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Abstract The development of efficient and scalable cache coherence protocols
is a key aspect in the design of manycore chip multiprocessors. In this work, we
present a comprehensive evaluation of a kind of cache coherence protocols that,
despite having been already implemented during the 1990s for building large-
scale commodity multiprocessors, have not been considered in the context of
chip multiprocessors yet.

In particular, we evaluate two directory-based cache coherence protocols
based on the idea of having the sharing code of each memory block distributed
between the different sharers (distributed sharing code). The first one employs
simply-linked lists to encode the information about the sharers of the memory
blocks, whilst the second one does the same using doubly-linked lists, which
improves the management of replacements. We compare these two organiza-
tions with three protocols that use centralized sharing codes, each one having
different directory memory overhead: one of them implementing a non-scalable
bit-vector sharing code and the other two implementing more scalable limited-
pointer schemes with one and two pointers respectively.

Simulation results show that for large-scale chip multiprocessors, the pro-
tocol based on distributed doubly-linked lists dramatically reduces the mem-
ory overhead of a non-scalable bit-vector directory, while at the same time it
achieves its performance levels. This is achieved with just a small degradation
on dynamic energy consumption (approximately 10% on average). This way,
our results point out that for manycores, coherence directories based on dis-
tributed sharing codes are appealing alternatives to contemporary coherence
directories based on centralized sharing codes.
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1 Introduction

As the number of transistors in a chip increases following the well-known
Moore’s law, so it does the number of processor cores implemented in chip
multiprocessors (CMPs). Very far are those designs integrating a small num-
ber of cores, such as the pioneer dual-core IBM POWER4 [1]. Nowadays tech-
nology enables the orchestration of manycores, that is CMPs architectures
with dozens of integrated cores, and several examples are already being com-
mercialised, such as the 72-core Intel’s Knights Landing [2] and Tilera’s Tile
GX8072 [3]. This trend towards more and more cores, however, has not yet
reached its end and manycores with hundreds of cores are expected to become
a reality in the near future [4].

Design decisions about communication and synchronization mechanisms
among cores in these densely populated manycore architectures become a key
aspect for the final performance of the multicore. If the current trend contin-
ues, future manycores will go on providing the shared memory model as the
low-level interface and will rely on a cache coherence protocol implemented
in hardware to ensure coherence between data stored in every core’s private
caches [5]. This way, both communication and synchronization (the latter
usually implemented through normal load and store instructions to shared
addresses) require a properly designed cache coherence protocol to achieve
expected high performance levels.

In systems with a large number of processing cores, directory-based cache
coherence protocols appear as the only viable alternative. In these protocols, a
directory structure which is physically distributed among the different cores (or
group of cores, depending on the particular implementation) is responsible for
keeping track of the identity of the sharers of every memory block residing in
one or several of the private caches. This way, every memory block is assigned
to a single directory bank and all cache misses from the private caches for
that block are sent to it. On receiving a cache miss, the directory information
for the particular block is retrieved, and based on that, coherence actions (if
needed) are carried out so that the cache miss can be resolved.

The way the directory structure codifies the set of sharers for every mem-
ory block determines the amount of extra memory required for this structure
(directory memory overhead) and ends up limiting the range of cores at which
cache coherence can be provided in a practical way. Codifying the set of shar-
ers using structures whose size per node depends linearly on the number of
cores is certainly guarantee of non scalability. For example, the well-known
bit-vector sharing code (that requires one bit per core) could be employed in
an architecture with a handful of cores but it is absolutely incompatible with
scalability. Besides directory memory overhead, we can also identify two other
aspects of a coherence directory that could restrict its scalability. Both aspects
are closely related with the size of the coherence directory. First of all is the
amount of coherence traffic generated on every coherence event (number of
invalidations or cache-to-cache transfer orders). One approach for reducing di-
rectory memory overhead is by means of using in-excess representations of the
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set of sharers (more sharers than necessary are typically included). Of course,
less precision in the sharing code means more false sharers, and thus, more
coherence messages per coherence event, which also limits scalability [6]. An
extreme example is the AMD’s Hammer cache coherence protocol, which did
not dedicate any bits to the sharing code, which resulted into broadcasting
coherence messages on every coherence event [7]. Finally, the other important
aspect that usually goes unnoticed is the amount of time required to extract
the identify of the sharers on every coherence event. Some approaches save
directory memory by codifying the set of sharers in a way that several direc-
tory cycles are required. Even in some cases the total number of cycles is not
always the same [8]. This affects the occupancy of the directory controller, and
consequently, the latency of the cache miss causing the access to the directory,
and also the latency of other misses waiting for processing at the directory.
Obviously, these three aspects (directory size, generated network traffic and
amount of work needed to unpack directory information) determine the energy
efficiency of the cache coherence protocol.

The design of scalable coherence directories for systems with a large number
of cores has been extensively studied for traditional multiprocessors. In that
context, the most scalable protocols —those which kept sharing information
in a directory distributed among nodes— were classified in two categories [9]:
memory-based schemes and cache-based schemes. Memory-based schemes store
the sharing information about all the cached copies of each block in a single
place, which is the home node of that block. In traditional multiprocessors, the
home node was associated with the main memory, and that is why they were
called memory-based schemes. On the other hand, in cache-based schemes not
all the sharing information about a single block is stored in the home node.
Instead, it is distributed among the caches holding copies of the block while the
home node only contains a pointer to one of the sharers. Usually, one or two
pointers are stored along with each copy of the block, forming a distributed
linked list of sharers.

Nowadays, current cache coherence proposals for manycore architectures
assume centralized directory schemes. In the context of multicore architec-
tures, the term memory-based for referring to these approaches is no longer
appropriate, since the home node is now typically associated with the last level
cache (LLC) in the chip, not with main memory. Hence, we will use instead
the term centralized sharing code. On the other hand, although distributed
schemes were employed in several commodity multiprocessors during the 90s
([10–13]), they have not been analyzed in the context of multicore architec-
tures. The main advantage of these schemes, which we will call distributed
sharing code schemes, is that they allow for implementations with lower direc-
tory memory overhead than the centralized sharing code ones with the same
precision [9]. However, they show several disadvantages, such as higher cache
miss latency since several messages are needed to discover the identity of all
the sharers, some modifications that must be introduced in the private caches,
and the increased complexity for managing cache evictions.
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In this manuscript, we extend our previous work [14] and present a com-
prehensive evaluation of two coherence directory implementations employing
distributed sharing codes (SingleList [15] and DoubleList [16]) putting special
emphasis on scalability. SingleList is based on the use of simply-linked lists,
thus being the lowest-overhead coherence directory that can be designed with
a distributed sharing code. On the other hand, DoubleList employs doubly-
linked lists and resembles the coherence protocols based on distributed sharing
codes implemented in several commodity multiprocessors [11–13]). The eval-
uation is done considering resulting performance, memory overhead, network
traffic and energy consumption. To the best of our knowledge, this is the first
work evaluating these two distributed sharing code schemes in the context of
manycores.

For comparison purposes, we compare these two designs against three im-
plementations of a coherence directory using centralized sharing codes (BitVec-
tor [17], OnePointer and TwoPointers [18]). BitVector employs non-scalable
bit-vectors (full-map), and thus, entails significant directory memory overhead.
This implementation, however, incurs both lowest network traffic levels and
reduced latency cache misses. OnePointer and TwoPointers ensure scalable
directory memory overhead by means of using a limited pointers scheme with
1 or 2 pointers, respectively. Obviously when the number of pointers is not
enough to codify all the sharers of a memory block, the directory resorts to
broadcasting, which hurts network traffic and increases cache miss latencies.
All the protocols use the MESI states and behave as similarly as possible in all
other aspects. Compared with our previous work [14], here we add results for
two interesting design points (TwoPointers and DoubleList), and significantly
extend the evaluation considering the impact of the coherence directory on
energy consumption and using a more detailed network model.

Through detailed simulations of 16-core and 64-core CMPs, we show that
all the configurations obtain similar results in terms of performance and en-
ergy consumption when the number of cores is not so big (16 cores). However,
important differences between the alternatives appear when the number of
cores is increased to 64, underscoring the significant incidence that the coher-
ence directory may have in future manycores. In particular, we observe that
for large core counts SingleList obtains worse performance and energy con-
sumption figures (approximately 13% and 20% on average, respectively) than
BitVector. We find that the reason for this performance degradation is the
increased contention that the SingleList protocol introduces at the level of the
directory controller. This is due to excessive locking time for updating the list
of sharers upon cache misses and evictions. We also find out that DoubleList
can solve this problem thanks to the additional pointers included at the pri-
vate cache level and meets the performance results of BitVector with just a
small increase in dynamic energy consumption (about 10% on average). This is
achieved with an average reduction in leakage energy of 13%. Of course, this
comes at the expense of increased requirements in terms of directory mem-
ory overhead with respect to SingleList . This way our results demonstrate
that for future manycores, coherence directories based on distributed sharing
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Fig. 1: Architecture of a tiled CMP

codes are appealing alternatives to contemporary coherence directories based
on centralized sharing codes.

The rest of the manuscript is organized as follows. We start by presenting
in Section 2 the baseline architecture we will assume along this work. Then, in
Section 3 we describe the behavior of two implementations of a cache coherence
protocol using two distributed sharing codes. Subsequently, in Section 4 we
compare the directory memory overhead for the five configurations evaluated in
this work (BitVector , OnePointer , TwoPointers, SingleList and DoubleList).
Section 5 presents our simulation environment and detailed results in terms
of execution time, network traffic, and energy consumption for the different
configurations are shown and analyzed in Section 6. Finally, Section 7 contains
the main conclusions of this work.

2 Baseline Architecture

In this work we assume single CMP systems built using a number of tiles [19].
Tiled chip-multiprocessors are designed as arrays of identical or close-to-identical
building blocks (tiles). In these architectures, each tile contains a processor
core, private L1 data and instruction caches, and a bank of the L2 cache. The
L2 cache is logically shared by all cores, but it is physically distributed among
tiles. As in current Intel-style multicore architectures [20], we assume inclusive
caches, that is L1 caches’ content is included in L2.

Memory blocks are distributed among the different banks of the shared
L2 cache by using a physical mapping policy. Particularly, we use the less
significant bits of the block address to define the home bank for every block [21,
22]. This way, blocks are assigned to L2 cache banks in a round-robin fashion
with block-size granularity. Since the L2 cache is the last level cache in our
baseline architecture we will refer to this cache either as L2 or as LLC.

Each tile also has its network interface to connect to the 2D mesh on-chip
interconnection network. Figure 1 shows the organization of the tiled CMPs
we model in this work when the total number of cores is 16.

Private L1 caches are kept coherent by means of a directory-based cache
coherence protocol that implements MESI states. The directory structure is
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distributed between the L2 shared cache banks, usually within the tags’ por-
tion [23]. This way, each tile keeps the sharing information of the blocks
mapped to the L2 cache bank that it contains. This sharing information
comprises two main components (apart from other implementation-dependent
bits): the state bits used to codify one of the three possible states the directory
can assign to the block (Uncached, Shared and Private), and the sharing code,
that holds the list of current sharers (centralized sharing code) or a pointer to
one of the sharers (distributed sharing code). Most of the bits of each directory
entry are devoted to codifying the sharing code, and in this work we consider
three centralized sharing codes (BitVector , OnePointer , and TwoPointers)
and two distributed sharing codes (SingleList and DoubleList). This aspect is
the one which distinguishes the different configurations evaluated in Section 6.

3 Coherence Protocols Based on Distributed Sharing Codes

The main difference between the linked protocols considered and evaluated in
this work (SingleList and DoubleList) and those based on a coherence direc-
tory using centralized sharing codes is that the list-based ones store directory
information for each memory block in a distributed way. Particularly, the home
node in list-based protocols stores the identity of only one of the possibly many
sharers of the memory block. The rest of sharers is represented using a linked
list constructed through pointers in each of the L1 cache entries.

In the case of SingleList , each L1 cache entry needs only one pointer which
stores the identity of the next sharer in the list or the null pointer if the current
node is the last element in the list. In the case of DoubleList , each L1 cache
has two pointers, one storing the next node (or null for the last node) and
another storing the previous one (or null for the first node). In all cases, the
null pointer is represented by codifying the identity of the sharer itself (i.e.,
the node points to itself).

Therefore, directory information for each memory block in these protocols
is distributed between the home node and the set of sharers. As it will be
shown in Section 4, the fact that most of the directory storage is moved to
the L1 caches (which are much smaller than the L2 cache) brings important
advantages like reduced requirements of the directory structure in terms of
memory overhead (and thus, energy consumption) and improved scalability.

However, since directory information is stored in a distributed way in the
list-based protocols, several messages are required between the sharers and the
home node to update this information. Some of these messages would not be
needed in a directory protocol using a centralized sharing code. Besides, list
traversal operations through control messages traveling on the interconnection
network are needed to discover the identity of all sharers. This can lead to
increased write miss latencies due to invalidation of the sharers takes place
sequentially.
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Fig. 2: Example of a read miss in SingleList

3.1 SingleList : A simply-linked list protocol

Updates to the list of sharers in the SingleList protocol are always serialized
by the home node, which remains blocked (i.e., other requests for this memory
block are not attended) until the modification of the list structure has been
completed. This way, we guarantee that two or more update operations cannot
take place simultaneously. There are three transactions that modify the linked
list: read misses, write misses, and replacements. Next sections explain these
modifications.

3.1.1 How read misses are managed in SingleList

The procedure to resolve read misses for uncached data (i.e., when the mem-
ory block is not held by any of the private caches) is almost identical in the
SingleList protocol and the BitVector protocol: once the request (read miss)
reaches the corresponding home L2 bank, it sends back a message with the
memory block to the requester, which subsequently responds with the Unblock
message to the directory. The home L2 bank uses the pointer available in the
tags’ part of the L2 cache to store the identity of the only sharer up to the
moment.

When no L1 cache nor the home L2 bank keep a copy of the requested
memory block, the directory controller will send a request to memory and
once data is received, it will be stored in the L2 cache and a copy of the
memory block will be sent to the requester. In this case, the memory block
will be put in the E (Exclusive) state, or M (Modified) in case of a write miss,
in the private cache that suffered the miss.
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The main difference between the SingleList and BitVector protocols with
respect to read misses is observed when the block is found as shared at the
home L2 cache bank. This scenario illustrated in Figure 2 assuming two shar-
ers. Upon receiving the read request (1), the L2 sends to the requester both
the memory block and the identity of the first sharer in the list (2). Then, the
requester stores the memory block in its L1 and sets up the pointer field in
the corresponding entry to the identifier included in the L2 response message
(its next sharer). After this, it sends an Unblock message to the L2, which
overwrites the pointer field with the identity of the requester (3). This way,
the list structure keeps the identity of the sharers of a particular memory block
in reverse order to how read misses were processed by the L2.

If, on the contrary, the memory block is found in private state in the L2
(i.e., it is either in E or in M state in only one of the L1 caches), the read miss
is forwarded by the directory controller to the only L1 cache that holds a valid
copy of it. Upon receiving the forwarded request, the corresponding L1 cache
responds directly to the requester with a message containing the memory block
and its own identity, which will be used by the requester to update its next
sharer field. Then, the requester proceeds just like in the previous case.

As it can be observed, updates of the list structure used to keep the identity
of all the sharers of every memory block do not need to introduce any new
messages in the SingleList protocol with respect to BitVector . This is because
response messages are used to transport all the information (one identifier in
this case) required to maintain the list structure.

3.1.2 How write misses are managed in SingleList

Invalidation-based protocols, such as the ones considered in this work, resolve
write misses by invalidating all the copies of the memory block held by the L1
caches. The corresponding directory controller at the L2 starts the invalidation
process in parallel with sending a response message with the data block back
to the requester.

On a write miss, in a traditional directory protocol with a centralized
sharing code (such as BitVector), the directory controller at the correspond-
ing home L2 cache bank sends one invalidation message to each one of the
sharers. This is possible because all the available information about the shar-
ers is stored at the home L2 cache bank (although it may be inexact as in the
OnePointer and TwoPointers protocols). Therefore, invalidation messages are
sent in parallel (although if the interconnection network does not provide mul-
ticast support they would be created and dispatched by the directory controller
sequentially).

On the contrary, the invalidation procedure in a directory protocol with
a distributed sharing code (such as SingleList) must be done serially. In this
case, the L2 only knows the identity of one of the sharers, which in turn
knows the identity of the next one, and so on. This way, invalidation messages
must be created and sent one after another, as the list structure is traversed.
Once the last sharer is reached, a single acknowledgement message is sent
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Fig. 3: Example of shared block replacement in SingleList

to the requester as a notification that all the copies in the L1 caches have
been deleted. As it can be noted, the latency of write misses is therefore
increased, especially for widely shared memory blocks. But this also brings one
advantage: whereas in the BitVector protocol all invalidation messages entail
the corresponding acknowledgement response, in the SingleList protocol just
one acknowledgement is required. This obviously reduces network traffic when
the number of sharers is large.

The data block on a write miss is sent just like in the case of a read miss
and exactly like BitVector , taking into account whether the block is in private
state at the L2 and hence needs to be sent by the L1 which currently has it
after receiving the invalidation from L2 and along with its acknowledgement;
or in shared state, in which case the data is sent by the L2.

For both the BitVector and SingleList protocols, the requester sends the
Unblock message to the home L2 cache bank only when the invalidation process
has finished (it has collected all the acknowledgements to the invalidation
messages sent by the directory controller in the case of the BitVector protocol,
or the only acknowledgement response that is needed in the SingleList one)
as well as the response with data has arrived. As in the case of read misses,
upon receiving the Unblock message the directory controller takes note of the
new holder of the memory block using the pointer available at the L2 cache.

3.1.3 How replacements are managed in SingleList

Replacements of data blocks from L1 caches in E or M state (private in the L2)
proceed exactly the same way in both SingleList and BitVector protocols. In
these cases, the L1 sends a request to the L2 asking for permission, and upon
receiving authorization from the L2, the L1 sends an acknowledgement (if E)
or the modified data block (if M) to the L2. By requiring the L1 to ask for
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authorization before sending the replaced data to the L2, both protocols avoid
some race conditions that complicate their design (and that, if not correctly
addressed, would lead to deadlocks).

However, the main difference between the SingleList and BitVector pro-
tocols has to do with the management of replacements of S (Shared) data.
This is because in a protocol with a centralized sharing code replacements of
shared data are typically performed in a silent way (the replaced line is simply
discarded and no message has to be sent to the L2). Although not sending
replacement hints for shared data could lead to the later appearance of some
unnecessary invalidation messages, previous works have demonstrated that
shared replacements are preferable to the waste of bandwidth and increase
in the occupancy of cache and directory controllers that otherwise would be
suffered [24,25]. This is especially true when the number of cores is large.

Differently, the SingleList protocol cannot implement silent replacements
since the list structure has to be correctly maintained after a replacement.
Thus, the replacement process requires involving the L2 and some L1s. This
process is depicted in Figure 3, which assumes that there are two other sharers
apart from the replaced block. Before a shared memory block can be replaced,
a replacement request is sent to the L2 (1). When the L2 receives the request
and it is ready to handle it, it sends a message authorizing the replacement (2).
This message is answered with another that carries the value of the pointer
field kept at the L1 cache which stores the identity of the following L1 cache in
the list of sharers (3). After sending that message, the L1 cache can discard
the memory block and all its metadata from its cache. It will not be con-
tacted again regarding this transaction. Upon receiving the message with the
following sharer of the replacing node, the L2 needs to update the sharing list
(which is momentarily disconnected because the replacing node has discarded
its pointer). For this, if the identity of the replacing node coincides with the
sharer stored at the L2 (i.e., the replacing node is the first sharer of the list),
then the value of the pointer at the L2 is changed to the identity of the follow-
ing node included in the last message received from the requester. Otherwise,
the L2 cache forwards the replacement request to the sharer codified in its
pointer field (4). The message keeps propagating through the list of sharers
until the node that precedes the replacing node in the list is reached. This
is identified because its pointer to the next sharer will match the requester
identity. At this point, the pointer in the preceding node is updated with the
information included in the message (the identity of the node following the re-
placing node), reconnecting the list of sharers. After updating its next pointer,
the node sends an acknowledgement to the L2 and the operation completes
(5).

Notice that the identity of the next sharer of the replacing node cannot be
sent along with the first message of the transaction, because if the L2 receives
another request for that line from a different node before the replacement
request arrives, the information may become obsolete. The L2 will not attend
other requests for that line while the replacement is being performed to avoid
concurrent modifications to the list of sharers.
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As we will show next, the fact that replacements for shared data in the
SingleList protocol cannot be done silently significantly increases the number
of messages on the interconnection network (bandwidth requirements) and,
what is more important, the occupancy of the directory controllers at the
L2 cache. It is important to note that although write buffers are used at the
L1 caches to prevent delaying unnecessarily the cache miss that caused the
replacement, the fact that the directory controller “blocks” the memory block
being replaced results in longer latencies for subsequent misses to the replaced
address.

3.2 DoubleList : A doubly-linked list protocol

The advantage that the DoubleList protocol has over the SingleList protocol
is that replacements of shared data can be done without traversing the list
of sharers and without involving the L2 in many cases. These replacements
are not completely silent as in the case of the BitVector protocol, but they
usually involve fewer messages than replacements in the SingleList and, more
importantly, the L2 does not need to be blocked. In fact, with this protocol
a node can be removed from the list of sharers while another node is being
added.

3.2.1 How read misses are managed in DoubleList

For uncached data, the procedure is the same in DoubleList as in SingleList
and BitVector . DoubleList behaves also almost the same as SingleList when
the memory block is found in the private state at the L2. The only difference
is that, when the L1 holding the block receives the request forwarded from
L2, it will update its previous sharer pointer to point to the new sharer before
responding to the requester. The requester’s next pointer will be updated to
point to the former owner (as in SingleList) while both the previous pointer of
the new sharer and the next pointer of the former owner will be kept as null.

On the other hand, when one sharer already exists, the procedure requires
two more messages than in SingleList . When the L2 receives the read request,
it answers to the requester with the data and the identity of the current first
sharer of the list. The requester, which becomes the new first sharer, will
use this information to update its next sharer pointer, as in SingleList . But
additionally, the L2 will send another message to the former first sharer to
update its previous sharer pointer with the identity of the requester. After
updating its pointer, the former first sharer will send an acknowledgement to
the requester. When the requester has received both the data from L2 and the
acknowledgement from the former first sharer it will send an Unblock message
to the L2 to finalize the transaction.

Notice that the extra messages to update the previous sharer pointer of
the former first sharer are out of the critical path of the miss (the requester
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Fig. 4: Example of shared block replacement in DoubleList

can use the data as soon as it receives it from L2), although they will slightly
increase traffic and may keep the memory block locked by the L2 a bit longer.

3.2.2 How write misses are managed in DoubleList

For handling write misses, the pointer to the previous sharer is not used and
the DoubleList protocol behaves always exactly the same as SingleList .

3.2.3 How replacements are managed in DoubleList

Replacement of private blocks in DoubleList works exactly as in SingleList and
the other protocols. However, thanks to the pointer to the previous node of
each sharer, shared replacements in DoubleList can be implemented without
involving the L2 for all sharers except the first one of the list. Moreover, while
SingleList has to traverse the list of sharers from the beginning in order to
remove the replacing node, DoubleList can remove a node contacting only the
previous sharer.

The process works as depicted in Figure 4. A node that needs to replace a
block and that is not the first sharer in the list will send a request to the node
pointed by its previous pointer which includes the identity of its next sharer
(1). Upon reception, the previous node needs to check that the requester is
still its next sharer because other requests may have changed it while the
replacement request was in the network. If not, it will answer with a nack
message and the requester will try again. Otherwise, the previous node updates
its next pointer to point to the node that was the next sharer of the replacing
node. Then, it sends a writeback acknowledgement to the replacing node (2),
which discards the block and its metadata upon receiving it, and another
message to its new next sharer (unless there isn’t any) to request it to update
its previous sharer pointer (3). The previous sharer will stay partially blocked
until it receives a response from its new next sharer (4) to avoid deadlocks
and incorrect list updates. While partially blocked this way, the cache will only
attend to loads from its processor and requests to update its previous sharer
pointer, but not to other replacement requests, invalidations from the L2 or
writes from its processor.
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In the case that the node that needs to replace is the first sharer of the list,
it will send its replacement request to the L2. The L2 will update its pointer
to the first node, send the writeback acknowledgement to the requester and,
if there was a second sharer, send a message to it to set its previous pointer
to null. The L2 will be blocked until it receives a response from the new first
sharer (if any).

Notice that replacements of shared L1 blocks in DoubleList do not usu-
ally involve the L2 and can occur concurrently to list insertions and other
replacements.

4 Directory Memory Overhead Analysis

One of the reasons why directory protocols based on a distributed sharing code
were popular two decades ago was their good scalability in terms of the amount
of memory required to store sharing information. In the end, this results into
lower area requirements and, what is more important nowadays, better scala-
bility in terms of static power consumption. Whereas the amount of memory
required per directory entry with a bit-vector sharing code (as the one used
in the BitVector protocol) grows linearly with the number of processing cores
(one bit per core), it grows logarithmically for the rest of protocols analyzed
in this paper. SingleList and DoubleList need some additional information in
each L1 entry (pointers), but this is not a problem for scalability because the
number of entries in the L1 caches is always much smaller than in the L2 cache
banks.

Figure 5 compares the directory protocols considered in this work in terms
of the memory overhead each one of them introduces, assuming 4-way L1
caches with 128 sets and 16-way L2 caches with 256 sets per core and 64 byte
blocks. Particularly, we measure the percentage of memory (in bits) added by
each protocol with respect to the total number of bits dedicated to the L1 and
L2 caches. The figure shows that, as expected, the scalability of the BitVector
protocol makes it practical only in configurations with a small number of cores.
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To improve memory scalability, OnePointer replaces the bit-vector used in
each of the L2 cache entries of BitVector with a limited pointer sharing code
with only one pointer for the first sharer. If more than one node is sharing
the block, a different state is used and invalidations will be broadcast to all
nodes. In this case, the number of bits per directory entry grows as log2 N ,
being N the total number of cores. As it will be analyzed in the next sections,
this scalability in terms of area comes with a performance degradation due to
increased interconnection network traffic.

In order to mitigate the traffic increase due to broadcasts observed in One-
Pointer , TwoPointers uses two pointers for the two first sharers of the block,
and an overflow bit to codify when more than two caches are sharing the
block and invalidations need to be broadcast. TwoPointers’s per directory
entry memory requirements grow as 1 + 2 × log2 N .

SingleList sharing information is stored as a pointer in each L2 entry and
another one in each L1 entry. Since L1 caches have much fewer entries that
L2 caches, the scalability of the SingleList in practice is very close to that of
OnePointer . Finally, DoubleList uses two pointers in each L1 instead of one
and, therefore, uses more memory than SingleList , although is scales similarly.

5 Evaluation Environment

We have evaluated two list-based directory cache coherence protocols compar-
ing them to the other state-of-the-art cache coherence protocols mentioned
in this work by using the PIN [26] dynamic binary instrumentation tool and
GEMS 2.1 [27] simulator, which have been connected in a similar way as pro-
posed by Monchiero et al. [28]. PIN obtains every data access performed by
the applications as well as the synchronization skeleton, while GEMS models
the memory hierarchy and calculates the memory access latency for each pro-
cessor request. The interconnection network is modeled with the SiCoSys [29]
simulator, which we have connected with GEMS. The simulated architecture
corresponds to a single chip multiprocessor (tiled -CMP) with either 16 or 64
cores. The most relevant simulation parameters are listed in Table 1. We use
the CACTI-P tool included in McPat 1.2 [30] to estimate access time, area re-
quirements and power consumption of the different cache structures assuming
a 22 nm technology node and a 3.5 GHz processor frequency, accounting for
the precise metadata requirements of each protocol. To estimate the dynamic
energy consumption of the interconnection network, we assume that it is pro-
portional to the data transferred [31] and that each flit transmitted through
the network consumes the same amount of energy as reading one word from an
L1 cache each time that it crosses a link. A flit is the amount of data transmit-
ted in one cycle, and messages between more distant nodes will require more
flit retransmissions and hence they will consume more energy.

In order to evaluate and compare the coherence protocols studied in this
work, we have implemented in GEMS a traditional directory-based cache co-
herence protocol (called BitVector) using one bit-vector per each memory
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Table 1: System parameters.

Memory parameters (GEMS)
Block size 64 bytes
L1 cache (data & instr.) 32 KiB, 4 ways
L1 access latency 1 cycle
L2 cache (shared) 256 KiB/tile, 16 ways
L2 access latency 6 cycles plus network
Cache organization Inclusive
Directory information Included in L2
Memory access time 160 cycles

Network parameters (SiCoSys)
Topology 2-D mesh (4×4 or 8×8)
Switching technique Wormhole
Routing method X-Y determinist
Multicast/Broadcast Not supported
Message size 4 flits (data), 1 flit (control)
Routing time 1 cycle
Switch time 1 cycle
Link time 2 cycles
Buffer size 6 flits
Link bandwidth 1 flit/cycle

block, a protocol (called OnePointer) that uses a single pointer to the owner
as sharing information similarly to AMD’s MagnyCours [32] protocol, another
protocol (called TwoPointers) similar to the previous one but with two point-
ers for the two first sharers as sharing information, the two protocols described
in Section 3 which use a distributed sharing code implemented by means of
linked lists with either a single pointer or two pointers at the private caches
(which we have called SingleList and DoubleList , respectively).

We have conducted simulations using a large number of representative
applications from both the SPLASH-2 [33] and the PARSEC 2.1 [34] bench-
mark suites. Barnes, Cholesky, FFT, Ocean, Radix, Raytrace, Volrend, and
Water-NSQ are from the SPLASH-2 suite and have been configured with the
input sizes used in the SPLASH-2 paper. Bodytrack, Canneal, Streamcluster,
and Swaptions are from the PARSEC 2.1 suite and use the simmedium input
sizes. We have accounted for the variability of parallel applications as discussed
in [35]. To do so, we have performed a number of simulations (at least four) for
each application and configuration inserting random variations in each main
memory access. All results in this work correspond to the parallel part of the
applications.

6 Evaluation Results

This section compares the two list-based cache coherence protocols described
sin Section 3 against three implementations of the coherence directory that use
several well-known centralized sharing codes. We show simulation results for
both execution time and energy consumption of the considered applications. In
order to better understand these results, we first analyze for each protocol and
sharing code the number of invalidations that are performed per write miss, the
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L1 cache miss latency considering where it is spent, the type of replacements
in the L1 caches, and the network traffic generated by each coherence protocol.
All the experiments have been carried out for configurations with both 16 and
64 cores.

6.1 Number of potential sharers upon write misses

One of the main characteristics of applications impacting the performance of
a cache coherence protocol is the number of cores that will receive invalida-
tion messages upon a write miss. The design of both the sharing code and
the cache coherence protocol affects this number. For example, a coherence
directory that uses a sharing code with a single pointer will have to send in-
validation messages to all private caches every time a block shared by two or
more cores is written (or replaced from L2). In addition, coherence directo-
ries using centralized sharing codes usually employ silent evictions of shared
blocks. Silent evictions do not generate any coherence traffic. Thus, they do not
update the sharing information at the directory, i.e., the sharing code codifies
a superset of the actual sharers. This also increases the number of invalidation
messages.

Figure 6 shows the number of write misses, normalized with respect to
BitVector , classified by the number of nodes (color-coded) that receive invali-
dation messages, i.e., the number of sharers assumed by the directory. The five
bars for each application in the figure represent, respectively, the BitVector ,
the OnePointer , the TwoPointers, the SingleList and the DoubleList proto-
col. While the total amount of misses remains almost constant, as expected,
the protocols that keep the set of sharers with less accuracy will need to send
invalidations to more nodes per miss.

We can observe two general trends. First, the average number of contacted
nodes is very low. In fact, few misses need more than one invalidation even
in the OnePointer protocol. Second, as expected, the protocols that require
notification of replacements for shared blocks, i.e., the list-based protocols,
contact a lower number of nodes on each write miss.

In particular, the protocol with a single pointer in the L2 cache (One-
Pointer) will require a broadcast for about one out of ten write misses, on
average, when 16 cores are assumed. This fraction increases up to 14% for 64-
core CMPs, where also the penalty of broadcasts is, at least, four times greater,
since it is sent to 64 nodes instead of to 16. In some cases (e.g., Ocean) about
half of the misses require a broadcast. This factor limits the scalability of the
OnePointer protocol and it will be reflected in both the achieved execution
time and energy consumption.

The TwoPointers protocol considerably reduces the number of broadcasts
required to invalidate the sharers to just 3% for 16-core CMPs and 4% for
64-core CMPs. However, both the frequency and the penalty of broadcast
messages still increase with the number of cores.
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Fig. 6: Write misses classified by the number of nodes invalidated.

The SingleList and DoubleList protocols seldom send two or more notifi-
cations on average for a write miss. Therefore, although invalidation messages
are generated sequentially as the list of sharers is traversed, the average la-
tency of write misses is not expected to increase too much with respect to
BitVector , as will be shown next.

6.2 Latency of L1 cache misses

The latency of L1 cache misses is a key aspect of the performance of a multi-
core architecture since it determines the average memory latencies perceived
by processor cores. The sharing code employed by the coherence directory
can affect latency significantly, specially as the number of cores in the chip
increases.

For the accesses that miss in the L1 cache, Figure 7 plots the observed
average latencies for both a 16-core CMP and a 64-core CMP. Each bar in
this figure has been split in five parts: the time spent in accessing the L1 cache
(At L1 ) and also as a consequence of stalls due to on-going coherence actions
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Fig. 7: L1 cache miss latency.

or exhausted MSHR capacity; the time from the L1 to the L2 (To L2 ) required
to access the directory information; the time spent waiting until the L2 can
attend the miss (At L2 ), mostly due to on-going transactions on the same
memory block; the time spent waiting to receive the data from main memory
(Main memory) in case that the requested block is not present in any cache
in the chip; and the time from when the L2 sends the data or forwards the
request until the requester receives the memory block and can resolve the
miss (To L1 ). The Main memory time will be zero for a large number of L1
cache misses because the data can be found on chip most times. However,
it still represents a significant part of the average miss latency, mostly for
configurations with a lower number of cores.

In a CMP comprised of 16 cores, latency of L1 cache misses is not much af-
fected by the sharing code employed by the coherence directory (Figure 7(a)).
There is only a small increase in the To L1 time for the OnePointer proto-
col which can be better appreciated in Ocean. This is due to an increase in
the latency of write misses, which require broadcasting invalidation messages
for about 28% of write misses, as previously shown in Figure 6(a). Although
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Barnes also shows an elevated fraction of broadcasts per write (36%), the low
frequency of write misses lessen the effect in the overall access latency.

In contrast, the results for the 64-core CMP configuration show more dif-
ferences in the latency of L1 cache misses depending on the sharing code
organization (Figure 7(b)). There are two main reasons for such a variation.
The first reason is the increase in the To L1 latency in the OnePointer proto-
col, due to the higher number of cores that will receive invalidation messages
and will have to answer with an acknowledgement message. This can cause
serious bottlenecks especially when multicast or broadcast support is not pro-
vided at NoC (Network-on-Chip) level. The second reason is the sharp increase
observed in many benchmarks of the time spent waiting for the L2 cache to
attend the miss (At L2 ) in the SingleList protocol.

We can appreciate the increase in the latency of this part of the process
when going from 16 to 64 processors even for the BitVector protocol, where
some applications already start suffering the effects of L2 contention. However,
the SingleList protocol exacerbates this problem. This happens because the
L2 is blocked much more often in this protocol.

In effect, SingleList keeps the L2 blocked during updates to the list of
sharers to ensure mutual exclusion of list updates and avoid inconsistencies in
the list, (i.e., only one insertion or one deletion can be done at the same time
to the same list). This forces the L2 cache to remain blocked and unable to
answer to other requests to the same memory block. Replacements of shared
blocks, as explained in Section 3, require contacting sequentially half the shar-
ers of a block on average, keeping the block locked in L2 during all that time.
Differently, in the BitVector protocol, the L2 does not need to intervene at
all in replacements of shared blocks since they are silent. For this reason, L2
contention in SingleList will increase with the number of cores accessing the
block.

Employing a doubly-linked list (DoubleList) makes possible to avoid block-
ing the L2 during replacements. In DoubleList , not all updates to the list are
performed in mutual exclusion and the L2 does not need to intervene in many
replacements of shared blocks, as explained in Section 3. This way, the time
spent at L2 by this protocol is very similar to BitVector , although the time
spent accessing the L1 (At L1 ) is increased slightly because the L1s have to
be partially locked while a following node is performing a replacement.

Finally, despite the serial nature of the invalidations in the list-based pro-
tocols, the latency of the To L1 fraction does not increase. This is due to the
very low frequency of writes to memory blocks with a large number of sharers,
as shown in the previous section.

6.3 L1 cache replacements

L1 cache replacements play an important role in the efficiency of the cache
coherence protocol because they may require updating the sharing code. This
section analyzes four different types of replacements that can happen depend-
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Fig. 8: L1 cache replacements typology.

ing on the protocol and the status of the block. Figure 8 plots the number
of replacements per instruction executed in each of the following categories:
Exclusive, Shared silent, Shared L2, and Shared direct.

In all the evaluated protocols, when exclusive blocks are evicted the sharing
code is updated in to reflect that there are not copies of the block in any private
cache. The transaction required to perform this update is exactly the same in
all protocols. Once the replacement is completed, there is no need of keeping
an entry in the directory structure, or in case of having the directory along
with the L2 cache entries (as we assume in this paper), there is no need of
sending invalidation messages if the block is subsequently expelled from the L2
cache. The number of exclusive evictions does not significantly change across
the protocols.

On the other hand, replacement of shared blocks proceeds differently de-
pending on the protocol. Figure 8 shows that the fraction of shared replace-
ments is, on average, larger than the fraction of exclusive replacements, and
that this fraction increases with the number of cores.

As discussed in Section 6.1, protocols that use centralized sharing codes
usually implement silent replacements, which do not generate any coherence
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transactions, although extra invalidation messages may be produced later upon
write misses or L2 cache replacements.

In protocols that employ sharing codes distributed across the L1 caches,
such as SingleList and DoubleList , replacements in the L1 cache imply loss
of the sharing information kept in that cache, which would render the list of
sharers broken due to the now missing link. Hence, these protocols need to
update the sharing status of memory blocks on each replacement. These up-
dates have two main consequences. First, updating the coherence information
of a particular block requires mutual exclusion in the case of SingleList , which
affects the waiting time at the L2 (At L2 ), as already shown in Figure 7. Sec-
ond, it increases the traffic in the interconnect, as it will be shown in the next
section.

The advantage of the DoubleList protocol with respect to the SingleList
protocol is that the updates performed by replacements in DoubleList can
often be done without accessing the L2 cache, and therefore without blocking
other requests that may need updating the list of sharers. We name these
replacements as Shared direct, while the replacements that require to block
the L2 entry are called Shared L2. In DoubleList , the L2 is involved during
a shared replacement only when the replacing node is the first of the list of
sharers, and then only for a shorter period of time than in the case of SingleList
because the list of sharers does not need to be traversed. We can observe that,
on average, the fraction of replacements that can avoid blocking the L2 in
DoubleList increases with the number of nodes in the system. For a 64-core
CMP configuration this fraction is almost half of the total number of shared
replacements, on average. This is why DoubleList reduces the At L2 time, and
what enables this protocol to offer higher scalability than SingleList in terms
of performance.

6.4 Network traffic

Figure 9 shows the traffic measured in flits and normalized with respect to
BitVector that travels through the network for configurations of 16 and 64
cores with each protocol. Traffic has been divided in the following categories:
data messages due to cache misses (Data), data messages due to replacements
(WBData), control messages due to cache misses (Control), control messages
due to replacements of private data (WBControl) and control messages due
to replacements of shared data (WBSharedControl).

As it can be seen in the results for the 16-core configuration (Figure 9(a)),
OnePointer results into increased traffic due to control messages (Control)
with respect to BitVector . This is because this protocol resorts on broadcasting
invalidation messages whenever there is more than one sharer. TwoPointers
also increases this traffic category but to a much lesser extent, since broadcasts
are only performed when there are more than two sharers, which is infrequent
as shown in 6.1.
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Fig. 9: Interconnection network traffic.

On the other hand, SingleList has slightly less traffic due to control mes-
sages for misses than BitVector . This is because write misses generate fewer
messages in SingleList . The reasons for this are twofold. First of all, silent
replacements for shared data are not possible in SingleList , and therefore,
only actual sharers receive invalidation messages. And second, only the last
invalidated sharer sends an acknowledgement message to the requester in Sin-
gleList , while every invalidated sharer needs to send an acknowledgement in
the case of BitVector (and also in OnePointer and TwoPointers). However,
SingleList increases significantly the traffic due to replacements, especially in
the case of the replacements of shared data (WBSharedControl) which are
done silently in the case of the protocols using centralized sharing codes. As
previously shown, the replacement process, which updates the sharing list
sequentially, contributes also to increasing contention at the L2 cache level,
which will negatively affect performance.

DoubleList traffic due to control messages is higher than that of BitVector .
Although DoubleList needs only one acknowledgement for each write miss
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like SingleList and silent replacements for shared data are neither possible in
DoubleList , it entails additional messages for each read miss to a block that
already has at least one sharer because it needs to update the previous sharer
pointer of the former first sharer of the block, as explained in Section 3.2.1.

For the 64-core configuration (Figure 9(b)), we can differentiate two groups
of benchmarks: those where the Control traffic introduced by the broadcast
in OnePointer dominates and those where the WBSharedControl traffic intro-
duced by the shared replacements in SingleList dominates. Within the first cat-
egory would be Canneal, Cholesky, FFT, Ocean, and Radix. Whereas Barnes,
Bodytrack, Raytrace, Streamcluster, Swaptions, Volrend, and WaterNSQ fall
into the second category.

Both OnePointer and SingleList show poor scalability with respect to in-
terconnection traffic. While in OnePointer the cost of invalidation broadcasts
grows quickly with the number of cores, the cost of replacements in SingleList
so it does because the lists of sharers that have to be traversed tend to be
longer. TwoPointers and DoubleList are able to reduce the respective prob-
lems that OnePointer and SingleList introduce at the expense of requiring
more area. TwoPointers reduces traffic by reducing the number of times that
broadcasting invalidations occurs, and DoubleList reduces the number of mes-
sages per replacement and, more importantly, makes that number a constant
(3) instead of depending on the number of sharers of the list.

6.5 Execution time

After analyzing separately the aspects of the applications that may affect their
execution time depending on the protocol employed, this section looks at the
resulting execution time in each case. As in the previous figures, Figure 10
shows the execution times normalized with respect to BitVector , for both 16-
and 64-core configurations.

The election of the coherence directory barely affects execution time for the
16-core configuration (Figure 10(a)). Only for Ocean, a noticeable performance
degradation is observed for OnePointer (about 10%). We have observed that
this is due to the increase in the To L1 latency reported in Figure 7(a)).

However, when 64 cores come into play (Figure 10(b)) some applications
suffer a significant increase in their execution time especially for the One-
Pointer and SingleList protocols. This increase can be observed most clearly
in Ocean and Radix for OnePointer and in Barnes and Volrend for SingleList .
If we look back to the miss latency results (Figure 7(b)), we can see that, in
the case of SingleList , the most affected applications are those whose At L2
time was most increased due to the extra L2 contention created by shared
replacements. On the other hand, the most affected applications with One-
Pointer are those whose At L2 time increases the most. These are, precisely,
those that require broadcast invalidations most often, as can be seen if we look
back at figure 6(b).
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Fig. 10: Execution time.

6.6 Energy consumption

Finally, we show the energy consumption (both dynamic and static) for the
different protocols evaluated. The dynamic energy consumption normalized
with respect to BitVector is shown in Figure 11. We have considered the con-
sumption of the L1 caches (both data and metadata), the consumption of the
L2 caches (both data and metadata), and the consumption of the interconnec-
tion network. For the 16-core configuration, OnePointer , TwoPointers, and
DoubleList consume less dynamic energy than our baseline, on average. This
is mostly due to the reduction in the number of accesses to the L2 cache. In
contrast, for the 64-core configuration, the average consumption increases in
OnePointer , SingleList , and DoubleList due to the increase in network traffic
that these protocol entail. Although in DoubleList the number of accesses to
the L2 cache is considerably reduced, the extra traffic generated by the WB-
SharedControl messages (see Figure 9(b)), makes it consume more dynamic
energy.

The static (or leakage) energy is shown in Figure 12, again normalized to
BitVector . We account for the consumption of the L1 and L2 caches during the
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Fig. 11: Dynamic energy consumption.

execution of the applications. For the 16-core configuration, a clear reduction
in the leakage due to replacing the bit-vector with a pointer in the L2 cache
can be appreciated. This represents an average energy reduction of 12.5%.

For the 64-core configuration we can observe an increase in the leakage
due to the increase in the execution time of some applications for the One-
Pointer and SingleList protocols. Still, this increase pays off the reduction in
the required area to keep a bit-vector sharing code.

7 Conclusions

Although cache coherence protocols based on the use of a distributed shar-
ing code (mainly a doubly-linked list) were popular in the context of shared-
memory multiprocessors during the 90s, they have gone completely unnoticed
in the multicore era. In this work, for the first time, we have performed a
comprehensive evaluation of two coherence directory implementations employ-
ing two distributed sharing codes (SingleList and DoubleList) in the context
of future manycore architectures. SingleList is based on the use of simply-
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Fig. 12: Energy leakage.

linked lists, thus being the lowest-overhead coherence directory that can be
designed with a distributed sharing code. On the other hand, DoubleList em-
ploys doubly-linked lists and resembles the coherence protocols based on dis-
tributed sharing codes implemented in several commodity multiprocessors.

We have presented detailed results in terms of performance, memory over-
head, network traffic and energy consumption, and we have compared these
two distributed sharing codes against three well-known centralized ones. Sim-
ulation results of show that all the configurations obtain similar results in
terms of performance and energy consumption when the number of cores is
not so big (16 cores). However, important differences between the alternatives
appear when the number of cores is increased to 64, underscoring the signifi-
cant incidence that the coherence directory may have in future manycores. In
particular, for large core counts, we have found that SingleList performance is
worse than the base case (BitVector) because of the increase in traffic and L2
contention due to L1 replacements. We also observe that DoubleList reduces
leakage energy (approximately 13% on average) and reaches the performance
levels of the non-scalable memory-consuming bit-vector directory with just a
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small increase in dynamic energy consumption (about 10% on average). The
latter comes from the additional traffic that DoubleList entails as a conse-
quence of having non-silent replacements for shared data.

For 64 cores or less, the TwoPointers protocol could be a good option
despite needing almost twice as much memory as DoubleList . However, it is
important to note that the TwoPointers protocol resorts to broadcasting co-
herence messages when the number of sharers is greater than 2, which makes it
non-scalable because, for larger core counts, performing broadcasts for invali-
dations and processing all the responses, even if very infrequently, would surely
saturate the interconnection network, the home directory and the requestor.

We think that based on the reported results we can conclude that coher-
ence directories based on distributed sharing codes are an appealing solution
to the scalability problem of the coherence directory in future manycore archi-
tectures, and that it is worth exploring solutions to the increased overhead that
replacements of shared data have in these protocols. In fact, this is something
that we plan to tackle as part of our future work.
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24. A. Ros, M. E. Acacio, J. M. Garćıa, Scalable directory organization for tiled CMP
architectures, in: Int’l Conference on Computer Design (CDES), 2008, pp. 112–118.
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