
Optimization of a Linked Cache Coherence
Protocol for Scalable Manycore Coherence?

Ricardo Fernández-Pascual, Alberto Ros, and Manuel E. Acacio

Dpto. de Ingenieŕıa y Tecnoloǵıa de Computadores.
Universidad de Murcia (SPAIN)

{rfernandez,aros,meacacio}@ditec.um.es

Abstract. Despite having been quite popular during the 1990s because
of their important advantages, linked cache coherence protocols have
gone completely unnoticed in the multicore wave. In this work we bring
them in the spotlight, demonstrating that they are a good alternative to
other solutions being proposed nowadays. In particular, we consider in
this work the case for a simply-linked list-based cache coherence proto-
col and propose two techniques, namely Concurrent Replacements (CR)
and Opportunistic Replacements (OR), aimed at palliating the nega-
tive effects of replacements of clean data. Through detailed simulations
of several SPLASH-2 and PARSEC applications, we demonstrate that,
armed with CR and OR, simply-linked list-based protocols are able to
offer the performance of a non-scalable bit-vector directory at the same
time that scalability to larger core counts is preserved.

Keywords: Manycores, Cache coherence, Exact sharer enconding, Scal-
ability, Singly-linked list, Area overhead, Execution time, Network traffic

1 Introduction

As technology allows the fabrication of chip-multiprocessors with dozens or even
hundreds of cores, the organization of the coherence directory responsible for
keeping track of the sharers of cached memory blocks becomes a first-class de-
sign concern. Ideally, a coherence directory should satisfy three basic require-
ments [15]: i) small area, energy, and latency overheads that scale well with the
number of cores; ii) exact sharer representation to minimize resulting coherence
traffic; and iii) avoidance of directory-induced invalidations. The latter can arise
with sparse directories due to their limited capacity and associativity, and could
be reduced by doing a more efficient use of their entries [5, 8, 7]. However, en-
suring exact sharer representation is usually hard, since it entails increased area
and energy requirements (if bit vectors are used), directory-induced invalidations
(for limited pointers, when a pointer recycling overflow strategy is employed),

? This work has been supported by the Spanish MINECO, as well as European Com-
mission FEDER funds, under grants “TIN2012-38341-C04-03” and “TIN2015-66972-
C5-3-R”, and by the Fundación Séneca-Agencia de Ciencia y Tecnoloǵıa de la Región
de Murcia under grant “19295/PI/14”.

2 Ricardo Fernández-Pascual, Alberto Ros, and Manuel E. Acacio

or extra directory latency and/or non-conventional structures (e.g., SCD [15]
requires a non-conventional ZCache architecture).

The design of scalable coherence directories for systems with a large number
of cores has been extensively studied for traditional multiprocessors. In that
context, the most scalable protocols —those which kept sharing information in
a directory distributed among nodes— were classified in two categories [6]: those
that store the sharing information about all the cached copies of each block in a
single and fixed place, the home node of that block (we call them directories with
centralized sharing codes), and those in which sharing information is distributed
among the caches holding copies of each block and the home node, which only
contains a pointer to one of the sharers (we call them directories with distributed
sharing codes). Surprisingly, all recent proposals have concentrated on the first
type of directories, and despite having been popular in the context of shared-
memory multiprocessors during the 1990s [10, 11, 17], directories with distributed
sharing codes have gone completely unnoticed in the multicore era.

Directories based on distributed sharing codes have several important ad-
vantages over their centralized counterparts. First of all, they ensure scalability
since they employ pointers whose size increases logarithmically with the number
of cores. Fig. 1 shows that the amount of memory required by the simplest direc-
tory able to provide exact sharer representation based on a distributed sharing
code (that using a simply-linked list, List) remains below 2% as the number of
cores is increased to 1024. The memory requirements of the recently proposed
SCD [15] and two directories with centralized sharing codes (namely, BitVector
and 1-Pointer) are also shown for comparison purposes. BitVector does not scale
because the number of bits per directory entry increases linearly with the num-
ber of cores, but it is able to offer the best performance. In [15], SCD has been
shown to approximate the performance of BitVector but its area requirements
do not scale as well as List . Finally, 1-Pointer incurs an area penalty similar to
List but it does not guarantee exact sharer representation, which compromises
performance.

A second advantage of directories based on distributed sharing codes is that
they naturally lead to more efficient use of the precious directory information,
dynamically devoting more resources to those memory blocks with more sharers
and less to those that do not need them (every cached data has at least one
pointer assigned, which is the minimum to have its precise location, and at most
as many pointers as sharers). And, finally, a third one is that conversely to other
proposals based on the use of multi-hashing [15], directories based on distributed
sharing codes do not require non-conventional cache structures. However, some
disadvantages have been reported also, such as increased latency of write misses
due to a sequential invalidation of sharers, high-latency replacements of shared
blocks since the list structure must be preserved, and the necessity of modifying
private caches to include pointers.

In our previous work [9], we brought a singly-linked list-based directory sim-
ilar to that described in [16] (List) to the multicore world. We found out that
List was specially appealing since it entailed minimal additions to the critical

Optimization of a Linked Cache Coherence Protocol... 3

4 8 16 32 64 128 256 512 1024
0%

2%

4%

6%

8%

10%

12%

M
em

o
ry

 o
ve

rh
ea

d

BitVector
OnePointer
SCD
List

Fig. 1. Memory overhead as the number of cores increases.

private L1 caches (just one pointer per cache entry) and at the same time it
was able to ensure scalability in terms of directory memory overhead (as shown
in Figure 1). However, we noticed important performance degradations (almost
20% on average) when compared with BitVector . Particulary, we discovered that
the most important source of inefficiency in List was due to the extra messages
necessary to handle clean shared data replacements. Now, we propose in this
work two novel techniques that minimize the negative impact that replacements
of clean data in a simply-linked protocol have on performance: Opportunistic re-
placements (OR) and Concurrent replacements (CR). OR tries to mix pending
replacements of clean data at the private caches with an on-going replacement
(all referred to the same address), thus minimizing the number of replacements
that the home node must manage. CR allows the home node to deal with load
misses to a particular address whilst a replacement to the same address is pro-
gressing.

To the best of our knowledge, this is the first work showing how in manycores
a directory with a distributed sharing code (List) can reach the performance
of the most efficient but unfeasible (non-scalable) directory with a centralized
bit-vector sharing code (BitVector) at the same time that scalability to larger
core counts is guaranteed. The only overhead that we have observed in List is
some increase in terms of average network traffic but it has no impact on final
performance.

2 List : A simply-linked list protocol

The List protocol analyzed in this work has been developed by modifying the
base MESI protocol. Although different, List resembles previous proposals based
on singly-linked lists like [16]. The complexity of the resulting protocol is very
close to that of the base protocol from which it has been derived.

Distributed sharing codes store directory information for each memory block
in a distributed way, instead of keeping it centralized in the home node. In List ,
the home node stores the identity of only one of the possibly many sharers of
the memory block while the rest of sharers are represented using a linked list
constructed through one pointer in each of the L1 cache entries1. Storing the
sharing information this way implies that, to update it, some messages need to be

1 Without generality loss, we assume private L1 caches in each core and an inclusive,
shared L2 cache distributed between them.

4 Ricardo Fernández-Pascual, Alberto Ros, and Manuel E. Acacio

exchanged between the sharers and the home node which would not be needed
in a protocol using a centralized sharing code, but it achieves a much higher
scalability in terms of memory overhead which results in lower area requirements
and static energy consumption.

Whereas the amount of memory required per directory entry with a central-
ized bit-vector sharing code grows linearly with the number of processing cores
(i.e., one bit per core), it grows logarithmically for distributed sharing codes
(Fig. 1). Although distributed sharing codes need some additional information
in each L1 entry (pointers), this is not a problem for scalability because the num-
ber of entries in the private caches is always much smaller than in the shared
cache banks. Figure 1 shows the percentage of memory (in bits) added by each
protocol with respect to the total number of bits dedicated to the L1 and L2
caches for different numbers of cores, assuming 4-way L1 caches with 128 sets
and 16-way L2 caches with 256 sets per core and 64 byte blocks.

The starting point List protocol considered in this work is a slightly improved
version of the one evaluated in [9]. The current version has one message less in the
critical path of replacements (but still has the same total number of messages).

List stores the sharing information of a block in a distributed manner. The
home L2 node keeps a pointer to the first sharer and each sharer keeps a pointer
to another sharer, creating a linked list of sharers. The last sharer keeps a null
pointer, which is codified as the identity of the sharer itself so that no additional
bits are needed (i.e., the last node points to itself).

In List , without optimizations, updates to the list of sharers are serialized
by the home node, which remains blocked (i.e., other requests for this block are
not attended) until the modification of the list has been completed. This avoids
races that could corrupt the list.

For requests to non-cached or private blocks, List behaves almost identically
to a centralized protocol. The home L2 bank, after sending the data and receiving
an Unblock message from the requester, stores the identity of the new and only
sharer in the block’s pointer. The differences come with read and write misses
and replacements of shared blocks.

For read misses to blocks with at least one sharer, the new sharer is inserted
at the beginning of the list (i.e., the new sharer will point to the previous first
sharer and the L2 will point to the new sharer). The identity of the previous first
sharer is sent to the requester along with the data, which can be sent by the L2
(for the S state) or by the previous first sharer after it receives the forwarded
request (for the M or E state). No additional messages are required with respect
to a centralized protocol in either case.

For write misses, the invalidation of all sharers is done in parallel to sending
the data to the requester. But, while in a centralized protocol the home node can
perform the invalidations in parallel by sending them directly to every sharer
(because it has the complete sharing information), in List the L2 sends the
invalidation only to the first sharer, which forwards it to the next sharer and
so on until arriving to the last one, which sends an acknowledgment to the
requester. This means that latency may increase specially for long lists of sharers

Optimization of a Linked Cache Coherence Protocol... 5

because the invalidations are processed sequentially. On the other hand, while
in a centralized protocol every sharer needs to send an acknowledgment to the
requester, in List only the last sharer sends it, hence the number of messages
used to resolve a write miss is the same or less than with a centralized protocol.

L2

O a data

L1a

S b data

L1b

S c data

L1c

S d data

L1d

S d data

1 PutS

L2

W a data

L1a

S b data

L1b

S c data

L1c

I

L1d

S d data

2 WBAck

3 WBClean,
next=d

L2

W a data

L1a

S b data

L1b

S c data

L1c

I

L1d

S d data4 PutS c, next=d

5 PutS c, next=d

L2

O a data

L1a

S b data

L1b

S d data

L1c

I

L1d

S d data6 WBUnblock

Fig. 2. Example of shared block replacement in List

Replacements of blocks shared by only one node are handled exactly the
same as in a centralized protocol. However, the most determinant difference
for performance is the way that replacements of shared blocks are done. In a
centralized protocol, these replacements can happen silently (i.e., the sharer
discards the data and does not inform the home node about it) while List needs
to involve the home node and other sharers in a potentially long process. This is
so because the sharing information (i.e., the pointer to the next sharer) is stored
alongside the data, and discarding it would leave the list of sharers unconnected.
Instead, as shown in figure 2, before a shared memory block can be replaced,
a replacement request (1) is sent to the L2. When the L2 receives it and it
is ready to handle it, it responds with a message authorizing the replacement
(2). This message is answered by the replacing node with another one (3)
that carries the value of the pointer kept at this L1, which indicates the next
sharer in the list. After sending it, the L1 cache can discard the pointer from
its cache and it will not be contacted again regarding this transaction. Upon
receiving the message with the next sharer, the L2 needs to update the sharing
list (which at this point is momentarily disconnected because the replacing node
has discarded its pointer). For this, if the replacing node coincides with the
sharer stored at the L2 (i.e., it is the first sharer of the list), then the value of
the pointer at the L2 is changed to point to the next sharer. Otherwise, the L2
cache forwards the replacement request to the first sharer (4) and the message
keeps propagating through the list of sharers until the node that preceded the

6 Ricardo Fernández-Pascual, Alberto Ros, and Manuel E. Acacio

replacing node in the list is reached (5). This is identified because its pointer
to the next sharer will match the requester identity. At this point, the preceding
node updates its pointer with the information included in the message (the next
sharer), reconnecting the list of sharers. After updating its next pointer, the node
sends an acknowledgment (6) to the L2 and the operation completes. Notice
that the identity of the next sharer cannot be sent along with the first message
of the transaction, because if the L2 receives another request for that line from
a different node before the replacement request arrives, the information may
become obsolete. The L2 will not attend other requests for that line while the
replacement is being performed to avoid concurrent modifications to the list of
sharers.

The fact that replacements for shared data in the List protocol cannot be
done silently significantly increases the number of messages on the intercon-
nection network (bandwidth requirements) and, what is more important, the
occupancy of the directory controllers at the L2 cache. It is important to note
that although write buffers are used at the L1 caches to prevent delaying unnec-
essarily the cache miss that caused the replacement, the fact that the directory
controller “blocks” the memory block being replaced results in longer latencies
for subsequent misses (from other nodes) to the replaced address because those
misses cannot be attended by the L2 until the replacement has finished.

3 Optimizing shared replacements in List

The main reason for the execution time and traffic difference between BitVector
and List is due to the replacement of shared blocks [9]. To mitigate this problem,
we have designed two optimizations to List which can be used in combination
or independently of each other: Opportunistic replacements, which mainly affect
the behavior of L1 controllers, and concurrent replacements, which affect only
the behavior of the L2 controller.

It is important to understand that shared replacements do not increase the
latency of the miss that actually caused the replacement because all protocols
considered in this work assume that the L1 caches have writeback buffers2. In-
stead, the replacement affects the latency of subsequent misses to the same or
different addresses due to two reasons: the additional traffic, which can be ab-
sorbed by the network easily, and, more importantly, the additional time that
the L2 controller needs to be blocked while handling the replacement.

3.1 Opportunistic replacements (OR)

We noticed that, in some applications, several sharers of the same block fre-
quently will request to replace it almost simultaneously. When this happens in
List , the L2 has to process all these requests sequentially. Each replacement is a

2 In the case of clean shared replacements, the writeback buffer only needs to store the
sharing information, not the data. Due to its very small size in List , this informa-
tion may alternatively be kept in a miss status holding register (MSHR) or similar
structure.

Optimization of a Linked Cache Coherence Protocol... 7

potentially long process because the list of sharers needs to be traversed (half of
it, on average), and the L2 has to be blocked during the process, resulting in de-
laying other misses. Opportunistic replacements take advantage of the traversal
of the list required for a shared replacement request to perform the replacement
of other nodes that have also requested it. This way, fewer traversals are needed.

It works as follows. After an L1 requests a replacement, it keeps waiting
until it receives permission from the L2, as previously described. If the L1 sees a
message for a replacement requested by another L1 while it is waiting, instead of
forwarding it to its next sharer it will send to the node who sent it (which may
be either its previous sharer or the L2) an opportunistic replacement request
including in the same message the identity of its next sharer and then it will
discard the sharing information (the data had been discarded already), leaving
the list temporarily unconnected.

Upon reception of the opportunistic replacement request message, the previ-
ous sharer will update its pointer to the next sharer, reconnecting the list, and
then forward the original replacement request again to its new next sharer (or
finish the transaction if the new next sharer happens to be the requester of the
original replacement).

At this point, the L1 waiting to replace has been already disconnected from
the list and when it eventually receives the authorization to replace from L2, it
will answer with a nack, quickly unblocking the L2 without needing to traverse
the list again. Notice that unblocking the L1 directly after it gets disconnected
from the sharers list would lead to a protocol race and either deadlock or an
incorrect list update because the L1 had already sent a replacement request to
the L2 that it will eventually receive and process expecting some response.

This way, Opportunistic replacements reduce both the time that the L2 re-
mains blocked and the traffic due to the replacements by means of avoiding
repeated traversals of the list of sharers.

3.2 Concurrent replacements (CR)

As stated before, the effect of shared replacements in the execution time of List
is mainly due not to the increase in traffic neither to the increase in the time that
L1 nodes spend performing replacements. Rather, what impacts performance the
most is the time that the L2 stays blocked during the replacement, increasing
the latency of other misses to the same block (from other nodes) which have to
wait to be processed until the L2 is unblocked.

However, it is not strictly necessary that the L2 attends all requests sequen-
tially. In particular, it is easy to modify List so that read misses are attended
immediately by the L2 even when it is blocked due to a replacement as long as
the replacing node is not the first of the list. Concurrent replacements allow the
L2 to process read requests concurrently to replacements, while other request
combinations still need to be handled sequentially. Specifically, only one read
request can be processed concurrently to one replacement at the same time.

This is possible because new sharers are always inserted at the beginning
of the list in the List protocol. This means that, once the L2 has forwarded a
replacement request, new nodes can be inserted in the list without risk because

8 Ricardo Fernández-Pascual, Alberto Ros, and Manuel E. Acacio

it would be impossible for them to be the predecessor of the replacing node,
which is what the forwarded replacement message seeks.

The replacement of the first sharer cannot be done concurrently to an inser-
tion due to races, no matter whether the read request or the replacement request
is received first. As a consequence, to be able to detect this case, the L2 needs
to update its pointer to the first sharer only when the insertion transaction is
completed (i.e., after receiving the Unblock message). Note that this limitation
is not important in practice because it is not necessary to actually traverse the
list to replace the first sharer.

This optimization requires the addition of a new intermediate state to the
L2 coherence controller which combines the intermediate states that deal with
replacements and insertions. It improves miss latency by reducing the waiting
time of requests at the L2 controller.

4 Evaluation results

4.1 Simulation methodology

We have done the evaluation of the cache coherence protocols mentioned in
this work using the PIN [12] and GEMS 2.1 [13] simulators, which have been
connected in a similar way as proposed in [14]. PIN obtains every data access
performed by the applications while GEMS models the memory hierarchy and
calculates the memory access latency for each processor request. We model the
interconnection network with the Garnet [1] simulator. The simulated architec-
ture corresponds to a single chip multiprocessor (tiled -CMP) with 64 cores. The
most relevant simulation parameters are shown in Table 1.

Table 1. System parameters.

Memory parameters
Block size 64 bytes
L1 cache (data & instr.) 32 KiB, 4 ways
L1 access latency 1 cycle
L2 cache (shared) 256 KiB/tile, 16 ways
L2 access latency 6 cycle
Cache organization Inclusive
Directory information Included in L2
Memory access time 160 cycles

Network parameters
Topology 2-D mesh (8×8)
Switching and Routing Wormhole and X-Y
Message size 4 flits (data), 1 flit (control)
Link time 2 cycles
Bandwidth 1 flit per cycle

We evaluate List with the two proposed optimizations (OR and CR), and
we compare it to two protocols using centralized sharing codes. The first one,
namely 1-Pointer , resembles the AMD’s MagnyCours [4] protocol and uses a
single pointer to the owner as sharing information (therefore having similar area
requirements than List). The other one, BitVector , employs as sharing code
non-scalable bit-vectors in each directory entry.

Optimization of a Linked Cache Coherence Protocol... 9

Our simulations consider representative applications from both the SPLASH-
2 [18] and the PARSEC 2.1 [3] benchmark suites. Barnes, Cholesky, FFT, Ocean,
Radix, Raytrace, Volrend, and Water-NSQ use the input sizes used in the SPLASH-
2 paper. Bodytrack, Canneal, Streamcluster, and Swaptions are from the PAR-
SEC 2.1 suite and use the simmedium input sizes. We have accounted for the
variability of parallel applications as discussed in [2]. To do so, we have performed
a number of simulations for each application and configuration inserting random
variations in each main memory access. All results in this work correspond to
the parallel part of the applications.

4.2 Results

L1 cache miss latency. L1 cache miss latency is a key performance aspect.
The sharing code employed by the protocol can affect it significantly, specially
for large core counts.

Figure 3 plots the average L1 miss latency split in five parts: the time spent
in accessing the L1, accounting for stalls due to on-going coherence actions or
exhausted MSHR capacity (At L1); the time from L1 to L2 to access the direc-
tory information (To L2); the time spent waiting at L2 until it can attend the
request, mostly because of on-going transactions on the same block (At L2); the
time spent waiting to receive the data from main memory in case the block is not
on-chip (Main memory); and the time since the L2 sends the data or forwards
the request until the requester receives the missing block (To L1).

Barnes
Bodytrack

Canneal
Cholesky FFT Ocean Radix

Raytrace
Streamcluster

Swaptions
Volrend

WaterNSQ
Average

 0

 50

 100

 150

 200

 250

La
te

nc
y

(c
yc

le
s)

At_L1 To_L2 At_L2 Main_memory To_L1

BitVector OnePointer List List+OR List+CR List+OR+CR

Fig. 3. L1 miss latency.

Barnes
Bodytrack

Canneal
Cholesky FFT Ocean Radix

Raytrace
Streamcluster

Swaptions
Volrend

WaterNSQ
Average

 0
 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

F
lit

s
(n

or
m

al
iz

ed
)

Data WBData Control WBControl WBSharedControl

BitVector OnePointer List List+OR List+CR List+OR+CR

Fig. 4. Interconnection network traffic.

10 Ricardo Fernández-Pascual, Alberto Ros, and Manuel E. Acacio

Barnes
Bodytrack

Canneal
Cholesky FFT Ocean Radix

Raytrace
Streamcluster

Swaptions
Volrend

WaterNSQ
Average

 0
 0.25
 0.5
 0.75
 1

 1.25
 1.5
 1.75
 2

C
yc

le
s

(n
or

m
al

iz
ed

)

BitVector OnePointer List List+OR List+CR List+OR+CR

Fig. 5. Execution time.

List experiences an increase in latency compared to the area-demanding
BitVector , mainly because of the sharp increase in the At L2 latency. In ef-
fect, List “blocks” a memory block when updating the sharing list to ensure
mutual exclusion and to avoid inconsistencies in the list. This forces the delay of
subsequent cache misses to the same block. On average, 1-Pointer experiences a
significant but smaller increase in latency due to the broadcast that it requires
to invalidate sharers upon write misses.

Replacements of shared blocks in a private cache in List require to sequen-
tially traverse the list of sharers. Differently, in BitVector and 1-Pointer, these
replacements are performed silently, without accessing nor blocking the L2 en-
try. Opportunistic replacements allow several replacements to happen at the
same time, thus reducing the At L2 latency, notably in Barnes and Volrend.
Concurrent replacements allow to resolve one read miss while performing a re-
placement, which further reduces miss latency down to a similar value as with
BitVector and smaller than 1-Pointer , making List a competitive protocol in
terms of performance.

Despite the serial nature of invalidation in linked protocols, the To L1 latency
is not affected. This counter-intuitive result is due to the low frequency of writes
misses (23%, on average), but most importantly to the low number of sharers
found upon such write misses (54% none, 41% one, 3% three, on average).

Network traffic. Figure 4 shows the network traffic, measured in flits, for
each protocol. Traffic has been normalized with respect to BitVector and divided
in the following categories: data messages due to L1 misses (Data); data messages
due to L1 replacements (WBData); control messages due to L1 misses (Control);
control messages due to L1 replacements of private data (WBControl); and con-
trol messages due to L1 replacements of shared data (WBSharedControl).

1-Pointer increases traffic with respect to BitVector in more than 50% due
to the use of broadcast for invalidating sharers. List notoriously increases the
traffic due to replacements of shared blocks in Barnes, Bodytrack, Raytrace,
Streamcluster, Swaptions, Volrend, and WaterNSQ with respect to BitVector
since in BitVector these replacements are silent and do not generate traffic. This
increase in traffic is even slightly larger than the increase suffered by 1-Pointer .
Oportunistic replacements reduce the WBSharedControl traffic by coalescing
replacements.

Optimization of a Linked Cache Coherence Protocol... 11

Execution Time. Given the previous results, small differences in execu-
tion time are expected when distributed shared codes are employed. In effect,
as shown in Figure 5, List and 1-Pointer both incur a similar slowdown of ap-
proximately 12% with respect to BitVector .

However, the optimizations described in Section 3 are able to almost com-
pletely eliminate this slowdown when both are combined. List+OR+CR incurs
in an average execution time degradation of 1.6% with respect to BitVector ,
with a maximum reduction in execution time of 2.7% (Radix) and maximum
degradation of 3.8% (Barnes).

Scalability. Three aspects reflect the scalability of a protocol: directory
memory overhead, latency of cache misses, and network traffic. Since the first
aspect has been addressed in Fig. 1, we now focus on the latter two. The latency
of read misses in linked protocols is independent of the system size. However,
the latency of write misses increases with the number of sharers per invalida-
tion. Fortunately, this number grows more slowly than the system size (e.g., we
have measured 0.52 sharers on average for 16 cores and 0.57 for 64 cores). Re-
garding traffic, the overhead comes from L1 replacements. In List , the number
of messages per replacement depends on the size of the list which, as already
mentioned, does not increase as fast as the total number of cores.

5 Conclusions and opportunities

In this work, we show that a singly-list based linked protocol (List) has the
potential of providing simutaneously both scalable directory memory overhead
and high performance. We find out that the most remarkable source of ineffi-
ciencies in List is the lack of silent replacements for clean data (although some
other proposals do not make use of this important advantage to reduce network
traffic and directory controller activity) and we have presented two techniques
(OR and CR) that remove completely the increase in execution time that oth-
erwise would emerge. Regarding the disadvantages typically associated to these
protocols, we see that the impact that list traversal operations have on average
cache miss latency is minimal. This is because read misses are more frequent
than write misses and because the number of sharers that need to be invalidated
on every write miss (the length of the list to be traversed) is usually small. Also,
List only requires the addition of one pointer to each private cache (although
modifications to the private caches could be avoided by having per-core pointers
caches).

All in all, we show that a simple implementation of a linked protocol is an
interesting alternative to current proposals in the maycore arena, and therefore,
linked protocols can constitute an attractive starting point for proposing further
optimizations for (for example) reducing cache miss latencies and thus going
beyond the performance of BitVector . We are currently exploring this direction.

References

1. Agarwal, N., Krishna, T., Peh, L.S., Jha, N.K.: GARNET: A detailed on-chip
network model inside a full-system simulator. In: IEEE Int’l Symp. on Performance

12 Ricardo Fernández-Pascual, Alberto Ros, and Manuel E. Acacio

Analysis of Systems and Software (ISPASS). pp. 33–42 (Apr 2009)
2. Alameldeen, A.R., Wood, D.A.: Variability in architectural simulations of multi-

threaded workloads. In: 9th Int’l Symp. on High-Performance Computer Architec-
ture (HPCA). pp. 7–18 (Feb 2003)

3. Bienia, C., Kumar, S., Singh, J.P., Li, K.: The PARSEC benchmark suite: Char-
acterization and architectural implications. In: 17th Int’l Conf. on Parallel Archi-
tectures and Compilation Techniques (PACT). pp. 72–81 (Oct 2008)

4. Conway, P., Kalyanasundharam, N., Donley, G., Lepak, K., Hughes, B.: Blade com-
puting with the AMD OpteronTM processor (”Magny Cours”). In: 21st HotChips
Symp. (Aug 2009)

5. Cuesta, B., Ros, A., Gómez, M.E., Robles, A., Duato, J.: Increasing the effective-
ness of directory caches by deactivating coherence for private memory blocks. In:
38th Int’l Symp. on Computer Architecture (ISCA). pp. 93–103 (Jun 2011)

6. Culler, D.E., Singh, J.P., Gupta, A.: Parallel Computer Architecture: A Hard-
ware/Software Approach. Morgan Kaufmann, Inc. (1999)

7. Demetriades, S., Cho, S.: Stash directory: A scalable directory for many-core coher-
ence. In: 20th Int’l Symp. on High-Performance Computer Architecture (HPCA).
pp. 177–188 (Feb 2014)

8. Fang, L., Liu, P., Hu, Q., Huang, M.C., Jiang, G.: Building expressive, area-efficient
coherence directories. In: 22st Int’l Conf. on Parallel Architectures and Compilation
Techniques (PACT). pp. 299–308 (Sep 2013)

9. Fernández-Pascual, R., Ros, A., Acacio, M.E.: Characterization of a list-based
directory cache coherence protocol for manycore cmps. In: 3rd Workshop on On-
chip Memory Hierarchies and Interconnects (OMHI 2014). pp. 254–265 (Aug 2014)

10. James, D., Laundrie, A., Gjessing, S., Sohi, G.: Scalable coherent interface. Com-
puter 23(6), 74–77 (1990)

11. Lovett, T., Clapp, R.: STiNG: A cc-NUMA computer system for the commercial
marketplace. In: 23rd Int’l Symp. on Computer Architecture (ISCA). pp. 308–317
(Jun 1996)

12. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: Building customized program analysis tools with
dynamic instrumentation. In: 2005 ACM SIGPLAN Conf. on Programming Lan-
guage Design and Implementation (PLDI). pp. 190–200 (Jun 2005)

13. Martin, M.M., Sorin, D.J., Beckmann, B.M., Marty, M.R., Xu, M., Alameldeen,
A.R., Moore, K.E., Hill, M.D., Wood, D.A.: Multifacet’s general execution-driven
multiprocessor simulator (GEMS) toolset. Computer Architecture News 33(4), 92–
99 (Sep 2005)

14. Monchiero, M., Ahn, J.H., Falcón, A., Ortega, D., Faraboschi, P.: How to simulate
1000 cores. Computer Architecture News 37(2), 10–19 (Jul 2009)

15. Sanchez, D., Kozyrakis, C.: SCD: A scalable coherence directory with flexible
sharer set encoding. In: 18th Int’l Symp. on High-Performance Computer Archi-
tecture (HPCA). pp. 129–140 (Feb 2012)

16. Thapar, M., Delagi, B.: Stanford distributed-directory protocol. Computer 23(6),
78–80 (1990)

17. Thekkath, R., Singh, A.P., Singh, J.P., John, S., Hennessy, J.L.: An evaluation of
a commercial cc-NUMA architecture: The CONVEX Exemplar SPP1200. In: 11th
Int’l Symp. on Parallel Processing (IPPS). pp. 8–17 (Apr 1997)

18. Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.: The SPLASH-2 pro-
grams: Characterization and methodological considerations. In: 22nd Int’l Symp.
on Computer Architecture (ISCA). pp. 24–36 (Jun 1995)

