
VIPS: SIMPLE, EFFICIENT, AND SCALABLE

CACHE COHERENCE

Alberto Ros1 Stefanos Kaxiras2

Kostis Sagonas2 Mahdad Davari2

Magnus Norgen2 David Klaftenegger2

1Universidad de Murcia
aros@ditec.um.es

2Uppsala University

Dec 17, 2015

Alberto Ros BSC, Spain Dec 17, 2015 1 / 54

MOTIVATION

Cache coherence protocols ease programming
Coherence overhead is an important issue
But, coherence is sporadically needed
→ Why pay always?

Our goal→ Simplify coherence

And enforce it only when needed

How? VIPS family of cache coherence protocols
Simple, Efficient, Scalable

Alberto Ros BSC, Spain Dec 17, 2015 2 / 54

MOTIVATION

Cache coherence protocols ease programming
Coherence overhead is an important issue
But, coherence is sporadically needed
→ Why pay always?

Our goal→ Simplify coherence
And enforce it only when needed

How? VIPS family of cache coherence protocols
Simple, Efficient, Scalable

Alberto Ros BSC, Spain Dec 17, 2015 2 / 54

MOTIVATION

Cache coherence protocols ease programming
Coherence overhead is an important issue
But, coherence is sporadically needed
→ Why pay always?

Our goal→ Simplify coherence
And enforce it only when needed

How? VIPS family of cache coherence protocols
Simple, Efficient, Scalable

Alberto Ros BSC, Spain Dec 17, 2015 2 / 54

OVERVIEW

P0 P1 P2 P3

TLB TLB TLB TLB

L1 L1 L1 L1

Network

L2

VIPS-M Simple request-response coherencePACT’12

VIPS-V Virtual Cache CoherenceISCA’13
CALLBACKS Efficient Spin-WaitingISCA’15

P4 P5 P6 P7

TLB TLB TLB TLB

L1 L1 L1 L1

Network

L2

Network

L3

VIPS-H Clustered HierarchiesHPCA’15

Node1

Node2

Node3

Infiniband

HPDC’15 ARGO Distributed Shared Memory

Alberto Ros BSC, Spain Dec 17, 2015 3 / 54

OVERVIEW

P0 P1 P2 P3

TLB TLB TLB TLB

L1 L1 L1 L1

Network

L2
VIPS-M Simple request-response coherencePACT’12

VIPS-V Virtual Cache CoherenceISCA’13
CALLBACKS Efficient Spin-WaitingISCA’15

P4 P5 P6 P7

TLB TLB TLB TLB

L1 L1 L1 L1

Network

L2

Network

L3

VIPS-H Clustered HierarchiesHPCA’15

Node1

Node2

Node3

Infiniband

HPDC’15 ARGO Distributed Shared Memory

Alberto Ros BSC, Spain Dec 17, 2015 3 / 54

OVERVIEW

P0 P1 P2 P3

TLB TLB TLB TLB

L1 L1 L1 L1

Network

L2

VIPS-M Simple request-response coherence

PACT’12

VIPS-V Virtual Cache CoherenceISCA’13

CALLBACKS Efficient Spin-WaitingISCA’15

P4 P5 P6 P7

TLB TLB TLB TLB

L1 L1 L1 L1

Network

L2

Network

L3

VIPS-H Clustered HierarchiesHPCA’15

Node1

Node2

Node3

Infiniband

HPDC’15 ARGO Distributed Shared Memory

Alberto Ros BSC, Spain Dec 17, 2015 3 / 54

OVERVIEW

P0 P1 P2 P3

TLB TLB TLB TLB

L1 L1 L1 L1

Network

L2

VIPS-M Simple request-response coherence

PACT’12

VIPS-V Virtual Cache Coherence

ISCA’13
CALLBACKS Efficient Spin-WaitingISCA’15

P4 P5 P6 P7

TLB TLB TLB TLB

L1 L1 L1 L1

Network

L2

Network

L3

VIPS-H Clustered HierarchiesHPCA’15

Node1

Node2

Node3

Infiniband

HPDC’15 ARGO Distributed Shared Memory

Alberto Ros BSC, Spain Dec 17, 2015 3 / 54

OVERVIEW

P0 P1 P2 P3

TLB TLB TLB TLB

L1 L1 L1 L1

Network

L2

VIPS-M Simple request-response coherence

PACT’12

VIPS-V Virtual Cache Coherence

ISCA’13

CALLBACKS Efficient Spin-Waiting

ISCA’15

P4 P5 P6 P7

TLB TLB TLB TLB

L1 L1 L1 L1

Network

L2

Network

L3

VIPS-H Clustered HierarchiesHPCA’15

Node1

Node2

Node3

Infiniband

HPDC’15 ARGO Distributed Shared Memory

Alberto Ros BSC, Spain Dec 17, 2015 3 / 54

OVERVIEW

P0 P1 P2 P3

TLB TLB TLB TLB

L1 L1 L1 L1

Network

L2

VIPS-M Simple request-response coherence

PACT’12

VIPS-V Virtual Cache Coherence

ISCA’13

CALLBACKS Efficient Spin-Waiting

ISCA’15

P4 P5 P6 P7

TLB TLB TLB TLB

L1 L1 L1 L1

Network

L2

Network

L3

VIPS-H Clustered Hierarchies

HPCA’15

Node1

Node2

Node3

Infiniband

HPDC’15 ARGO Distributed Shared Memory

Alberto Ros BSC, Spain Dec 17, 2015 3 / 54

OUTLINE

Alberto Ros BSC, Spain Dec 17, 2015 4 / 54

OUTLINE

Alberto Ros BSC, Spain Dec 17, 2015 5 / 54

MOTIVATION

Write-through protocols are simple
Only Valid and Invalid states

But they are not efficient because of write misses
Which write misses?

Private data in a write-back policy
→ evicted due to capacity/conflict misses

Shared data in a write-back policy
→ evicted due to capacity/conflict/coherence misses

Mostly private data misses ≈ 90%

Barnes

Cholesky
FFT

FMM LU
Ocean

Radiosity

Raytra
ce

Volre
nd

Water-N
sq

Water-S
p

Em3d

Tomcatv
x264

Average

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

P
e

rc
e

n
ta

g
e

 o
f

w
ri
te

 m
is

s
e

s

Private Shared

Alberto Ros BSC, Spain Dec 17, 2015 6 / 54

MOTIVATION

Write-through protocols are simple
Only Valid and Invalid states
But they are not efficient because of write misses

Which write misses?

Private data in a write-back policy
→ evicted due to capacity/conflict misses

Shared data in a write-back policy
→ evicted due to capacity/conflict/coherence misses

Mostly private data misses ≈ 90%

Barnes

Cholesky
FFT

FMM LU
Ocean

Radiosity

Raytra
ce

Volre
nd

Water-N
sq

Water-S
p

Em3d

Tomcatv
x264

Average

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

P
e

rc
e

n
ta

g
e

 o
f

w
ri
te

 m
is

s
e

s

Private Shared

Alberto Ros BSC, Spain Dec 17, 2015 6 / 54

MOTIVATION

Write-through protocols are simple
Only Valid and Invalid states
But they are not efficient because of write misses

Which write misses?
Private data in a write-back policy
→ evicted due to capacity/conflict misses

Shared data in a write-back policy
→ evicted due to capacity/conflict/coherence misses

Mostly private data misses ≈ 90%

Barnes

Cholesky
FFT

FMM LU
Ocean

Radiosity

Raytra
ce

Volre
nd

Water-N
sq

Water-S
p

Em3d

Tomcatv
x264

Average

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

P
e

rc
e

n
ta

g
e

 o
f

w
ri
te

 m
is

s
e

s

Private Shared

Alberto Ros BSC, Spain Dec 17, 2015 6 / 54

MOTIVATION

Write-through protocols are simple
Only Valid and Invalid states
But they are not efficient because of write misses

Which write misses?
Private data in a write-back policy
→ evicted due to capacity/conflict misses

Shared data in a write-back policy
→ evicted due to capacity/conflict/coherence misses

Mostly private data misses ≈ 90%

Barnes

Cholesky
FFT

FMM LU
Ocean

Radiosity

Raytra
ce

Volre
nd

Water-N
sq

Water-S
p

Em3d

Tomcatv
x264

Average

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

P
e

rc
e

n
ta

g
e

 o
f

w
ri
te

 m
is

s
e

s

Private Shared

Alberto Ros BSC, Spain Dec 17, 2015 6 / 54

SIMPLIFYING COHERENCE: WRITE POLICY

Dynamic write policy in the L1s (private caches, in general)
Write-back for Private blocks

Simple (no coherence required) as in uniprocessors
Efficient→ no extra misses

Write-through for Shared blocks
Simple (only two states, VI)
Efficient→ coherence misses

VIPS: Valid/Invalid Private/Shared

Alberto Ros BSC, Spain Dec 17, 2015 7 / 54

PRIVATE/SHARED CLASSIFICATION

Classify data (cache blocks) into private and shared
A-priori: Before issuing the coherence transaction we know
if it is for a private or for a shared block

i.e., OS/TLB, compiler, application

Page-level classification using the OS and the TLBs
Both page table and TLB entries have a P/S bit
The first TLB miss by a core sets the page to P
Subsequent TLB misses set the page to S

Alberto Ros BSC, Spain Dec 17, 2015 8 / 54

VIPS PROPERTIES

Simplifies the protocol to just two states (VI)
Write-throughs eliminate the need of tracking writers at the
directory
→ Area reduction

No indirection for read misses
→ Correct shared data always at the LLC

Supports sequential consistency for every application
Same consistency model as the more complex MESI

But we still have invalidations and directory blocking...

Alberto Ros BSC, Spain Dec 17, 2015 9 / 54

VIPS-M: SELF-INVALIDATION

We provide sequential consistency for DRF programs
Self-Invalidation of shared data from L1s

Selective Flush (SF) upon synchronization points
We eliminate invalidations
The directory is gone!

Multiple writers allowed for shared data
Self-downgrade
No need to request write permission
Write-through of diffs

Alberto Ros BSC, Spain Dec 17, 2015 10 / 54

VIPS-M PROPERTIES

Selective flushing eliminates the need to track readers at
the directory

No need to send invalidations
The directory is gone!

Indirection completely removed
Private and DRF protocols practically the same
→ They differ only in when data is written back in the LLC

Provides correct semantics for synchronization instructions
Supports sequential consistency for DRF programs

Alberto Ros BSC, Spain Dec 17, 2015 11 / 54

EXECUTION TIME

Hammer increases execution time w.r.t. MESI, and the
performance of a WT policy is prohibitive
VIPS performs similar to MESI
VIPS-M improves MESI by 4.8%, on average

NORMALIZED EXECUTION TIME W.R.T. DIRECTORY

Barnes

Cholesky
FFT

FMM LU
Ocean

Radiosity

Raytra
ce

Volre
nd

Water-N
sq

Water-S
p

Em3d

Tomcatv

Canneal
x264

Average

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t
im

e

Hammer Directory Write-through VIPS VIPS-M

2.83 2.42 2.85 2.19 2.13 2.12 2.21

Alberto Ros BSC, Spain Dec 17, 2015 12 / 54

ENERGY CONSUMPTION

Hammer and WT consumption is undesirable
VIPS consumes similar energy to MESI
VIPS-M reduces consumption by 14.2% mainly due to its lower
traffic requirements

NORMALIZED ENERGY CONSUMPTION W.R.T. DIRECTORY

Barnes

Cholesky
FFT

FMM LU
Ocean

Radiosity

Raytra
ce

Volre
nd

Water-N
sq

Water-S
p

Em3d

Tomcatv

Canneal
x264

Average

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
o
rm

a
liz

e
d
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n

LLC Network

8.3 5.3 4.2 5.0 8.8 22.9 5.1 15.5 9.6 56.2 3.3 7.0

1. Hammer 2. Directory 3. Write-through 4. VIPS 5. VIPS-M

Alberto Ros BSC, Spain Dec 17, 2015 13 / 54

OUTLINE

Alberto Ros BSC, Spain Dec 17, 2015 14 / 54

INTRODUCTION

What is virtual-cache coherence?
Keeping cache coherence in a system with virtual caches

Coherence is maintained for physical addresses (e.g.,
shared cache)

Core

L1

Core

L1

Core

L1

Core

L1

Network

Shared L2

Virtual
domain

Physical
domain

CONTRIBUTION

Simple and efficient approach
that supports virtual caches in
a cache coherence multicore
system, thus saving most of the
energy consumed by the TLBs

Alberto Ros BSC, Spain Dec 17, 2015 15 / 54

INTRODUCTION

What is virtual-cache coherence?
Keeping cache coherence in a system with virtual caches

Coherence is maintained for physical addresses (e.g.,
shared cache)

Core

L1

Core

L1

Core

L1

Core

L1

Network

Shared L2

Virtual
domain

Physical
domain

CONTRIBUTION

Simple and efficient approach
that supports virtual caches in
a cache coherence multicore
system, thus saving most of the
energy consumed by the TLBs

Alberto Ros BSC, Spain Dec 17, 2015 15 / 54

INTRODUCTION

What is virtual-cache coherence?
Keeping cache coherence in a system with virtual caches

Coherence is maintained for physical addresses (e.g.,
shared cache)

Core

L1

Core

L1

Core

L1

Core

L1

Network

Shared L2

Virtual
domain

Physical
domain

CONTRIBUTION

Simple and efficient approach
that supports virtual caches in
a cache coherence multicore
system, thus saving most of the
energy consumed by the TLBs

Alberto Ros BSC, Spain Dec 17, 2015 15 / 54

VIRTUAL VS. PHYSICAL CACHES

Simple: Physically-indexed, physically-tagged
(PIPT) caches

Address translation before accessing the cache
BUT: high latency and high energy consumption
due to TLB accesses

Performance: Virtually-indexed, physically-tagged
(VIPT) caches

Translation before comparing the tags
TLB and cache accessed in parallel→ latency OK
BUT STILL: high energy consumption

Efficient: Virtually-indexed, virtually-tagged (VIVT)
caches

No TLB translation required on cache hits
NO extra latency or energy on cache hits
Larger TLBs, shared TLBs
Problem: synonyms

Cache

TLB

Core

Va

Pa

Core

TLB Cache

Va

Pa

Core

Cache

TLB

Va

Va

Alberto Ros BSC, Spain Dec 17, 2015 16 / 54

VIRTUAL VS. PHYSICAL CACHES

Simple: Physically-indexed, physically-tagged
(PIPT) caches

Address translation before accessing the cache
BUT: high latency and high energy consumption
due to TLB accesses

Performance: Virtually-indexed, physically-tagged
(VIPT) caches

Translation before comparing the tags
TLB and cache accessed in parallel→ latency OK
BUT STILL: high energy consumption

Efficient: Virtually-indexed, virtually-tagged (VIVT)
caches

No TLB translation required on cache hits
NO extra latency or energy on cache hits
Larger TLBs, shared TLBs
Problem: synonyms

Cache

TLB

Core

Va

Pa

Core

TLB Cache

Va

Pa

Core

Cache

TLB

Va

Va

Alberto Ros BSC, Spain Dec 17, 2015 16 / 54

VIRTUAL VS. PHYSICAL CACHES

Simple: Physically-indexed, physically-tagged
(PIPT) caches

Address translation before accessing the cache
BUT: high latency and high energy consumption
due to TLB accesses

Performance: Virtually-indexed, physically-tagged
(VIPT) caches

Translation before comparing the tags
TLB and cache accessed in parallel→ latency OK
BUT STILL: high energy consumption

Efficient: Virtually-indexed, virtually-tagged (VIVT)
caches

No TLB translation required on cache hits
NO extra latency or energy on cache hits
Larger TLBs, shared TLBs
Problem: synonyms

Cache

TLB

Core

Va

Pa

Core

TLB Cache

Va

Pa

Core

Cache

TLB

Va

Va

Alberto Ros BSC, Spain Dec 17, 2015 16 / 54

VIRTUAL CACHES IN UNI- AND MULTI-PROCESSORS

Synonyms: Different virtual addresses mapping to the
same physical address

Address mapping changes or sharing among processes
IN VIVT CACHES: Multiple copies of the same (physical)
block in cache→ inconsistency

Hardware solutions (complex, expensive): Upon a miss
check if there are synonyms

Cache search: Looks in all possible sets

IN MULTIPROCESSORS: Reverse translation for messages
going from the physical to the virtual domain

Reverse map (R-tag memory) [Goodman, ASPLOS’87]

Hardware and memory requirements, and design complexity

Alberto Ros BSC, Spain Dec 17, 2015 17 / 54

AVOIDING REVERSE TRANSLATION

We address this problem by focusing on the coherence
protocol
When is reverse translation performed?

For every coherence message sent from the physical
domain (shared cache) to the virtual domain (private cache)
In traditional coherence protocols:

Invalidations, downgrades, and forwardings: Not expected
by the cache controller (no MSHR entry)
Data and acks: expected by the cache controller (MSHR
entry)

Can coherence protocols satisfy the previous condition
while being efficient?

Yes, VIPS-M!

Virtual-cache coherence without reverse
translations is possible with a protocol that
does not have invalidations, downgrades, or
forwardings, towards the L1s

Alberto Ros BSC, Spain Dec 17, 2015 18 / 54

AVOIDING REVERSE TRANSLATION

We address this problem by focusing on the coherence
protocol
When is reverse translation performed?

For every coherence message sent from the physical
domain (shared cache) to the virtual domain (private cache)
In traditional coherence protocols:

Invalidations, downgrades, and forwardings: Not expected
by the cache controller (no MSHR entry)
Data and acks: expected by the cache controller (MSHR
entry)

Can coherence protocols satisfy the previous condition
while being efficient?

Yes, VIPS-M!

Virtual-cache coherence without reverse
translations is possible with a protocol that
does not have invalidations, downgrades, or
forwardings, towards the L1s

Alberto Ros BSC, Spain Dec 17, 2015 18 / 54

AVOIDING REVERSE TRANSLATION

We address this problem by focusing on the coherence
protocol
When is reverse translation performed?

For every coherence message sent from the physical
domain (shared cache) to the virtual domain (private cache)
In traditional coherence protocols:

Invalidations, downgrades, and forwardings: Not expected
by the cache controller (no MSHR entry)
Data and acks: expected by the cache controller (MSHR
entry)

Can coherence protocols satisfy the previous condition
while being efficient?

Yes, VIPS-M!

Virtual-cache coherence without reverse
translations is possible with a protocol that
does not have invalidations, downgrades, or
forwardings, towards the L1s

Alberto Ros BSC, Spain Dec 17, 2015 18 / 54

AVOIDING REVERSE TRANSLATION

We address this problem by focusing on the coherence
protocol
When is reverse translation performed?

For every coherence message sent from the physical
domain (shared cache) to the virtual domain (private cache)
In traditional coherence protocols:

Invalidations, downgrades, and forwardings: Not expected
by the cache controller (no MSHR entry)
Data and acks: expected by the cache controller (MSHR
entry)

Can coherence protocols satisfy the previous condition
while being efficient?

Yes, VIPS-M!

Virtual-cache coherence without reverse
translations is possible with a protocol that
does not have invalidations, downgrades, or
forwardings, towards the L1s

Alberto Ros BSC, Spain Dec 17, 2015 18 / 54

AVOIDING REVERSE TRANSLATION

We address this problem by focusing on the coherence
protocol
When is reverse translation performed?

For every coherence message sent from the physical
domain (shared cache) to the virtual domain (private cache)
In traditional coherence protocols:

Invalidations, downgrades, and forwardings: Not expected
by the cache controller (no MSHR entry)
Data and acks: expected by the cache controller (MSHR
entry)

Can coherence protocols satisfy the previous condition
while being efficient?

Yes, VIPS-M!

Virtual-cache coherence without reverse
translations is possible with a protocol that
does not have invalidations, downgrades, or
forwardings, towards the L1s

Alberto Ros BSC, Spain Dec 17, 2015 18 / 54

VIPS-M IS THE RIGHT STUFF

Self-Invalidation eliminates directory invalidations
No invalidations issued from the LLC to the L1s

Write-throughs keep data clean in the L1 caches
No downgrades issued from the LLC to the L1s

Write-throughs keep data updated in the LLC caches
No forwardings issued from the LLC to the L1s
Indirection completely removed

VIPS-M can work with virtual caches without requiring reverse
translation and in the presence of synonyms

Alberto Ros BSC, Spain Dec 17, 2015 19 / 54

VIPS-M IS THE RIGHT STUFF

Self-Invalidation eliminates directory invalidations
No invalidations issued from the LLC to the L1s

Write-throughs keep data clean in the L1 caches
No downgrades issued from the LLC to the L1s

Write-throughs keep data updated in the LLC caches
No forwardings issued from the LLC to the L1s
Indirection completely removed

VIPS-M can work with virtual caches without requiring reverse
translation and in the presence of synonyms

Alberto Ros BSC, Spain Dec 17, 2015 19 / 54

DESIGN CHOICES FOR TLB PLACEMENT

C

TLB

L1

C

TLB

L1

C

TLB

L1

LLC LLC LLC LLC LLC LLC

C

L1

TLB

C

L1

TLB

C

L1

TLB

LLC LLC LLC

C

L1

C

L1

C

L1

Net

TLB TLB TLB

Virtual

Physical

Private

Shared Virtual

Physical

Private

Shared

Net

...

...

Net

...

...

...

...

C1TNLCT1NL C1NTL

CTNL: Physically-tagged L1 caches
CTNL: Virtual L1 caches, private TLBs
CNTL: Virtual L1 caches, shared TLBs

Alberto Ros BSC, Spain Dec 17, 2015 20 / 54

ENREGY CONSUMPTION

Around 17% in energy reduction thanks to the use of
virtual caches, mainly because of TLBs lookups
VIPS-M keeps its advantage w.r.t. MESI (savings of 20% in
total)
The VIPS-M with virtual caches consume similar energy

Barnes
Cholesky FFT FMM LU

Ocean
Radiosity

Raytrace
Volrend

Water-Nsq
Water-Sp

Em3d
Tomcatv

Blackscholes
Swaptions x264

Average
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

E
ne

rg
y

co
ns

um
pt

io
n

L1
LLC

Network
TLB

R-Tag1. MESI-CT1NL
2. VIPS-M-CT1NL

3. MESI-C1TNL
4. VIPS-M-C1TNL

5. MESI-C1NTL
6. VIPS-M-C1NTL

Alberto Ros BSC, Spain Dec 17, 2015 21 / 54

ENREGY CONSUMPTION

Around 17% in energy reduction thanks to the use of
virtual caches, mainly because of TLBs lookups

VIPS-M keeps its advantage w.r.t. MESI (savings of 20% in
total)
The VIPS-M with virtual caches consume similar energy

Barnes
Cholesky FFT FMM LU

Ocean
Radiosity

Raytrace
Volrend

Water-Nsq
Water-Sp

Em3d
Tomcatv

Blackscholes
Swaptions x264

Average
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

E
ne

rg
y

co
ns

um
pt

io
n

L1
LLC

Network
TLB

R-Tag1. MESI-CT1NL
2. VIPS-M-CT1NL

3. MESI-C1TNL
4. VIPS-M-C1TNL

5. MESI-C1NTL
6. VIPS-M-C1NTL

Alberto Ros BSC, Spain Dec 17, 2015 21 / 54

ENREGY CONSUMPTION

Around 17% in energy reduction thanks to the use of
virtual caches, mainly because of TLBs lookups
VIPS-M keeps its advantage w.r.t. MESI (savings of 20% in
total)

The VIPS-M with virtual caches consume similar energy

Barnes
Cholesky FFT FMM LU

Ocean
Radiosity

Raytrace
Volrend

Water-Nsq
Water-Sp

Em3d
Tomcatv

Blackscholes
Swaptions x264

Average
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

E
ne

rg
y

co
ns

um
pt

io
n

L1
LLC

Network
TLB

R-Tag1. MESI-CT1NL
2. VIPS-M-CT1NL

3. MESI-C1TNL
4. VIPS-M-C1TNL

5. MESI-C1NTL
6. VIPS-M-C1NTL

Alberto Ros BSC, Spain Dec 17, 2015 21 / 54

ENREGY CONSUMPTION

Around 17% in energy reduction thanks to the use of
virtual caches, mainly because of TLBs lookups
VIPS-M keeps its advantage w.r.t. MESI (savings of 20% in
total)
The VIPS-M with virtual caches consume similar energy

Barnes
Cholesky FFT FMM LU

Ocean
Radiosity

Raytrace
Volrend

Water-Nsq
Water-Sp

Em3d
Tomcatv

Blackscholes
Swaptions x264

Average
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

E
ne

rg
y

co
ns

um
pt

io
n

L1
LLC

Network
TLB

R-Tag1. MESI-CT1NL
2. VIPS-M-CT1NL

3. MESI-C1TNL
4. VIPS-M-C1TNL

5. MESI-C1NTL
6. VIPS-M-C1NTL

Alberto Ros BSC, Spain Dec 17, 2015 21 / 54

EXECUTION TIME

Reverse translation is a problem for MESI protocols,
especially for the shared TLB configuration

VIPS-M obtains improvements by sharing the TLB
VIPS-M with virtual caches improves execution time by
5.4% w.r.t MESI with physical caches

Barnes
Cholesky FFT FMM LU

Ocean
Radiosity

Raytrace
Volrend

Water-Nsq
Water-Sp

Em3d
Tomcatv

Blackscholes
Swaptions x264

Average
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e MESI-CT1NL
VIPS-M-CT1NL

MESI-C1TNL
VIPS-M-C1TNL

MESI-C1NTL
VIPS-M-C1NTL

Alberto Ros BSC, Spain Dec 17, 2015 22 / 54

EXECUTION TIME

Reverse translation is a problem for MESI protocols,
especially for the shared TLB configuration
VIPS-M obtains improvements by sharing the TLB

VIPS-M with virtual caches improves execution time by
5.4% w.r.t MESI with physical caches

Barnes
Cholesky FFT FMM LU

Ocean
Radiosity

Raytrace
Volrend

Water-Nsq
Water-Sp

Em3d
Tomcatv

Blackscholes
Swaptions x264

Average
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e MESI-CT1NL
VIPS-M-CT1NL

MESI-C1TNL
VIPS-M-C1TNL

MESI-C1NTL
VIPS-M-C1NTL

Alberto Ros BSC, Spain Dec 17, 2015 22 / 54

EXECUTION TIME

Reverse translation is a problem for MESI protocols,
especially for the shared TLB configuration
VIPS-M obtains improvements by sharing the TLB
VIPS-M with virtual caches improves execution time by
5.4% w.r.t MESI with physical caches

Barnes
Cholesky FFT FMM LU

Ocean
Radiosity

Raytrace
Volrend

Water-Nsq
Water-Sp

Em3d
Tomcatv

Blackscholes
Swaptions x264

Average
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e MESI-CT1NL
VIPS-M-CT1NL

MESI-C1TNL
VIPS-M-C1TNL

MESI-C1NTL
VIPS-M-C1NTL

Alberto Ros BSC, Spain Dec 17, 2015 22 / 54

CONCLUSIONS

Virtual cache coherence can be implemented without
reverse translations and without increasing complexity
Our approach obtains execution time, energy, and area
improvements w.r.t. MESI Execution time (normalized)

Energy consumption (normalized) Area required (mm2)

1.10

1.05

1.00

0.95

1.0

0.9

0.8

0.7

2.0

1.7

1.4

1.1

MESI-cTnl y
VIPS-M-cTnl y
MESI-cTnl y
VIPS-M-cTnl y
MESI-cnTl y
VIPS-M-cnTl y

Alberto Ros BSC, Spain Dec 17, 2015 23 / 54

OUTLINE

Alberto Ros BSC, Spain Dec 17, 2015 24 / 54

MOTIVATION

Need of simple, scalable, and efficient cache coherence
Many-core systems, GPUs?, accelerators??

Traditional directory protocols

Explicit invalidation/downgrades on writes/reads
⇒ Complex
Directory to track copies⇒ Non-scalable
Indirection⇒ Inefficient

Alberto Ros BSC, Spain Dec 17, 2015 25 / 54

MOTIVATION

Need of simple, scalable, and efficient cache coherence
Many-core systems, GPUs?, accelerators??

Traditional directory protocols
Explicit invalidation/downgrades on writes/reads
⇒ Complex
Directory to track copies⇒ Non-scalable
Indirection⇒ Inefficient

Alberto Ros BSC, Spain Dec 17, 2015 25 / 54

SIMPLE CACHE COHERENCE PROTOCOLS

Simple cache coherence: VIPS-M [Ros & Kaxiras, PACT’12]
Strictly request-response⇒ Simple
Coherence distributed across cores⇒ Scalable
No directory⇒ Simple and scalable
Efficient for data-race-free code

How? Self-invalidation and self-downgrade (SISD)

Synchronization exposed to the protocol

Release: Self-downgrade

⇒Write-through dirty blocks

Acquire: Self-invalidation

⇒ Empty the cache

EXAMPLE OF DRF CODE

/* Initially X = 0 */

X = 1;
SIGNAL(cond); WAIT(cond);

$r1 = X;

Sequential consistency (SC) for data-race-free (DRF) code

SD SI

Alberto Ros BSC, Spain Dec 17, 2015 26 / 54

SIMPLE CACHE COHERENCE PROTOCOLS

Simple cache coherence: VIPS-M [Ros & Kaxiras, PACT’12]
Strictly request-response⇒ Simple
Coherence distributed across cores⇒ Scalable
No directory⇒ Simple and scalable
Efficient for data-race-free code

How? Self-invalidation and self-downgrade (SISD)
Synchronization exposed to the protocol

Release: Self-downgrade

⇒Write-through dirty blocks

Acquire: Self-invalidation

⇒ Empty the cache

EXAMPLE OF DRF CODE

/* Initially X = 0 */

X = 1;
SIGNAL(cond); WAIT(cond);

$r1 = X;

Sequential consistency (SC) for data-race-free (DRF) code

SD SI

Alberto Ros BSC, Spain Dec 17, 2015 26 / 54

SIMPLE CACHE COHERENCE PROTOCOLS

Simple cache coherence: VIPS-M [Ros & Kaxiras, PACT’12]
Strictly request-response⇒ Simple
Coherence distributed across cores⇒ Scalable
No directory⇒ Simple and scalable
Efficient for data-race-free code

How? Self-invalidation and self-downgrade (SISD)
Synchronization exposed to the protocol

Release: Self-downgrade
⇒Write-through dirty blocks

Acquire: Self-invalidation

⇒ Empty the cache

EXAMPLE OF DRF CODE

/* Initially X = 0 */

X = 1;
SIGNAL(cond); WAIT(cond);

$r1 = X;

Sequential consistency (SC) for data-race-free (DRF) code

SD

SI

Alberto Ros BSC, Spain Dec 17, 2015 26 / 54

SIMPLE CACHE COHERENCE PROTOCOLS

Simple cache coherence: VIPS-M [Ros & Kaxiras, PACT’12]
Strictly request-response⇒ Simple
Coherence distributed across cores⇒ Scalable
No directory⇒ Simple and scalable
Efficient for data-race-free code

How? Self-invalidation and self-downgrade (SISD)
Synchronization exposed to the protocol

Release: Self-downgrade
⇒Write-through dirty blocks

Acquire: Self-invalidation
⇒ Empty the cache

EXAMPLE OF DRF CODE

/* Initially X = 0 */

X = 1;
SIGNAL(cond); WAIT(cond);

$r1 = X;

Sequential consistency (SC) for data-race-free (DRF) code

SD

SI

Alberto Ros BSC, Spain Dec 17, 2015 26 / 54

SIMPLE CACHE COHERENCE PROTOCOLS

Simple cache coherence: VIPS-M [Ros & Kaxiras, PACT’12]
Strictly request-response⇒ Simple
Coherence distributed across cores⇒ Scalable
No directory⇒ Simple and scalable
Efficient for data-race-free code

How? Self-invalidation and self-downgrade (SISD)
Synchronization exposed to the protocol

Release: Self-downgrade
⇒Write-through dirty blocks

Acquire: Self-invalidation
⇒ Empty the cache

EXAMPLE OF DRF CODE

/* Initially X = 0 */

X = 1;
SIGNAL(cond); WAIT(cond);

$r1 = X;

Sequential consistency (SC) for data-race-free (DRF) code

SD SI

Alberto Ros BSC, Spain Dec 17, 2015 26 / 54

THE PROBLEM OF THE DATA RACES

Even DRF applications contain races!
Synchronization is inherently racy

Implemented performing spin-waiting

Spin-waiting is not efficient under SISD

Writes require fast propagation

Write-through and repeated self-invalidation

Repeated self-invalidation⇒ spin on last level cache (LLC)

Increases network traffic and LLC accesses ⇒ energy

VIPS-M solution
⇒ Exponential back-off

, Reduces SI, network traffic,
and LLC accesses

/ Slows down propagation
of writes

EXAMPLE OF DRF CODE

/* Initially X = 0 */

X = 1;
SIGNAL(cond); WAIT(cond);

$r1 = X;

EXAMPLE OF DRF CODE

/* Initially X = 0 */

X = 1;
cond = 1; while(!cond);

$r1 = X;

SI

Energy-performance trade-off!

Alberto Ros BSC, Spain Dec 17, 2015 27 / 54

THE PROBLEM OF THE DATA RACES

Even DRF applications contain races!
Synchronization is inherently racy
Implemented performing spin-waiting

Spin-waiting is not efficient under SISD

Writes require fast propagation

Write-through and repeated self-invalidation

Repeated self-invalidation⇒ spin on last level cache (LLC)

Increases network traffic and LLC accesses ⇒ energy

VIPS-M solution
⇒ Exponential back-off

, Reduces SI, network traffic,
and LLC accesses

/ Slows down propagation
of writes

EXAMPLE OF DRF CODE

/* Initially X = 0 */

X = 1;
SIGNAL(cond); WAIT(cond);

$r1 = X;

EXAMPLE OF DRF CODE

/* Initially X = 0 */

X = 1;
cond = 1; while(!cond);

$r1 = X;

SI

Energy-performance trade-off!

Alberto Ros BSC, Spain Dec 17, 2015 27 / 54

THE PROBLEM OF THE DATA RACES

Even DRF applications contain races!
Synchronization is inherently racy
Implemented performing spin-waiting

Spin-waiting is not efficient under SISD
Writes require fast propagation

Write-through and repeated self-invalidation

Repeated self-invalidation⇒ spin on last level cache (LLC)

Increases network traffic and LLC accesses ⇒ energy

VIPS-M solution
⇒ Exponential back-off

, Reduces SI, network traffic,
and LLC accesses

/ Slows down propagation
of writes

EXAMPLE OF DRF CODE

/* Initially X = 0 */

X = 1;
SIGNAL(cond); WAIT(cond);

$r1 = X;

EXAMPLE OF DRF CODE

/* Initially X = 0 */

X = 1;
cond = 1; while(!cond);

$r1 = X;

SI

Energy-performance trade-off!

Alberto Ros BSC, Spain Dec 17, 2015 27 / 54

THE PROBLEM OF THE DATA RACES

Even DRF applications contain races!
Synchronization is inherently racy
Implemented performing spin-waiting

Spin-waiting is not efficient under SISD
Writes require fast propagation

Write-through and repeated self-invalidation
Repeated self-invalidation⇒ spin on last level cache (LLC)

Increases network traffic and LLC accesses ⇒ energy

VIPS-M solution
⇒ Exponential back-off

, Reduces SI, network traffic,
and LLC accesses

/ Slows down propagation
of writes

EXAMPLE OF DRF CODE

/* Initially X = 0 */

X = 1;
SIGNAL(cond); WAIT(cond);

$r1 = X;

EXAMPLE OF DRF CODE

/* Initially X = 0 */

X = 1;
cond = 1; while(!cond);

$r1 = X;

SI

Energy-performance trade-off!

Alberto Ros BSC, Spain Dec 17, 2015 27 / 54

THE PROBLEM OF THE DATA RACES

Even DRF applications contain races!
Synchronization is inherently racy
Implemented performing spin-waiting

Spin-waiting is not efficient under SISD
Writes require fast propagation

Write-through and repeated self-invalidation
Repeated self-invalidation⇒ spin on last level cache (LLC)

Increases network traffic and LLC accesses ⇒ energy

VIPS-M solution
⇒ Exponential back-off

, Reduces SI, network traffic,
and LLC accesses

/ Slows down propagation
of writes

EXAMPLE OF DRF CODE

/* Initially X = 0 */

X = 1;
SIGNAL(cond); WAIT(cond);

$r1 = X;

EXAMPLE OF DRF CODE

/* Initially X = 0 */

X = 1;
cond = 1; while(!cond);

$r1 = X;

SI

Energy-performance trade-off!

Alberto Ros BSC, Spain Dec 17, 2015 27 / 54

THE PROBLEM OF THE DATA RACES

Even DRF applications contain races!
Synchronization is inherently racy
Implemented performing spin-waiting

Spin-waiting is not efficient under SISD
Writes require fast propagation

Write-through and repeated self-invalidation
Repeated self-invalidation⇒ spin on last level cache (LLC)

Increases network traffic and LLC accesses ⇒ energy

VIPS-M solution
⇒ Exponential back-off

, Reduces SI, network traffic,
and LLC accesses

/ Slows down propagation
of writes

EXAMPLE OF DRF CODE

/* Initially X = 0 */

X = 1;
SIGNAL(cond); WAIT(cond);

$r1 = X;

EXAMPLE OF DRF CODE

/* Initially X = 0 */

X = 1;
cond = 1; while(!cond);

$r1 = X;

SI

Energy-performance trade-off!

Alberto Ros BSC, Spain Dec 17, 2015 27 / 54

ENERGY-PERFORMANCE TRADE-OFF

Acquire Barrier
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

iz
ed

 L
LC

 a
cc

es
se

s

Invalidation BackOff-0 BackOff-5 BackOff-10 BackOff-15

Acquire Barrier
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

iz
ed

 la
te

nc
y

(c
yc

le
s)

There is no best back-off in both latency and traffic!

THE CHALLENGE

Fast and efficient write propagation...
without explicit invalidations/downgrades
keeping a simple request-response protocol

Traffic Latency

Alberto Ros BSC, Spain Dec 17, 2015 28 / 54

ENERGY-PERFORMANCE TRADE-OFF

Acquire Barrier
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

iz
ed

 L
LC

 a
cc

es
se

s

Invalidation BackOff-0 BackOff-5 BackOff-10 BackOff-15

Acquire Barrier
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

iz
ed

 la
te

nc
y

(c
yc

le
s)

There is no best back-off in both latency and traffic!

THE CHALLENGE

Fast and efficient write propagation...
without explicit invalidations/downgrades
keeping a simple request-response protocol

Traffic Latency

Alberto Ros BSC, Spain Dec 17, 2015 28 / 54

ENERGY-PERFORMANCE TRADE-OFF

Acquire Barrier
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

iz
ed

 L
LC

 a
cc

es
se

s

Invalidation BackOff-0 BackOff-5 BackOff-10 BackOff-15

Acquire Barrier
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

iz
ed

 la
te

nc
y

(c
yc

le
s)

There is no best back-off in both latency and traffic!

THE CHALLENGE

Fast and efficient write propagation...
without explicit invalidations/downgrades
keeping a simple request-response protocol

Traffic Latency

Alberto Ros BSC, Spain Dec 17, 2015 28 / 54

CALLBACKS

A mechanism with a directory just for races involved in
spin-waiting

Only special loads (or atomics) called LOAD_CALLBACK
(LD_CB) can allocate an entry in the directory

A LD_CB is similar to a load instruction, but

By-passes the private caches
May block at the shared cache waiting for a write to happen

Alberto Ros BSC, Spain Dec 17, 2015 29 / 54

CALLBACKS

A mechanism with a directory just for races involved in
spin-waiting

Only special loads (or atomics) called LOAD_CALLBACK
(LD_CB) can allocate an entry in the directory

A LD_CB is similar to a load instruction, but
By-passes the private caches
May block at the shared cache waiting for a write to happen

Alberto Ros BSC, Spain Dec 17, 2015 29 / 54

CALLBACK EXAMPLE

LLC

Network

L1 L1 L1 L1

Core0 Core1 Core2 Core3

CB Dir

Extremely small callback directory

⇒ Just a few entries

Callback Directory
Tag F/E CB

0 1 2 3 0 1 2 3

addr

x

Tag: word address

F/E: Full/Empty bits per core
Full: It may be a new value to consume
Empty: There is no new value

CB: Callback bits per core
A callback is blocked waiting for a new value

L
D

_C
B

x

LD_CB
x

ST
x

D
A

TA
x

DATA
x

LD_CB x
DATA x

Alberto Ros BSC, Spain Dec 17, 2015 30 / 54

CALLBACK EXAMPLE

LLC

Network

L1 L1 L1 L1

Core0 Core1 Core2 Core3

CB Dir

Extremely small callback directory

⇒ Just a few entries

Callback Directory
Tag F/E CB

0 1 2 3 0 1 2 3

addr

x

Tag: word address

F/E: Full/Empty bits per core
Full: It may be a new value to consume
Empty: There is no new value

CB: Callback bits per core
A callback is blocked waiting for a new value

L
D

_C
B

x

LD_CB
x

ST
x

D
A

TA
x

DATA
x

LD_CB x
DATA x

Alberto Ros BSC, Spain Dec 17, 2015 30 / 54

CALLBACK EXAMPLE

LLC

Network

L1 L1 L1 L1

Core0 Core1 Core2 Core3

CB Dir

Extremely small callback directory

⇒ Just a few entries

Callback Directory
Tag F/E CB

0 1 2 3 0 1 2 3

addr

x

Tag: word address

F/E: Full/Empty bits per core
Full: It may be a new value to consume
Empty: There is no new value

CB: Callback bits per core
A callback is blocked waiting for a new value

L
D

_C
B

x

LD_CB
x

ST
x

D
A

TA
x

DATA
x

LD_CB x
DATA x

Alberto Ros BSC, Spain Dec 17, 2015 30 / 54

CALLBACK EXAMPLE

LLC

Network

L1 L1 L1 L1

Core0 Core1 Core2 Core3

CB Dir

Extremely small callback directory

⇒ Just a few entries

Callback Directory
Tag F/E CB

0 1 2 3 0 1 2 3

addr

x

Tag: word address

F/E: Full/Empty bits per core
Full: It may be a new value to consume
Empty: There is no new value

CB: Callback bits per core
A callback is blocked waiting for a new value

L
D

_C
B

x

LD_CB
x

ST
x

D
A

TA
x

DATA
x

LD_CB x
DATA x

Alberto Ros BSC, Spain Dec 17, 2015 30 / 54

CALLBACK EXAMPLE

LLC

Network

L1 L1 L1 L1

Core0 Core1 Core2 Core3

CB Dir

Extremely small callback directory

⇒ Just a few entries

Callback Directory
Tag F/E CB

0 1 2 3 0 1 2 3

addr

x

Tag: word address

F/E: Full/Empty bits per core
Full: It may be a new value to consume
Empty: There is no new value

CB: Callback bits per core
A callback is blocked waiting for a new value

L
D

_C
B

x

LD_CB
x

ST
x

D
A

TA
x

DATA
x

LD_CB x
DATA x

Alberto Ros BSC, Spain Dec 17, 2015 30 / 54

CALLBACK EXAMPLE

LLC

Network

L1 L1 L1 L1

Core0 Core1 Core2 Core3

CB Dir

Extremely small callback directory

⇒ Just a few entries

Callback Directory
Tag F/E CB

0 1 2 3 0 1 2 3

addr

x

Tag: word address

F/E: Full/Empty bits per core
Full: It may be a new value to consume
Empty: There is no new value

CB: Callback bits per core
A callback is blocked waiting for a new value

L
D

_C
B

x

LD_CB
x

ST
x

D
A

TA
x

DATA
x

LD_CB x

DATA x

Alberto Ros BSC, Spain Dec 17, 2015 30 / 54

CALLBACK EXAMPLE

LLC

Network

L1 L1 L1 L1

Core0 Core1 Core2 Core3

CB Dir

Extremely small callback directory

⇒ Just a few entries

Callback Directory
Tag F/E CB

0 1 2 3 0 1 2 3

addr

x

Tag: word address

F/E: Full/Empty bits per core
Full: It may be a new value to consume
Empty: There is no new value

CB: Callback bits per core
A callback is blocked waiting for a new value

L
D

_C
B

x

LD_CB
x

ST
x

D
A

TA
x

DATA
x

LD_CB x

DATA x

Alberto Ros BSC, Spain Dec 17, 2015 30 / 54

EXECUTION TIME AND ENERGY CONSUMPTION

Execution time

As good as the best BACKOFF
case

5% better than BACKOFF-10
(VIPS-M)

11% better than INVALIDATION

Energy consumption

INVALIDATION spins in L1

BACKOFF-0 spins in the LLC

CALLBACKS removes spinning
(40% and 5% reduction)

GeoMean
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Invalidation
BackOff-0
BackOff-5
BackOff-10
BackOff-15
Callbacks

Average
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

L1
LLC
Network

Alberto Ros BSC, Spain Dec 17, 2015 31 / 54

EXECUTION TIME AND ENERGY CONSUMPTION

Execution time

As good as the best BACKOFF
case

5% better than BACKOFF-10
(VIPS-M)

11% better than INVALIDATION

Energy consumption

INVALIDATION spins in L1

BACKOFF-0 spins in the LLC

CALLBACKS removes spinning
(40% and 5% reduction)

GeoMean
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Invalidation
BackOff-0
BackOff-5
BackOff-10
BackOff-15
Callbacks

Average
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

L1
LLC
Network

Alberto Ros BSC, Spain Dec 17, 2015 31 / 54

TATAS VS. CLH

T&T&S + Callbacks allows only one of the threads to race
for acquiring the lock
T&T&S + Callbacks provides fairness

CLH T&T&S
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Invalidation Callbacks

CLH T&T&S
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
p.

CALLBACKS endow simple synchronization algorithms (TATAS)
with the efficiency of more complex ones (CLH)!

Alberto Ros BSC, Spain Dec 17, 2015 32 / 54

TATAS VS. CLH

T&T&S + Callbacks allows only one of the threads to race
for acquiring the lock
T&T&S + Callbacks provides fairness

CLH T&T&S
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Invalidation Callbacks

CLH T&T&S
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
p.

CALLBACKS endow simple synchronization algorithms (TATAS)
with the efficiency of more complex ones (CLH)!

Alberto Ros BSC, Spain Dec 17, 2015 32 / 54

TATAS VS. CLH

T&T&S + Callbacks allows only one of the threads to race
for acquiring the lock
T&T&S + Callbacks provides fairness

CLH T&T&S
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Invalidation Callbacks

CLH T&T&S
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
p.

CALLBACKS endow simple synchronization algorithms (TATAS)
with the efficiency of more complex ones (CLH)!

Alberto Ros BSC, Spain Dec 17, 2015 32 / 54

TAKE AWAY MESSAGE

CALLBACKS: special loads for races in spin-waiting
⇒ Requires a very small directory

Simpler and more efficient than explicit invalidation!
Transparent to the coherence protocol
Makes efficient simple synchronization algorithms, such as
T&T&S

Alberto Ros BSC, Spain Dec 17, 2015 33 / 54

OUTLINE

Alberto Ros BSC, Spain Dec 17, 2015 34 / 54

MOTIVATION

Clustered cache hierarchies are a natural strategy for
reducing the overhead introduced by cache coherence
protocols (e.g., storage and traffic)1

But clustered cache hierarchies bring another problem

⇒ Design complexity: Keep the SWMR invariant in a clustered
cache hierarchy
A root node sends invalidations and waits for acks
A leaf node receives an invalidations and answers with acks
An intermediate node in a hierarchy performs both actions
⇒ cross-product of states!
(E.g., MOESI in GEMS: L1→ 16; L2→ 59; memory→ 13)

1 Martin, Hill, and Sorin. “Why on-chip cache coherence is here to stay”, CACM, 2012.

Alberto Ros BSC, Spain Dec 17, 2015 35 / 54

MOTIVATION

Clustered cache hierarchies are a natural strategy for
reducing the overhead introduced by cache coherence
protocols (e.g., storage and traffic)1

But clustered cache hierarchies bring another problem
⇒ Design complexity: Keep the SWMR invariant in a clustered

cache hierarchy
A root node sends invalidations and waits for acks
A leaf node receives an invalidations and answers with acks
An intermediate node in a hierarchy performs both actions
⇒ cross-product of states!
(E.g., MOESI in GEMS: L1→ 16; L2→ 59; memory→ 13)

1 Martin, Hill, and Sorin. “Why on-chip cache coherence is here to stay”, CACM, 2012.

Alberto Ros BSC, Spain Dec 17, 2015 35 / 54

APPROACH

Simplify the source of complexity: invalidation/downgrade
No write-invalidation⇒ self-invalidation (SI) on
synchronization points
No read-downgrade⇒ self-downgrade (SD) on
synchronization points
Provide sequential consistency for data-race-free (SC for
DRF) applications

Alberto Ros BSC, Spain Dec 17, 2015 36 / 54

CHALLENGE

Our approach for simplifying the protocol is SI/SD
A naïve implementation has to SI/SD all the data in the
cache hierarchy

Not efficient!

A new approach for restricting SI/SD in a clustered cache
hierarchy is required

Alberto Ros BSC, Spain Dec 17, 2015 37 / 54

SOLUTION

We solve this problem by introducing the concept of
hierarchical P/S classification

A block can be shared inside a cluster but be private
outside
The level where this transition happens is the common
sharing level (CSL)
Restrict SI/SD to shared blocks within a cluster

Result
The protocol remains simple⇒ NO hierarchical complexity
Hierarchical complexity transferred to classification
In this paper we do classification at page level by adding
information to the page tables

So all complexity is transferred to software

Alberto Ros BSC, Spain Dec 17, 2015 38 / 54

COMMON SHARING LEVEL

L1

L2

L3

L4

0 1 2 3 4 5 6 7

Page

Pr

Sh

CSL

1st

L1

0

Page

Page

Page

L1

0

Page

Page

Page

1

L2

Page Page

Flat

Flat

3

L3

Page

Page

Page

SI/SD only for blocks in shared pages

Page table entry (global hierarchy knowledge) stores:

First requester of a page (log2N)
CSL (dlog2dlog2 N/ log2 dee): Root of the cluster containing
all sharers

TLB entry (local hierarchy knowledge) stores the CSL of
the page

CSL is known before the cache miss takes place (a-priori)

Alberto Ros BSC, Spain Dec 17, 2015 39 / 54

COMMON SHARING LEVEL

L1

L2

L3

L4

0 1 2 3 4 5 6 7

Page

Pr

Sh

CSL

1st

L1

0

Page

Page

Page

L1

0

Page

Page

Page

1

L2

Page Page

Flat

Flat

3

L3

Page

Page

Page

SI/SD only for blocks in shared pages

Page table entry (global hierarchy knowledge) stores:

First requester of a page (log2N)
CSL (dlog2dlog2 N/ log2 dee): Root of the cluster containing
all sharers

TLB entry (local hierarchy knowledge) stores the CSL of
the page

CSL is known before the cache miss takes place (a-priori)

Alberto Ros BSC, Spain Dec 17, 2015 39 / 54

COMMON SHARING LEVEL

L1

L2

L3

L4

0 1 2 3 4 5 6 7

Page

Pr

Sh

CSL

1st

L1

0

Page

Page

Page

L1

0

Page

Page

Page

1

L2

Page Page

Flat

Flat

3

L3

Page

Page

Page

SI/SD only for blocks in shared pages

Page table entry (global hierarchy knowledge) stores:

First requester of a page (log2N)
CSL (dlog2dlog2 N/ log2 dee): Root of the cluster containing
all sharers

TLB entry (local hierarchy knowledge) stores the CSL of
the page

CSL is known before the cache miss takes place (a-priori)

Alberto Ros BSC, Spain Dec 17, 2015 39 / 54

COMMON SHARING LEVEL

L1

L2

L3

L4

0 1 2 3 4 5 6 7

Page

Pr

Sh

CSL

1st

L1

0

Page

Page

Page

L1

0

Page

Page

Page

1

L2

Page Page

Flat

Flat

3

L3

Page

Page

Page

SI/SD only for blocks in shared pages

Page table entry (global hierarchy knowledge) stores:

First requester of a page (log2N)
CSL (dlog2dlog2 N/ log2 dee): Root of the cluster containing
all sharers

TLB entry (local hierarchy knowledge) stores the CSL of
the page

CSL is known before the cache miss takes place (a-priori)

Alberto Ros BSC, Spain Dec 17, 2015 39 / 54

COMMON SHARING LEVEL

L1

L2

L3

L4

0 1 2 3 4 5 6 7

Page

Pr

Sh

CSL

1st

L1

0

Page

Page

Page

L1

0

Page

Page

Page

1

L2

Page Page

Flat

Flat

3

L3

Page

Page

Page

SI/SD only for blocks in shared pages

Page table entry (global hierarchy knowledge) stores:

First requester of a page (log2N)
CSL (dlog2dlog2 N/ log2 dee): Root of the cluster containing
all sharers

TLB entry (local hierarchy knowledge) stores the CSL of
the page

CSL is known before the cache miss takes place (a-priori)

Alberto Ros BSC, Spain Dec 17, 2015 39 / 54

COMMON SHARING LEVEL

L1

L2

L3

L4

0 1 2 3 4 5 6 7

Page

Pr

Sh

CSL

1st

L1

0

Page

Page

Page

L1

0

Page

Page

Page

1

L2

Page Page

Flat

Flat

3

L3

Page

Page

Page

SI/SD only for blocks in shared pages
Page table entry (global hierarchy knowledge) stores:

First requester of a page (log2N)
CSL (dlog2dlog2 N/ log2 dee): Root of the cluster containing
all sharers

TLB entry (local hierarchy knowledge) stores the CSL of
the page

CSL is known before the cache miss takes place (a-priori)
Alberto Ros BSC, Spain Dec 17, 2015 39 / 54

COMPLEXITY, COST, AND AREA

H-MOESI: Hierarchical full-map
VIPS-H: P/S bit

NUMBER OF STATES AND EXTRA BITS REQUIRED (16X4)
H-MOESI VIPS-H

States Bitmap Total States P/S Total
Controller Tot./Base bits bits Tot./Base bit bits
L1 cache 16 / 5 0 3 9 / 3 1 3
L2 cache 59 / 13 16 20 5 / 3 1 3
L3 cache 13 / 4 4 6 4 / 3 1 3
Total cost 844KB 204KB

76% memory reduction compared to H-MOESI

Alberto Ros BSC, Spain Dec 17, 2015 40 / 54

COMPARISON TO H-MOESI AND VIPS-M: TIME

Flat VIPS-M degrades performance by 10% w.r.t.
H-MOESI for 4x4, get similar performance for 16x4
VIPS-H improves execution time by about 11% for 16x4
VIPS scales better than H-MOESI in time

4×4 CLUSTERED SYSTEM

Barnes

Cholesky
FFT

FMM LU
LU-nc

Ocean

Ocean-nc

Radiosity
Radix

Raytra
ce
Volrend

Water-N
sq

Water-S
p

Blackscholes

Bodytra
ck

Canneal
Dedup

Stre
amcluster

Swaptions
Em3d

Tomcatv

Average
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

H-MOESI VIPS-M VIPS-H-Two-level VIPS-H-Multilevel

16×4 CLUSTERED SYSTEM

Barnes

Cholesky
FFT

FMM LU
LU-nc

Ocean

Ocean-nc

Radiosity
Radix

Raytra
ce
Volrend

Water-N
sq

Water-S
p

Blackscholes

Bodytra
ck

Canneal
Dedup

Stre
amcluster

Swaptions
Em3d

Tomcatv

Average
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

H-MOESI VIPS-M VIPS-H-Two-level VIPS-H-Multilevel

Alberto Ros BSC, Spain Dec 17, 2015 41 / 54

COMPARISON TO H-MOESI AND VIPS-M: TIME

Flat VIPS-M degrades performance by 10% w.r.t.
H-MOESI for 4x4, get similar performance for 16x4
VIPS-H improves execution time by about 11% for 16x4
VIPS scales better than H-MOESI in time

4×4 CLUSTERED SYSTEM

Barnes

Cholesky
FFT

FMM LU
LU-nc

Ocean

Ocean-nc

Radiosity
Radix

Raytra
ce
Volrend

Water-N
sq

Water-S
p

Blackscholes

Bodytra
ck

Canneal
Dedup

Stre
amcluster

Swaptions
Em3d

Tomcatv

Average
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

H-MOESI VIPS-M VIPS-H-Two-level VIPS-H-Multilevel

16×4 CLUSTERED SYSTEM

Barnes

Cholesky
FFT

FMM LU
LU-nc

Ocean

Ocean-nc

Radiosity
Radix

Raytra
ce
Volrend

Water-N
sq

Water-S
p

Blackscholes

Bodytra
ck

Canneal
Dedup

Stre
amcluster

Swaptions
Em3d

Tomcatv

Average
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

H-MOESI VIPS-M VIPS-H-Two-level VIPS-H-Multilevel

Alberto Ros BSC, Spain Dec 17, 2015 41 / 54

COMPARISON TO H-MOESI AND VIPS-M: TRAFFIC

VIPS increases Response_data⇒ more cache misses
But less control traffic⇒ no invalidations acks
It scales better than H-MOESI in traffic (5%–7% for 16x4)

4×4 CLUSTERED SYSTEM

Barnes

Cholesky
FFT

FMM LU
LU-nc

Ocean

Ocean-nc

Radiosity
Radix

Raytra
ce

Volrend

Water-N
sq

Water-S
p

Blackscholes

Bodytra
ck

Canneal
Dedup

Stre
amcluster

Swaptions
Em3d

Tomcatv

Average
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

N
or

m
al

iz
ed

 N
et

w
or

k
T

ra
ffi

c Request_control
Response_control
Response_data

WB_control
WB_data
WT_data

2.8
2.7

3.4

1. H-MOESI 2. VIPS-M 3. VIPS-H-Two-level 4. VIPS-H-Multilevel

16×4 CLUSTERED SYSTEM

Barnes

Cholesky
FFT

FMM LU
LU-nc

Ocean

Ocean-nc

Radiosity
Radix

Raytra
ce

Volrend

Water-N
sq

Water-S
p

Blackscholes

Bodytra
ck

Canneal
Dedup

Stre
amcluster

Swaptions
Em3d

Tomcatv

Average
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

N
or

m
al

iz
ed

 N
et

w
or

k
T

ra
ffi

c Request_control
Response_control
Response_data

WB_control
WB_data
WT_data

2.2

1. H-MOESI 2. VIPS-M 3. VIPS-H-Two-level 4. VIPS-H-Multilevel

Alberto Ros BSC, Spain Dec 17, 2015 42 / 54

COMPARISON TO H-MOESI AND VIPS-M: TRAFFIC

VIPS increases Response_data⇒ more cache misses
But less control traffic⇒ no invalidations acks
It scales better than H-MOESI in traffic (5%–7% for 16x4)

4×4 CLUSTERED SYSTEM

Barnes

Cholesky
FFT

FMM LU
LU-nc

Ocean

Ocean-nc

Radiosity
Radix

Raytra
ce

Volrend

Water-N
sq

Water-S
p

Blackscholes

Bodytra
ck

Canneal
Dedup

Stre
amcluster

Swaptions
Em3d

Tomcatv

Average
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

N
or

m
al

iz
ed

 N
et

w
or

k
T

ra
ffi

c Request_control
Response_control
Response_data

WB_control
WB_data
WT_data

2.8
2.7

3.4

1. H-MOESI 2. VIPS-M 3. VIPS-H-Two-level 4. VIPS-H-Multilevel

16×4 CLUSTERED SYSTEM

Barnes

Cholesky
FFT

FMM LU
LU-nc

Ocean

Ocean-nc

Radiosity
Radix

Raytra
ce

Volrend

Water-N
sq

Water-S
p

Blackscholes

Bodytra
ck

Canneal
Dedup

Stre
amcluster

Swaptions
Em3d

Tomcatv

Average
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

N
or

m
al

iz
ed

 N
et

w
or

k
T

ra
ffi

c Request_control
Response_control
Response_data

WB_control
WB_data
WT_data

2.2

1. H-MOESI 2. VIPS-M 3. VIPS-H-Two-level 4. VIPS-H-Multilevel

Alberto Ros BSC, Spain Dec 17, 2015 42 / 54

CONCLUSIONS

Simple and efficient cache coherence for clustered cache
architectures
Keys:

Self-invalidation and self-downgrade and the assumption of
SC for DRF semantics
Hierarchical private/shared classification

Results:
Simpler than H-MOESI

Less states memory overhead (from 94 to 18)
Less memory overhead (76%)

Better performance (11%, on average for 16x4)
Reduced network traffic (7%, on average for 16x4)
Better scalability

Alberto Ros BSC, Spain Dec 17, 2015 43 / 54

OUTLINE

Alberto Ros BSC, Spain Dec 17, 2015 44 / 54

ARGO

VIPS-M ⇒ Self-Invalidation & Self-Downgrade
VIPS coherence is truly distributed.
Coherence decisions are taken independently without any
inter-core interaction
⇒ Simplifies whole system design

Request-Response from the L1s to the LLC
No requests from LCC to L1s
No traffic among L1s, only L1⇔ LLC

Can this be the answer to distributed coherence?

Alberto Ros BSC, Spain Dec 17, 2015 45 / 54

ARGO

VIPS-M ⇒ Self-Invalidation & Self-Downgrade
VIPS coherence is truly distributed.
Coherence decisions are taken independently without any
inter-core interaction
⇒ Simplifies whole system design

Request-Response from the L1s to the LLC
No requests from LCC to L1s
No traffic among L1s, only L1⇔ LLC

Can this be the answer to distributed coherence?

Alberto Ros BSC, Spain Dec 17, 2015 45 / 54

TRENDS: WHY NOW?

1992	 1994	 1997	 2000	 2005	 2007	 2009	 2011	

CPU	 speed	 High	 (MHz)	 40	 60	 100	 500	 1000	 1500	 1700	 1800	

CPU	 speed	 Low	 (MHz)	 200	 500	 1000	 2400	 3200	 3200	 3300	 3400	

DRAM	 Latency	 Low	 (ns)	 80	 70	 70	 70	 70	 60	 50	 50	

DRAM	 Latency	 High	 (ns)	 100	 100	 100	 120	 100	 100	 60	 60	

Network	 BW	 (Mbps)	 1500	 1500	 2100	 8500	 20000	 40000	 128000	 250000	

Network	 Latency	 (ns)	 200000	 100000	 30000	 10000	 1300	 1300	 1000	 500	

10	

100	

1000	

10000	

100000	

1000000	

CPU,	 DRAM	 and	 Network	 Trends	

Alberto Ros BSC, Spain Dec 17, 2015 46 / 54

ARGO IN A NUTSHELL

VIPS-DSM for distributed systems
User-space implementation
Runs Pthreads (DRF programs)

Small porting effort to fully exploit new synchronization
system and optimize synchronization performance

Page-based DSM (uses virtual memory faults for misses)
Pages have a home node (limitation: naïve distribution)
MPI is the “network layer” (limitation: only need RDMA)

Alberto Ros BSC, Spain Dec 17, 2015 47 / 54

COMPONENTS OF ARGO

CARINA: VIPS-DSM coherence
PYXIS: Classification directories
VELA: Hierarchical Queue Delegation Locking system

Alberto Ros BSC, Spain Dec 17, 2015 48 / 54

CARINA & PYXIS: COHERENCE & DIRECTORIES

Modified VIPS: SI & SD
Strictly request response for DRF accesses

Pyxis classification directories cached at nodes
NO message handlers to classify pages and propagate
classification changes
Requestors are responsible to update classification at
remote nodes (P→S, requestor updates private owner)

Alberto Ros BSC, Spain Dec 17, 2015 49 / 54

CARINA & PYXIS: COHERENCE & DIRECTORIES

Classification:
Only for Global shared memory (Gmalloc’ed)
Adds classification for writers
Private, Shared-NW (No Writers), Shared-SW (Single
Writer), Shared-MW (Multiple Writers)

Sync. point
(Aqc./Rel.)

S,MWS,SWS,NWP
P/S Classification P/S3 Classification

P SSI
SD

Time

SI SDSDSD SD

(No SI) (No SI)(No SI/SD) (No SI)

SI/SD

Alberto Ros BSC, Spain Dec 17, 2015 50 / 54

VELA: ARGO’S SYNCHRONIZATION SYSTEM

The trouble with distributed critial section (CS) execution:
Serialized execution that migrates from node to node!

Forces data accessed in CS to migrate too
Must SI on Lock, SD on Unlock

Solution: Queue Delegation Locking [SPAA’14,
EuroPar’14]

Delegate the execution of the CS to the current holder of
the lock (up to a point)

Hierarchical QDL: Delegate only locally

0 2 4 6 8 10 12 14 16
Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

op
er

at
io

ns
 /

m
ic

ro
se

co
nd

native QD locking
native Cohort locking
Pthreads mutex lock

0 100 200 300 400 500
Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
op

er
at

io
ns

 /
m

ic
ro

se
co

nd
Argo (QD locking)
Cohort locking

Alberto Ros BSC, Spain Dec 17, 2015 51 / 54

RESULTS

NBODY

0 5 10 15 20 25 300
50

100
150
200
250
300
350
400

Sp
ee

du
p

Argo
Pthread
MPI

100 200 300 400 500
Threads

EP CLASS D

0 5 10 15 20 25 300

100

200

300

400

500

600

Sp
ee

du
p

Argo
OpenMP
UPC

500 1000 1500 2000
Threads

BLACKSCHOLES

0 5 10 15 20 25 300

50

100

150

200

250

Sp
ee

du
p

Argo
Pthread
MPI

500 1000 1500 2000
Threads

CG CLASS C

0 5 10 15 20 25 300

10

20

30

40

50

60

Sp
ee

du
p

Argo
OpenMP
UPC

100 200 300 400 500
Threads

Alberto Ros BSC, Spain Dec 17, 2015 52 / 54

OUTLINE

Alberto Ros BSC, Spain Dec 17, 2015 53 / 54

RECAP

In this talk:
VIPS-M: Simple Request-Response Protocols [PACT’12]
VIPS-V: Virtual Cache Coherence [ISCA’13]
VIPS-H: Clustered Hierarchies [HPCA’15]
Callbacks: Efficient Spin-Waiting [ISCA’15]
Argo: Distributed Shared Memory [HPDC’15]

Other VIPS works:
VIPS-B: Bus coherence [SoCC’12]
Fast&Furious: Data-Race Detector [PARMA-DITAM’15]
VIPS-GC: Generational Coherence [TACO’15]
Dir1-SISD: Self-Contained Directories [PACT’15]
VIPS-G: CPU-GPU Coherence [TACO’16]

Alberto Ros BSC, Spain Dec 17, 2015 54 / 54

VIPS: SIMPLE, EFFICIENT, AND SCALABLE

CACHE COHERENCE

Alberto Ros1 Stefanos Kaxiras2

Kostis Sagonas2 Mahdad Davari2

Magnus Norgen2 David Klaftenegger2

1Universidad de Murcia
aros@ditec.um.es

2Uppsala University

Dec 17, 2015

Alberto Ros BSC, Spain Dec 17, 2015 55 / 54

SIMULATION ENVIRONMENT

SIMICS (functional simulation) + GEMS (memory timing) +
GARNET (network)
CACTI 6.5 for 32nm technology
Simulated a 16-tile multicore

32KB 4-way I&D L1s, 8MB (512KB/bank) 16-way L2 (LLC)
16-entry MSHRs with 1000-cycle timeout

SPLASH-2, scientific, and PARSEC benchmarks.

Protocol Invalidations Directory Indirection L1 base states
Hammer Broadcast None Yes 5 (MOESI)
Directory Multicast Full-map Yes 4 (MESI)
Write-Through Multicast Full-map Only write misses 2 (VI)
VIPS Multicast Full-map Only for write misses 2 (VI)
VIPS-M None None No 2 (VI)

Alberto Ros BSC, Spain Dec 17, 2015 56 / 54

EVALUATION
L1 SENSITIVITY ANALYSIS

PERFORMANCE 16KB–64KB L1

16 32 64

L1 cache size (KB)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

N
o

rm
a

liz
e

d
 e

x
e

c
u

ti
o

n
 t

im
e

VIPS
VIPS-M

ENERGY 16KB–64KB L1

16 32 64

L1 cache size (KB)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

N
o

rm
a

liz
e

d
 e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n

LLC
Network

1. VIPS
2. VIPS-M

Alberto Ros BSC, Spain Dec 17, 2015 57 / 54

RESULTS
CACHE MISSES

Cold-cap-conf misses decrease due to the lack of write
misses for DRF blocks
Misses due to write throughs are not significant

CACHE MISSES NORMALIZED W.R.T. DIRECTORY

Barnes

Cholesky
FFT

FMM LU
Ocean

Radiosity

Raytra
ce

Volre
nd

Water-N
sq

Water-S
p

Em3d

Tomcatv

Canneal
x264

Average

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

C
a
c
h
e
 m

is
s
 c

la
s
s
if
ic

a
ti
o
n

Cold-cap-conf
Coherence

Selective-flushing
Write-through

5.2 1.71. Directory
2. VIPS-M

Alberto Ros BSC, Spain Dec 17, 2015 58 / 54

VIPS-M
PROTOCOL FOR SYNCHRONIZATION

Works very well for small critical sections

ATOMIC RMW TRANSACTIONS FOR SHARED BLOCKS

0L1

1L1

Small critical

section

Small critical

section

LLC

I/V

WT−Unblock(0)

GetX

RMW

GetX

RMW

Rd(0)Wr(1)

I/V

I
Wr(0)

Rd(0)Wr(1)

Write permission

* Write miss in MSHR

WT−Unblock(0)

I
Wr(0)

V(0)

V*

V*

Data(0)

Data(0)
V(0)

Exponential back-off required for power reasons for large
critical sections
Considering hardware synchronization all protocols will be
reduced to request-response transactions

Alberto Ros BSC, Spain Dec 17, 2015 59 / 54

	Appendix

