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MOTIVATION

Cache coherence protocols ease programming
Coherence overhead is an important issue
But, coherence is sporadically needed
→ Why pay always?

Our goal→ Simplify coherence

And enforce it only when needed

How? VIPS family of cache coherence protocols
Simple, Efficient, Scalable
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MOTIVATION

Write-through protocols are simple
Only Valid and Invalid states

But they are not efficient because of write misses
Which write misses?

Private data in a write-back policy
→ evicted due to capacity/conflict misses

Shared data in a write-back policy
→ evicted due to capacity/conflict/coherence misses

Mostly private data misses ≈ 90%
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SIMPLIFYING COHERENCE: WRITE POLICY

Dynamic write policy in the L1s (private caches, in general)
Write-back for Private blocks

Simple (no coherence required) as in uniprocessors
Efficient→ no extra misses

Write-through for Shared blocks
Simple (only two states, VI)
Efficient→ coherence misses

VIPS: Valid/Invalid Private/Shared
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PRIVATE/SHARED CLASSIFICATION

Classify data (cache blocks) into private and shared
A-priori: Before issuing the coherence transaction we know
if it is for a private or for a shared block

i.e., OS/TLB, compiler, application

Page-level classification using the OS and the TLBs
Both page table and TLB entries have a P/S bit
The first TLB miss by a core sets the page to P
Subsequent TLB misses set the page to S
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VIPS PROPERTIES

Simplifies the protocol to just two states (VI)
Write-throughs eliminate the need of tracking writers at the
directory
→ Area reduction

No indirection for read misses
→ Correct shared data always at the LLC

Supports sequential consistency for every application
Same consistency model as the more complex MESI

But we still have invalidations and directory blocking...
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VIPS-M: SELF-INVALIDATION

We provide sequential consistency for DRF programs
Self-Invalidation of shared data from L1s

Selective Flush (SF) upon synchronization points
We eliminate invalidations
The directory is gone!

Multiple writers allowed for shared data
Self-downgrade
No need to request write permission
Write-through of diffs
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VIPS-M PROPERTIES

Selective flushing eliminates the need to track readers at
the directory

No need to send invalidations
The directory is gone!

Indirection completely removed
Private and DRF protocols practically the same
→ They differ only in when data is written back in the LLC

Provides correct semantics for synchronization instructions
Supports sequential consistency for DRF programs
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EXECUTION TIME

Hammer increases execution time w.r.t. MESI, and the
performance of a WT policy is prohibitive
VIPS performs similar to MESI
VIPS-M improves MESI by 4.8%, on average
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ENERGY CONSUMPTION

Hammer and WT consumption is undesirable
VIPS consumes similar energy to MESI
VIPS-M reduces consumption by 14.2% mainly due to its lower
traffic requirements

NORMALIZED ENERGY CONSUMPTION W.R.T. DIRECTORY
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INTRODUCTION

What is virtual-cache coherence?
Keeping cache coherence in a system with virtual caches

Coherence is maintained for physical addresses (e.g.,
shared cache)
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Simple and efficient approach
that supports virtual caches in
a cache coherence multicore
system, thus saving most of the
energy consumed by the TLBs
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VIRTUAL VS. PHYSICAL CACHES

Simple: Physically-indexed, physically-tagged
(PIPT) caches

Address translation before accessing the cache
BUT: high latency and high energy consumption
due to TLB accesses

Performance: Virtually-indexed, physically-tagged
(VIPT) caches

Translation before comparing the tags
TLB and cache accessed in parallel→ latency OK
BUT STILL: high energy consumption

Efficient: Virtually-indexed, virtually-tagged (VIVT)
caches

No TLB translation required on cache hits
NO extra latency or energy on cache hits
Larger TLBs, shared TLBs
Problem: synonyms
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VIRTUAL CACHES IN UNI- AND MULTI-PROCESSORS

Synonyms: Different virtual addresses mapping to the
same physical address

Address mapping changes or sharing among processes
IN VIVT CACHES: Multiple copies of the same (physical)
block in cache→ inconsistency

Hardware solutions (complex, expensive): Upon a miss
check if there are synonyms

Cache search: Looks in all possible sets

IN MULTIPROCESSORS: Reverse translation for messages
going from the physical to the virtual domain

Reverse map (R-tag memory) [Goodman, ASPLOS’87]

Hardware and memory requirements, and design complexity
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AVOIDING REVERSE TRANSLATION

We address this problem by focusing on the coherence
protocol
When is reverse translation performed?

For every coherence message sent from the physical
domain (shared cache) to the virtual domain (private cache)
In traditional coherence protocols:

Invalidations, downgrades, and forwardings: Not expected
by the cache controller (no MSHR entry)
Data and acks: expected by the cache controller (MSHR
entry)

Can coherence protocols satisfy the previous condition
while being efficient?

Yes, VIPS-M!

Virtual-cache coherence without reverse
translations is possible with a protocol that
does not have invalidations, downgrades, or
forwardings, towards the L1s
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VIPS-M IS THE RIGHT STUFF

Self-Invalidation eliminates directory invalidations
No invalidations issued from the LLC to the L1s

Write-throughs keep data clean in the L1 caches
No downgrades issued from the LLC to the L1s

Write-throughs keep data updated in the LLC caches
No forwardings issued from the LLC to the L1s
Indirection completely removed

VIPS-M can work with virtual caches without requiring reverse
translation and in the presence of synonyms
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DESIGN CHOICES FOR TLB PLACEMENT
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ENREGY CONSUMPTION

Around 17% in energy reduction thanks to the use of
virtual caches, mainly because of TLBs lookups
VIPS-M keeps its advantage w.r.t. MESI (savings of 20% in
total)
The VIPS-M with virtual caches consume similar energy
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EXECUTION TIME

Reverse translation is a problem for MESI protocols,
especially for the shared TLB configuration

VIPS-M obtains improvements by sharing the TLB
VIPS-M with virtual caches improves execution time by
5.4% w.r.t MESI with physical caches
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CONCLUSIONS

Virtual cache coherence can be implemented without
reverse translations and without increasing complexity
Our approach obtains execution time, energy, and area
improvements w.r.t. MESI Execution time (normalized)

Energy consumption (normalized) Area required (mm2)
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MOTIVATION

Need of simple, scalable, and efficient cache coherence
Many-core systems, GPUs?, accelerators??

Traditional directory protocols

Explicit invalidation/downgrades on writes/reads
⇒ Complex
Directory to track copies⇒ Non-scalable
Indirection⇒ Inefficient
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SIMPLE CACHE COHERENCE PROTOCOLS

Simple cache coherence: VIPS-M [Ros & Kaxiras, PACT’12]
Strictly request-response⇒ Simple
Coherence distributed across cores⇒ Scalable
No directory⇒ Simple and scalable
Efficient for data-race-free code

How? Self-invalidation and self-downgrade (SISD)

Synchronization exposed to the protocol

Release: Self-downgrade

⇒Write-through dirty blocks

Acquire: Self-invalidation

⇒ Empty the cache

EXAMPLE OF DRF CODE

/* Initially X = 0 */

X = 1;
SIGNAL(cond); WAIT(cond);

$r1 = X;

Sequential consistency (SC) for data-race-free (DRF) code

SD SI
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THE PROBLEM OF THE DATA RACES

Even DRF applications contain races!
Synchronization is inherently racy

Implemented performing spin-waiting

Spin-waiting is not efficient under SISD

Writes require fast propagation

Write-through and repeated self-invalidation

Repeated self-invalidation⇒ spin on last level cache (LLC)

Increases network traffic and LLC accesses ⇒ energy

VIPS-M solution
⇒ Exponential back-off

, Reduces SI, network traffic,
and LLC accesses

/ Slows down propagation
of writes

EXAMPLE OF DRF CODE

/* Initially X = 0 */

X = 1;
SIGNAL(cond); WAIT(cond);

$r1 = X;

EXAMPLE OF DRF CODE

/* Initially X = 0 */

X = 1;
cond = 1; while(!cond);

$r1 = X;

SI

Energy-performance trade-off!
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ENERGY-PERFORMANCE TRADE-OFF
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There is no best back-off in both latency and traffic!

THE CHALLENGE

Fast and efficient write propagation...
without explicit invalidations/downgrades
keeping a simple request-response protocol

Traffic Latency
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CALLBACKS

A mechanism with a directory just for races involved in
spin-waiting

Only special loads (or atomics) called LOAD_CALLBACK
(LD_CB) can allocate an entry in the directory

A LD_CB is similar to a load instruction, but

By-passes the private caches
May block at the shared cache waiting for a write to happen
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CALLBACK EXAMPLE

LLC

Network

L1 L1 L1 L1

Core0 Core1 Core2 Core3

CB Dir

Extremely small callback directory

⇒ Just a few entries

Callback Directory
Tag F/E CB

0 1 2 3 0 1 2 3

addr

x

Tag: word address

F/E: Full/Empty bits per core
Full: It may be a new value to consume
Empty: There is no new value

CB: Callback bits per core
A callback is blocked waiting for a new value

L
D

_C
B

x

LD_CB
x

ST
x

D
A

TA
x

DATA
x

LD_CB x
DATA x
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EXECUTION TIME AND ENERGY CONSUMPTION

Execution time

As good as the best BACKOFF
case

5% better than BACKOFF-10
(VIPS-M)

11% better than INVALIDATION

Energy consumption

INVALIDATION spins in L1

BACKOFF-0 spins in the LLC

CALLBACKS removes spinning
(40% and 5% reduction)
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TATAS VS. CLH

T&T&S + Callbacks allows only one of the threads to race
for acquiring the lock
T&T&S + Callbacks provides fairness
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CALLBACKS endow simple synchronization algorithms (TATAS)
with the efficiency of more complex ones (CLH)!
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TAKE AWAY MESSAGE

CALLBACKS: special loads for races in spin-waiting
⇒ Requires a very small directory

Simpler and more efficient than explicit invalidation!
Transparent to the coherence protocol
Makes efficient simple synchronization algorithms, such as
T&T&S
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OUTLINE
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MOTIVATION

Clustered cache hierarchies are a natural strategy for
reducing the overhead introduced by cache coherence
protocols (e.g., storage and traffic)1

But clustered cache hierarchies bring another problem

⇒ Design complexity: Keep the SWMR invariant in a clustered
cache hierarchy
A root node sends invalidations and waits for acks
A leaf node receives an invalidations and answers with acks
An intermediate node in a hierarchy performs both actions
⇒ cross-product of states!
(E.g., MOESI in GEMS: L1→ 16; L2→ 59; memory→ 13)

1 Martin, Hill, and Sorin. “Why on-chip cache coherence is here to stay”, CACM, 2012.
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1 Martin, Hill, and Sorin. “Why on-chip cache coherence is here to stay”, CACM, 2012.
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APPROACH

Simplify the source of complexity: invalidation/downgrade
No write-invalidation⇒ self-invalidation (SI) on
synchronization points
No read-downgrade⇒ self-downgrade (SD) on
synchronization points
Provide sequential consistency for data-race-free (SC for
DRF) applications
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CHALLENGE

Our approach for simplifying the protocol is SI/SD
A naïve implementation has to SI/SD all the data in the
cache hierarchy

Not efficient!

A new approach for restricting SI/SD in a clustered cache
hierarchy is required
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SOLUTION

We solve this problem by introducing the concept of
hierarchical P/S classification

A block can be shared inside a cluster but be private
outside
The level where this transition happens is the common
sharing level (CSL)
Restrict SI/SD to shared blocks within a cluster

Result
The protocol remains simple⇒ NO hierarchical complexity
Hierarchical complexity transferred to classification
In this paper we do classification at page level by adding
information to the page tables

So all complexity is transferred to software
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COMMON SHARING LEVEL
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SI/SD only for blocks in shared pages

Page table entry (global hierarchy knowledge) stores:

First requester of a page (log2N)
CSL (dlog2dlog2 N/ log2 dee): Root of the cluster containing
all sharers

TLB entry (local hierarchy knowledge) stores the CSL of
the page

CSL is known before the cache miss takes place (a-priori)
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COMPLEXITY, COST, AND AREA

H-MOESI: Hierarchical full-map
VIPS-H: P/S bit

NUMBER OF STATES AND EXTRA BITS REQUIRED (16X4)
H-MOESI VIPS-H

States Bitmap Total States P/S Total
Controller Tot./Base bits bits Tot./Base bit bits
L1 cache 16 / 5 0 3 9 / 3 1 3
L2 cache 59 / 13 16 20 5 / 3 1 3
L3 cache 13 / 4 4 6 4 / 3 1 3
Total cost 844KB 204KB

76% memory reduction compared to H-MOESI
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COMPARISON TO H-MOESI AND VIPS-M: TIME

Flat VIPS-M degrades performance by 10% w.r.t.
H-MOESI for 4x4, get similar performance for 16x4
VIPS-H improves execution time by about 11% for 16x4
VIPS scales better than H-MOESI in time
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COMPARISON TO H-MOESI AND VIPS-M: TRAFFIC

VIPS increases Response_data⇒ more cache misses
But less control traffic⇒ no invalidations acks
It scales better than H-MOESI in traffic (5%–7% for 16x4)
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CONCLUSIONS

Simple and efficient cache coherence for clustered cache
architectures
Keys:

Self-invalidation and self-downgrade and the assumption of
SC for DRF semantics
Hierarchical private/shared classification

Results:
Simpler than H-MOESI

Less states memory overhead (from 94 to 18)
Less memory overhead (76%)

Better performance (11%, on average for 16x4)
Reduced network traffic (7%, on average for 16x4)
Better scalability
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OUTLINE
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ARGO

VIPS-M ⇒ Self-Invalidation & Self-Downgrade
VIPS coherence is truly distributed.
Coherence decisions are taken independently without any
inter-core interaction
⇒ Simplifies whole system design

Request-Response from the L1s to the LLC
No requests from LCC to L1s
No traffic among L1s, only L1⇔ LLC

Can this be the answer to distributed coherence?
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TRENDS: WHY NOW?

1992	   1994	   1997	   2000	   2005	   2007	   2009	   2011	  

CPU	  speed	  High	  (MHz)	   40	   60	   100	   500	   1000	   1500	   1700	   1800	  

CPU	  speed	  Low	  (MHz)	   200	   500	   1000	   2400	   3200	   3200	   3300	   3400	  

DRAM	  Latency	  Low	  (ns)	   80	   70	   70	   70	   70	   60	   50	   50	  

DRAM	  Latency	  High	  (ns)	   100	   100	   100	   120	   100	   100	   60	   60	  

Network	  BW	  (Mbps)	   1500	   1500	   2100	   8500	   20000	   40000	   128000	   250000	  

Network	  Latency	  (ns)	   200000	   100000	   30000	   10000	   1300	   1300	   1000	   500	  

10	  

100	  

1000	  

10000	  

100000	  

1000000	  

CPU,	  DRAM	  and	  Network	  Trends	  
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ARGO IN A NUTSHELL

VIPS-DSM for distributed systems
User-space implementation
Runs Pthreads (DRF programs)

Small porting effort to fully exploit new synchronization
system and optimize synchronization performance

Page-based DSM (uses virtual memory faults for misses)
Pages have a home node (limitation: naïve distribution)
MPI is the “network layer” (limitation: only need RDMA)

Alberto Ros BSC, Spain Dec 17, 2015 47 / 54



COMPONENTS OF ARGO

CARINA: VIPS-DSM coherence
PYXIS: Classification directories
VELA: Hierarchical Queue Delegation Locking system
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CARINA & PYXIS: COHERENCE & DIRECTORIES

Modified VIPS: SI & SD
Strictly request response for DRF accesses

Pyxis classification directories cached at nodes
NO message handlers to classify pages and propagate
classification changes
Requestors are responsible to update classification at
remote nodes (P→S, requestor updates private owner)
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CARINA & PYXIS: COHERENCE & DIRECTORIES

Classification:
Only for Global shared memory (Gmalloc’ed)
Adds classification for writers
Private, Shared-NW (No Writers), Shared-SW (Single
Writer), Shared-MW (Multiple Writers)

Sync. point
(Aqc./Rel.)

S,MWS,SWS,NWP
P/S Classification P/S3 Classification

P SSI
SD

Time

SI SDSDSD SD

(No SI) (No SI)(No SI/SD) (No SI)

SI/SD
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VELA: ARGO’S SYNCHRONIZATION SYSTEM

The trouble with distributed critial section (CS) execution:
Serialized execution that migrates from node to node!

Forces data accessed in CS to migrate too
Must SI on Lock, SD on Unlock

Solution: Queue Delegation Locking [SPAA’14,
EuroPar’14]

Delegate the execution of the CS to the current holder of
the lock (up to a point)

Hierarchical QDL: Delegate only locally
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RESULTS
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OUTLINE
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RECAP

In this talk:
VIPS-M: Simple Request-Response Protocols [PACT’12]
VIPS-V: Virtual Cache Coherence [ISCA’13]
VIPS-H: Clustered Hierarchies [HPCA’15]
Callbacks: Efficient Spin-Waiting [ISCA’15]
Argo: Distributed Shared Memory [HPDC’15]

Other VIPS works:
VIPS-B: Bus coherence [SoCC’12]
Fast&Furious: Data-Race Detector [PARMA-DITAM’15]
VIPS-GC: Generational Coherence [TACO’15]
Dir1-SISD: Self-Contained Directories [PACT’15]
VIPS-G: CPU-GPU Coherence [TACO’16]

Alberto Ros BSC, Spain Dec 17, 2015 54 / 54



VIPS: SIMPLE, EFFICIENT, AND SCALABLE

CACHE COHERENCE
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SIMULATION ENVIRONMENT

SIMICS (functional simulation) + GEMS (memory timing) +
GARNET (network)
CACTI 6.5 for 32nm technology
Simulated a 16-tile multicore

32KB 4-way I&D L1s, 8MB (512KB/bank) 16-way L2 (LLC)
16-entry MSHRs with 1000-cycle timeout

SPLASH-2, scientific, and PARSEC benchmarks.

Protocol Invalidations Directory Indirection L1 base states
Hammer Broadcast None Yes 5 (MOESI)
Directory Multicast Full-map Yes 4 (MESI)
Write-Through Multicast Full-map Only write misses 2 (VI)
VIPS Multicast Full-map Only for write misses 2 (VI)
VIPS-M None None No 2 (VI)
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EVALUATION
L1 SENSITIVITY ANALYSIS

PERFORMANCE 16KB–64KB L1
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RESULTS
CACHE MISSES

Cold-cap-conf misses decrease due to the lack of write
misses for DRF blocks
Misses due to write throughs are not significant
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VIPS-M
PROTOCOL FOR SYNCHRONIZATION

Works very well for small critical sections

ATOMIC RMW TRANSACTIONS FOR SHARED BLOCKS

0L1

1L1

Small critical 

section

Small critical 

section

LLC

I/V

WT−Unblock(0)

GetX

RMW

GetX

RMW

Rd(0)Wr(1)

I/V

I
Wr(0)

Rd(0)Wr(1)

Write permission

* Write miss in MSHR

WT−Unblock(0)

I
Wr(0)

V(0)

V*

V*

Data(0)

Data(0)
V(0)

Exponential back-off required for power reasons for large
critical sections
Considering hardware synchronization all protocols will be
reduced to request-response transactions
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