Regional Out-of-Order Writes in Total Store Order

Sawan Singh
singh.sawan@um.es
University of Murcia

Murcia, Spain

ABSTRACT

The store buffer, an essential component in today’s processors, is
designed to hide memory latency by moving stores off the proces-
sor’s critical path. Furthermore, under the Total Store Order (TSO)
memory model, the store buffer ensures the in-order retirement of
stores. Problems arise when the store buffer is full or, under TSO,
when the leading store encounters a cache miss, which blocks all
subsequent stores and incurs severe performance bottlenecks.

This work presents a software-hardware co-designed approach
to cope with this bottleneck for processors with strong consistency
guarantees. Our proposal is driven by the insight that store oper-
ations can be reordered if their reordering does not change the
observable program behavior. The compiler delineates safe regions
within which stores can be shuffled while still delivering the same
observable behavior as if they performed in program order and
unsafe regions within which stores must be kept in program order.
This is leveraged by a novel dual-mode store buffer that switches
between the out-of-order and in-order execution of stores within
the safe and respectively unsafe regions. Correctness is preserved
through well-placed fences inserted by the compiler, which impede
the execution of stores from the following regions until all stores
of the current region complete. Our dual-mode store buffer only
requires one extra bit per entry, significantly decreases processor
stall cycles, and brings 8.13% performance improvements compared
to a mainstream store buffer.

CCS CONCEPTS

- Computer systems organization — Multicore architectures;
Superscalar architectures; « Software and its engineering — Mul-
tithreading; Consistency.

KEYWORDS
Memory Consistency Models; Total Store Order; Store Buffer

ACM Reference Format:

Sawan Singh, Alexandra Jimborean, and Alberto Ros. 2020. Regional Out-
of-Order Writes in Total Store Order. In Proceedings of the 2020 Interna-
tional Conference on Parallel Architectures and Compilation Techniques (PACT
’20), October 3—-7, 2020, Virtual Event, GA, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3410463.3414645

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

PACT °20, October 3—7, 2020, Virtual Event, GA, USA

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8075-1/20/10.

https://doi.org/10.1145/3410463.3414645

Alexandra Jimborean
alexandra.jimborean@um.es
University of Murcia
Murcia, Spain

Alberto Ros
aros@ditec.um.es
University of Murcia
Murcia, Spain

1 INTRODUCTION

Strong memory consistency models such as Sequential Consistency
(SC) [20] offer intuitive semantics to programmers by preserving
the program order of all memory accesses. However, a high memory
level parallelism is key for performance, but relies on reordering
memory instructions to hide long memory latency.

This role is assumed by the store buffer (SB). The store buffer is
an essential component of modern-day processors and it is designed
to hide the long latency of store operations by allowing processors
to perform the store operations out of the processor’s critical path.
Store operations therefore first retire from the processor’s pipeline
to the store buffer and then perform the memory write. This causes
load instructions to be effectively reordered with respect to store
instructions, thus relaxing the consistency model semantics. The re-
sulting consistency model, supported by Intel and AMD processors,
is known as Total Store Order (TSO) [32].

TSO semantics preserve the order of store operations with re-
spect to other stores and of load operations with respect to other
loads. However, to achieve memory level parallelism, in practice,
loads are speculatively reordered with respect to other loads [14].
Stores, on the other hand, perform in-order based on the observation
that stores are not on the processor’s critical path. Unfortunately,
when a store operation misses in the cache, all subsequent stores
block until the miss is resolved and the store performs. This creates
severe bottlenecks in current out-of-order (OoO) processors.

Previous proposals alleviate the store buffer bottleneck by per-
forming the stores out-of-order while still complying with TSO [8,
15, 28, 33, 34]. However, they either require complex hardware
structures and speculative writes [34], or they only enable limited
reordering [28, 33]. For example, the compile-time analysis by Singh
et al. [33] only enables reordering of ~75% of the stores, on average,
while Ros and Kaxiras [28] simply force a different (lexicographical)
order for all stores.

Our goal is to provide virtually full store re-ordering (98.8%
of the stores, on average) while maintaining a simple hardware
design. To achieve this, we propose regional out-of-order writes
(ROOW), a software-hardware co-designed solution that consists in
a compiler that delineates safe regions of code where stores can be
reordered without affecting the consistency guarantees, a technique
to transfer the information from the compiler to the hardware, and
a simple dual-mode store buffer architecture that enables store
reordering within safe regions, while forcing all the stores outside
safe regions to write to memory in-order (Section 4).

Our main insights are: i) by exploiting the properties of the
executing program (guaranteed by the consistency model of the
programming language), the compiler can perform a more accu-
rate analysis of the memory accesses, in contrast to conventional
compile-time analyses that are conservative by nature and therefore
less accurate; ii) by shifting complexity from hardware to software


https://doi.org/10.1145/3410463.3414645
https://doi.org/10.1145/3410463.3414645

for classifying accesses and conveying this information from the
compiler to the store buffer, we maintain hardware simplicity; and
iii) designing a single dual-mode store buffer ensures correctness
for multiple accesses to the same data (more precisely, prohibiting
store-store reordering and handling store-to-load forwarding, as
described in detail in Section 2).

Given the ultra-concise information to be transferred to the store
buffer, the hardware overhead is absolutely minimal and consists
in only one extra bit to signal the region type and another bit
per store buffer entry to indicate the type of each store. Together
with the simple structure of the store buffer itself, ROOW requires
minimal modifications in the core, which yields our solution highly
applicable and can be easily integrated in mainstream store buffer
implementations.

Furthermore, by allowing the stores to reside in the store buffer
even after being performed (as long as the store buffer is not full),
ROOW provides a zero-cost solution for the use of the store buffer
as a cache [4].

Results show that ROOW can perform 98.8% stores, on aver-
age, out-of-order, thus improving system performance by 8.13%
compared to Intel’s mainstream store buffer implementation [17]
(Section 7). Furthermore, we conducted a sensitivity study which
shows that thanks to reordering, we can reduce the store buffer
size to just half of its entries without significantly degrading per-
formance, and to one forth of its size while still improving per-
formance with respect to the baseline configuration. Reducing the
store buffer size could be desirable in future processors design, since
it is searched associatively on every load and due to its significant
energy consumption.

In particular, the main contributions of this paper are:

o A software-hardware co-design to provide precise informa-
tion from the compiler with minimum overhead, enabling
98.8% of stores to be reordered within their region.

o A dual-mode store buffer (with regional in-order vs out-of-
order processing of stores) implemented in a single buffer
rather than two, creates a more efficient design leading to
a better utilization of resources. Moreover, the hardware
overhead is only one extra flag bit and one mode bit per
store buffer entry compared to mainstream store buffers.

e A zero-cost solution to use the store buffer as a cache by
keeping stores in the store buffer as long as they do not cause
pipeline stalls.

e A sensitivity analysis of the performance variation with
respect to the store buffer size that reveals that the store
buffer can be reduced to half without degrading performance.

To the best of our knowledge, this is the simplest design of an
out-of-order store buffer that preserves a strong consistency model
such as TSO, thanks to a region-based classification to increase the
compiler accuracy. This simple design makes our proposal suitable
to be implemented in real processors with minimal engineering
efforts.

2 BACKGROUND

2.1 Sequential semantics

Sequential semantics restrict reordering of accesses to the same
memory location (dependencies), within a single thread, and need

to be preserved by any program (sequential or parallel) to offer an
intuitive behaviour.

The impact of the store buffer regarding memory consistency
guarantees is that it allows stores to perform after a load that
follows the store in program order. However, if the subsequent load
targets the same memory location as the store, the load should read
the value generated by the store in-order to preserve sequential
semantics. That is, loads and stores targeting the same address
cannot be reordered.

More generally, loads must retrieve the value written by the
latest previous store to the same address. This is known as store-
to-load forwarding and it is commonly implemented by requiring
every load to snoop the store buffer in parallel to performing the
Memory access.

Reordering stores to the same address can cause loads reading
an old value and therefore breaking the program’s sequential se-
mantics. This is not a problem when stores perform in-order, but it
appears when the store-store order is relaxed, as it happens in our
safe regions.

The aforementioned problem does not only occur when a load
must retrieve the value from a previous store, but also when the
stores targeting the same address write to memory, as it could result
in the memory being updated with an old value.

ROOW proposes a simple solution to address these two chal-
lenges, i.e., correct store-to-load forwarding and memory updates,
preserving sequential semantics even when stores perform out-of-
order.

2.2 The SC-for-DRF consistency model

SC is globally accepted as the most intuitive memory model for
shared memory multi-threaded programming model as it provides
the illusion of one unique global ordering of all memory accesses
within a program. However, SC is also the most restrictive model for
shared memory, with an immense impact on performance compared
to more relaxed memory models. Modern-day programming lan-
guages such as Java, C, C++ provide SC only for data-race-free (DRF)
programs [1, 13]. In contrast, for racy programs, most program-
ming languages offer no guarantees (e.g., C++) or a very relaxed
consistency model at best.

This led to the advent of the SC-for-DRF consistency model [1].
Weaker than SC, as it provides the SC guarantees only for DRF
software, SC-for-DRF enables powerful compile-time software op-
timizations.

SC-for-DRF requires racy accesses to be confined within synchro-
nization operations (e.g. locks, critical sections). The regions of code
delimited by synchronization operations (see Section 4, denoted
here as DRF regions, offer the guarantee that different threads exe-
cuting concurrently multiple DRF regions do not access the same
location if at least one performs a write. Consequently, the writes
performed by a thread during a DRF region remain "invisible" to
the other threads until the end of the DRF region, since if one of the
threads writes to a memory location, no other thread will attempt
to read or write the same location until the end of the DRF region.
This guarantee opens up the possibility of performing memory
accesses in any order during DRF regions (as long as intra-thread
dependencies are fulfilled as mandated by sequential semantics).



[0 DRF H Sync

< 1000w [y Y 101 T O 0 O O
@ 80.0 |
S ;
T 60.0 3
g i
O 40.0 |
g 3
g 20.0- :
0.0 :
diddddd3dddaddiddgdd
QO x S T —cmEEF QI CcCcNnoD
cod% £E 2395888828 c5¢
£32% ¢ Sgg FeEsgesd
g% 3 °F TEF 7<%
o4 > o
el = =

Figure 1: Percentage of store operations found outside syn-
chronization code (DRF) and inside synchronization code
(sync)

DREF region boundaries, i.e., language specific synchronization op-
erations, include fences that ensure that memory accesses perform
and become visible to the other threads at the end of the region.
That is, fences forbid the compiler to reorder memory operations
across different regions.

3 MOTIVATION

Although the DRF property is present in a large number of ap-
plications, it is currently not exploited at the hardware level and
many processors (e.g. Intel and AMD) blindly implement a stronger
consistency model, missing out enormous optimization potential.

Figure 1 shows the percentage of store operations found outside
synchronization code (DRF) and inside synchronization code (sync)
for the applications evaluated in this proposal (see Section 6 for
details). The application with less stores in DRF regions of code is
volrend with 93.8%. That percentage rises up to 99.9% in watersp
while reaching 100% in blackscholes and swaptions. The average
across all the evaluated benchmarks is 98.8%. Given the immense
percentage of DRF store operations, performing them in-order is a
very expensive luxury in TSO processors. This work is the first to
explore how SC-for-DRF semantics can be exploited by the store
buffer of TSO processors.

If processors had information about the nature of the stores resid-
ing in the store buffer (stemming from either DRF or sync regions),
they could orchestrate the in-order vs. out-of-order execution of
store operations, without relaxing the consistency guarantees. Fig-
ure 2 walks the reader through an example illustrating the benefits
of performing stores out-of-order (as we propose in this work —
ROOW) in contrast to enforcing their order across the entire store
buffer (as implemented in standard TSO). Each row represents the
content of the store buffer and the status of each store. All stores A,
B, C, and D belong to the same DRF region, hence can be performed
out-of-order as they have exclusive access to the target memory
location. In ROOW, they all start as soon as they enter the store
buffer (on the right), which means B can complete before A (which

T D|C|B|A D|C|B|A
Wait | Wait | Wait | Start Wait | Wait | Wait | Start
o D|C|B|A D|C|B|A
Wait | Wait | Start | Miss Wait | Wait | Wait | Miss
T3 D|C|B|A D|C|B|A
Wait | Start | Done | Miss Wait | Wait | Wait | Miss
T4 D (o B A D C B A
Start Miss | Done | Miss Wait Wait Wait Miss
Ts D|C|B|A D|C|B|A
Done | Miss | Done | Miss Wait Wait Wait Miss
D (o} B A D C B A
6 Done | Miss | Done | Done Wait | Wait Start | Done
. D|C|B|A D|C|B|A
Done | Done | Done | Done Wait | Start Done | Done
ROOW TSO

Figure 2: Benefits of out-of-order execution of store opera-
tion

encounters a cache miss) and similarly D can complete before C.
This parallelism hides the miss latency as the processor does not
wait for the miss to be resolved, as in the standard TSO store buffer
implementation. At the end of the DRF region the other cores ob-
serve that all stores completed, but not the order in which they
have been performed.

4 ROOW: REGIONAL OUT-OF-ORDER
WRITES

While SC-for-DRF becomes the norm in most modern programming
languages, the guarantees offered by DRF software are not exploited
at the hardware-level. To leverage this valuable information, we
propose a dual-mode store buffer architecture that enables regional
out-of-order writes (ROOW). Namely, ROOW allows reordering
the stores within safe (DRF) regions while forcing all the stores in
unsafe (synchronization) regions to write to memory in-order. As
reordering of stores happen only in DRF regions where data races
are not possible, store-to-store order guarantees are still respected.
This way the efficiency of the store buffer is improved by perform-
ing stores out-of-order without affecting the consistency model
provided by the system.

To this end, the ROOW compiler performs a region-based classifi-
cation of accesses, rather than data-based classification. The compiler
delineates synchronization regions (denoted as sync regions) and
synchronization-free regions (denoted as DRF regions). The collected
information is transmitted to the hardware through a new dedi-
cated instruction. To increase memory level parallelism, our store



THREAD THREAD
1 2
orr{ A D -
sync ‘[ lock L
DRF { B \
sync { unlock L <] : __________
C i p_c_k_ I___ o sync
DRF e B DRF
__________ unlock L sync
E DRF

Figure 3: Example code showing a parallel SC-for-DRF pro-
gram. Stores A, C, F, D, and E are part of DRF regions that
run concurrently, while store B belongs to a DRF region that
runs sequentially due to synchronization.

buffer implementation allow stores stores to perform out-of-order
when they suffer a cache miss. Next sections detail the behavior of
ROOW.

4.1 Compile-time delineation of regions

We implement a compiler pass in LLVM [21] to mark the data
race free regions and delineate synchronization operations. In this
work we assume parallel code to be data race free (as required
by most modern programming languages, such as C++ and Java).
Under these circumstances, the compiler marks all synchronization
operations as sync regions and the resulting regions delimited by
synchronization as DRF regions. Figure 3 shows an example of a
SC-for-DRF program with delineated DRF and sync regions.

Synchronization operations are identified by analyzing the cor-
responding libraries! and represent the regions in which stores
must be executed in order to ensure correctness under the TSO
guarantees. DRF regions on the other hand allow stores to be per-
formed out-of-order while preserving the TSO guarantees since no
concurrent loads or stores to the same address can take place in
other threads.

We distinguish between two types of DRF regions: (1) parallel
code, that is DRF by our initial assumption (stores to A, C, F, D, E
in Figure 3 and (2) sequential code (e.g., store B, executed by one
thread at a time due to the synchronization operations) that is DRF
by definition.

To delineate the regions, the compiler inserts a dedicated in-
struction, setDRF val, where val is a one-bit operand. A value of
1 indicates the beginning of a DRF region while 0 indicates a sync
region.

Furthermore, the compiler performs an alias analysis to deter-
mine if DRF and sync regions may access the same location and
inserts fences in between the corresponding regions [19].

10ur compiler provides support for pthreads [25] and OpenMP libraries [26], but it
can be easily extended to recognize any other synchronization library.

TAIL HEAD

RoB commit
t6 t5 t4 3 t2 1
F E D Cc B A
setDRF Mode 1 Mode 0 Mode 0 Mode 0 Mode 0 Mode 0
1 Issue 0 Issue 0 Issue 0 Issue 0 Issue 0 Issue 1
Performed 0 |Performed 0 | Performed 0| Performed O Performed 0| Performed 0

€ J
2

sync region

1
Region
flag

(a) Stores A, B, C, D, and E copy the region flag 0 and thus belong
to a sync region (Mode bit 0). Once a setDRF 1 operation commits,
the processor sets the region flag and inserts a logical store buffer
fence, marking the beginning of a DRF region. Store F that enters
after setDRF 1 copies in its Mode bit the region flag’s value, which
is now 1.

TAIL HEAD
RoB commit
t6 t5 t4 3 t2 t1
J 1 H G F E
setDRF Mode 0 Mode 1 Mode 1 Mode 1 Mode 1 Mode 0
0 Issue 0 Issue 0 Issue 0 Issue O Issue 0 Issue 1
Performed 0 |Performed 0 | Performed 0| Performed O Performed 0| Performed 0

C J
as

DRF region

0
Region
flag

(b) Operation setDRF @ marks the end of a DRF region: it resets the
region flag and triggers the insertion of an store buffer fence. As
seen before, store J copies the current value of the region flag in its
Mode bit. (Stores F, G, H and I copied the value of the region flag
at the moment the stores entered the store buffer, marking them as
DRF.)

Figure 4: Conveying static information to the store buffer

4.2 Conveying static information to the store
buffer

The processor requires minor modifications to execute the setDRF
instruction. The instruction can be basically considered as a nop
operation except at commit time. When the setDRF instruction com-
mits, a dedicated processor flag called region flag (1 bit) changes its
mode according to the operand value of the setDRF instruction. The
update of the flag is performed at commit time since all instructions
commit in-order. A value of the flag equal to 0 indicates that the
processor is committing sync stores from that point on. A value
of 1 indicates that the next stores are DRF. The region flag is set
by default to 0. This way, applications in which the DRF regions
have not been delineated (e.g. legacy code) still preserve the TSO
semantics.

When a store commits, it reads the current value of the region
flag to detect whether it belongs to a DRF region or a sync region.
Stores keep this information in a per-entry bit added to the store
buffer, called the mode bit. This bit is required because both in-
order and out-of-order stores can co-exist in the store buffer, so
they must indicate their nature on an individual basis. Figure 4
shows an example of how the compiler information is conveyed to
the store buffer.



TAIL HEAD

t6 t5 t4 3 t2 t1
F E D Cc B A
Mode 1 Mode 1 Mode 1 Mode 0 Mode 0 Mode 0
Issue 0 Issue 0 Issue 1 Issue 1 Issue 1 Issue 1
Performed 0 |Performed 0 | Performed 0| Performed 0 | Performed 0 | Performed 0

L I s

T Al
DRF region sync region
(a) Before Miss
TAIL HEAD

t6 t5 t4 3 t2 t1

F E D Cc B A Miss
Mode 1 Mode 1 Mode 1 Mode 0 Mode 0 Mode 0 fe—— —
Issue 0 Issue 0 Issue 1 Issue 0 Issue 0 Issue 1

Performed 0 |Performed 0 | Performed 0| Performed 0|Performed 0 | Performed 0

L I ,

Al Al
DREF region sync region

(b) After Miss

Figure 5: Store buffer behaviour upon a cache miss

4.3 Dual-mode store buffer

ROOW implements a dual-mode store buffer. That is, a store buffer
than can simultaneously perform stores in-order or out-of-order
depending to the type of store (mode bit): DRF or sync. Store buffers
are content-addressable memories (CAM) that implement a circular
buffer with a head and a tail pointer. Stores are inserted through
the tail and removed from the head.

Sync stores behave as in a standard TSO store buffer. They are
initiated in-order (from head to tail) and they are inserted in-order
in the cache pipeline.? If the store hits in the cache, the write will be
performed in-order. However, in case of a cache miss, subsequent
stores in the cache pipeline would be reordered if they hit in the
cache or have a sorter miss latency. To prevent this behaviour,
when a store encounters a cache miss, the subsequent stores in the
cache pipeline are squashed and they will have to be initiated again,
in-order, once the missing store completes.

On the other hand, DRF stores may perform out-of-order. DRF

stores are also initiated in-order and inserted in the cache pipeline.

However, DRF stores are never flushed from the cache pipeline
and do not need to be re-initiated. On a cache miss of a DRF store,
no action is taken regarding subsequent stores, thus increasing
memory level parallelism as more store misses will be in flight. DRF
stores may therefore perform out-of-order and are initiated one
after the other until the first sync store is encountered.

Note that on a cache miss for a sync store, DRF stores in the
cache pipeline do not need to be flushed. Figure 5 shows an example
of this scenario. Assume that the state of the store buffer is the one
showed in Figure 5a. Stores A, B, C and D are issued in the cache
pipeline to perform the write operation. Stores D, E, and F are DRF
stores. Once store A, the store at the head, suffers a cache miss, the
processor needs to re-issue all the issued sync stores except itself,
as shown in Figure 5b. These stores, B and C, are flushed from the
cache pipeline. However, store D can safely continue, being DRF,
and therefore is not re-issued.

2Without loss of generality, this work assumes a four-stage cache pipeline and a single
cache port for stores, so on each cycle a single store is initiated.

Store operations are retired from the store buffer in-order once
they complete the write, regardless if the store is DRF or sync.
That is, the head pointer of the store buffer simply moves to the
next store. Removing DREF stores out-of-order, would improve store
buffer utilization but in contrast would add complexity to the store
buffer and make sequential semantics harder to fulfill, as we explain
in the next section.

4.4 Guaranteeing sequential semantics

DREF stores to different locations can be reordered as per SC-for-DRF
guarantees. However, stores to the same location have to adhere to
sequential semantics even during DRF regions. That is, two stores
to the same or overlapping addresses have to write to their memory
location in-order. Similarly, a load following these two stores has
to read the value written by the latter. Reordering stores however
can break this simple rule if care is not taken.

The solution for correct store-to-load forwarding is to insert and
retire stores from the store buffer in program order. This way, loads
will always read from the latest store, as the store buffer mirrors the
program order. Furthermore, despite allowing DRF stores to write
to cache out-of-order, the store buffer is always coherent with the
value in memory. This is thanks to the DRF guarantees that DRF
stores do not race with accesses in other threads.

The solution to guarantee sequential semantics with respect to
memory writes is a bit more elaborated. As stores are inserted in the
cache pipeline in-order, in case of cache hits, the stores will respect
program order. In case the first store misses in the cache, it will
issue a request for write permission. Subsequent stores targeting
the same address will also experience a cache miss, as they belong
to the same cache block, and the subsequent store will be coalesced
in the miss status holding register (MSHR) with the previous store,
waiting for the miss to be resolved. As a consequence, the value of
the first store will be updated with the value of the second store
and the writes will appear to be performed in-order.

On the other hand, both DRF and sync stores can co-exist in
the store buffer, and stores to the same address can appear in both
regions. If we allow DREF stores to initiate the write before sync
stores (as sync stores may be waiting for a previous store that
missed in cache), and sync and DRF stores target the same address,
then sequential semantics may be broken.

Our solution to this problem is to forbid reordering of DRF stores
across sync stores, when the same address can appear in both
the DRF and the sync region. Our compiler detects such regions
through an alias analysis and inserts fences in between DRF and
sync regions with aliasing stores. Fences inform the processor when
it cannot reorder stores across regions of code. That means a DRF
store cannot initiate the write to cache if a previous sync store has
not completed and there is a fence in between. The fence enforces
the order of aliasing stores from different regions and guarantees
sequential semantics. These fences entail a very low performance
cost even when they are inserted on every region boundary, since
the transitions from DRF to sync are not frequent. This is shown in
Section 7.

Figure 6 shows an example of a region boundary accompanied
by a fence, due to store A (in sync) and store A’ (in a DRF region)
alias. In this case, store A’ cannot initiate the write to cache until all



TAIL HEAD

t6 t5 t4 3 2 t

1
E D A C B A
Mode 1 Mode 1 Mode 1 Mode 0 Mode 0 Mode 0
Issued O Issued 0 Issued 0 Issued 0 Issued 0 Issued 1

Performed 0 [ Performed O | Performed O { Performed 0 | Performed 0 _[Performed O
L JiL J
Y ' T
DRF region | sync region

DRF fence

Figure 6: Store buffer behaviour upon fences

previous sync stores complete. In short, only when the head of the
store buffer points to store A’ can all the DRF stores initiate their
write to cache.

4.5 Enabling the store buffer as a cache

Having exclusive access to memory during a DRF region provides
the guarantee that the data written by the stores will not be mod-
ified by other cores. Therefore there is no need for removing the
DREF stores (and the data) from the store buffer until the resources
occupied by these stores are necessary, i.e., the store buffer is full.

Keeping DREF stores in the store buffer even after they complete
makes the store buffer behave as a cache, as the number of loads
forwarded from stores increases to a great extent, as previously
noticed by Alves et al. [4]. The main advantage of our approach
is that the use of the store buffer as a cache comes at zero-cost
since it does not require any additional hardware to keep coherence
between the data in the DRF stores of the store buffer and in memory.
This is always respected by definition in DRF regions. The only
modification required with respect to a standard store buffer is
that the head of the store buffer is not updated when a DRF store
completes, but when a new store needs to enter the store buffer
and the latter is full.

Sync stores on the other hand need to be removed from the store
buffer when they complete as the written data gets exposed to the
coherence protocol and to reads and writes performed by other
cores. Keeping them in the store buffer could cause inconsistency
problems, unless extra hardware is added to expose coherence
messages to the store buffer [4].

5 DISCUSSION
5.1 Non SC-for-DRF programs

Our model is well defined and can correctly execute legacy code and
non SC-for-DRF programs. Legacy software would be automatically
executed in the sync mode, thus providing TSO, since it does not
contain any DRF annotations inserted by the compiler. Tools such
as data race detectors (e.g., ThreadSanitizer [31], Fast&Furious [27])
that operate either at the compiler level or directly on the binary
may be employed to analyze and annotate legacy code. Alterna-
tively, one can extend our proposal with an interface for the pro-
grammer to hint the compiler and enable/disable our optimizations

for selected parts of the code. This could also be beneficial for han-
dling legacy code that AATJacceptsaAl data races, by disabling our
optimizations for the racy accesses (marking them as single-access,
in-order regions.) We leave such extensions for future work.

5.2 Support for Sequential Consistency

ROOW can efficiently support a Sequential Consistency (SC) mem-
ory model. The only requirement is that during sync regions, loads
are not allowed to commit until the store buffer drains completely>.
The impact of this restriction on execution time will be minimal as
the sync regions in DRF programs contain a very small number of
memory accesses (see Figure 1).

5.3 Store buffers for weak memory models

Apart from the simple integration in an x86-TSO store buffer (de-
scribed before), ROOW can easily be applicable to store buffers de-
signed for weaker memory models such as ARM [5] or Power [23],
providing cost-effective store ordering (TSO) when required by
the program. When executing a DRF region, stores would be natu-
rally reordered, as this is the default mode in these processors. In
contrast, during the execution of sync regions, store order can be
enforced by stalling writes to memory blocks different than the one
at the tail of the store buffer (allowing just coalescing of consecutive
blocks). Although stalling writes may reduce the utilization of the
store buffer, the impact of this action on performance would be
minimal for SC-for-DRF programs since sync regions represent a
negligible fraction of the code.

5.4 Debugging

Debugging parallel programs (before they become DRF) may seem
extra challenging with our non-TSO hardware, as one can expect
our out-of-order SB would reveal data races masked by the TSO
memory model (and thus invisible on mainstream hardware).

Nevertheless, it is not only the underlying hardware that can
hide or reveal such races. Conventional compilers perform instruc-
tion reordering invisible to the programmer as part of the stan-
dard optimizations (02, O3), such as code motion, hoisting loop
invariants, grouping memory instructions to increase memory-
level-parallelism, etc. As long as the programming language mem-
ory model and the hardwareaAZs memory model do not provide
guarantees for racy code, any such transformation can reveal the
race. Hence, ROOW does not introduce a new problem as the com-
piler or other software optimization tools may have a similar effect
for incorrect (racy) programs.

One simple debugging approach would be to (1) debug the se-
quential code; (2) debug the parallel code by compiling without the
pass that delimits the regions (i.e equivalent to executing on the
baseline TSO hardware) and fix data races; (3) enable our technique
by re-compiling the code with our pass. If bugs surface only when
ROOW is enabled but not on the baseline TSO hardware, this can
actually indicate to the programmer that some data races are still
present and could even help them hone in on the problem to isolate
the data race.

3In our implementation, we opt for allowing loads to commit with pending stores in
the store buffer, as SC is not required by existing x86 software.



Table 1: System parameters

Processor

Processor Model Intel Skylake
Fetch Width 5 instructions
Issue Width 8 ports
Allocation Queue 97 entries
Reorder Buffer 224 entries
Load Queue 72 entries

Store Queue + Store Buffer 56 entries

Memory

Private L1 I&D caches
L1 prefetcher

Private L2 cache
Shared L3 cache

32KB, 8 ways, 4 hit cycles, pipelined
Stride, degree 3

256KB, 8 ways, 12 hit cycles

1MB per bank, 8 ways, 35 hit cycles

Directory 8 ways, 200% coverage of L2
Memory access time 160 cycles
Network Topology 2D Mesh

6 SIMULATION ENVIRONMENT

Our simulation infrastructure employs modified versions of Sniper [9]
and the cycle-accurate GEMS simulator [24]. We simulate a multi-
core processor providing a TSO consistency model and consisting
of 8 out-of-order cores. Our processor mimics an Intel Skylake
micro-architecture employing macro-op and micro-op fusion. Our
processor employs a single circular queue for both the store queue
and store buffer that utilizes better the resources as done in Intel
architectures [17]. GARNET [2] is used to model the interconnect.
We use CACTI [22] to model the store buffer and L1 cache using a
22nm technology in order to compute their energy consumption.
Both the L1 and the SB use the high-performance model (hp) pro-
vided by CACTI and the store buffer is modelled as a CAM. The
most relevant characteristics of the system used in our simulations
are displayed in Table 1.

We explore four different configurations in the evaluation: (1)
Our baseline is a TSO-like store buffer that writes in-order (T7SO).
(2) An oracle version (DRF_ALl) that sets the Mode bit to true per-
manently. That means, all stores belong to a DRF region and can
be performed fully out-of-order. (3) Our ROOW proposal where
the compiler inserts fences on each region boundary (ROOW). (4)
Finally, our ROOW proposal with fences inserted only on region
boundaries with aliasing stores residing in consecutive regions
(similar to the xDRF analysis [18, 19]).

We run both parallel applications from the Splash-3 benchmark
suite [30], which is a data-race-free version of the original Splash-
2 [35] benchmark suite released before the C/pthreads memory
model was updated to enforce SC-for-DRF, and the PARSEC 3.0
benchmark suite [7], which is a popular modern suit that complies
with the C++ standard and therefore enforces SC-for-DRF. We use
the simmedium inputs for barnes, blackscholes, cholesky, dedup,
fft, fluidanimate, lu_cb, and lu_ncb and the simsmall inputs for
fmm, ocean_cp, oceanncp, radiosity, radix, raytrace, streamcluster,
swaptions, volrend, water_nsquared, and water_spatial. Results

1.TSO 2. Al_DRF 3.ROOW

H RoB O LQ W SQ-SB

Normalized Processor Stalls
000000000 0ORRPE
OHN&J-&U’!O‘)\ICOEOOD—‘N

fluidanimate.
swaptions
waternsq

blackscholes.
streamcluster.

Figure 7: Processor stalls

correspond to parallel region of the applications. The simulated
benchmarks include a large variety of access patterns.

7 RESULTS

In the motivation of this work, we already showed that the number
of stores executed in DRF regions are dominating (Figure 1). In
what follows, we analyze the performance benefits of performing
the DRF stores out-of-order, focusing on the processor stalls and
the ratio of store-to-load forwarding. We present the performance
improvements considering several store buffer sizes and report the
energy savings on the L1 cache and the store buffer achieved by
ROOW.

7.1 Processor Stalls

Figure 7 provides a breakdown of the processor stalls classified by
the reason of the stall reorder buffer (RoB) full, load queue (LQ)
full, and store queue/store buffer (SQ/SB) full. SB/SQ stalls are sig-
nificantly reduced in both ROOW and All_DRF for programs such
as LU-nc, ocean-nc and radix, while in other cases the bottleneck
shifts from the SB/SQ to either the RoB or the LQ. For example, in
ocean-nc, fluidanimate and LU-nc, despite reducing the SB/SQ stalls,
we observe higher LQ stalls stemming from speculative loads due
to branch missprediction [29]. In contrast, in radix and water-nsq,
RoB becomes the bottleneck (due to a higher number of instruction
squashes, 5.4% more squashes for radix and 0.0012% less squashes
in water-nsq). Other applications, such as barnes, radiosity, raytrace
and volrend show less RoB stalls (due to fewer instructions being
squashed, 2.08%, 1.1%, 1.79% and 2.38% respectively) along with
less SB/SQ stalls. FMM, cholesky, blackscholes, streamcluster and
water-nsq perform similarly in terms of stalls in all three versions.
FFT is the only program that suffers more stalls than TSO, which as
we will see translates to a slight performance loss. Overall ROOW
achieves 7.11% less processor stalls compared to TSO and is almost
on par with the oracle configuration, with 7.11% less stalls in ROOW
and 7.21% in All_DRF.

7.2 Loads forwarded from stores

Keeping the stores in the store buffer even after completion in-
creases the number of loads-forwarded-from-store, making the



l TSO O ROOW

—
0 24°0-
£ 258
£ 2.0
s 180
+ 16.07
S 14.07
8 12.0
610.07
Ris
2‘21-0:
w 2.
- 0.0
8 g453S€EzgR i3 2 EE e
- £ g5 9D S £ 53c@233sB60¢25 R
S c 2 0 £ « o g © & 5 55 = 5 98 o
TS5 S © z o v B 55202 &0
< < S & T S > @ >
2 5 < o 8 = E 2 §§<
[s] =) S 7
ks 3 g
= = 2

Figure 8: Percentage of loads forwarded from stores

store buffer act as a cache. Figure 8 reveals significant improve-
ments in the number of loads-forwarded-from-store in ROOW
compared to the baseline. ROOW provides outstanding increments
in the number of loads-forwarded-from-store, namely 18.58% loads-
forwarded-from-store compared to 7.24% in the baseline. The high-
est percentage is observed in dedup from 23.57% to 84.34% while
lowest in FFT from 0.0143% to 0.0144%. This finding can be em-
ployed in reducing the energy consumption, as showed in the work
done by Alves et al. [4] where their solution avoids the parallel
search in both store buffer and the cache. We leave evaluation of
this optimization for future work.

7.3 Execution time

Processor stalls degrade performance considerably and are there-
fore an important target for speeding up applications. The more
stalls the applications encounter running on the baseline 56-entry
store buffer, the higher the benefits of applying our technique.
Figure 9 shows the applications’ execution time normalized with re-
spect to our baseline. We can see that programs like LU-nc, ocean-nc
and radix show improvements in execution time (by 63.36%, 19.16%
and 20.40%, respectively) because of less overall stalls as shown in
Figure 7.

In particular, LU-nc shows an impressive improvement due to
19.70% less stalls in RoB and 77.48% less in the SB/SQ as shown
in Figure 7. ROOW shows higher benefits for the non-contiguous
applications, such as LU-nc and ocean-nc, as the number of different
cache lines accessed and present in the SB at a particular time is
larger. With contiguous applications, subsequent stores match to
the same cache line, and stores will not be effectively reordered.
Applications such as blackscholes, despite having all the instructions
in DRF regions, do not show much improvement due to the fact that
the baseline stalls very little (251 SB stalls, which is reduced to 10
in ROOW). In general, ROOW excels when the reordering opportu-
nities are greater. All programs except Barnes, FMM, Fluidanimate
and FFT show performance improvements. FFT suffers from high
processor stalls compared to the baseline — 6% more SB/SQ stalls.

Overall, ROOW achieves 8.13% speed up compared to our base-
line 56-entry store buffer that performs store operations in order.

‘ Il TSO 0 ROOW W All_DRF

Normalized Execution Time
0000000000 RrE
ORPNWAUIONOOOR

blackscholes.
fluidanimate.
streamcluster.
swaptions
waternsq

Figure 9: Normalized execution time with respect to an store
buffer with 56 entries that implements TSO

7.4 Store buffer size impact on performance

Larger store buffers do not automatically guarantee performance
improvements as performing the search for data forwarding may
takes more cycles. If the trend towards higher processor clock,
wider pipelines, more execution units and large programs continues,
the latency of search in the store buffer will become critical for
performance. Along with increasing the latency searching the store
buffer, larger store buffers also increase the energy expenditure.

In contrast, a small store buffer brings numerous benefits such as
low power consumption and less hardware overhead, but it affects
the overall performance as it increases the SB/SQ stalls. All modern
day processor are a result of a trade-off between energy expenditure
and speed. Our analysis shows that we can actually achieve low
energy expenditure without degrading performance, by boosting
performance even with a small store buffer.

Figure 10a shows the normalized execution time (geometric mean
of all applications — label All) when varying the store buffer size.
The baseline is a store buffer of 56 entries implementing TSO (as
before). In addition, since most of the average performance gains
come from non-contiguous (NC) applications, we first explain why
they represent a interesting scenario and then we present also the
average execution time with different weights for such applica-
tions in order to demonstrate that not all gains come from NC
applications.

NC versions are interesting as they offer different memory access
patterns increasing the pressure on the store buffer, as shown in
Figure 7. Ocean-nc has the highest number of shared memory
accesses in SPLASH (46%) out of which 1/3 are write operations [6].
Such versions could resemble the behaviour of database and web
applications, which stress more the need for efficient store buffer
designs [3].

When ignoring the NC applications (label noNC in Figure 10a),
ROOW delivers the same average performance for a 16-entry store-
buffer as the 56-entry TSO store-buffer. This results in about 50%
reduction in the energy consumption of the store buffer and L1
cache (Figure 11). Without NC applications, the 56-entry ROOW
store buffer achieves 2.3% performance improvement, on average,
over the baseline configuration. When adding a 0.5 weighted av-
erage for LU and Ocean, since they are basically two versions of



Normalized Execution Time
°
2
€
x

SB Size

(a) Geometric mean

56

rbarnes At <lunc Oradix rvolrend
<blackscholes Hluidanimate Arocean  -Xraytrace Fwaternsq
X-cholesky *fmm —+oceannc xstreamcluster -O-watersp
Z~dedup Olu {rradiosity <#swaptions
09 @ <
E o e o
Sorl TR+ T ¢ o
5
o
%
o 0.7
o
(]
N
< -
£ 0.6
o
z
0.57
0.4 W
0.3 T 1 1 Y Y 1 T T T T 1
16 20 24 28 32 36 40 44 48 52 56
SB Size

(b) Details per application

Figure 10: Execution time for various store buffer sizes

the same application (contiguous and non-contiguous), ROOW still
delivers improvements of 5% (label 5050 in Figure 10a).

Figure 10b shows the performance of each individual benchmark.
Even with a store buffer as small as 16 entries, ROOW leads to
performance improvements of 5.64%. Overall, a store buffer with
32 entries gives the highest performance of 8.35%

ROOW becomes particularly attractive in the context of a grow-
ing demand for low power and high performance, especially since
it requires minimal modifications of the mainstream store buffer
implementations.

7.5 Energy Consumption

Figure 11 shows the energy consumption of the store buffer and
the L1 cache normalized with respect to a TSO store buffer with
56 entries. Results show the energy consumption of ROOW as the
store buffer size decreases from 56 entries to 16 entries.

Overall, ROOW with 56 entries store buffer provides a small
energy improvement of 6.01% with respect to a TSO with 56 en-
tries store buffer. This improvement stems from a lower number of
executed loads, as with ROOW misspeculation is detected earlier

Table 2: Performance benefits and energy savings in ROOW

SB Size Performance Energy (SB and L1 cache)
16 entries 5.64% 45.16%
20 entries 7.47% 40.21%
24 entries 7.56% 35.62%
28 entries 7.80% 31.33%
32 entries 8.35% 27.25%
36 entries 8.04% 23.44%
40 entries 7.74% 19.96%
44 entries 7.57% 16.36%
48 entries 8.24% 13.2%
52 entries 7.63% 9.63%
56 entries 8.13% 6.01%

since the pipeline suffers less stalls. Executing less loads results in
less store buffer snoops. Applications such as barnes, LU, raytrace,
volrend, water-nsq, blackscholes, dedup, fluidanimate and swaptions
show less store buffer snoop energy.

ROOW provides a design which facilitates the use of small store
buffer in order to save energy (as shown in Figure 11) while still
showing better performance than our baseline configuration (as
shown in Figure 10). Figure 11 shows that reducing the store buffer
size provides important energy improvements mainly due to reduc-
tion in number of store buffer snoops. With energy reductions of
45.16% compared to TSO with a 56-entry store buffer, ROOW with a
16-entry store buffer still provides 5.64% performance improvement.
Similarly, Table 2 shows the overall improvement including both
performance and energy (normalized with TSO 56 entries store
buffer) for the different evaluated ROOW configurations.

7.6 Compiler analysis to remove superfluous
fences

We employed a more powerful compile-time analysis to explore
the possibility of reducing the number of fences that separate code
regions, as mentioned in Section 4. We briefly recall that this anal-
ysis removes superfluous fences inserted at region boundaries (if
stores from consecutive regions do not alias), without affecting the
guarantees offered by ROOW.

On average, the advanced analysis removes 50% of fences. In
some applications (Barnes, Fluidanimate, Radiosity, Raytrace) most
fences are removed. However, in others (FFT, LU, Ocean, Streamclus-
ter) fences cannot be removed because their barrier synchronization
implies aliasing memory accesses across regions.

Despite the large reduction in the number of fences, the average
performance improvement is around 1% compared to the ROOW
version that inserts fences on each region boundary. The reasons
are that (i) fences are not very frequent (scalable applications do
not synchronize frequently) and (ii) DRF fences are not so critical
in ROOW, as ROOW just resorts to TSO in their presence.

This study demonstrates that more complex compiler support
add some performance benefits with minimal or zero hardware cost
and that fences do not add a significant performance penalty, even
when used in abundance.



barnes_|
dedup
fmm,|
|
lunc |

ocean|

radix|

1. TSO 3. ROOW_52 5. ROOW_44 7. ROOW_36 9. ROOW_28 11. ROOW_20 WL Tag W SB Read
c 2. ROOW_56 4. ROOW 48 6. ROOW 40 8. ROOW 32 10. ROOW. 24 12. ROOW_16 D tiReaud S-S0
S 117 g N X
g 1.0
2 0.97
5 08
0.71
3 0.6
205
0.4
§ 037 jannnannnnny|
= 0.2
2 0.
£ 0.1
200 é 5 %\ T
3]
B
S

blackscholes |
cholesky |
fluidanimate_|

oceannc
radiosity |
raytrace_|
swaptions |
waternsq |
Average

streamcluster.

Figure 11: Energy consumption of the store buffer and L1 cache

8 RELATED WORK

A plethora of techniques have been proposed for efficient hardware
designs that provide Sequential Consistency guarantees [3, 8, 10, 11,
14, 16, 33, 34]. Some of them rely on speculative mechanisms that
require support to recover upon SC violations [8, 10, 14, 34]. Spec-
ulation can be managed while instructions are in the reorder buffer
requiring moderate complexity [14], as implemented in commercial
processors [17], or it can take place after instructions retire, aiming
for higher performance [8, 10, 34]. The latter are more aggressive
speculation techniques and often require major hardware changes.
The more aggressive the speculation, the more costly becomes to
check and recover from SC violations. In consequence, aggressive
speculation techniques are not implemented in any real processor
because of their complexity. In contrast, other techniques employ
software-hardware co-designs and allow reordering of memory op-
erations in a non speculative manner [3, 11, 33], either at compile-
time [3], at the cache coherence protocol level [11], or at the store
buffer level [33]. The latter one is therefore the most relevant to
our proposal, as we do not perform speculation and target store
buffer efficiency. We detail in what follows a selection of the most
relevant techniques.

Singh et al. [33] propose a software-hardware co-design in which
the compiler provides information about which accesses can be
reordered in a dedicated store buffer. Their design implements two
store buffers (out-of-order for safe stores —unshared- and in-order
for unsafe ones —shared-, respectively) and store operations are
allocated in one or the other depending on their type. This design
with two store buffers increases the complexity of the solution
and adds a very high hardware overhead (e.g. for the logic unit
that selects the store buffer to snoop in order to forward data to
load instructions). Also, if a program consists of numerous shared
stores or vice-versa unshared stores, this design can lead to under-
utilization of the hardware along with generating numerous stalls
in the corresponding store buffer. Since in our design the processor
uses a single store buffer, the hardware is always utilized effectively
and more efficiently. More importantly, our design has considerably
less overhead in terms of added hardware, yielding ROOW ready
to be easily integrated in current processors’ design, a key feature
of our solution.

Moreover, the compiler support employed by Singh et al. [33]
performs a data-based classification. This means their design forces
all accesses to the same memory address to be classified as having
the same type and to be placed in the same store buffer in order
to solve the notorious store-store reordering and store-to-load for-
warding problems. Nevertheless, this represents a serious drawback,
limiting the reordering to only 70% of the stores, on average (and
down to 50% of the stores in Barnes). In contrast, ROOW enables
the reordering of 99% of the stores (similarly for Barnes), thanks to
exploiting the DRF semantics of the code and performing a region-
based classification of the memory accesses. Thus, our per-access
classification is more fine-grain and more precise than the data-
based classification employed by Singh et al. [33]. Furthermore,
our region-based classification requires minimum information to
be conveyed to the hardware —one bit (flag) per region, enough
to signal the type of the current region (in-order vs. out-of-order)
compared to one bit per access [33]. The more accurate classifica-
tion, simpler design, and minimum hardware extensions relative
to mainstream implementations make our proposal a more appeal-
ing solution to enabling store reordering at the store buffer level
compared to its predecessors.

BulkSC [10] dynamically group sets of consecutive instructions
into chunks and allow them to execute in isolation. This design
requires modifications in the memory hierarchy such as the addition
of arbiters. Communication between cores increases with BulkSC,
which in turn increases network traffic by 3-13%. ROOW on the
other hand does not require modifications in the memory hierarchy
and it does not incur extra network traffic.

Store-wait-free [34] seek for the same goal as ROOW, remove
stalls due to the store buffer. To this end, it implements a large
store buffer (named SSB). It also requires adding sub-block valid
bits to the performance-critical L1 cache, and stores write in cache
speculatively, which requires undo support. ROOW entails minimal
hardware extensions, never undoes stores, and does not require
any L1 cache modification.

Ros and Kaxiras [28] propose coalescing stores in the store buffer
and avoid breaking the store order by performing stores in atomic
groups. In contrast to our approach where DRF stores can perform



completely out-of-order, stores in an atomic group perform follow-
ing a globally defined order. On the other hand coalescing stores
can be applied to ROOW (either for DRF stores or sync stores). This
can further improve our performance as coalescing may reduce the
occupancy of the store buffer. The counter part of this approach is
that it requires separate Store Queue and store buffer to fully get
the benefits of coalescing.

Duan et al. [12] propose WeeFence. WeeFence uses lightweight
fences (WFences) that allow post fence memory operations to per-
form before the fence commits and adds extra hardware to ensure
correctness. In their evaluation, the authors increase the number of
fences in the programs to provide SC behaviour when running on
a more relaxed hardware, and then replace the inserted fences with
WFences. A similar strategy could be used instead of ROOW, that is,
to completely relax the order of the stores in the store buffer and en-
forcing the order with software fences. However, WFences increase
execution time and add complexity to the system for checking cor-
rectness, which makes WeeFence a less appealing solution. ROOW
only uses DRF fences to separate the DRF and sync regions, which is
not a frequent scenario in scalable applications. On average, ROOW
encounters only 0.0079 fences per 1K instructions, while WeeFence
encounters 23.9 fences per 1K instructions (applications LU-nc, LU
are only simulated in ROOW while canneal and pbzip2 are only
simulated in WeeFence).

Recently, Alves et al. [4] have proposed to increase the hit ratio
of the store buffer by keeping performed writes in the store buffer
(store buffer cache). This significantly increases the number of loads
forwarded from stores. The resulting store buffer requires an exter-
nal signal (from the memory system) or snoop port to inform the
store buffer about L1 cache invalidations and evictions. Addition-
ally, the authors propose to perform the access to the store buffer
and to the L1 cache sequentially, and predict in advance whether
the store buffer will hit, thus reducing the number of L1 accesses
and resulting in less energy consumption. ROOW leverages the use
of the store buffer as a cache for DRF code, with the key insight that
DRF code does not require that the store buffer receives external
signals, since invalidations to DRF data cannot occur during DRF
regions. In our design, we increase the number of loads forwarded
from stores significantly by storing the stores in the store buffer as
long as possible (until the store buffer is full). One simple extension
to predict the hit can be used to reduce the power consumption
along with a performance boost.

9 CONCLUSIONS

The store buffer is an essential component of modern day out-of-
order processors, as it allows the store instructions to retire before
performing, taking the long latency of stores out of the critical
path. In this paper we introduce ROOW, a software-hardware co-
design technique that uses compiler support and requires minor
modifications in the design of the store buffer in order to reduce
processor stalls due to the store buffer capacity. ROOW performs
store operations out-of-order within the code regions indicated
as safe by the compiler. ROOW leads to a speed up of 8.13% on
average (+1% when performing alias analysis to remove fences)
and reduces processor stalls by 7.11% compared to a mainstream
store buffer. Our design also allows the use of the store buffer as a

cache for free (without adding or changing any hardware) which
gives us 18.54% loads-forwarded-from-stores compared to 7.24% in
the baseline. We have also conducted a sensitivity analysis which
shows that we can reduce the size of the store buffer from 56 entries
to 16, while still improving performance by 5.64% compared to the
baseline configuration.

Overall the design has close to zero hardware overhead, as
ROOW entails a negligible memory overhead bits (N+1 bits, where
N is the number of entries in the store buffer), so it can be easily
adopted by modern processors.

ACKNOWLEDGMENTS

This work was supported by the European Research Council under
the European Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement No 819134) and by the Ramoén y Cajal
Research Contract (RYC2018-025200-I).

REFERENCES

[1] Sarita V. Adve and Mark D. Hill. 1990. Weak Ordering — A New Definition. In

17th Int’l Symp. on Computer Architecture (ISCA). 2-14.

Niket Agarwal, Tushar Krishna, Li-Shiuan Peh, and Niraj K. Jha. 2009. GARNET:

A Detailed On-Chip Network Model inside a Full-System Simulator. In Int’l Symp.

on Performance Analysis of Systems and Software (ISPASS). 33-42.

[3] W. Ahn, S. Qi, M. Nicolaides, J. Torrellas, J.-W. Lee, X. Fang, S. Midkiff, and David
Wong. 2009. BulkCompiler: High-performance Sequential Consistency through
Cooperative Compiler and Hardware Support. In 42nd IEEE/ACM Int’l Symp. on
Microarchitecture (MICRO). 133-144.

[4] Ricardo Alves, Alberto Ros, David Black-Schaffer, and Stefanos Kaxiras. 2019.
Filter Caching for Free: The Untapped Potential of the Store Buffer. In 46th Int’l
Symp. on Computer Architecture (ISCA). 436-448.

[5] ARM. 2015. ARM Architecture Reference Manual ARMvS-A.

[6] Christian Bienia, Sanjeev Kumar, and Kai Li. 2008. PARSEC vs. SPLASH-2:
A quantitative comparison of two multithreaded benchmark suites on Chip-
Multiprocessors. In 112 Proceedings of the IEEE International Symposium on Work-
load Characterization (IISWC aAZ08). 47-56.

[7] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The

PARSEC Benchmark Suite: Characterization and Architectural Implications. In

17th Int’l Conf. on Parallel Architectures and Compilation Techniques (PACT). 72—

81.

Colin Blundell, Milo M.K. Martin, and Thomas F. Wenisch. 2009. InvisiFence:

Performance-transparent Memory Ordering in Conventional Multiprocessors. In

36th Int’l Symp. on Computer Architecture (ISCA). 233-244.

Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. 2011. Sniper: Exploring

the Level of Abstraction for Scalable and Accurate Parallel Multi-Core Simulations.

In Conf. on Supercomputing (SC). 52:1-52:12.

Luis Ceze, James Tuck, Pablo Montesinos, and Josep Torrellas. 2007. BulkSC:

Bulk Enforcement of Sequential Consistency. In 34th Int’l Symp. on Computer

Architecture (ISCA). 278-289.

Byn Choi, Rakesh Komuravelli, Hyojin Sung, Robert Smolinski, Nima Honarmand,

Sarita V. Adve, Vikram S. Adve, Nicholas P. Carter, and Ching-Tsun Chou. 2011.

DeNovo: Rethinking the Memory Hierarchy for Disciplined Parallelism. In 20th

Int’l Conf. on Parallel Architectures and Compilation Techniques (PACT). 155-166.

[12] Yuelu Duan, Abdullah Muzahid, and Josep Torrellas. 2013. WeeFence: Toward

Making Fences Free in TSO. In 40th Int’l Symp. on Computer Architecture (ISCA).

213-224.

Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: Efficient and Precise

Dynamic Race Detection. In 2009 Conf. on Programming Language Design and

Implementation (PLDI). 121-133.

Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. 1991. Two Techniques

to Enhance the Performance of Memory Consistency Models. In 20th Int’l Conf.

on Parallel Processing (ICPP). 355-364.

Chris Gniady and Babak Falsafi. 2002. Speculative sequential consistency with

little custom storage. In 11th Int’l Conf. on Parallel Architectures and Compilation

Techniques (PACT). 179-188.

Mark D. Hill. 1998. Multiprocessors Should Support Simple Memory-Consistency

Models. IEEE Computer 31, 8 (Aug. 1998), 28-34.

Intel. 2016. Intel® 64 and IA-32 Architectures Optimization Reference Manual.

www.intel.com.

Alexandra Jimborean, Per Ekemark, Jonatan Waern, Stefanos Kaxiras, and Alberto

Ros. 2018. Automatic Detection of Large Extended Data-Race-Free Regions with

[2

8

[

[10

[11

(13

=
it

[15

[16

[17

(18


www.intel.com

[19]

[20]

[21

[22]

[23]

[24

[25]

[26

[27]

Conflict Isolation. IEEE Transactions on Parallel and Distributed Systems (TPDS)
29, 3 (March 2018), 527-541.

Alexandra Jimborean, Jonatan Waern, Per Ekemark, Stefanos Kaxiras, and Alberto
Ros. 2017. Automatic Detection of Extended Data-Race-Free Regions. In 15th
Int’l Symp. on Code Generation and Optimization (CGO). 14-26.

Leslie Lamport. 1979. How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs. IEEE Transactions on Computers (TC) 28, 9 (Sept.
1979), 690-691.

Chris Lattner and Vikram S. Adve. 2004. LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. In 2nd Int’l Symp. on Code
Generation and Optimization (CGO). 75-88.

Sheng Li, Ke Chen, Jung Ho Ahn, Jay B. Brockman, and Norman P. Jouppi.
2011. CACTI-P: Architecture-level modeling for SRAM-based structures with
advanced leakage reduction techniques. In 2011 Int’l Conf. on Computer-Aided
Design (ICCAD). 694-701.

Luc Maranget, Susmit Sarkar, and Peter Sewell. 2012. A Tutorial Introduction to
the ARM and POWER Relaxed Memory Models. Technical Report.

Milo M.K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R. Marty,
Min Xu, Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill, and David A. Wood.
2005. Multifacet’s General Execution-Driven Multiprocessor Simulator (GEMS)
Toolset. ACM SIGARCH Computer Architecture News 33, 4 (Sept. 2005), 92-99.
Bradford Nichols, Dick Buttlar, and Jacqueline Proulx Farrell. 1996. Pthreads
Programming. O’Reilly & Associates, Inc.

OpenMP Architecture Review Board. 2008. OpenMP Application Program Inter-
face Version 3.0. http://www.openmp.org/mp-documents/spec30.pdf

Alberto Ros and Stefanos Kaxiras. 2015. Fast&Furious: A Tool for Detecting
Covert Racing. In 6th Workshop on Parallel Programming and Run-Time Manage-
ment Techniques for Many-core Architectures (PARMA) and 4th Workshop on Design

[28
[29

[30

[31

[33

[34

[35

Tools and Architectures for Multicore Embedded Computing Platforms (DITAM).
1-6.

Alberto Ros and Stefanos Kaxiras. 2018. Non-Speculative Store Coalescing in
Total Store Order. In 45th Int’l Symp. on Computer Architecture (ISCA). 221-234.
Alberto Ros and Stefanos Kaxiras. 2018. The Superfluous Load Queue. In 51st
IEEE/ACM Int’l Symp. on Microarchitecture (MICRO). 95-107.

Christos Sakalis, Carl Leonardsson, Stefanos Kaxiras, and Alberto Ros. 2016.
Splash-3: A Properly Synchronized Benchmark Suite for Contemporary Research.
In Int’l Symp. on Performance Analysis of Systems and Software (ISPASS). 101-111.
Konstantin Serebryany and Timur Iskhodzhanov. 2009. ThreadSanitizer: Data
Race Detection in Practice. In Workshop on Binary Instrumentation and Applica-
tions (WBIA). 62-71.

Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Mag-
nus O. Myreen. 2010. x86-TSO: A Rigorous and Usable Programmer’s Model for
x86 Multiprocessors. Commun. ACM 53, 7 (July 2010), 89-97.

Abhayendra Singh, Satish Narayanasamy, Daniel Marino, Todd Millstein, and
Madanlal Musuvathi. 2012. End-to-End Sequential Consistency. In 39th Int’l
Symp. on Computer Architecture (ISCA). 524-535.

Thomas F. Wenisch, Anastasia Ailamaki, Babak Falsafi, and Andreas Moshovos.
2007. Mechanisms for Store-Wait-Free Multiprocessors. In 34th Int’l Symp. on
Computer Architecture (ISCA). 266-277.

Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and
Anoop Gupta. 1995. The SPLASH-2 Programs: Characterization and Method-
ological Considerations. In 22nd Int’l Symp. on Computer Architecture (ISCA).
24-36.


http://www.openmp.org/mp-documents/spec30.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Sequential semantics
	2.2 The SC-for-DRF consistency model

	3 Motivation
	4 ROOW: Regional Out-of-Order Writes
	4.1 Compile-time delineation of regions
	4.2 Conveying static information to the store buffer
	4.3 Dual-mode store buffer
	4.4 Guaranteeing sequential semantics
	4.5 Enabling the store buffer as a cache

	5 Discussion
	5.1 Non SC-for-DRF programs
	5.2 Support for Sequential Consistency
	5.3 Store buffers for weak memory models
	5.4 Debugging

	6 Simulation Environment
	7 Results
	7.1 Processor Stalls
	7.2 Loads forwarded from stores
	7.3 Execution time
	7.4 Store buffer size impact on performance
	7.5 Energy Consumption
	7.6 Compiler analysis to remove superfluous fences

	8 Related work
	9 Conclusions
	References

