
Fencing Programs with Self-Invalidation and
Self-Downgrade

Parosh Aziz Abdulla1, Mohamed Faouzi Atig1, Stefanos Kaxiras1, Carl
Leonardsson1, Alberto Ros2, and Yunyun Zhu1

1 Uppsala University, Sweden
2 Universidad de Murcia, Spain

Abstract. Cache coherence protocols using self-invalidation and self-
downgrade have recently seen increased popularity due to their sim-
plicity, potential performance efficiency, and low energy consumption.
However, such protocols result in memory instruction reordering, thus
causing extra program behaviors that are often not intended by the pro-
grammer. We propose a novel formal model that captures the semantics
of programs running under such protocols, and employs a set of fences
that interact with the coherence layer. Using the model, we perfform a
reachability analysis that can check whether a program satisfies a given
safety property with the current set of fences. Based on an algorithm in
[19], we describe a method for insertion of optimal sets of fences that en-
sure correctness of the program under such protocols. The method relies
on a counter-example guided fence insertion procedure. One feature of
our method is that it can handle a variety of fences (with different costs).
This diversity makes optimization more difficult since one has to opti-
mize the total cost of the inserted fences, rather than just their number.
To demonstrate the strength of our approach, we have implemented a
prototype and run it on a wide range of examples and benchmarks. We
have also, using simulation, evaluated the performance of the resulting
fenced programs.

1 Introduction

Background. Many traditional cache coherence protocols such as Mesi or Moesi
are transparent to the programmer in the sense that there is no effect on memory
ordering due to the coherence protocol. On the other hand, there is an ever larger
demand on hardware designers to increase efficiency both in performance and
power consumption. The quest to increase performance while maintaining trans-
parency has led to complex coherence protocols with many states and relying
on directories, invalidations, broadcasts, etc, often at the price of high verifica-
tion cost, area (hardware cost) and increased energy consumption. Therefore,
many researchers have recently proposed ways to simplify coherence without
compromising performance but at the price of relaxing the memory consistency
model [18, 7, 13, 24, 32, 14, 12, 23, 31, 25, 8, 15]. Principal techniques among these
proposals are Self-Invalidation (Si) and Self-Downgrade (Sd).



In traditional cache coherence protocols, when a write is performed on a cache
line, the copies in other cores are invalidated (discarded). Thus, the protocol
needs to track sharers of a cache line in a directory structure. A protocol with
Self-Invalidation allows old copies to be kept, without invalidation at each store
by another core. This eliminates the need for tracking readers [18]. In an Si
protocol, invalidation is caused by synchronization instructions which occur in
the code of the same thread. For instance, when a core executes a fence, it
informs its own L1 cache that it has to self-invalidate.

Correspondingly, in traditional protocols, when a read operation is performed
on a cache line, the last writer of the line is downgraded (or copied to the shared
cache). In a protocol with Self-Downgrade (Sd), downgrades are not caused by
read operations in other cores. Sd eliminates the need to track the last writer
of a cache line [24]. Like invalidations, in an Sd protocol, downgrades can be
caused by fence instructions.

A protocol with both self-invalidation and self-downgrade (SiSd) does not
need a directory, thus removing a main source of complexity and scalability con-
straints in traditional cache coherence protocols [24]. But this comes at a price:
SiSd protocols induce weak memory semantics that reorder memory instruc-
tions. The behavior of a program may now deviate from its behavior under the
standard Sequentially Consistent (SC) semantics, leading to subtle errors that
are hard to detect and correct.

In the context of weak memory, hardware designers provide memory fence
instructions to help the programmer eliminate the undesired behaviors. A fence
instruction, executed by a process, limits the allowed reorderings between in-
structions issued before and after the fence instruction. To enforce consistency
under SiSd, fences should also be made visible to caches, such that necessary
invalidations or downgrades may be performed. In this paper, we consider dif-
ferent types of fences. The different types eliminate different kinds of non-SC
behaviors, and may have different impact on the program performance. In fact,
unnecessary fences may significantly downgrade program performance. This is
particularly true for the fences considered here, since they both incur latency,
and affect the performance of the cache coherence subsystem as a whole. These
fences cause the invalidation of the contents of the cache. Hence the more fences
the less caching and the higher traffic we have. Thus, it is desirable to find the
optimal set of fences, which guarantee correctness at minimal performance cost.

Challenge. One possibility to make SiSd transparent to the program is to require
the programmer to ensure that the program does not contain any data races. In
fact, data race freedom is often required by designers of SiSd protocols in or-
der to guarantee correct program behavior [7, 13]. However, this approach would
unnecessarily disqualify large sets of programs, since many data races are in real-
ity not harmful. Examples of correct programs with races include lock-free data
structures (e.g., the Chase-Lev Work-stealing queue algorithm [6]), transactional
memories (e.g., the TL2 algorithm [9]), and synchronization library primitives
(e.g. pthread spin lock in glibc). In this paper, we consider a different ap-
proach where fences are inserted to retrieve correctness. This means that we may



insert sufficiently many fences to achieve program correctness without needing
to eliminate all its races or non-SC behaviors. The challenge then is to find sets
of fences that guarantee program correctness without compromising efficiency.
Manual fence placement is time-consuming and error-prone due to the complex
behaviors of multithreaded programs [11]. Thus, we would like to provide the
programmer with a tool for automatic fence placement. There are several re-
quirements to be met in the design of fence insertion algorithms. First, a set of
fences should be sound, i.e., it should have enough fences to enforce a sufficiently
ordered behavior for the program to be correct. Second, the set should be opti-
mal, in the sense that it has a lowest total cost among all sound sets of fences.
In general, there may exist several different optimal sets of fences for the same
program. Our experiments (Section 4) show that different choices of sound fence
sets may impact performance and network traffic. To carry out fence insertion
we need to be able to perform program verification, i.e., to check correctness of
the program with a given set of fences. This is necessary in order to be able
to decide whether the set of fences is sound, or whether additional fences are
needed to ensure correctness. A critical task in the design of formal verification
algorithms, is to define the program semantics under the given memory model.

Our Approach. We present a method for automatic fence insertion in programs
running in the presence of SiSd. The method is applicable to a large class of self-
invalidation and self-downgrade protocols such as the ones in [18, 7, 13, 24, 32, 14,
12, 23, 31, 25, 8, 15]. Our goal is to eliminate incorrect behaviors that occur due
to the memory model induced by SiSd. We will not concern ourselves with other
sources of consistency relaxation, such as compiler optimizations. We formulate
the correctness of programs as safety properties. A safety property is an assertion
that some specified “erroneous”, or “bad”, program states can never occur during
execution. Such bad states may include e.g., states where a programmer specified
assert statement fails, or where uninitialized data is read. To check a safety
property, we check the reachability of the set of “bad” states.

We provide an algorithm for checking the reachability of a set of bad states
for a given program running under SiSd. In the case that such states are reach-
able, our algorithm provides a counter-example (i.e., an execution of the program
that leads to one of the bad states). This counter-example is used by our fence
insertion procedure to add fences in order to remove the counter-examples intro-
duced by SiSd semantics. Thus, we get a counter-example guided procedure for
inferring the optimal sets of fences. The termination of the obtained procedure
is guaranteed under the assumption that each call to the reachability algorithm
terminates. As a special case, our tool detects when a program behaves incor-
rectly already under SC. Notice that in such a case, the program cannot be
corrected by inserting any set of fences.

Contributions. We make the following main contributions: (i) A novel formal
model that captures the semantics of programs running under SiSd, and employs
a set of fences that interact with the coherence layer. The semantics support the
essential features of typical assembly code. (ii) A tool, Memorax, available



at https://github.com/memorax/memorax, that we have run successfully on
a wide range of examples under SiSd and under Si. Notably, our tool detects
for the first time four bugs in programs in the Splash-2 benchmark suite [33],
which have been fixed in a recent Splash-3 release [27]. Two of these are present
even under SC, while the other two arise under SiSd. We employ the tool to
infer fences of different kinds and evaluate the relative performance of the fence-
augmented programs by simulation in GEMS.

We augment the semantics with a reachability analysis algorithm that can
check whether a program satisfies a given safety property with the current set
of fences. Inspired by an algorithm in [19] (which uses dynamic analysis instead
of verification as backend), we describe a counter-example guided fence inser-
tion procedure that automatically infers the optimal sets of fences necessary for
the correctness of the program. The procedure relies on the counter-examples
provided by the reachability algorithm in order to refine the set of fences. One
feature of our method is that it can handle different types of fences with dif-
ferent costs. This diversity makes optimization more difficult since one has to
optimize the total cost of the inserted fences, rather than just their number.
Upon termination, the procedure will return all optimal sets of fences.

Related Work. Adve and Hill proposed SC-for-DRF as a contract between soft-
ware and hardware: If the software is data race free, the hardware behaves as se-
quentially consistent [2]. Dynamic self-invalidation (for DRF programs) was first
proposed by Lebeck and Wood [18]. Several recent works employ self-invalidation
to simplify coherence, including SARC coherence [13], DeNovo [7, 32, 31], and
VIPS-M [24, 14, 23, 25, 15].

A number of techniques for automatic fence insertion have been proposed, for
different memory models and with different approaches. However, to our knowl-
edge, we propose the first counter-example guided fence insertion procedure in
the presence of a variety of fences (with different costs). In our previous work [1],
we propose counter-example guided fence insertion for programs under TSO with
respect to safety properties (also implemented in Memorax). Considering the
SiSd model makes the problem significantly more difficult. TSO offers only one
fence, whereas the SiSd model offers a variety of fences with different costs.
This diversity makes the optimization more difficult since one has to minimize
the total cost of the fences rather than just their number.

The work presented in [16] proposes an insertion procedure for different mem-
ory models w.r.t. safety properties. This procedure computes the set of needed
fences in order to not reach each state in the transition graph. Furthermore,
this procedure assigns a unique cost for all fences. The procedure is not counter-
example based, and requires some modification to the reachability procedure.

In [4], the tool Trencher is introduced, which inserts fences under TSO
to enforce robustness (formalised by Shasha and Snir in [30]), also using an ex-
act, model-checking based technique. Musketeer [3] uses static analysis to effi-
ciently overapproximate the fences necessary to enforce robustness under several
different memory models. In contrast to our work, the fence insertion procedures



in [4] and [3] first enumerate all solutions and then use linear programming to
find the optimal set of fences.

The program semantics under SiSd is different from those under other weak
memory models (e.g. TSO and POWER). Hence existing techniques cannot be
directly applied. To our knowledge, it is the first work that defines the SiSd
model, proposes a reachability analysis and describes a fence insertion procedure
under SiSd.

There exist works on the verification of cache coherence protocols. This paper
is orthogonal to these works since we are concerned with verification of programs
running on such architectures and not the protocols themselves.

2 Programs – Syntax and Semantics

In this section, we formalize SiSd and Si protocols, by introducing a simple
assembly-like programming language, and defining its syntax and semantics.

2.1 Syntax

The syntax of programs is given by the grammar in Figure 1. A pro-
gram has a finite set of processes which share a number of variables
(memory locations) M. A variable x ∈ M should be interpreted as
one machine word at a particular memory address. For simplicity, we
assume that all the variables and process registers assume their values
from a common finite domain V of values. Each process contains a se-
quence of instructions, each consisting of a program label and a statement.

〈pgm〉 ::= data 〈vdecl〉+〈proc〉+
〈vdecl〉 ::= 〈var〉 '=' ('∗' | 〈val〉)
〈proc〉 ::= process 〈pid〉 registers 〈reg〉∗ 〈stmts〉
〈stmts〉 ::= begin (〈label〉 ':' 〈stmt〉 ';')+ end

〈stmt〉 ::= 〈var〉 ':=' 〈expr〉 | 〈reg〉 ':=' 〈var〉 |
〈reg〉 ':=' 〈expr〉 | llfence | fence |
cas '(' 〈var〉 ',' 〈expr〉 ',' 〈expr〉 ')' |
syncwr ':' 〈var〉 ':=' 〈expr〉 | ssfence |
cbranch '(' 〈bexpr〉 ')' 〈label〉

Fig. 1: The grammar of concurrent programs.

To simplify the presenta-
tion, we assume that all in-
structions (in all processes)
have unique labels. For a la-
bel λ, we apply three func-
tions: Proc (λ) returns the
process p in which the la-
bel occurs. Stmt (λ) returns
the statement whose label
id is λ. Next (λ) returns the
label of the next statement
in the process code, or end

if there is no next statement.

2.2 Configurations

A local configuration of a process p is a triple (λ,RVal, L1), where λ is the la-
bel of the next statement to execute in p, RVal defines the values of the local
registers, and L1 defines the state of the L1 cache of p. In turn, L1 is a triple
(Valid, LStatus, LVal). Here Valid ⊆ M defines the set of shared variables that



are currently in the valid state, and LStatus is a function from Valid to the set
{dirty, clean} that defines, for each x ∈ Valid, whether x is dirty or clean, and
LVal is a function from Valid to V that defines for each x ∈ Valid its current value
in the L1 cache of p. The shared part of a configuration is given by a function
LLC that defines for each variable x ∈ M its value LLC(x) in the LLC. A con-
figuration c then is a pair (LConf, LLC) where LConf is a function that returns,
for each process p, the local configuration of p.

2.3 Semantics
Instruction Semantics

σ=($r:=x) , x∈Valid
c
λ−→(LConf[p←(Next(λ),RVal[$r←LVal(x)],L1)],LLC)

σ=(x:=e) , x∈Valid , S′=LStatus[x←dirty]

c
λ−→(LConf[p←(Next(λ),RVal,(Valid,S′,LVal[x←RVal(e)]))],LLC)

σ=fence , Valid=∅
c
λ−→(LConf[p←(Next(λ),RVal,L1)],LLC)

σ=ssfence , ∀x∈M. (x∈Valid⇒LStatus(x)=clean)

c
λ−→(LConf[p←(Next(λ),RVal,L1)],LLC)

σ=llfence , ∀x∈M. (x∈Valid⇒LStatus(x)=dirty)

c
λ−→(LConf[p←(Next(λ),RVal,L1)],LLC)

σ=(syncwr:x := e) , x 6∈Valid
c
λ−→(LConf[p←(Next(λ),RVal,L1)],LLC[x←RVal(e)])

σ=cas(x,e0,e1) , x 6∈Valid , LLC(x)=RVal(e0)

c
λ−→(LConf[p←(Next(λ),RVal,L1)],LLC[x←RVal(e1)])

System Event Semantics

ω=(fetch(p,x)) , x 6∈Valid , S′=LStatus[x←clean]

c
ω−→(LConf[p←(λ,RVal,(Valid∪{x},S′,LVal[x←LLC(x)]))],LLC)

ω=(wrllc(p,x)) , x∈Valid , LStatus(x)=dirty , S′=LStatus[x←clean]

c
ω−→(LConf[p←(λ,RVal,(Valid,S′,LVal))],LLC[x←LVal(x)])

ω=(evict(p,x)) , x∈Valid , LStatus(x)=clean

c
ω−→(LConf[p←(λ,RVal,(Valid\{x},LStatus[x←⊥],LVal[x←⊥]))],LLC)

Fig. 2: Semantics of programs running under SiSd.

In the formal definition
below, our semantics al-
lows system events to occur
non-deterministically. This
means that we model not
only instructions from the
program code itself, but
also events that are caused
by unpredictable things as
hardware prefetching, soft-
ware prefetching, program
preemption, false sharing,
multiple threads of the
same program being sched-
uled on the same core, etc.

A transition t is either
performed by a given pro-
cess when it executes an
instruction, or is a system
event. In the former case,
t will be of the form λ,
i.e., t models the effect of
a process p performing the
statement labeled with λ.
In the latter case, t will be
equal to ω for some sys-
tem event ω. For a function
f , we use f [a← b], to de-
note the function f ′ such
that f ′(a) = b and f ′(a′) =
f(a′) if a′ 6= a. We write
f(a) = ⊥ to denote that f is undefined for a.

Below, we give an intuitive explanation of each transition. The formal def-
inition can be found in Figure 2 where we assume c = (LConf, LLC), and
LConf(p) = (λ,RVal, L1), and L1 = (Valid, LStatus, LVal), Proc (λ) = p, and



Stmt (λ) = σ. We leave out the definitions for local instructions, since they
have standard semantics.

Instruction Semantics. Let p be one of the processes in the program, and
let λ be the label of an instruction in p whose statement is σ. We will define a

transition relation
λ−→, induced by λ, on the set of configurations. The relation

is defined in terms of the type of operation performed by the given statement
σ. In all the cases only the local state of p and LLC will be changed. The local
states of the rest of the processes will not be affected. This mirrors the principle
in SiSd that L1 cache controllers will communicate with the LLC, but never
directly with other L1 caches.

Read ($r := x): Process p reads the value of x from L1 into the register $r. The
L1 and the LLC will not change. The transition is only enabled if x is valid in
the L1 cache of p. This means that if x is not in L1, then a system event fetch
must occur before p is able to execute the read operation.

Write (x := e): An expression e contains only registers and constants. The
value of x in L1 is updated with the evaluation of e where registers have values
as indicated by RVal, and x becomes dirty. The write is only enabled if x is valid
for p.

Fence (fence): A full fence transition is only enabled when the L1 of p is empty.
This means that before the fence can be executed, all entries in its L1 must be
evicted (and written to the LLC if dirty). So p must stall until the necessary
system events (wrllc and evict) have occurred. Executing the fence has no
further effect on the caches.

SS-Fence (ssfence): Similarly, an ssfence transition is only enabled when
there are no dirty entries in the L1 cache of p. So p must stall until all dirty
entries have been written to the LLC by wrllc system events. In contrast to a
full fence, an ssfence permits clean entries to remain in the L1.

LL-Fence (llfence): This is the dual of an SS-Fence. An llfence transition
is only enabled when there are no clean entries in the L1 cache of p. In other
words, the read instructions before and after an llfence cannot be reordered.

Synchronized write (syncwr : x := e): A synchronized write is like an ordi-
nary write, but acts directly on the LLC instead of the L1 cache. For a syncwr

transition to be enabled, x may not be in the L1. (I.e., the cache must invalidate
x before executing the syncwr.) When it is executed, the value of x in the LLC
is updated with the evaluation of the expression e under the register valuation
RVal of p. The L1 cache is not changed.

CAS (cas(x, e0, e1)): A compare and swap transition acts directly on the LLC.
The cas is only enabled when x is not in the L1 cache of p, and the value of x in
the LLC equals e0 (under RVal). When the instruction is executed, it atomically
writes the value of e1 directly to the LLC in the same way as a synchronized
write would.



System Event Semantics. The system may non-deterministically (i.e., at any
time) perform a system event. A system event is not a program instruction, and
so will not change the program counter (label) of a process. We will define a

transition relation
ω−→, induced by the system event ω. There are three types of

system events as follows.

Eviction (evict(p, x)): An evict(p, x) system event may occur when x is valid
and clean in the L1 of process p. When the event occurs, x is removed from the
L1 of p.

Write-LLC (wrllc(p, x)): If the entry of x is dirty in the L1 of p, then a
wrllc(p, x) event may occur. The value of x in the LLC is then updated with
the value of x in the L1 of p. The entry of x in the L1 of p becomes clean.

Fetch (fetch(p, x)): If x does not have an entry in the L1 of p, then p may fetch
the value of x from the LLC, and create a new, clean entry with that value for
x in its L1.

2.4 Program Semantics under an Si Protocol

In a self-invalidation protocol without self-downgrade, a writing process will
be downgraded and forced to communicate its dirty data when another process
accesses that location in the LLC. This behavior can be modelled by a semantics
where writes take effect atomically with respect to the LLC. Hence, to modify
the semantics given in Section 2.3 such that it models a program under an
Si protocol, it suffices to interpret all write instructions as the corresponding
syncwr instructions.

2.5 Transition Graph and the Reachability Algorithm

Our semantics allows to construct, for a given program P, a finite transition
graph, where each node in the graph is a configuration in P, and each edge is a

transition. A run is a sequence c0
t1−→ c1

t2−→ c2 · · ·
tn−→ cn, which is a path in

the transition graph, where ti(0 ≤ i ≤ n) is either a label λ or a system event ω.

Together with the program, the user provides a safety property φ that de-
scribes a set Bad of configurations that are considered to be errors. Checking φ
for a program P amounts to checking whether there is a run leading from the
initial configuration to a configuration in Bad . To do that, the input program
under SiSd is translated to the code recognized by the reachability analysis tool
chosen by the user. The translated code simulates all the behaviors which are
allowed in the SiSd semantics. Also, there is instrumentation added to simulate
the caches. Verifying the input program amounts to verifying the translated code
which is analyzed under SC. If a bad configuration is encountered, a witness run
is returned by the tool. Otherwise, the program is declared to be correct.



3 Fence Insertion

In this section we describe our fence insertion procedure, which is closely related
to the algorithm described in [19]. Given a program P, a cost function κ and a
safety property φ, the procedure finds all the sets of fences that are optimal for
P w.r.t. φ and κ.

In this section we take fence constraint (or fence for short) to mean a pair
(λ, f) where λ is a statement label and f is a fence instruction. A fence constraint
(λ, f) should be interpreted as the notion of inserting the fence instruction f into
a program, between the statement labeled λ and the next statement (labeled by
Next (λ))3. For a program P and a set F of fence constraints, we define P ⊕ F
to mean the program P where all fence constraints in F have been inserted. To
avoid ambiguities in the case when F contains multiple fence constraints with
the same statement label (e.g (λ, llfence) and (λ, ssfence)), we assume that
fences are always inserted in some fixed order.

Definition 1 (Soundness of Fence Sets). For a program P, safety property
φ, and set F of fence constraints, the set F is sound for P w.r.t. φ if P ⊕ F
satisfies φ under SiSd.

A cost function κ is a function from fence constraints to positive integer
costs. We extend the notion of a cost function to sets of fence constraints in the
natural way: For a cost function κ and a set F of fence constraints, we define
κ(F ) =

∑
c∈F κ(c).

Definition 2 (Optimality of Fence Sets). For a program P, safety property
φ, cost function κ, and set F of fence constraints, F is optimal for P w.r.t. φ
and κ if F is sound for P w.r.t. φ, and there is no sound fence set G for P w.r.t.
φ where κ(G) < κ(F ).

In order to introduce our algorithm, we define the notion of a hitting set.

Definition 3 (Hitting Set). For a set S = {S0, · · · , Sn} of sets S0, · · · , Sn,
and a set T , we say that T is a hitting set of S if T ∩ Si 6= ∅ for all 0 ≤ i ≤ n.

For example {a, d} is a hitting set of {{a, b, c}, {d}, {a, e}}. For a set S of
sets, hitting sets of S can be computed using various search techniques, such
as e.g. constraint programming. We will assume that we are given a function
hits(S, κ) which computes all hitting sets for S which are cheapest w.r.t. κ. I.e.,
for a set S of finite sets, and a cost function κ, the call hits(S, κ) returns the set
of all sets T with T ⊆

⋃
Si∈S Si such that i) T is a hitting set of S, and ii) there

is no hitting set T ′ of S such that κ(T ′) < κ(T ).
We present our fence insertion algorithm in Figure 3. The algorithm keeps

two variables opt and req. Both are sets of fence constraint sets, but are intu-
itively interpreted in different ways. The set opt contains all the optimal fence

3 This definition can be generalized. Our prototype tool does indeed support a more
general definition of fence positions, which is left out of the article for simplicity.



Fencins(P,φ,κ)
1: opt := ∅; // Optimal fence sets

2: req := ∅; // Known requirements

3: while(∃F ∈ hits(req, κ) \ opt){
4: π := reachable(P ⊕ F, φ);
5: if(π =⊥){

// The fence set F is sound

// (and optimal)!

6: opt := opt ∪ {F};
7: }else{ // π is a witness run.

8: C := analyze witness(P ⊕ F, π);
// C is the set of fences

// that can prevent π.
9: if(C = ∅){ // error under SC!

10: return ∅;
11: }
12: req := req ∪ {C};
13: }
14: }
15: return opt;

Fig. 3: The fence insertion algorithm.

constraint sets for P w.r.t. φ and
κ that have been found thus far.
The set req is used to keep track
of the requirements that have
been discovered for which fences
are necessary for soundness of P.
We maintain the following invari-
ant for req: Any fence constraint
set F which is sound for P w.r.t.
φ is a hitting set of req. As the
algorithm learns more about P,
the requirements in req will grow,
and hence give more information
about what a sound fence set may
look like. Notice that the invari-
ant holds trivially in the begin-
ning, when req = ∅.

In the loop on lines 3-14 we
repeatedly compute a candidate
fence set F (line 3), insert it
into P, and call the reachability
analysis to check if F is sound
(line 4). We assume that the call
reachable(P ⊕ F, φ) returns ⊥ if
φ is unreachable in P ⊕ F, and
a witness run otherwise. If P ⊕ F

satisfies the safety property φ, then F is sound. Furthermore, since F is chosen
as one of the cheapest (w.r.t. κ) hitting sets of req, and all sound fence sets are
hitting sets of req, it must also be the case that F is optimal. Therefore, we add
F to opt on line 6.

If P ⊕ F does not satisfy the safety property φ, then we proceed to analyze
the witness run π. The witness analysis procedure is outlined in Section 3.1. The
analysis will return a set C of fence constraints such that any fence set which
is restrictive enough to prevent the erroneous run π must contain at least one
fence constraint from C. Since every sound fence set must prevent π, this means
that every sound fence set must have a non-empty intersection with C. Therefore
we add C to req on line 12, so that req will better guide our choice of fence set
candidates in the future.

Note that in the beginning, hits(req, κ) will return a singleton set of the
empty set, namely {∅}. Then F is chosen as the empty set ∅ and the algorithm
continues. A special case occurs when the run π contains no memory access
reorderings. This means that P can reach the bad states even under the SC
memory model. Hence it is impossible to correct P by only inserting fences. The
call analyze witness(P ⊕ F, π) will in this case return the empty set. The main



algorithm then terminates, also returning the empty set, indicating that there
are no optimal fence sets for the given problem.

3.1 Witness Analysis

The analyze witness function takes as input a program P (which may already
contain some fences inserted by the fence insertion algorithm), and a counter-
example run π generated by the reachability analysis. The goal is to find a set
G of fences such thati) all sound fence sets have at least one fence in common
with G and ii) G contains no fence which is already in P. It is desirable to keep
G as small as possible, in order to quickly converge on sound fence sets.

Program fragment Witness run

process P0

...

L0: x := 1;

L1: $r0 := y;

L2: $r1 := z;

...

...

1.fetch(P0,x)

2.L0: x := 1

3.fetch(P0,y)

4.L1: $r0 := y

5.fetch(P0,z)

6.L2: $r1 := z

...

7.wrllc(P0,x)

...

Fig. 4: Left: Part of a program P, containing
three instructions of the thread P0. Right: A
part of a counter-example run π of P.

There are several ways to im-
plement analyze witness to sat-
isfy the above requirements. One
simple way builds on the follow-
ing insight: Any sound fence set
must prevent the current witness
run. The only way to do that, is
to have fences preventing some ac-
cess reordering that occurs in the
witness. So a set G which con-
tains all fences preventing some
reordering in the current witness
satisfies both requirements listed
above.

As an example, consider Fig-
ure 4. On the left, we show part of
a program P where the thread P0

performs three memory accesses
L0, L1 and L2. On the right, we show the corresponding part of a counter-
example run π. We see that the store L0 becomes globally visible at line 7, while
the loads L1 and L2 access the LLC at respectively lines 3 and 5. Hence the or-
der between the instructions L0 and L1 and the order between L0 and L2 in the
program code, is opposite to the order in which they take effect w.r.t. the LLC
in π. We say that L0 is reordered with L1 and L2. The loads are not reordered
with each other. Let us assume that π does not contain any other memory ac-
cess reordering. The reordering is caused by the late wrllc on line 7. Hence, this
particular error run can be prevented by the following four fence constraints:
c0 = (L0, ssfence), c1 = (L1, ssfence), c2 = (L0, fence), and c3 = (L1, fence).
The fence set returned by analyze witness(P, π) is G = {c0, c1, c2, c3}. Notice
that G satisfies both of the requirements for analyze witness.

4 Experimental Results

We have implemented our fence insertion algorithm together with a reach-
ability analysis for SiSd in the tool Memorax. It is publicly available at



https://github.com/memorax/memorax. We apply the tool to a number of
benchmarks (Section 4.1). Using simulation, we show the positive impact of
using different types of fences, compared to using only the full fence, on perfor-
mance and network traffic (Section 4.2).

4.1 Fence Insertion Results

We evaluate the automatic fence insertion procedure by running our tool on a
number of different benchmarks containing racy code. For each example, the tool
gives us all optimal sets of fences. We run our tool on the same benchmarks both
for SiSd and for the Si protocol.4 The results for SiSd are given in Table 1. We
give the benchmark sizes in lines of code. All benchmarks have 2 or 3 processes.
The fence insertion procedure was run single-threadedly on a 3.07 GHz Intel i7
CPU with 6 GB RAM.

The first set of benchmarks are classical examples from the context of lock-
free synchronization. They contain mutual exclusion algorithms: a simple CAS
lock –cas–, a test & TAS lock –tatas– [29], Lamport’s bakery algorithm –bakery–
[17], the MCS queue lock –mcsqueue– [22], the CLH queue lock –clh– [20], and
Dekker’s algorithm –dekker– [10]. They also contain a work scheduling algorithm
–postgresql–5, and an idiom for double-checked locking –dclocking– [28], as well
as two process barriers –srbarrier– [29] and –treebarrier– [22]. The second set of
benchmarks are based on the Splash-2 benchmark suite [33]. We use the race
detection tool Fast&Furious [26] to detect racy parts in the Splash-2 code. We
then manually extract models capturing the core of those parts.

In four cases the tool detects bugs in the original Splash-2 code. The barnes
benchmark is an n-body simulation, where the bodies are kept in a shared tree
structure. We detect two bugs under SiSd: When bodies are inserted (barnes 2 ),
some bodies may be lost. When the center of mass is computed for each node
(barnes 1 ), some nodes may neglect entirely the weight of some of their children.
Our tool inserts fences that prevent these bugs. The radiosity model describes
a work-stealing queue that appears in the Splash-2 radiosity benchmark. Our
tool detects that it is possible for all workers but one to terminate prematurely,
leaving one worker to do all remaining work. The volrend model is also a work-
stealing queue. Our tool detects that it is possible for some tasks to be performed
twice. The bugs in radiosity and volrend can occur even under SC. Hence the
code cannot be fixed only by adding fences. Instead we manually correct it.

For each benchmark, we apply the fence insertion procedure in two different
modes. In the first one (“Only full fence”), we use only full fences. In the table,
we give the total time for computing all optimal sets, the number of such sets,
and the number of fences to insert into each process. For treebarrier, one process
(the root process) requires only one fence, while the others require two. Notice
also that if a benchmark has one solution with zero fence, that means that the
benchmark is correct without the need to insert any fences.

4 Our methods could also run under a plain Sd protocol. However, to our knowledge,
no cache coherence protocol employs only Sd without Si.

5 http://archives.postgresql.org/pgsql-hackers/2011-08/msg00330.php



In the second set of experiments (“Mixed fences”), we allow all four types of
fences, using a cost function assigning a cost of ten units for a full fence, five units
for an ssfence or an llfence, and one unit for a synchronized write. These cost
assignments are reasonable in light of our empirical evaluation of synchronization
cost in Section 4.2. We list the number of inserted fences of each kind. In barnes 1,
the processes in the model run different codes. One process requires an llfence,
the other an ssfence.

In addition to running our tool for SiSd, we have also run the same bench-
marks for Si. As expected, ssfence and syncwr are no longer necessary, and
fence may be downgraded to llfence. Otherwise, the inferred fence sets are
the same as for SiSd. Since Si allows fewer behaviors than SiSd, the inference
for Si is mostly faster. Each benchmark is fenced under Si within 71 seconds.

Only full fence Mixed fences

Benchmark Size Time #solutions #fences Time #solutions Fences / proc

bakery 45 LOC 17.3 s 4 5 108.1 s 16 2xsw,4xll,1xss
cas 32 LOC <0.1 s 1 2 <0.1 s 1 1xll,1xss
clh 37 LOC 4.4 s 4 4 3.7 s 1 3xsw,2xll,1xss
dekker 48 LOC 2.0 s 16 3 2.9 s 16 1xsw,2xll,1xss
mcslock 67 LOC 15.6 s 4 2 33.0 s 4 1xll,1xss
testtas 38 LOC <0.1 s 1 2 <0.1 s 1 1xll,1xss
srbarrier 60 LOC 0.3 s 9 3 0.4 s 4 2xll,1xss
treebarrier 56 LOC 33.2 s 12 1 / 2 769.9 s 132 1xll,1xss
dclocking 44 LOC 0.8 s 16 4 0.9 s 16 1xsw,2xll,1xss
postgresql 32 LOC <0.1 s 4 2 0.1 s 4 1xll,1xss

barnes 1 30 LOC 0.2 s 1 1 0.5 s 1 1xll / 1xss
barnes 2 96 LOC 16.3 s 16 1 16.1 s 16 1xss
cholesky 98 LOC 1.6 s 1 0 1.6 s 1 0
radiosity 196 LOC 25.1 s 1 0 24.6 s 1 0
raytrace 101 LOC 69.3 s 1 0 70.1 s 1 0
volrend 87 LOC 376.2 s 1 0 376.9 s 1 0

Table 1: Automatic fence insertion for SiSd.

4.2 Simulation Results

Here we show the impact of different choices of fences when executing pro-
grams. In particular we show that an optimal fence set w.r.t. the “Mixed fences”
cost function yields a better performance and network traffic compared to an
optimal fence set using the “Only full fence” cost function. We evaluate the
micro-benchmarks analyzed in the previous section and the Splash-2 benchmarks
suite [33]. All programs are fenced according to the optimal fence sets produced
by our tool as described above.



Simulation Environment: We use the Wisconsin GEMS simulator [21]. We model
an in-order processor that with the Ruby cycle-accurate memory simulator (pro-
vided by GEMS) offers a detailed timing model. The simulated system is a 64-
core chip multiprocessor with a SiSd architecture and 32KB, 4-way private L1
caches and a logically shared but physically distributed L2, with 64 banks of
256KB, 16-way each.

The DoI State: When an llfence is executed, eviction of all clean data in the
L1 cache is forced. This should take a single cycle. However, when a cache line
contains multiple words, with a per-word dirty bit, it may contain both dirty and
clean words. To evict the clean words, we would have to write the dirty data to
the LLC and evict the whole line. That would harm performance and enforce a
stronger access ordering than is intended by an llfence. For this reason, when
we implemented the SiSd protocol in GEMS, we introduced a new L1 cache
state: DoI (Dirty or Invalid). A cache line in this state contains words that are
either dirty or invalid, as indicated by the dirty bit. This allows an efficient, one-
cycle implementation of llfence, where cache lines in a mixed state transition
to DoI, thus invalidating precisely the clean words. It also allows the llfence

not to cause any downgrade of dirty blocks, thus improving its performance.

Cost of Fences: Our tool employs different weights in order to insert fences. Here,
we calculate the weights based on an approximate cost of fences obtained by our
simulations. The effect of fences on performance is twofold. First, there is a cost
to execute the fence instructions (fence latency); the more fences and the more
dirty blocks to self-downgrade the higher the penalty. Second, fences affect cache
miss ratio (due to self-invalidation) and network traffic (due to extra fetches
caused by self-invalidations and write-throughs caused by self-downgrades). The
combined effect on cache misses and network traffic also affects performance. We
calculate the cost of fences in time as follows: timefence = lat fence + missessi ∗
latmiss where lat fence is the latency of the fence, missessi is the number of misses
caused by self-invalidation, and latmiss is the average latency of such misses.
According to this equation, the average cost in time of each type of fence when
running the Splash2 benchmarks, normalized with respect to a full fence is the
following: the cost of an llfence is 0.68, the cost of an ssfence is 0.23, and
the cost of a syncwr is 0.14. The cost of the fences in traffic is calculated as
trafficfence = sd ∗ trafficwt + missessi ∗ trafficmiss where sd is the number of self-
downgrades, trafficwt is the traffic caused by a write-through, and trafficmiss is
the traffic caused by a cache miss. Normalized to a full fence, the cost in traffic
is 0.43 for an llfence, 0.51 for an ssfence, and 0.10 for a syncwr. Thus, the
weights assigned to fences in our tool seem reasonable.

Execution Time: Figure 5 (top) shows simulated execution time for both the
micro-benchmarks (top) and the Splash2 benchmarks (bottom). The use of
mixed fences improves the execution time compared to using full fences by 10.4%
for the micro-benchmarks and by 1.0% for the Splash2 benchmarks. The DoI-
mixed column shows the execution time results for the same mixed fence sets



cas
clhqueue tatas

postgresql
dclocking

srbarrier
bakery

mcsqueue
treebarrier

Average
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e

full
mixed
DoI-mixed

barnes
cholesky fft fmm lu lunc

ocean
oceannc

radiosity radix
raytrace

volrend
waternsq

watersp
Average

0.8

0.9

1.0

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e

full
mixed
DoI-mixed

cas
clhqueue tatas

postgresql
dclocking

srbarrier
bakery

mcsqueue
treebarrier

Average
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

N
or

m
al

iz
ed

 n
et

w
or

k 
tra

ffi
c

full
mixed
DoI-mixed

barnes
cholesky fft fmm lu lunc

ocean
oceannc

radiosity radix
raytrace

volrend
waternsq

watersp
Average

0.8

0.9

1.0

N
or

m
al

iz
ed

 n
et

w
or

k 
tra

ffi
c

full
mixed
DoI-mixed

E
xe

cu
ti

o
n
 T

im
e

Tr
a
ffi

c

Fig. 5: Execution time and network traffic under different fence sets.

as the mixed column. But in DoI case, llfences are implemented in GEMS
using an extra L1 cache line state (the Dirty-or-Invalid state). This feature is
an architectural optimization of the SiSd protocol. Implementing the DoI state
further improves the performance of the mixed fences, by 20.0% for the micro-
benchmarks and 2.1% for the Splash2, on average, compared to using of full
fences. Mixed fences are useful for applications with more synchronization.

Traffic: Figure 5 (bottom) shows the traffic in the on-chip network generated
by these applications. The use of llfence, ssfence, syncwr is able to reduce
the traffic requirements by 11.1% for the micro-benchmarks and 1.6% for the
Splash2 applications, on average, compared to using full fences. Additionally,
when employing the DoI state, this reduction reaches 21.3% and 1.9%, on av-
erage, for the micro-benchmarks and the Splash2, respectively. Again, the more
synchronization is required by the applications, the more traffic can be saved by
employing mixed fences.



5 Conclusions and Future Work

We have presented a uniform framework for automatic fence insertion in
programs that run on architectures that provide self-invalidation and self-
downgrade. We have implemented a tool and applied it on a wide range of
benchmarks. There are several interesting directions for future work. One is to
instantiate our framework in the context of abstract interpretation and stateless
model checking. While this will compromise the optimality criterion, it will allow
more scalability and application to real program code. Another direction is to
consider robustness properties [5]. In our framework this would mean that we
consider program traces (in the sense of Shasha and Snir [30]), and show that
the program will not exhibit more behaviors under SiSd than under SC. While
this may cause over-fencing, it frees the user from providing correctness specifi-
cations such as safety properties. Also, the optimality of fence insertion can be
evaluated with the number of the times that each fence is executed. This mea-
surement will provide more accuracy when, for instance, fences with different
weighs are inserted in a loop computation in a branching program.

Acknowledgment This work was supported by the Uppsala Programming
for Multicore Architectures Research Center (UPMARC), the Swedish Board
of Science project, ”Rethinking the Memory System”, the ”Fundación Seneca-
Agencia de Ciencia y Tecnoloǵıa de la Región de Murcia” under the project
”Jóvenes Ĺıderes en Investigación” and European Commission FEDER funds.

References

1. Abdulla, P.A., Atig, M.F., Chen, Y.F., Leonardsson, C., Rezine, A.: Counter-
example guided fence insertion under TSO. In: TACAS, pp. 204–219 (2012)

2. Adve, S.V., Hill, M.D.: Weak ordering – a new definition. In: ISCA. pp. 2–14 (1990)
3. Alglave, J., Kroening, D., Nimal, V., Poetzl, D.: Don’t sit on the fence - A static

analysis approach to automatic fence insertion. In: CAV. pp. 508–524 (2014)
4. Bouajjani, A., Derevenetc, E., Meyer, R.: Checking and enforcing robustness

against TSO. In: Programming Languages and Systems, pp. 533–553. Springer
(2013)

5. Bouajjani, A., Meyer, R., Möhlmann, E.: Deciding robustness against total store
ordering. In: ICALP (2). LNCS, vol. 6756, pp. 428–440. Springer (2011)

6. Chase, D., Lev, Y.: Dynamic circular work-stealing deque. In: SPAA. pp. 21–28
(2005)

7. Choi, B., Komuravelli, R., Sung, H., Smolinski, R., Honarmand, N., Adve, S.V.,
Adve, V.S., Carter, N.P., Chou, C.T.: DeNovo: Rethinking the memory hierarchy
for disciplined parallelism. In: PACT. pp. 155–166 (2011)

8. Davari, M., Ros, A., Hagersten, E., Kaxiras, S.: An efficient, self-contained, on-chip,
directory: DIR1-SISD. In: PACT. pp. 317–330 (2015)

9. Dice, D., Shalev, O., Shavit, N.: Transactional locking ii. In: DISC. Lecture Notes
in Computer Science, vol. 4167, pp. 194–208 (2006)

10. Dijkstra, E.W.: Cooperating sequential processes (2002)
11. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-

mann Publishers Inc., San Francisco, CA, USA (2008)



12. Hower, D.R., Hechtman, B.A., Beckmann, B.M., Gaster, B.R., Hill, M.D., Rein-
hardt, S.K., Wood, D.A.: Heterogeneous-race-free memory models. In: ASPLOS.
pp. 427–440 (2014)

13. Kaxiras, S., Keramidas, G.: SARC coherence: Scaling directory cache coherence in
performance and power. IEEE Micro 30(5), 54–65 (Sep 2011)

14. Kaxiras, S., Ros, A.: A new perspective for efficient virtual-cache coherence. In:
ISCA. pp. 535–547 (2013)

15. Koukos, K., Ros, A., Hagersten, E., Kaxiras, S.: Building heterogeneous unified
virtual memories (uvms) without the overhead. ACM TACO 13(1), 1:1–1:22 (2016)

16. Kuperstein, M., Vechev, M., Yahav, E.: Automatic inference of memory fences. In:
FMCAD. pp. 111–119. IEEE (2010)

17. Lamport, L.: A new solution of dijkstra’s concurrent programming problem. Com-
munications of the ACM 17 (Aug 1974)

18. Lebeck, A.R., Wood, D.A.: Dynamic self-invalidation: Reducing coherence over-
head in shared-memory multiprocessors. In: ISCA. pp. 48–59 (1995)

19. Liu, F., Nedev, N., Prisadnikov, N., Vechev, M.T., Yahav, E.: Dynamic synthesis
for relaxed memory models. In: PLDI. pp. 429–440 (2012)

20. Magnusson, P., Landin, A., Hagersten, E.: Queue locks on cache coherent multi-
processors. In: Parallel Processing Symposium, 1994. Proceedings., Eighth Inter-
national. pp. 165–171. IEEE (1994)

21. Martin, M.M., Sorin, D.J., Beckmann, B.M., Marty, M.R., Xu, M., Alameldeen,
A.R., Moore, K.E., Hill, M.D., Wood, D.A.: Multifacet’s general execution-driven
multiprocessor simulator (GEMS) toolset. Computer Architecture News 33(4), 92–
99 (Sep 2005)

22. Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable synchronization
on shared-memory multiprocessors. ACM Transactions on Computer Systems
(TOCS) 9 (Feb 1991)

23. Ros, A., Davari, M., Kaxiras, S.: Hierarchical private/shared classification: the key
to simple and efficient coherence for clustered cache hierarchies. In: HPCA. pp.
186–197 (2015)

24. Ros, A., Kaxiras, S.: Complexity-effective multicore coherence. In: PACT. pp. 241–
252 (2012)

25. Ros, A., Kaxiras, S.: Callback: Efficient synchronization without invalidation with
a directory just for spin-waiting. In: ISCA. pp. 427–438 (2015)

26. Ros, A., Kaxiras, S.: Fast&furious: A tool for detecting covert racing. In: PARMA
and DITAM. pp. 1–6 (2015)

27. Sakalis, C., Leonardsson, C., Kaxiras, S., Ros, A.: Splash-3: A properly synchro-
nized benchmark suite for contemporary research. In: ISPASS (2016)

28. Schmidt, D.C., Harrison, T.: Double-checked locking - an optimization pattern for
efficiently initializing and accessing thread-safe objects. In: PLoP (1996)

29. Scott, M.L.: Shared-Memory Synchronization. Morgan & Claypool (2013)
30. Shasha, D., Snir, M.: Efficient and correct execution of parallel programs that share

memory. ACM Transactions on Programming Languages and Systems (TOPLAS)
10(2), 282–312 (1988)

31. Sung, H., Adve, S.V.: DeNovoSync: Efficient support for arbitrary synchronization
without writer-initiated invalidations. In: ASPLOS. pp. 545–559 (2015)

32. Sung, H., Komuravelli, R., Adve, S.V.: DeNovoND: Efficient hardware support for
disciplined non-determinism. In: ASPLOS. pp. 13–26 (2013)

33. Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.: The SPLASH-2 programs:
Characterization and methodological considerations. In: ISCA. pp. 24–36 (1995)


