
2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

Effective Context-Sensitive
Memory Dependence Prediction

Sebastian S. Kim and Alberto Ros
University of Murcia

sebastiansumin.kim@um.es, aros@ditec.um.es

Abstract—Memory dependence prediction is a fundamental
technique to increase instruction- and memory-level parallelism in
out-of-order processors, which are crucial for high performance.
However, over the years, the performance gap of state-of-the-art
memory dependence predictors with respect to an ideal predictor
has grown due to the increase of the pipeline width, reaching up
to 6% for modern architectures. State-of-the-art predictors brace
context sensitivity, however, not-well-adjusted history lengths lead
to loss of accuracy and high storage requirements.

This work proposes PHAST, a novel context-sensitive memory
dependence predictor that identifies for each load the minimum
history length necessary to provide precise predictions. Our key
observation is that for each load, it suffices to identify the youngest
conflicting store and the path between them. This observation is
proven empirically using an unlimited budget version of PHAST,
which performs close to an ideal predictor with a 0.47% gap.

Through cycle-accurate simulation of the SPEC CPU 2017
suite, we show that a 14.5KB implementation of PHAST falls
1.50% behind an ideal predictor. Compared to the top-performing
state-of-the-art predictors, PHAST achieves average speedups of
5.05% (up to 39.7%), 1.29% (up to 22.0%), and 3.04% (up to
38.2%) with respect to an 18.5KB StoreSets, a 19KB NoSQ, and
a 38.6 MDP-TAGE, respectively. This stems from a considerable
misprediction reduction, ranging between 62.5% and 70.0%, on
average.

I. INTRODUCTION

High-performance out-of-order processors can execute loads
speculatively before previous (older) stores. Still, to safeguard
sequential semantics, loads need to obtain the data written by
previous stores in case both the load and the store target the
same memory location, i.e., they are conflicting or memory
dependent. To this end, when executing, loads search the store
queue (SQ) looking for older conflicting stores. The SQ holds,
in program order, the stores that have been dispatched but not
written to memory yet. In case of dependence, loads obtain the
required data from the store through a mechanism called store-
to-load forwarding. However, if the target address of previous
stores has not been computed when a load executes (i.e., the
load overtakes the store) the memory dependence cannot be
disambiguated at that time without a prediction.

Memory dependence prediction (MDP) [24], [25] is crucial
for performance in modern out-of-order processors as it predicts
if a load is dependent on a previous unresolved store. In
case a dependence is predicted, the load waits at the issue
stage until the conflicting store computes its target address,
and after that, the load can be resolved through store-to-load
forwarding. When a no-dependence is predicted, the load
can execute speculatively, retrieving the data either from a

 1
99

2
 1

99
4

 1
99

6
 1

99
8

 2
00

0
 2

00
2

 2
00

4
 2

00
6

 2
00

8
 2

01
0

 2
01

2
 2

01
4

 2
01

6

Year

0
1
2
3
4
5
6
7
8

M
P

K
I

GShare

Tournament
Perceptron

LTAGE
ISLTAGE

TAGESCL

Store Sets
CHT

Store Vector

NoSQ predictor
MDP-TAGE

11.92

Fig. 1: Average MPKI for SPEC CPU 2017 of branch (gray)
and memory dependence (red-green) predictors proposed over
the past 30 years (x axis). For MDP, we show the MPKI
reported by a Nehalem-like processor [13], released in 2008

previously already-resolved conflicting store or from the cache
hierarchy. When stores compute their target addresses, they
search the load queue (LQ), which tracks loads from dispatch
to commit in program order, looking for younger dependent
speculative loads. In case of a match, a memory order violation
is detected and the speculative load has to be re-executed.

While branch prediction has attracted a lot of interest over
the last decades [14], [16], [17], [22], [23], [32], [33], [35]–
[38], [45], MDP has received less attention, with just a few
notable proposals, namely, Store Sets [7], CHT [44], Store
Vector [41], the predictor employed in NoSQ [39], and MDP-
TAGE [28]. On one hand, branch prediction is a more critical
problem as it drives instruction fetch. On the other hand,
on machines contemporary with those works, early memory
dependence predictors already achieved lower mispredictions
per kilo-instructions (MPKI) than branch predictors. This is
depicted in Figure 1, which shows the average MPKI for the
SPEC CPU 2017 benchmark suite [40] considering both branch
predictors (gray circles) and memory dependence predictors
(red and green circles and names in bold) proposed over the
past 30 years (see Section V for a detailed description of the
methodology employed). For memory dependence predictors,
we show both MPKI that cause memory dependence violations
(false negatives) with a red circle and MPKI due to false
dependencies (false positives) with a dotted line towards a



Store Sets NoSQ Predictor MDP-TAGE

N
e
h
a
le

m

H
a
sw

e
ll

S
ky

la
ke

Ic
e
la

ke

A
ld

e
rL

a
ke

Processor generation

0.0

1.0

2.0

3.0

M
P

K
I

N
e
h
a
le

m

H
a
sw

e
ll

S
ky

la
ke

Ic
e
la

ke

A
ld

e
rL

a
ke

Processor generation

0.0

2.0

4.0

6.0

P
e
rf

o
rm

a
n

c
e
 g

a
p

 (
%

)

(a) Average MPKI (lower is bet-
ter)

(b) Performance gap over ideal
prediction (lower is better)

Fig. 2: Trends in MDP for successive processor generations
and the five state-of-the-art memory dependence predictors
evaluated in this work: Store Sets, Store Vectors, the NoSQ
predictor, and MDP-TAGE

green circle. While the first class of mispredictions is more
critical, as they result in a pipeline squashing, the second class
can also severely limit performance when it becomes frequent,
as they incur unnecessary stalls.

However, the number of in-flight instructions is increasing
and so is the MPKI of memory dependence predictors. The
reason is that (i) there are more unresolved in-flight stores
since the SQ is larger and (ii) more loads execute out-of-
order with respect to previous stores due to a higher execution
width. Figure 2a shows the MPKI of the memory dependence
predictors considered in this work for various processor
generations1. Store Sets, with around 1 MPKI in a Nehalem-
like processor [13], suffers around 2 MPKI in the more recent
AlderLake-like processor [30]. Besides, since the number of
branch prediction squashes is practically independent of the
processor size, memory dependence mispredictions account
for a larger fraction of the squashes in modern processors.
Additionally, squashes become more costly since more work is
discarded when a misprediction occurs. As a result, memory
dependence predictors are farther from an ideal scenario in
current processors. As shown in Figure 2b, the performance gap
of the mainstream Store Sets memory dependence predictor to
an ideal predictor grows from 1.8% in a Nehalem-like processor
to 6.0% in an AlderLake-like processor. This motivates us to
revisit the problem of memory dependence prediction.

The main limitations of early state-of-the-art memory de-
pendence predictors, e.g., Store Sets, CHT, and Store Vectors,
are that (i) they link loads with a set of store instructions
and (ii) they do not explicitly leverage context information,
such as branch history, in their predictions. Both limitations
lead to extra unnecessary load stalls due to false positives.2

On the other hand, recent predictors, as NoSQ [39] and

1Results for CHT and Store Vector are not shown further since they
underperform the mainstream Store-Sets.

2Store Sets does not show a high false-positive MPKI in Figure 1 because
they are replaced by artificial store-store dependencies (see Section VII).

MDP-TAGE [28], track a single store (in particular, the store
distance [44], i.e., the number of stores older than the load
but younger than the conflicting store) and leverage context
information to detect loads conflicting with stores from different
paths. Nevertheless, these predictors are trained without using
context-dependent history lengths. As we show in Section III,
this training either provides sub-optimal performance (for
shorter histories than necessary) or dramatically increases the
number of tracked histories (i.e. larger histories than necessary).

This work makes two main observations. First, each time
a load executes, it depends on at most one store, because
even in the presence of several older stores targeting the same
address, loads need to be squashed only if they overtake the
younger store (the one that forwards the latest value). The only
exception to this rule are loads that read from memory locations
written by two or more previous stores (Section III-A). Second,
the minimum context information required for precise MDP
is the execution path from the store to the dependent load. In
other words, adding information about branches much older
than the conflicting store as in prior works does not increase
the accuracy of the predictor, but pollutes the prediction tables
(Section III-B).

Based on the previous observations, we propose PatH-Aware
STore-distance (PHAST), a memory dependence predictor that,
upon detecting a conflict, trains the predictor with (i) the
information about the path taken from the store to its dependent
load and (ii) the store distance. The path is defined as the
global history of divergent branches, that is, any branch that
can take different paths on different executions. Those branches
include both conditional branches and indirect branches. The
predictor is trained with a history length representative of that
dependence, namely N +1 divergent branches older than the
load, where N is the number of divergent branches between
the load and the store. For prediction, loads perform multiple
accesses using a set of history lengths, and on a match with
one of the lengths, the corresponding store distance is provided
(Section IV).

This work makes the following contributions:
• We prove that the path followed from the conflicting

store to its dependent load is the only context information
required to provide near-ideal accuracy (within 0.47%
performance degradation).

• We design PHAST, a cost-effective predictor using only the
aforementioned context information. On a conflict, PHAST
considerably reduces the number of entries required
for prediction compared to predetermined-history-length
training schemes, by precisely detecting the minimum
necessary history length for each dependence.

• Through cycle-accurate simulation, we show that PHAST
achieves high accuracy with an average MPKI of 0.766.
This represents a reduction of 62.0% with respect to the
top-performing predictor, NoSQ. Performance-wise, with
a storage budget of 14.5KB, PHAST outperforms state-of-
the-art larger predictors such as 19KB NoSQ and 38.6KB
MDP-TAGE with a mean speedup of 1.29% (up to 22.0%)
and 3.04% (up to 38.2%), respectively.



II. BACKGROUND

In this section, we describe the three top-performing state-
of-the-art memory dependence predictors, which we use for
comparison to PHAST.

A. Store Sets

Proposed by Chrysos and Emer [7], the Store Sets predictor
groups all conflicting stores of a load in a set. Each set is
defined by a unique identifier, named the Store Set Identifier
(SSID), which is created upon a memory order violation and
assigned to both the load and the store.

Store Sets is implemented using two tagless tables. The
first table, known as Store Sets Identification Table (SSIT),
contains the SSID of every active set and a valid bit. SSIT is
accessed by every load and store using their instruction address,
or program counter (PC). If the entry in the SSIT is valid, the
SSID is used to access the second table, Last Fetched Store
Table (LFST). LFST includes a valid bit and the id of the last
store of the set that was fetched.

Whenever a load retrieves a valid SSID, it will check the
LFST to get the id of the last fetched store belonging to the
set and, if it is valid, a dependency will be established between
the load and the store.

Since loads must wait on all the stores in the set, stores that
access the LFST and find a valid id will set a dependency on
that store before updating the table. By doing so, every store
in the set will be serialized and the load will execute once all
the stores belonging to the set and older than the store with a
dependence on the load have executed.

Given that each load and store can have one valid SSID at
most, the authors proposed a rule for merging two sets in one
and allowing multiple loads to depend on the same store.

The main disadvantage of the merging rule is that the
predictor may end up converging several sets into one, forcing
the execution of all memory instructions in order. To tackle
this problem, the tables are reset periodically.

B. NoSQ predictor

Sha et al. [39] proposed a store-load bypassing predictor to
map each dynamic load to the dynamic store from which it will
receive the value. This predictor consists of two load-indexed
tables structured as set-associative caches. Each entry contains
a partial tag, a distance field that marks the dependency of
the load, and an n-bit counter that indicates if the prediction
should be considered.

One of the tables is for path-insensitive loads and it only
requires the PC of the load to index it. The other table captures
path-sensitive loads by hashing the PC of the load with a fixed
number of bits of the branch history of conditional branches
(1 taken/not-taken bit per branch) and calls (2 bits of the PC
per call). When a memory order violation occurs, an entry is
allocated in both tables. Similarly, loads will access both tables
to check for a dependency and, in case of a match in both of
them, the path-sensitive prediction is used.

The path-sensitive table is accessed using a history length
of 8 bits. When larger history is needed to correctly predict

dependencies, the number of false positives will increase. On
the other hand, dependencies that require fewer branches for
correct prediction will allocate in the path-sensitive table more
entries than necessary.

C. MDP-TAGE

Perais and Seznec [27], [28] modified the TAGE branch
predictor [34] to also predict memory dependencies using store
distances. A TAGE entry consists of a partial tag, a useful bit
(u), and a 3-bit saturating counter. When memory dependencies
are predicted, only the u bit is used to control the prediction:
if there is a tag match and the u bit is not zero, then the
prediction is used. The 3-bit saturating counter is used to
record the store distance. A value of 111b in the saturated
counter is reserved to mark the load as dependent on all older
stores. This way, branches, and memory dependences can use
the same Omnipredictor. In our evaluation, we use MDP-TAGE
as a standalone predictor and we increase the saturating-counter
field to 7 bits to be able to track distances to all in-flight stores.

When a memory order violation is detected, a TAGE entry
is allocated. If the faulting load had no prediction, the smaller
history length is used to allocate an entry, setting the u bit to
1 and the counter value to the distance between the load and
the store. If there was already an incorrect prediction, an entry
with a larger history than the original prediction is allocated.
On a prediction, the match with a larger history length is taken.

In order to forget predictions, TAGE resets the u counters
periodically. This frequency has to be tuned for memory
dependence prediction, which requires a higher reset frequency.
To this end, when a false dependency is detected the entry can
also be reset with a probability of 1

256 .
MDP-TAGE has three main limitations. Firstly, the predictor

is trained using a sort of brute force. It starts allocating entries
on conflicts using a short history length (e.g., 6 branches)
and, if the used history length is not enough to offer correct
predictions, it will allocate entries using larger history lengths
following a geometric sequence until it reaches the length that
suits the dependence. Hence, the a particular dependence can
cause allocation of several entries with different history lengths.

Secondly and similar to the NoSQ predictor, when the history
length used is larger than needed, MDP-TAGE will need to
learn all combinations of the history, leading up to 2n -1
additional entries (being n the number of extra history bits
used). For example, assuming that a single bit per branch is
tracked by the history, if a load requires 4 branches to capture
the dependence and MDP-TAGE uses 6 branches, up to 4
entries will be required in the 6-bit history table to learn the
dependence. This causes the same dependence to be scattered
in multiple entries across the same table.

Lastly, MDP-TAGE generates many false dependencies either
when a memory dependence occurs infrequently, since it needs
to wait until the entry gets reset to forget the prediction, or when
a short-history-length entry is allocated for a larger dependence,
since dependence-free executions having the same short history
will be predicted as dependent.



III. MOTIVATION

This section elaborates on the two observations that drive our
memory dependence predictor. First, loads depend commonly
on a single store. Second, the context information required for
precise dependence predictions is the path from the store to
its dependent load.

A. Store sets versus single store

Early techniques for MDP enforce dependencies between a
load and a set of previous stores [7], [41], [44]. Although those
techniques can keep the MPKI that results in memory order
violations very low, the MPKI because of false dependencies
increases, which unnecessarily delays the execution of loads
(see Section VI). In practice, however, a single dependent store
is commonly found per load. Even when several previous stores
target the same address as the load, the load is indeed only
dependent on the youngest store among them.

Figure 3 shows several scenarios that motivate the single-
store dependence in the presence of two stores targeting the
load address a. In case (a), the load executes after the stores,
and therefore the forwarding logic will provide the data written
by the second store. In case (b), the load executes before
the second store but after the first store, getting the data
forwarded from the first store. When the second store resolves
its target address, a dependency with the load is detected, and
the load is correctly squashed. In case (c), the load executes
after the second store, getting the data forwarded from it, but
before the first store. When the first store resolves the target
address, the load should not be squashed, as the loaded value is
correct (see Section IV-A1 for details). Finally, in case (d), the
load overtakes both stores. When the stores are resolved they
conflict with the load, thus forcing its re-execution. However,
the predictor should only learn the actual dependence with the
second store. Indeed, in all cases where the load waits for the
second store, the load does not squash, so learning just the
correct store distance suffices for accurate MDP.

In some cases, the data required by a load is written by
two or more previous stores. For example, in 525.x264 3, an
8-byte load operation has 8 previous 1-byte dependent stores.
In those cases, one could argue that several stores should
be predicted as dependent. However, our analysis (Figure 4)
shows that (1) the percentage of loads that depend on multiple
stores is low (0.04% of executed loads, on average) and (2)
the multiple stores commonly execute in order among other
reasons because their target addresses depend on the same
physical register (70%, on average). The benchmark with more
loads depending on several stores is 503 bwaves, with still a
very low percentage of such loads (0.25%) which are executing
in order, while fourteen benchmarks do not have any of such
loads. As a result, just tracking the youngest conflicting store
and waiting for it to be resolved ensures that the load executes
in order with respect to all previous dependent stores. Hence,
we conclude that predicting a group of stores is not necessary
for achieving accurate predictions. When the load depends on
different stores on different paths, context information should
determine the dependence precisely.

lda

Sta

St?

(c)

✔lda

Sta

Sta

(a)

✔ lda

St?

Sta

(b)

✘ lda

St?

St?

(d)

✘

Fig. 3: Examples of two stores targeting the same address as
a subsequent load. Stores with a question mark as a subscript
indicate that they have not yet computed their target address.
Arrows indicate forwarding (if red, incorrect forwarding). The
red x indicates that the load will be squashed when the store
computes its target address

5
0

0
.p

e
rl
b

e
n

ch
_

1
5

0
0

.p
e

rl
b

e
n

ch
_

2
5

0
0

.p
e

rl
b

e
n

ch
_

3
5

0
2

.g
cc

_
1

5
0

2
.g

cc
_

2
5

0
2

.g
cc

_
3

5
0

2
.g

cc
_

4
5

0
2

.g
cc

_
5

5
0

3
.b

w
a

ve
s_

1
5

0
3

.b
w

a
ve

s_
2

5
0

3
.b

w
a

ve
s_

3
5

0
3

.b
w

a
ve

s_
4

5
0

5
.m

cf
5

0
7

.c
a

ct
u

B
S

S
N

5
0

8
.n

a
m

d
5

1
0

.p
a

re
st

5
1

1
.p

o
vr

a
y

5
1

9
.lb

m
5

2
0

.o
m

n
e

tp
p

5
2

1
.w

rf
5

2
3

.x
a

la
n

cb
m

k
5

2
5

.x
2

6
4

_
1

5
2

5
.x

2
6

4
_

2
5

2
5

.x
2

6
4

_
3

5
2

6
.b

le
n

d
e

r
5

2
7

.c
a

m
4

5
3

1
.d

e
e

p
sj

e
n

g
5

3
8

.im
a

g
ic

k
5

4
1

.le
e

la
5

4
4

.n
a

b
5

4
8

.e
xc

h
a

n
g

e
2

5
4

9
.f

o
to

n
ik

3
d

5
5

4
.r

o
m

s
5

5
7

.x
z_

1
5

5
7

.x
z_

2
5

5
7

.x
z_

3
A

v
e

ra
g

e

0.0

0.1

0.2

P
e

rc
e

n
ta

g
e

 o
f 

lo
a

d
s 

(%
)

Different register out of order
Different register in order
Same register

Fig. 4: Percentage of loads that depend on multiple stores

B. Context information

Store Vectors attempted to include context information in
their predictions (e.g., global branch direction history) with
limited success [41]. Other predictors, such as the NoSQ
predictor and MDP-TAGE, leverage global branch history with
a better outcome. The key aspect that brings benefits when
using context information is predicting a single store distance
(as in NoSQ and MDP-TAGE).

Nevertheless, NoSQ and MDP-TAGE blindly train the
predictor using predetermined history lengths. NoSQ uses
an 8-branch history length while MDP-TAGE uses several
geometrically increasing history lengths. We argue that training
the predictor with predetermined history lengths is a sub-
optimal decision: when the selected history length is shorter
than necessary, many false positives can be introduced; and
when it is much larger than necessary, the number of entries
allocated suffers an exponential explosion, which results in
high pollution of the prediction structures. In this paper, we
present a mechanism for determining the training history length
based on the context of the conflict.

Current predictors that use context information are based
on designs originally proposed for branch prediction, where, a
priori, there is no notion of optimal history length. For instance,
as stated in Section II, MDP-TAGE needs to perform a brute-
force-like exploration to find the suitable history length for
a given prediction. In contrast, we make the key observation
that for MDP the path between the conflicting store and its
dependent load corresponds to the history prefix that effectively



Stb

Sta
J

Sta

J

Lda

Sta
StbJ
Sta

Lda

...

Fig. 5: Two scenarios in which information about where the
conflicting store is located in the code is required for path
disambiguation

determines the context in which a conflict may happen. The
rationale behind this affirmation is that if the exact path repeats
from the store to the load, there is a high chance that the
dependence will repeat too. Consequently, PHAST uses the
history length of the store-to-load path to train the predictor.
This is the key contribution of our work.

In particular, we claim that the history should consider only
divergent branches, as this offers the predictor the unique path
from the store to the load. Divergent branches are those that
are conditional and/or indirect. For conditional branches, the
necessary information is the taken/not taken outcome. For
indirect branches, the information required is the target of the
branch. Furthermore, to precisely determine the path of the
conflict the address where the divergent branch previous to the
store jumps (even in the case of conditional branches) is also
included in the history. This way, N +1 conditional/indirect
branches are collected, where N is the distance in terms of
those branches from the store to the load.

Figure 5 motivates through two scenarios why the N + 1
conditional/indirect branch is needed. In both cases, the store
distance of the conflicting store on the left path is 0 (i.e. no
stores appear in between Sta and Lda), while the store distance
of the conflicting store on the right path is 1. The code executed
between the load and the store contains only non-divergent
branches, so no history would be necessary when tracking only
branches between the load and the store. As a consequence,
the same history will report conflicts with a store distance of 0
or 1 depending on the previous execution path. As mentioned,
our solution to differentiate those paths is adding to the context
information the target address of the divergent branch previous
to the conflicting store.

C. Analysis of unconstrained predictors

Figure 6 shows a study conducted to demonstrate the claims
made in this section. First, we executed unlimited versions
of both the NoSQ predictor (blue line), considering a history
length ranging from 1 to 16 branches (x-axis), and MDP-
TAGE (purple line). The history tracks only the taken/not
taken behaviour of conditional branches and either the PC of
the calls for NoSQ or targets of indirect branches for MDP-
TAGE, it ends with the PC of the dependent load, and it is not
compressed, meaning that all previous information is present
in the history. No aliasing is possible in these predictors. We
report both the IPC normalized to an ideal predictor (Figure 6a)
and the average number of paths tracked per application to
perform the predictions (Figure 6b).

UnlimitedNoSQ UnlimitedMDPTAGE UnlimitedPHAST

(a) IPC normalized to ideal MDP
(higher is better)

(b) Average number of paths
(lower is better)

Fig. 6: IPC and average number of paths detected for
UnlimitedNoSQ, using different history sizes (x axis), for
UnlimitedMDPTAGE, and for UnlimitedPHAST

For NoSQ, the increase in IPC is marginal when including
more than 9 branches in the history, whereas the number of
tracked paths increases exponentially as more branches are
considered (Figure 6b). On the other hand, MDP-TAGE shows
a higher IPC than the 6-branch NoSQ predictor, but lower
than the 7-branch NoSQ predictor because MDP-TAGE ideal
performance is biased towards the first (smallest) history used
to track dependencies (6 bits). The use of larger histories
(allocated when the smaller history misses dependent stores)
can ideally offer extra performance, but this small uplift in
performance would come with a considerable number of tracked
paths (more than 16000, on average, Figure 6b), which will
not help prediction when the branches are older than the one
previous to the conflicting store, as claimed in this work.

In contrast, unlimitedPHAST (green line) is trained using
the history length that effectively determines the context of the
conflict, so it improves over NoSQ by using the optimal length
for each conflict and over MDP-TAGE by always training (or
allocating) the entry that corresponds to the optimal length and
updating the same prediction counter. In other words, if the
path between the load and the store repeats, then PHAST will
allocate only one entry, whereas in MDP-TAGE the same path
can be scattered among many entries and counters will only
be updated for the entry used for prediction.

An example of the advantages of PHAST can be seen in
511.povray, where a load can conflict with three different
stores separated from the load by a single indirect branch.
MDP-TAGE uses an initial history length of 6 and it suffers
from extra memory order violations until it registers all possible
path combinations. PHAST, however, suffers a single violation
per store by using a 2-branch history.

Finally, the improvements of unlimitedPHAST are achieved
with less than a third of the paths detected by the 16-branch
NoSQ and half of the detected by MDP-TAGE. This reduced
number of paths will derive in either less aliasing or less storage
when using a limited version of the predictor. The performance
gap between UnlimitedPHAST and an ideal predictor is just
0.47%, confirming that the proposed selection of history length
is effective for MDP.



IV. PHAST

This section presents PHAST, a novel memory dependence
predictor based on (i) the fact that each executed load
commonly depends on at most one store and (ii) the use of the
optimal history length for training the predictor on conflicts,
which corresponds to the minimum length able to identify
unequivocally the path between the store and the load. First,
we describe the behaviour of PHAST. Then, we present our
cost-effective implementation.

A. Predictor behaviour

The following aspects define a memory dependence predictor:
detecting dependencies, updating the predictor, predicting de-
pendencies, and propagating the dependencies to the scheduler.

1) Detecting dependencies: Before starting with updating
the predictor it is important to describe the two main techniques
employed to squash mispeculated instructions: eager squash
and lazy squash. Eager squash acts as soon as the mispeculation
is detected, and therefore, it can squash instructions that are
part of the wrong path. Lazy squash waits until the commit
stage, thus only performing squashes when actually required.

The follow-up question is when to update the predictor.
There are two main choices here, too. The predictor may be
updated when the mispeculation is detected, thus training it
fast, but potentially with dependencies that may not exist in
the execution of the program. Otherwise, the predictor may
be updated at commit, when the detected mispeculation is
guaranteed to actually happen.

Our evaluation is conducted using lazy squash for memory
conflicts. We performed an analysis of both updating the
predictors at mispeculation and at commit. We found that
all state-of-the-art predictors performed better when updat-
ing at mispeculation, with the exception of NoSQ, which
had a negligible difference. However, PHAST benefits from
performing the update at commit, as it avoids learning long
paths that are not leading to actual dependencies. It is
important to note that updating the predictor at commit is
also possible with eager squash. For this, it would be necessary
to track the information of the mispeculated instructions in a
buffer, including instruction order (e.g., an increasing sequence
number [31]) and the information necessary to update the
predictor.

We turn back our attention now to Figure 3 (d). An
update when the mispeculation is detected may lead the
predictor to learn the first store incorrectly as dependent if
that store executes first. However, when waiting until commit,
the predictor can be updated when all previous stores are
executed, thus avoiding updating the predictor with unnecessary
dependencies.

On the other hand, when a load receives the data through
forwarding, it should not be squashed by stores older than the
one forwarding the data, as depicted in Figure 3 (c). While
this observation seems intuitive, these squashes happen in
accurate research simulators such as Gem5 [19], and can
significantly impact the predictor behaviour as shown later
in Fig. 12. To avoid such squashes, the load can track the

sequence number of the forwarding store. Stores searching the
LQ can compare its sequence number with the sequence number
of the forwarding store, ignoring the memory dependence
violation if the forwarder is younger. NoSQ, not having an
SQ in their proposal used a different mechanism to achieve a
similar purpose. They filter squashes by making use of the Store
Vulnerability Window concept (see Section VII for details).

2) Updating the predictor: PHAST is updated on the detec-
tion of a true dependence. To this end, we need information
about the store distance and the path from the store to the
load. The distance can be obtained in a similar way as in
Store Vectors by calculating the difference between the store
queue indexes of the store previous to the load and the store
involved in the conflict [41]. In order to calculate the length
of the history between the store and the load, a global register
tracks the number of conditional and indirect branches that
are decoded. When a load or store is decoded, it receives a
copy of the register value. Upon a conflict, the length of the
history can be obtained by calculating the difference between
both values. The register should be large enough to account
for wraparounds of the counter, usually to track the maximum
expected number of divergent branches in the pipeline plus
one extra bit [5].

For the update, when a load is about to be squashed at the
commit stage, the predictor receives the PC of the load and
the history length from the store to the load. Then, the history
is collected from a global history register at commit.3 The
global history register (both at decode and commit) needs to
track per divergent branch: a bit indicating the type of branch
(conditional or indirect), a bit indicating if the branch is taken
or not, and a few bits (e.g., 5 least significant bits) of the
actual destination taken by the branch (the branch target if
taken). Having all the history entries the same length makes
the history easily to be processed in parallel.

The history is formed with the branch outcome (taken/not
taken) bit for conditional branches, the destination for indirect
branches, and the destination of the divergent branch previous
to the store. The history is combined, using a hash function,
with the PC of the load to generate the index and tag of the
predictor caches.

Then, the information is stored in a prediction cache that
contains a tag, a store distance field, and an n-bit confidence
counter. The confidence counter is used to disable aliased
dependencies that cause mispredictions. On a new entry, the
store distance is stored and the confidence counter is set to the
maximum. If an entry already existed with non-zero confidence,
then the entry is replaced.

When a load with a predicted distance commits, it updates
the confidence. If the load waited for the correct store, the
counter is reset to the maximum value. Otherwise, the counter
is decremented.

3) Predicting dependencies: Each load performs a MDP at
the decode stage. The prediction is done for a set of history

3Alternatively, we could access the history at decode since we know the
number of branches that the load is ahead of.



lengths considered by the predictor. The more lengths, the
more accurate the prediction will be, but the more searches in
the prediction tables are necessary. The histories and PC are
hashed in the same way as when updating the predictor. In case
of a match for any of the history lengths with a confidence
greater than zero, the store distance is retrieved. If several
matches are found, the larger history length is selected. If there
is no match in the table or the confidence is zero, we predict
no dependence.

Although this process requires a set of searches with different
histories, memory dependence prediction is not as critical as
branch prediction and can take several cycles to provide a
prediction without hurting performance. Prediction can start as
soon as the load is decoded, and the outcome is not used at
least until the load is allocated in the issue queue. Still, high-
performance branch predictors, e.g., TAGE, also do several
searches with different history lengths.

4) Propagating dependencies to the scheduler: If a depen-
dence is predicted between a load and a store, then the store
distance must be converted into a dependence for the load
to wait until the previous store executes. To propagate the
dependence, PHAST employs a similar mechanism as in the
NoSQ microarchitecture and MDP-TAGE. In particular, when
the load is allocated in the LQ, the conflicting store is detected
by subtracting the predicted distance from the index of the
most recent store added in the SQ. It is worth noting that
PHAST, like other store-distance predictors, is independent of
the synchronization method. We opted for using the index of
the SQ as register tag for the store-distance predictors evaluated
in this work.

B. A cost-effective implementation

Our implementation of PHAST consists of a table for each
of the possible history lengths. Tables are searched in parallel
on each prediction, similar to the structure of a TAGE branch
prediction, already adopted in commercial designs [9].

The first decision is the set of selected history lengths.
Tracking the whole range of history lengths is not feasible
from the scalability and lookups point of view. After analyzing
the performance of UnlimitedPHAST with several maximum
history lengths (Section VI-A) we concluded that a maximum
length of 32 suffices for highly accurate prediction. With that
in mind, and inspired by TAGE, we set up a geometric-like
sequence of eight history lengths: (0, 2, 4, 6, 8, 12, 16, 32).
Histories not covered by this sequence are truncated. For
example, all dependencies with a history length of 9, 10, and
11 branches use the 8 branches closer to the load. Note that
the optimal history lengths for MDP differ from the ones for
branch prediction, which implies that an Omnipredictor [28]
cannot be tuned for both types of prediction.

The predictor is accessed with a compressed form of the
history. First, we found out by performing a sensitivity analysis
that taking the five least significant bits of the branch targets
suffices for avoiding most aliasing scenarios. The resulting
history is then folded until S+T bits remain, where S denotes
the number of bits necessary for indexing our prediction

TABLE I: System configuration

4-core Alder Lake Processor [8]
Front-end width 6-wide fetch and decode
Branch predictor TAGE-SC-L [35]
Back-end width 12 execution ports and commit width
ROB/IQ/LQ/SB 512/204/192/114 entries

Memory hierarchy
L1I (private) 32KB, 8 ways [42], 4-cycle hit latency, pipelined,

64 MSHRs
L1D (private) 48KB 12 ways [42], 5-cycle hit latency, pipelined,

64 MSHRs
L1D prefetcher IP-stride with a prefetch degree of 3
L2 (private) 1.25MB, 10 ways [42], 14-cycle hit latency, 64 MSHRs
L3 (shared) 3MB/bank (4 banks), 12 ways [42], 36-cycle hit latency,

64 MSHRs
Memory 4GB, 100-cycle access latency

table and T is the number of bits used for the tag. For the
index, the PC of the load is hashed in the following manner:
(PC

⊕
(PC >> 2)

⊕
(PC >> 5)), while for the tag the PC is

offset by 3 and 7. The hashed PCs and the folded history are
then combined with an exclusive OR.4

Each table is four-way associative, and stores entries contain-
ing a 16-bit tag, a 7-bit store distance field, a 4-bit confidence
counter, and a 2-bit field for the less-recently-used (LRU)
replacement policy. The confidence counter is used to discard
predictions with low confidence due to aliasing. A size for each
table of 128 sets (512 entries) achieves a good performance-area
trade-off and requires just 14.5KB.

V. EXPERIMENTAL METHODOLOGY

Our simulation infrastructure consists of a cycle-accurate
in-house simulator modeling in detail an out-of-order processor
with an x86 instruction set architecture. The core is fed with
an instruction flow (split into micro-operations at decode)
generated by Sniper [6]. The memory hierarchy is modeled
with Gems [21], using its embedded GARNET interconnect
network model [3]. Wrong-path execution is modeled similarly
as in the Scarab simulator [1]. The energy consumption of the
memory dependence predictor is computed with Cacti-P [18]
using a 7nm process technology [2] (see Table II).

The simulated core resembles an Intel Alder Lake microar-
chitecture [30]. The main system parameters are summed up
in Table I. The pipeline has 3 ports for load execution and 2
ports for store execution. The 2-ported LQ and the 3-ported SB
are searched associatively and in parallel with the L1D access,
incurring the same latency as the L1D [10], but allowing 2
and 3 new searches, respectively, each cycle (pipelining).

Stores are issued once both the address and the data registers
are ready. We perform eager squash on branch misprediction for
a fast recovery, but lazy-squash for the less frequent memory
order violations. Delaying memory dependence squashes until
commit simplifies the design of PHAST and, as shown in the
results, the number of mis-speculations is very low in all state-
of-the-art MDPs, so this decision does not cause noticeable
effects in performance.

4This hashes are indeed used by all predictors evaluated in this work as it
improves their performance.



TABLE II: Configuration of the state-of-the-art predictors

Predictor Tables Total Fields Energy per Size
entries per entry access (pJ) (KB)

Store Sets
SSIT 8K valid bit 0.2403

18.512 bit SSID

LFST 4K valid bit 0.102610 bit St ID

NoSQ 2 4K

22 bit tag

0.3721 197 bit counter
7 bit distance
2 bit lru

12
7-15 bit tag

1.3103 38.625MDP-TAGE 16K 7 bit distance
1 bit u

MDP-TAGE-S 8 4K

16 bit tag

0.4421 137 bit distance
2 bit lru
1 bit u

PHAST 8 4K

16 bit tag

0.4856 14.54 bit counter
7 bit distance
2 bit lru

We compare PHAST to the state-of-the-art memory depen-
dence predictors described in Section II: Store Sets [7], the
predictor employed by NoSQ [39], and a standalone MDP-
TAGE [28] (i.e., only used for memory dependence prediction)
with 7-bits to track the store distance in order to be able to track
all store distances. The MDP-TAGE features 12 components
that use the (6, 2000) geometric history lengths [34], but
we also evaluate it using the same table and history lengths
configuration as PHAST (labeled as MDP-TAGE-S, for Shorter
history lengths) in order to demonstrate that our improvements
are due to the accurate selection of the history length for
training. Table II details the configuration and storage of the
best performance-storage trade-off version of each predictor,
which is used in the evaluation (the complete performance-
storage analysis is presented in the next section).

Predictors are evaluated with the SPEC CPU 2017 benchmark
rate suite [40]. The applications supporting multiple inputs
have been relabeled with an increasing counter (each counter
meaning a different input). For each pair of application/input,
we generated a set of intervals using Simpoints [29]. For each
interval, we simulate 100M instructions.

VI. RESULTS

This section, first, analyses the potential of the unlimited
version of PHAST. Then, we show the effects of filtering
memory order violations when store-to-load forwarding takes
place. Finally, we compare the top-performing state-of-the-art
predictors against a cost-effective implementation of PHAST.

A. Potential of PHAST and analysis

In this section, we detail the per-application performance
gap of our unlimited version with regard to a perfect memory
dependence predictor. Figure 7 shows the IPC obtained with
UnlimitedPHAST normalized to an ideal scenario. The geo-
metric mean shows that UnlimitedPHAST is 0.47% behind the
ideal predictor. The applications that are farther from the ideal
scenario are 502.gcc 1, 502.gcc 2, 510.parest and 541.leela.

50
0.

pe
rlb

en
ch

_1
50

0.
pe

rlb
en

ch
_2

50
0.

pe
rlb

en
ch

_3
50

2.
gc

c_
1

50
2.

gc
c_

2
50

2.
gc

c_
3

50
2.

gc
c_

4
50

2.
gc

c_
5

50
3.

bw
av

es
_1

50
3.

bw
av

es
_2

50
3.

bw
av

es
_3

50
3.

bw
av

es
_4

50
5.

m
cf

50
7.

ca
ct

uB
S

S
N

50
8.

na
m

d
51

0.
pa

re
st

51
1.

po
vr

ay
51

9.
lb

m
52

0.
om

ne
tp

p
52

1.
w

rf
52

3.
xa

la
nc

bm
k

52
5.

x2
64

_1
52

5.
x2

64
_2

52
5.

x2
64

_3
52

6.
bl

en
de

r
52

7.
ca

m
4

53
1.

de
ep

sj
en

g
53

8.
im

ag
ic

k
54

1.
le

el
a

54
4.

na
b

54
8.

ex
ch

an
ge

2
54

9.
fo

to
ni

k3
d

55
4.

ro
m

s
55

7.
xz

_1
55

7.
xz

_2
55

7.
xz

_3
G

eo
m

ea
n

0.97

0.98

0.99

1.0

N
or

m
al

iz
ed

 IP
C

Fig. 7: IPC of the UnlimitedPHAST predictor normalized to a
perfect memory dependence predictor (higher is better)

50
0.

pe
rlb

en
ch

_1
50

0.
pe

rlb
en

ch
_2

50
0.

pe
rlb

en
ch

_3
50

2.
gc

c_
1

50
2.

gc
c_

2
50

2.
gc

c_
3

50
2.

gc
c_

4
50

2.
gc

c_
5

50
3.

bw
av

es
_1

50
3.

bw
av

es
_2

50
3.

bw
av

es
_3

50
3.

bw
av

es
_4

50
5.

m
cf

50
7.

ca
ct

uB
S

S
N

50
8.

na
m

d
51

0.
pa

re
st

51
1.

po
vr

ay
51

9.
lb

m
52

0.
om

ne
tp

p
52

1.
w

rf
52

3.
xa

la
nc

bm
k

52
5.

x2
64

_1
52

5.
x2

64
_2

52
5.

x2
64

_3
52

6.
bl

en
de

r
52

7.
ca

m
4

53
1.

de
ep

sj
en

g
53

8.
im

ag
ic

k
54

1.
le

el
a

54
4.

na
b

54
8.

ex
ch

an
ge

2
54

9.
fo

to
ni

k3
d

55
4.

ro
m

s
55

7.
xz

_1
55

7.
xz

_2
55

7.
xz

_3
A

ve
ra

g
e

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

M
P

K
I

MemOrderViolation FalseDependency

1.0 13.8 2.7 3.2 2.3

Fig. 8: MPKI of the UnlimitedPHAST predictor (lower is
better)

The 502.gcc applications exhibited the highest number of paths
among all applications as well as many occasional dependencies
that were not path dependent. On the other hand, 541.leela had
a total number of paths below average but suffered a similar
level of memory order violations as 502.gcc while having a
higher amount of false dependencies.

Figure 8 presents the MPKI of UnlimitedPHAST. The vast
majority of memory order violations are due to cold misses at
the start of the simulation. Although applications 502.gcc 1
and 502.gcc 3 show a high number of memory order violations,
they are cold misses. Both applications showed an abnormally
high amount of paths to track as already mentioned above.

Regarding false dependencies, some applications such as
510.parest, 531.deepsjeng, 541.leela, and 544.nab present the
highest amount of this type of misprediction, followed by all
variants of 502.gcc. Since our unlimited predictor tracks the full
path from the branch before the conflicting store to the load,
aliasing is discarded as a reason. In these cases, the problem is
due to load-store pairs that are not path-independent but data-
dependent, so they conflict occasionally. Finally, it is worth
noting that false dependencies only impact the performance if
the loads are on the critical path.

Figure 9 shows the number of paths detected per application
for UnlimitedPHAST. Most applications present fewer than



5
0
0
.p

e
rl
b
e
n
ch

_
1

5
0
0
.p

e
rl
b
e
n
ch

_
2

5
0
0
.p

e
rl
b
e
n
ch

_
3

5
0
2
.g

cc
_
1

5
0
2
.g

cc
_
2

5
0
2
.g

cc
_
3

5
0
2
.g

cc
_
4

5
0
2
.g

cc
_
5

5
0
3
.b

w
a
ve

s_
1

5
0
3
.b

w
a
ve

s_
2

5
0
3
.b

w
a
ve

s_
3

5
0
3
.b

w
a
ve

s_
4

5
0
5
.m

cf
5
0
7
.c

a
ct

u
B

S
S

N
5
0
8
.n

a
m

d
5
1
0
.p

a
re

st
5
1
1
.p

o
vr

a
y

5
1
9
.lb

m
5
2
0
.o

m
n
e
tp

p
5
2
1
.w

rf
5
2
3
.x

a
la

n
cb

m
k

5
2
5
.x

2
6
4
_
1

5
2
5
.x

2
6
4
_
2

5
2
5
.x

2
6
4
_
3

5
2
6
.b

le
n
d
e
r

5
2
7
.c

a
m

4
5
3
1
.d

e
e
p
sj

e
n
g

5
3
8
.im

a
g
ic

k
5
4
1
.le

e
la

5
4
4
.n

a
b

5
4
8
.e

xc
h
a
n
g
e
2

5
4
9
.f
o
to

n
ik

3
d

5
5
4
.r

o
m

s
5
5
7
.x

z_
1

5
5
7
.x

z_
2

5
5
7
.x

z_
3

A
v
e
ra

g
e

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

N
u
m

b
e
r 

o
f 
p
a
th

s
51667

57574

46072

12714

11234

Fig. 9: Number of paths registered per application with
UnlimitedPHAST

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

History length

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

%
 o

f c
on

fli
ct

s

Fig. 10: Percentage of conflicts detected at each history length

five thousand different paths. Exceptions to this are 500.perl-
bench 2, 502.gcc 1, 2, 3 and 5, 526.blender, 527.cam4, and
531.deepsjeng. Nonetheless, for these applications, most of the
paths are used just a few times, especially the longest ones.
Because of this, we believe that these long histories can be
obviated without much consequences to performance.

Figure 10 depicts the percentage of unique conflicts detected
with UnlimitedPHAST at each history length up to 32 branches
(85.4% of all unique conflicts). Most conflicts appear in the
range of [0−19] branches (73.6% of all unique conflicts). In
addition, dependencies with long history lengths are unlikely
to show at run time, so they have less impact in execution
time. Figure 11 shows how the normalized IPC of the
UnlimitedPHAST is affected when limiting the history length.
The figure reveals that tracking a maximum history length of
32 branches is enough to achieve the performance of unlimited
histories, since most conflicts occur with shorter history lengths.
It is worth noting that for most benchmarks it is enough to
track up to 16 branches, but for a small subset, greater histories
offer performance improvements.

B. Effect of avoiding squashes on forwarding

Figure 12 shows, for our evaluated predictors, the geometric
mean of the IPC normalized with respect to an ideal predictor.
The predictors are both run when the optimization to avoid
squashing for forwarded loads described in Section IV-A1 is
off (No FWD) and on (FWD). This optimization, despite not
being present in state-of-the-art simulators is fundamental for
performance when predicting a single dependent store. In all
the paper, except in this sub-section, our evaluation uses FWD.

1 2 4 8 16 32 64 128 Unlimited

Number of divergent branches

0.94
0.95
0.96
0.97
0.98
0.99
1.00

N
or

m
al

iz
ed

 IP
C

Fig. 11: Normalized IPC of UnlimitedPHAST at several
maximum history lengths (higher is better)

Store Sets NoSQ Predictor MDP-TAGE MDP-TAGE-S PHAST
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1.0

N
o

rm
. 

IP
C

No FWD FWD

Fig. 12: IPC of memory dependence predictors against a perfect
predictor with (FWD) and without filtering through forwarding
(higher is better)

Store Sets shows less than a 1% increase in IPC when
enabling the forwarding optimization. The reason for the
variation is the merging of sets. When a store has to be added
to a new set, it will cause the merging of both sets, predicting
false positives in two loads.

On the other hand, the NoSQ predictor and MDP-TAGE
show an increment of around 2% in performance. Since loads
only wait for one store, filtering re-executions helps eliminate
the incorrect memory order violations depicted in Fig 3(c).

PHAST is by large the most benefited predictor, with
an increase of 5%. The reason is that when several stores
match the load address (as depicted in Figure 3), the filtering
allows PHAST to only learn the dependence between the load
and the most recent store. If PHAST learns older incorrect
dependences (Figure 3(c)), there is a high chance that they
have longer histories, making PHAST select them over the
correct dependence. In those cases, PHAST will predict wrong
distances until the saturated counter of that entry reaches zero.
At that point, although PHAST will give the correct distance,
the memory order violation with the incorrect store may re-
trigger. Although NoSQ and MDP-TAGE are also susceptible
to this case, they show a higher IPC without FWD because
they reduce the memory order violations by increasing false
dependencies. In the case of NoSQ, once the saturated counter
is below the threshold, the path-independent table will provide
the wrong prediction until its counter is reduced to below the
threshold, while MDP-TAGE will only reset the entry with a
probability of 1/256 or after 512K accesses.

C. Comparison to state-of-the-art predictors

We start our comparison by showing the performance-storage
trade-off of the evaluated predictors in Figure 13. PHAST is
able to outperform all the state-of-the-art predictors while
requiring less storage. Both PHAST and MDP-TAGE-S use a
similar prediction structure, being the key difference the fact



5 10 15 20 25 30 35 40

Size (KB)

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

N
o
rm

a
liz

e
d
 I
P

C
Store Sets NoSQ Predictor MDP-TAGE MDP-TAGE-S PHAST

Fig. 13: Performance (higher is better) versus storage of Store
Sets, NoSQ predictor, MDP-TAGE, MDP-TAGE with PHAST
configuration and PHAST at different budgets compared against
an ideal MDP

that PHAST chooses the minimum effective history length for
training, while MDP-TAGE starts the training at the lower
predetermined length and increases it on mispredictions. Even
with a budget of 7.25 KB, PHAST still shows a higher
IPC (97.74% compared to the ideal) than the state-of-the-art
predictors. Store Sets and the NoSQ predictor show practically
no improvement after doubling their storage. For the rest of
the evaluation, we use for each predictor the size that achieves
better performance-storage trade-off, detailed in Table II.

The MPKI for each application is depicted in Figure 14. Store
Sets includes an implicit path sensitivity since the dependence
will only be predicted if the instance of the store is present [39].
Nonetheless, sharing the entries of the SSIT between loads
and stores is a double-edged sword: on the one hand, it helps
to reduce false dependencies by not making the load stall
if an instance of the dependent store is not present. On the
other hand, merging sets increase false dependencies. Adding
explicit path information to the memory dependence predictor
helps in reducing mispeculations in NoSQ and MPD-TAGE.
MDP-TAGE-S is able to reduce false negatives with respect
to MDP-TAGE thanks to the use of shorter histories. This
supports our claim that an Omnipredictor cannot be tuned for
both MDP and branch prediction. However, MDP-TAGE-S
has the highest MPKI due to false dependencies due to the
large number of tables with short histories, which causes a
load to require several mispredictions until it finds its right
history length. PHAST presents the lower MPKI for both false
negatives and false positives.

Our unlimited implementation of PHAST showed low
performance in applications 502.gcc 1 to 502.gcc 3, and
541.leela. However, in the case of 502.gcc, PHAST is able to
greatly decrease the MPKI compared to the rest of the state-
of-the-art predictors. While the MPKI for false negatives that
PHAST predicted is on par with NoSQ and MDP-TAGE-S,
the false positives are reduced to half.

Regarding 541.leela, it did not have many path-dependent
conflicts, which increased the false positive mispredictions of
PHAST. Once the saturated counter was decreased to zero, the
next time the conflict is presented, PHAST would not predict
it, leading to a memory order violation. NoSQ is able to reduce

the false negative MPKI with the use of the path-independent
table, which in turn increases the false positive MPKI.

On the other hand, PHAST exhibits great performance
in applications such as 500.perlbench 1, 511.povray, and
531.deepsjeng, where both types of MPKI are significantly
decreased. 511.povray, is an application where memory depen-
dencies are tightly connected to branch history. This has been
corroborated by Perais and Seznec in their MDP-TAGE [27],
as it was able to improve the performance of this application.
However, the use of not-well-adjusted history lengths leads to
a loss of accuracy.

Figure 15 shows the IPC for all applications normalized to
an ideal predictor. PHAST is the closest to the ideal MDP with
a gap of 1.5%, improving over Store Sets by 5.05% (up to
39.7%), the NoSQ predictor by 1.29% (up to 22.0%), MDP-
TAGE by 3.04% (up to 38.2%) and MDP-TAGE-S by 2.10%
(up to 17.6%). These results come as a consequence of the
MPKI reduction shown from each application in Figure 14.

Another issue regarding Store Sets is that when multiple
instances of a store are in-flight, the load will be always made
dependent on the youngest of those instances while also forcing
all instances to execute in-order. NoSQ and PHAST are able to
overcome this problem by using explicit path information. This
can be seen in applications such as 500.perlbench 3, where
NosQ, PHAST, and even MDP-TAGE achieve at least a 95%
of the IPC compared to an ideal predictor, while Store Sets
falls behind.

MDP-TAGE performs slightly better than Store Sets because
it always marks a load to depend on a unique store, at most.
However, it has a higher amount of memory order violations
compared to NoSQ and PHAST because when predicting for
a single store, accuracy is vital. MDP-TAGE trains blindly on
a set of geometric history lengths, which accounts for many
mispredictions that either result in unnecessary stalls or in
squashes. Although the NoSQ predictor uses a fixed length, it
avoids many of the squashes with the path-insensitive table at
the cost of increasing the false dependencies.

Regarding NoSQ, our PHAST implementation has a speedup
of 1.29%, achieving the same or better performance in all
applications with the exception of 525.x264 and 541.leela.
Overall, both predictors present a low MPKI related to memory
order violations but, PHAST has fewer MPKI due to false
dependencies, which makes a total reduction in MPKI of
62% (20% less MPKI in memory order violations and 65%
less MPKI in false dependencies). The main reason for this
improvement is using only the path information comprehended
between the conflicting store and the dependent load. NoSQ,
by using a fixed history length, can either lead to an explosion
of paths or extra false positives.

Finally, regarding energy consumption, it is key to highlight
that PHAST reduces the number of re-executed instructions
by 2% with respect to the NoSQ predictor and 8% with
respect to Store Sets, which implies important reductions in
the energy consumption of the entire core. Figure 16 shows the
energy consumption of the predictors, broken down into reads
and writes. The main observation is that the consumption of



5
0
0
.p

e
rl
b
e
n
ch

_
1

5
0
0
.p

e
rl
b
e
n
ch

_
2

5
0
0
.p

e
rl
b
e
n
ch

_
3

5
0
2
.g

cc
_
1

5
0
2
.g

cc
_
2

5
0
2
.g

cc
_
3

5
0
2
.g

cc
_
4

5
0
2
.g

cc
_
5

5
0
3
.b

w
a
ve

s_
1

5
0
3
.b

w
a
ve

s_
2

5
0
3
.b

w
a
ve

s_
3

5
0
3
.b

w
a
ve

s_
4

5
0
5
.m

cf
5
0
7
.c

a
ct

u
B

S
S

N
5
0
8
.n

a
m

d
5
1
0
.p

a
re

st
5
1
1
.p

o
vr

a
y

5
1
9
.lb

m
5
2
0
.o

m
n
e
tp

p
5
2
1
.w

rf
5
2
3
.x

a
la

n
cb

m
k

5
2
5
.x

2
6
4
_
1

5
2
5
.x

2
6
4
_
2

5
2
5
.x

2
6
4
_
3

5
2
6
.b

le
n
d
e
r

5
2
7
.c

a
m

4
5
3
1
.d

e
e
p
sj

e
n
g

5
3
8
.im

a
g
ic

k
5
4
1
.le

e
la

5
4
4
.n

a
b

5
4
8
.e

xc
h
a
n
g
e
2

5
4
9
.f
o
to

n
ik

3
d

5
5
4
.r
o
m

s
5
5
7
.x

z_
1

5
5
7
.x

z_
2

5
5
7
.x

z_
3

A
v
e
ra

g
e

0.0

1.0

2.0

3.0

4.0

5.0

6.0

M
P

K
I

9.2 28.46.5

14.0 11.7 6.6 6.5
8.7 9.3 7.3 6.3 8.7

14.8

9.0 7.8
8.8 14.4

MemOrderViolation FalseDependency1. Store Sets 2. NoSQ Predictor 3. MDP-TAGE 4. MDP-TAGE-S 5. PHAST

Fig. 14: MPKI of the evaluated memory dependence predictors with the exception of CHT (lower is better)

50
0.

pe
rlb

en
ch

_1
50

0.
pe

rlb
en

ch
_2

50
0.

pe
rlb

en
ch

_3
50

2.
gc

c_
1

50
2.

gc
c_

2
50

2.
gc

c_
3

50
2.

gc
c_

4
50

2.
gc

c_
5

50
3.

bw
av

es
_1

50
3.

bw
av

es
_2

50
3.

bw
av

es
_3

50
3.

bw
av

es
_4

50
5.

m
cf

50
7.

ca
ct

uB
S

S
N

50
8.

na
m

d
51

0.
pa

re
st

51
1.

po
vr

ay
51

9.
lb

m
52

0.
om

ne
tp

p
52

1.
w

rf
52

3.
xa

la
nc

bm
k

52
5.

x2
64

_1
52

5.
x2

64
_2

52
5.

x2
64

_3
52

6.
bl

en
de

r
52

7.
ca

m
4

53
1.

de
ep

sj
en

g
53

8.
im

ag
ic

k
54

1.
le

el
a

54
4.

na
b

54
8.

ex
ch

an
ge

2
54

9.
fo

to
ni

k3
d

55
4.

ro
m

s
55

7.
xz

_1
55

7.
xz

_2
55

7.
xz

_3
G

eo
m

ea
n

0.7

0.75

0.8

0.85

0.9

0.95

1.0

N
or

m
al

iz
ed

 IP
C

Store Sets NoSQ Predictor MDP-TAGE MDP-TAGE-S PHAST

Fig. 15: IPC of the memory dependence predictors per application normalized to the perfect MDP (higher is better)

Store Sets NoSQ Predictor MDP-TAGE MDP-TAGE-S PHAST
10000

20000

30000

40000

50000

D
yn

a
m

ic
 E

n
e
rg

y 
(n

J) Read Write

Fig. 16: Energy consumption (nJ) of the evaluated predictors

standard TAGE-like predictors is much higher than the other
memory dependence predictors. Hence, compared to the vast
structures (branch predictors and BTBs) required to steer fetch
accurately, the consumption of the memory dependent predictor
represents a small fraction.

VII. RELATED WORK

Önder and Gupta [26] analyzed the main drawbacks of the
Store Sets predictor: the serialization of the stores of the same
set and the inability to distinguish dependencies among multiple
instances of the same store. If Store Sets allows out-of-order
issuing of the stores of a set, false memory order violations
may appear between the load and stores from the set other

than the correct provider. To tackle this problem, they moved
the memory disambiguation to commit stage by comparing the
value obtained by the load with the value of the store. If the
values are the same, the memory order violation is ignored. In
our case, the filtering done with the forwarding (Section IV-A1)
can achieve a similar result (except for the case of silent stores)
without having to do an extra check on commit.

NoSQ [39] performs speculative memory bypassing (SMB)
[25], [43] without an SQ. It makes use of the Store Vulnerability
Window (SVW) described by Roth et al. [31]. The SVW
filters re-execution with the help of a Store Sequence Bloom
Filter (SSBF), which is a small untagged direct mapped
address-indexed table that tracks the sequence number of the
youngest committed store that wrote in each address. When
a load executes, it records the sequence number of the last
store that committed. If a store forwards the data to the
load, that sequence number will be overwritten with the one
corresponding to the forwarding store. Later, prior to commit,
the load will access the SSBF with its target address and check
if the sequence number contained is younger than the one it
recorded. The rule to skip re-execution is different for bypassing
and non-bypassing loads. The latter will perform an inequality



test, skipping re-execution if the sequence number recorded by
the load is less than or equal to the sequence number written
in the entry of the SSBF. For bypassing loads, re-execution can
only be skipped if the sequence numbers are the same. NoSQ
upgraded the SSBF to a tagged set-associative table managed in
a FIFO fashion, which improves the filtering of squashes.Again,
PHAST is also able to filter squashes when older stores than
a forwarding one conflict with the load (Section IV-A1).

Later, Jin and Önder [15] proposed improvements to the
NoSQ mechanism. When NoSQ has low confidence for a
predicted memory dependence, instead of bypassing, it forces
the load to wait until the store is committed and the cache is
updated. To eliminate the need of delaying these low confidence
loads, the authors proposed to perform predication and take
both the cache data and the store data. If the prediction was
right, the store data is kept; otherwise, the cache value is used.

Alves et al. [4] proposed a mechanism to filter the L1/TLB
probes by using a store-queue/buffer/cache (S/QBC). This adds
a third logical partition to the SQ/SB that maintains data that
has already been written back. A memory dependence predictor
based on store distance [44] is used to predict a hit or miss in the
S/QBC. Hits predicted correctly reduce energy consumption
since the L1/TLB is not probed, while correctly predicted
misses reduce the latency by letting the load probe both the
S/QBC and L1/TLB in parallel.

Lustig et al. [20] make use of memory dependence prediction
and memory disambiguation to achieve high-performance
forwarding. Memory dependence prediction is used to anticipate
the same-physical address dependencies between stores and
loads. Later, the memory disambiguation will assert the
prediction. If correct, the pairing of the store and the load
ensures that synonyms can be detected while maintaining the
TLB off the critical path.

Huang et al. [12] propose the use of software assistance to
identify loads that will not conflict with older unresolved stores
and prevent them from competing for the LQ and SQ resources.
The idea is to analyze the binary with software and annotate
it. Later, the hardware can make use of the annotations to
know what set of dynamic memory operations needs memory
disambiguation. These instructions, guaranteed not to overlap
with older unresolved stores, do not need to check the SQ
when they execute, nor do they need an entry in the LQ.

Hasan [11] proposes a perceptron-based memory dependence
predictor designed for energy-constrained devices. The scheme
is based on the application of perceptron to branch prediction
and uses a history vector containing the results of the past
n loads retired and whether or not they caused a violation.
The resulting memory dependence predictor was able to gain
almost as much IPC speedup as the Store Sets.

VIII. CONCLUSION

We have presented PHAST, a memory dependence predictor
that is trained with the execution path between the conflicting
store and its dependent load and predicts the exact distance of
the conflicting store on that path. We have shown that using
that path information, an unlimited predictor can practically

reach the performance of an ideal predictor while keeping the
number of tracked paths reduced.

With a budget of just 14.5KB PHAST outperforms all the
state-of-the-art predictors evaluated in this work (speedups of
5.05% over Store Sets, 3.04% over MDP-TAGE and 1.29%
over the NoSQ predictor, with improvements of up to 22%
compared against NoSQ) and with a performance gap of 1.5%
with respect to an ideal predictor.

ACKNOWLEDGMENTS

This project has received funding from the European
Research Council (ERC) under the European Union’s Horizon
2020 research and innovation program (grant agreement No
819134), from the MCIN/AEI/10.13039/501100011033/
and the “ERDF A way of making Europe”, EU
(grant PID2022-136315OB-I00), and from the
MCIN/AEI/10.13039/501100011033/ and the European
Union NextGenerationEU/PRTR (grant TED2021-130233B-
C33). Sebastian S. Kim is a PhD student funded by the
Fundación Séneca, Región of Murcia (21456/FPI/20).

REFERENCES

[1] “Scarab Simulator,” https://github.com/hpsresearchgroup/scarab.
[2] “PCACTI,” https://sportlab.usc.edu/downloads/packages, 2021.
[3] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “GARNET: A detailed

on-chip network model inside a full-system simulator,” in Int’l Symp. on
Performance Analysis of Systems and Software (ISPASS), Apr. 2009, pp.
33–42.

[4] R. Alves, A. Ros, D. Black-Schaffer, and S. Kaxiras, “Filter caching for
free: The untapped potential of the store buffer,” in 46th Int’l Symp. on
Computer Architecture (ISCA), Jun. 2019, pp. 436–448.

[5] A. Buyuktosunoglu, A. El-Moursy, and D. H. Albonesi, “An oldest-first
selection logic implementation for non-compacting issue queues,” in 15th
Annual Int’l ASIC/SOC Conference, Sep. 2002, pp. 31–35.

[6] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the level
of abstraction for scalable and accurate parallel multi-core simulations,”
in Conf. on Supercomputing (SC), Nov. 2011, pp. 52:1–52:12.

[7] G. Z. Chrysos and J. S. Emer, “Memory dependence prediction using
store sets,” in 25th Int’l Symp. on Computer Architecture (ISCA), Jun.
1998, pp. 142–153.

[8] clamchowder, “Popping the hood on golden cove,” https://chipsandcheese.
com/2021/12/02/popping-the-hood-on-golden-cove, Dec. 2021.

[9] M. Evers, “AMD next generation ”zen 3” core,” in 33rd HotChips Symp.,
Aug. 2021.

[10] A. Fog, “The microarchitecture of Intel, AMD and VIA CPUs: An
optimization guide for assembly programmers and compiler makers,”
https://www.agner.org/optimize/microarchitecture.pdf, Technical Univer-
sity of Denmark, Nov. 2022.

[11] K. M. Hasan, “Memory dependence prediction for energy constrained
devices,” Master’s thesis, University of Toronto (Canada), 2021.

[12] R. Huang, A. Garg, and M. C. Huang, “Software-hardware cooperative
memory disambiguation,” in 12th Int’l Symp. on High-Performance
Computer Architecture (HPCA), Feb. 2006, pp. 244–253.

[13] First the Tick, Now the Tock: Next Generation Intel Microarchitecture
(Nehalem), Intel Corporation, White paper, Apr. 2009.

[14] D. A. Jiménez and C. Lin, “Dynamic branch prediction with perceptrons,”
in 7th Int’l Symp. on High-Performance Computer Architecture (HPCA),
Jan. 2001, pp. 197–206.

[15] Z. Jin and S. Önder, “Dynamic memory dependence predication,” in 45th
Int’l Symp. on Computer Architecture (ISCA), Jun. 2018, pp. 235–246.

[16] T. A. Khan, M. Ugur, K. Nathella, D. Sunwoo, H. Litz, D. A. Jiménez, and
B. Kasikci, “Whisper: Profile-guided branch misprediction elimination
for data center applications,” in 55th Int’l Symp. on Microarchitecture
(MICRO), Oct. 2022, pp. 19–34.

[17] J. K. F. Lee and A. J. Smith, “Analysis of branch prediction strategies and
branch target buffer design,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/CSD-83-121, Aug. 1983.

https://github.com/hpsresearchgroup/scarab
https://sportlab.usc.edu/downloads/packages
https://chipsandcheese.com/2021/12/02/popping-the-hood-on-golden-cove
https://chipsandcheese.com/2021/12/02/popping-the-hood-on-golden-cove
https://www.agner.org/optimize/microarchitecture.pdf


[18] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi, “Cacti-p:
Architecture-level modeling for sram-based structures with advanced
leakage reduction techniques,” in 2011 Int’l Conf. on Computer-Aided
Design (ICCAD), Nov. 2011, pp. 694–701.

[19] J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger,
M. Andreozzi, A. Armejach, N. Asmussen, B. Beckmann, S. Bharadwaj,
G. Black, G. Bloom, B. R. Bruce, D. R. Carvalho, J. Castrillon, L. Chen,
N. Derumigny, S. Diestelhorst, W. Elsasser, C. Escuin, M. Fariborz,
A. Farmahini-Farahani, P. Fotouhi, R. Gambord, J. Gandhi, D. Gope,
T. Grass, A. Gutierrez, B. Hanindhito, A. Hansson, S. Haria, A. Harris,
T. Hayes, A. Herrera, M. Horsnell, S. A. R. Jafri, R. Jagtap, H. Jang,
R. Jeyapaul, T. M. Jones, M. Jung, S. Kannoth, H. Khaleghzadeh,
Y. Kodama, T. Krishna, T. Marinelli, C. Menard, A. Mondelli, M. Moreto,
T. Mück, O. Naji, K. Nathella, H. Nguyen, N. Nikoleris, L. E. Olson,
M. Orr, B. Pham, P. Prieto, T. Reddy, A. Roelke, M. Samani, A. Sandberg,
J. Setoain, M. D. S. Boris Shingarov, T. Ta, R. Thakur, G. Travaglini,
M. Upton, N. Vaish, I. Vougioukas, W. Wang, Z. Wang, N. Wehn, C. Weis,
D. A. Wood, H. Yoon, and Éder F. Zulian, “The gem5 simulator: Version
20.0+,” arXiv preprint arXiv:2007.03152, 2020.

[20] D. Lustig, G. Sethi, M. Martonosi, and A. Bhattacharjee, “Coatcheck:
Verifying memory ordering at the hardware-os interface,” in 21st Int’l
Conf. on Architectural Support for Programming Language and Operating
Systems (ASPLOS), Apr. 2016, pp. 233–247.

[21] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood, “Multifacet’s
general execution-driven multiprocessor simulator (GEMS) toolset,” ACM
SIGARCH Computer Architecture News, vol. 33, no. 4, pp. 92–99, Sep.
2005.

[22] S. McFarling, “Combining branch predictors,” Digital Western Research
Laboratory, Technical report TN-36, Jun. 1993.

[23] P. Michaud, “An alternative TAGE-like conditional branch predictor,”
ACM Transactions on Architecture and Code Optimization (TACO),
vol. 15, no. 3, pp. 30:1–30:24, Oct. 2018.

[24] A. Moshovos, “Memory dependence prediction,” Ph.D. dissertation,
University of Wisconsin-Madison, 1998.

[25] A. Moshovos, S. E. Breach, T. N. Vijaykumar, and G. S. Sohi, “Dynamic
speculation and synchronization of data dependences,” in 1997 Int’l
Symp. on Computer Architecture (ISCA), Jun. 1997, pp. 181–193.

[26] S. Önder and R. Gupta, “Dynamic memory disambiguation in the
presence of out-of-order store issuing,” in 32nd Int’l Symp. on Mi-
croarchitecture (MICRO), Dec. 1999, pp. 170–176.

[27] A. Perais and A. Seznec, “Storage-free memory dependency prediction,”
IEEE Computer Architecture Letters, vol. 16, no. 2, pp. 149–152, Jul.
2017.

[28] A. Perais and A. Seznec, “Cost effective speculation with the omnipredic-
tor,” in 27th Int’l Conf. on Parallel Architectures and Compilation
Techniques (PACT), Nov. 2018, pp. 25:1–25:13.

[29] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood, and
B. Calder, “Using simpoint for accurate and efficient simulation,” ACM
SIGMETRICS Performance Evaluation Review, vol. 31, no. 1, pp. 318–
319, Jun. 2003.

[30] E. Rotem, A. Yoaz, L. Rappoport, S. J. Robinson, J. Y. Mandelblat,
A. Gihon, E. Weissmann, R. Chabukswar, V. Basin, R. Fenger, M. Gupta,
and A. Yasin, “Intel Alder Lake CPU architectures,” IEEE Micro, vol. 42,
no. 3, pp. 13–19, Mar. 2022.

[31] A. Roth, “Store vulnerability window (SVW): Re-execution filtering
for enhanced load optimization,” in 32nd Int’l Symp. on Computer
Architecture (ISCA), Jun. 2005, pp. 458–468.

[32] A. Seznec, “The L-TAGE branch predictor,” The Journal of Instruction-
Level Parallelism, vol. 9, pp. 1–13, May 2007.

[33] A. Seznec, “A 64-Kbytes ITTAGE indirect branch predictor,” in 2nd
JILP Workshop on Computer Architecture Competitions (JWAC-2):
Championship Branch Prediction, Jun. 2011.

[34] A. Seznec, “A new case for the tage branch predictor,” in 44th Int’l
Symp. on Microarchitecture (MICRO), Dec. 2011, pp. 117–127.

[35] A. Seznec, “TAGE-SC-L branch predictors again,” in 5th JILP Workshop
on Computer Architecture Competitions (JWAC-5): Championship Branch
Prediction (CBP-5), Jun. 2016.

[36] A. Seznec and P. Michaud, “De-aliased hybrid branch predictors,” INRIA,
Research report RR-3618, 1999.

[37] A. Seznec and P. Michaud, “A case for (partially) tagged geometric history
length branch prediction,” The Journal of Instruction-Level Parallelism,
vol. 8, 2006.

[38] A. Seznec, J. S. Miguel, and J. Albericio, “The inner most loop iteration
counter: A new dimension in branch history,” in 48th Int’l Symp. on
Microarchitecture (MICRO), Dec. 2015, pp. 347–357.

[39] T. Sha, M. M. K. Martin, and A. Roth, “NoSQ: Store-load communication
without a store queue,” in 39th Int’l Symp. on Microarchitecture (MICRO),
Dec. 2006, pp. 285–296.

[40] Standard Performance Evaluation Corporation, “SPEC CPU2017,” 2017.
[Online]. Available: http://www.spec.org/cpu2017

[41] S. Subramaniam and G. H. Loh, “Store vectors for scalable memory
dependence prediction and scheduling,” in 12th Int’l Symp. on High-
Performance Computer Architecture (HPCA), Feb. 2006, pp. 65–76.

[42] A. Syed, “Intel 12th gen alder lake golden cove-gracemont cache config-
uration detailed,” Jul. 2021, https://www.hardwaretimes.com/intel-12th-
gen-alder-lake-golden-cove-gracemont-cache-configuration-detailed/.

[43] G. S. Tyson and T. M. Austin, “Improving the accuracy and performance
of memory communication through renaming,” in 30th Int’l Symp. on
Microarchitecture (MICRO), Dec. 1997, pp. 218–227.

[44] A. Yoaz, M. Erez, R. Ronen, and S. Jourdan, “Speculation techniques
for improving load related instruction scheduling,” in 26th Int’l Symp.
on Computer Architecture (ISCA), May 1999, pp. 42–53.

[45] S. Zangeneh, S. Pruett, S. Lym, and Y. N. Patt, “Branchnet: A
convolutional neural network to predict hard-to-predict branches,” in
53rd Int’l Symp. on Microarchitecture (MICRO), Oct. 2020, pp. 118–
130.

http://www.spec.org/cpu2017
https://www.hardwaretimes.com/intel-12th-gen-alder-lake-golden-cove-gracemont-cache-configuration-detailed/
https://www.hardwaretimes.com/intel-12th-gen-alder-lake-golden-cove-gracemont-cache-configuration-detailed/

	Introduction
	Background
	Store Sets
	NoSQ predictor
	MDP-TAGE

	Motivation
	Store sets versus single store
	Context information
	Analysis of unconstrained predictors

	PHAST
	Predictor behaviour
	Detecting dependencies
	Updating the predictor
	Predicting dependencies
	Propagating dependencies to the scheduler

	A cost-effective implementation

	Experimental Methodology
	Results
	Potential of PHAST and analysis
	Effect of avoiding squashes on forwarding
	Comparison to state-of-the-art predictors

	Related work
	Conclusion
	References

