
TSOPER: Efficient Coherence-Based Strict Persistency

Per Ekemark∗,Yuan Yao∗,Alberto Ros†, Konstantinos Sagonas∗‡, and Stefanos Kaxiras∗

∗Dept. of IT, Uppsala University, Sweden †DITEC, University of Murcia, Spain ‡School of ECE, NTUA, Greece

I. MOTIVATION

In recent years, non-volatile memory (NVM) has attracted
significant attention in the research community as it introduces
new challenges in the hardware/software interface. In particular,
a key question that arises is: what is the observed order in
which memory writes are persisted in NVM?

Persistency models and their semantics, which roughly can
be classified as strict and relaxed [7], give answers this question.
Strict persistency semantics adhere to the underlying memory
consistency model: the order of stores, as seen by observers
in the consistency model, is preserved in the persist order.
Conceptually, this allows enforcing persist order using the same
mechanisms provided by the consistency model to enforce store
order. However, this proves to be expensive. Relaxed persistency
semantics, on the other hand, decouples persistency order from
consistency order and allows the order of persist operations
to deviate from the order in which the corresponding stores
become visible in the consistency model.

Relaxed persistency models (epoch persistency, language-
level persistency models, persistency for synchronization-free
regions, etc.) are potentially a very good fit for relaxed
consistency models as they require programmer involvement
for correctness. In other words, the programmer has to fence
both for the consistency model and for the persistency model,
and the effort for the former may be leveraged for the latter.
However, in architectures that implement a stronger consistency
model, such as x86-TSO, we are faced with a discrepancy
between the consistency model and the persistency model. This
discrepancy exists today between x86-TSO and the relaxed
persistency model introduced by Intel [4], formally described as
Px86 [8]. The consistency model, x86-TSO, requires little or no
involvement from the programmer. In contrast, the persistency
model, Px86, requires significant involvement with insertion
of CLFLUSH (program-ordered, buffered, persist operation),
CLFLUSHOPT (unordered, buffered, persist operation), CLWB
(unordered, buffered, persist operation), and S/MFENCE (per-
sist barrier), in the proper places in the code. This involvement
is comparable to the effort that would be needed for a relaxed
consistency model. This largely negates the benefit of having
TSO to begin with, as anyone who wishes to achieve correct
persistency would have to fence the programs as if they were
meant to run on relaxed consistency. This is problematic for
all existing software that runs on x86-TSO but is not fenced
for persistency.

This is an extended abstract of our HPCA 2021 paper with the same title.
This work was supported in part from the EU Horizon 2020 research and
innovation programme (grant No 801051), from the European Research Council
(ERC grant No 819134), and from Vetenskapsrådet (grant No 2018-05254).

Furthermore, relaxed models (either for consistency or persis-
tency) rely on data-race-free (DRF) semantics for correctness.
However, the burden falls on the programmer to provide DRF
guarantees. Arguably, correct, well-behaved programs should
be free from data races. Unfortunately, this reasoning has
two issues: (1) it does not take into account legacy software
that is written for TSO and which may have data races as
optimizations to synchronization; and (2) it does not take into
account data races at a coarser granularity than individual
variables, i.e., data races that are due to false sharing.

In contrast, a hardware-only implementation of a strict
persistency model that adheres to a consistency model such as
TSO (or SC) is not plagued by such problems, because it can
simply detect run-time conflicts at cacheline granularity and
react accordingly. Thus, without any software involvement, a
program compatible with TSO will also persist correctly on
hardware-only strict TSO persistency. Furthermore, any DRF
program with no additional annotations that runs correctly on
TSO also persists correctly on this persistency architecture.

II. TSOPER: A STRICT TSO PERSISTENCY MODEL

Our work provides a new solution for an efficient hardware-
only implementation of a strict TSO persistency model, called
TSOPER. TSOPER relies on a TSO persist buffer that sits
in parallel to the LLC. Private caches persist directly to this
buffer, bypassing the coherence serialization imposed by the
shared LLC. This is our main differentiation point from the
prior state-of-the-art, Buffered Strict Persistency (BSP) [6], and
the driver for our design decisions.

Our insight is that we can use coherence to both automati-
cally create the proper “epochs” per thread in the corresponding
private caches and order these epochs according to the data
dependencies (among threads) that arise at runtime. The term
“epoch,” however, refers to program (instruction) execution.
We fully decouple persistency from program execution as our
approach is not software-driven. Thus, in TSOPER, we talk
about atomic groups of cachelines, rather than epochs, but we
note that there is a relation between the two.

An atomic group (AG) is created and expands to include
locally-modified cachelines in the private cache of a thread
as long as no local modification is exposed to other threads.
Inspired by BulkSC [1], our AGs preserve TSO, but in contrast
to BulkSC, we do so non-speculatively. If the cachelines of an
AG are persisted atomically (with no intervening conflicting
persist), we maintain TSO persistency regardless of the order
the individual cachelines of the group are persisted. Interactions
with the outside world, concerning the cachelines of an AG,
either create dependencies for the AG, when it sees the



modifications of other AGs, or freeze the atomic group, when
it is forced to expose its own modifications to other AGs.
Freezing an atomic group automatically starts the process of
persisting it; a new AG (in program order) starts forming in the
private cache of the same thread, capturing subsequent stores
for this thread. Similarly to other approaches (e.g., BSP [6] and
SFR decoupled [7]), the dependencies among AGs (epochs in
other approaches) must be respected in the persist order of the
atomic groups. The key insight of this work is that dependencies
among atomic groups can be fully captured at the coherence
level, and in particular entirely at the L1 caches.

To demonstrate this capability, we have developed a sharing-
list protocol, inspired by SCI [5], that naturally captures in a
sharing list the order in which the coherence operations for
a block are serialized by the directory. In such a protocol,
different writers of a shared block queue up one after another
in the list, and perform their persists in the order in which
their stores were inserted in the memory order. Persistency is
enforced belatedly, trailing coherence, but following the same
order. A block’s sharing list is dismantled only by the ordered
persist of the locally-modified cachelines on the sharing list.

By ensuring that it is impossible to create dependence cycles
among AGs, we guarantee deadlock-free TSO persistency with
enough flexibility to coalesce multiple stores in cachelines and
re-order individual cacheline persists (within an atomic group)
to match the level of performance of the relaxed persistency
models. We do not rely on any kind of speculation or transac-
tional approach that would detect conflicts, roll-back, and retry.
Our approach is strictly non-speculative, rendering any cost
related to out-of-core speculation (checkpoints, maintaining
speculative state, commit overhead, etc.) unnecessary.

We envision a unified mechanism that enforces coherence
to support the consistency model (TSO) and enforces the
persistency model. In our HPCA’21 paper [2], for simplicity,
we use the same sharing-list protocol for both coherence and
persistency, but, in principle, a different protocol could be
used for coherence. Using the same sharing-list protocol for
both coherence and persistency has the advantage of easily
demonstrating the decoupling of coherence and persistency:
coherence happens at the head of the sharing lists (the young
memory order end) while persistency happens at the tails of
the sharing lists (the old memory order end).

As in other PM models, including Px86, SFR persistency, and
PTSO, we also employ persist buffering to decouple program
execution from the actual persist operations that eventually
reach the NVM. In our model, a TSO persist buffer, similarly
to Intel’s Write Pending Queue, guarantees that AGs, persisted
directly from the L1 caches, will be made durable in NVM
even in the event of a crash. Our TSO persist buffer, called
Atomic Group Buffer (AGB), accommodates multiple versions
of same-address cachelines in different atomic groups awaiting
their writing to NVM. This is a fundamental differentiation
point from both BSP and LAD [3] that persist through LLC
and impose a single-version restriction: visibility and writing
to NVM must be interlocked on the same version.

III. MAIN INNOVATIONS AND A TASTE OF PERFORMANCE

In a nutshell, TSOPER eliminates two major serializations
in strict persistence via the following two innnovations:

1. The use of a sharing list protocol allows multiple writers
to co-exist in the sharing list, eliminating the need to block in
the L1 cache, waiting for values written in different caches to
persist in order. Different writers of a shared block queue up
one after another in the sharing list, and perform their persists
in the order in which their stores were inserted in memory.

2. In TSOPER, atomic groups (AGs) are directly persisted
from L1s to the persist buffer, AGB, in parallel to being written
in the LLC. In other words, we do not need to use the LLC as
a staging area before writing to NVM as in BSP. This nearly
eliminates the need to wait for an LLC value to be persisted
before overwriting it in the consistency domain. Similarly
to Intel’s Write Pending Queue, our AGB guarantees that
atomic groups, persisted directly from the L1 caches, will
be made durable in NVM even in the event of a crash (e.g.,
power failure). To reduce the high write latency to NVM,
AGB banks are implemented with faster technology such as
battery-backed SRAM of modest size (10 KB) that is feasible
with existing technology. In contrast, whole-system persistence
would require power backup for all private/shared caches and,
most importantly, it must be equipped to handle the worst case
scenario of potentially having to write tens of MB of dirty
cached data back to NVM on a power failure.

In our full paper [2], we show through detailed simulation
that our approach decouples coherence and persistence further
than BSP, and achieves performance levels close to relaxed
persistency (3% performance overhead on average).

REFERENCES

[1] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas, “BulkSC:
Bulk enforcement of sequential consistency,” in Proceedings of the
34th ISCA. ACM, Jun. 2007, pp. 278–289. [Online]. Available:
https://doi.org/10.1145/1250662.1250697

[2] P. Ekemark, Y. Yao, A. Ros, K. Sagonas, and S. Kaxiras, “TSOPER:
Efficient coherence-based strict persistency,” in IEEE International Sym-
posium on High-Performance Computer Architecture, ser. HPCA 2021.
IEEE Computer Society, Mar. 2021.

[3] S. Gupta, A. Daglis, and B. Falsafi, “Distributed logless atomic
durability with persistent memory,” in Proceedings of the 52nd
MICRO. ACM, Oct. 2019, pp. 466–478. [Online]. Available:
https://doi.org/10.1145/3352460.3358321

[4] “Intel R© 64 and IA-32 architectures software developer’s manual
(combined volumes),” Oct. 2019, Available: https://software.intel.com/
sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf

[5] D. V. James, A. T. Laundrie, S. Gjessing, and G. S. Sohi,
“Distributed-directory scheme: Scalable coherent interface,” IEEE
Computer, vol. 23, no. 6, pp. 74–77, Jun. 1990. [Online]. Available:
https://doi.org/10.1109/2.55503

[6] A. Joshi, V. Nagarajan, M. Cintra, and S. Viglas, “Efficient persist barriers
for multicores,” in Proceedings of the 48th MICRO. ACM, Dec. 2015, pp.
660–671. [Online]. Available: https://doi.org/10.1145/2830772.2830805

[7] S. Pelley, P. M. Chen, and T. F. Wenisch, “Memory persistency,” in
Proceedings of the 41st ISCA. IEEE Computer Society, Jun. 2014, pp.
265–276. [Online]. Available: https://doi.org/10.1109/ISCA.2014.6853222

[8] A. Raad, J. Wickerson, G. Neiger, and V. Vafeiadis, “Persistency
semantics of the Intel-x86 architecture,” Proc. ACM Program. Lang.,
vol. 4, no. POPL, pp. 11:1–11:31, 2020. [Online]. Available:
https://doi.org/10.1145/3371079

https://doi.org/10.1145/1250662.1250697
https://doi.org/10.1145/3352460.3358321
https:// software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https:// software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://doi.org/10.1109/2.55503
https://doi.org/10.1145/2830772.2830805
https://doi.org/10.1109/ISCA.2014.6853222
https://doi.org/10.1145/3371079

	Motivation
	TSOPER: A Strict TSO Persistency Model
	Main Innovations and a Taste of Performance
	References

