, pp. 72–81.

