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PROGRAM ORDER

Programmer intuition: instructions execute in the order
they appear in the program

THREAD 1
$r0 = X; // load
$r1 = Y; // load

THREAD 2
Y = 1; // store
X = 1; // store

What happens if the order changes?

THREAD 1
$r1 = Y; // load
$r0 = X; // load

THREAD 2
Y = 1; // store
X = 1; // store
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TOTAL STORE ORDER (TSO)

The memory consistency model defines the behavior of
the programs

In particular, the behavior of the memory operations: load
and store

x86 processors (Intel, AMD) implement a Total Store Order
(TSO)

TSO RULES

load→load

store→store

2

load→store

This talk focus on the load→load order

2 A. Ros and S. Kaxiras, “Racer: TSO Consistency via Race Detection”, MICRO, 2016.
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POSSIBLE RESULTS UNDER LOAD→LOAD (E.G. TSO)

INITIALLY X=0, Y=0
lx: $r0 = X;
ly: $r1 = Y;

sy: Y = 1;
sx: X = 1;

SIX POSSIBLE INTERLEAVINGS AND VALUES FOR ($R0, $R1)
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(1,0) is not possible if load→load & store→store
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RELAXING LOAD→LOAD
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LOAD→LOAD REORDERING

Waiting for a load to finish to start the execution of the next
load is very inefficient

High-performance processors execute multiple load
operations simultaneously

Memory level parallelism

Load operations can execute out of order
This is correct for single-core processors
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LOAD→LOAD REORDERING

Executing load operations out of order can relax the
load→load order

Program

ld1

ld2

ld3

ld4

ld5

ld6

head

LQ

Order

ld1

ld3

ld4

ld6

ld2

ld5
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LOAD→LOAD REORDERING

In multicore processors reordering loads can affect the
expected result
It is necessary to always maintain the load→load order?

INITIALLY X=0, Y=0
$r0 = X;
$r1 = Y;

Y = 1;
X = 1;

/* (1,0) not allowed */

POSSIBLE EXECUTION

$r0 = Y;

$r1 = X;

$r1 = X;

Y = 1;
X = 1;

No, if the other cores do not see the reordering
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RELAXING LOAD→LOAD

INITIALLY X=0, Y=0
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LOAD→LOAD SPECULATION

Solution: To allow speculative load→load reordering
Some definitions: performed, ordered, source of
speculation (SoS)

Program
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orderedno ordered
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SQUASH AND RE-EXECUTE UPON INVALIDATION

Current multicore avoid incorrect results
With the help of the cache coherence protocol

Squashing and re-executing on remote writes
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SQUASH AND RE-EXECUTE UPON EVICTIONS

What happens when a cache block loaded by an M-spec
load is evicted?

If the directory stops tracking the block, the M-spec load will
not receive an invalidation

Solution: Squash and re-execute upon evictions
This impacts the performance of sequential applications!!!
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PROBLEMS OF SPECULATION

Memory-related speculation is the current solution to issue
loads out of order while keeping the load→load order

Why is good?

Because squashing is not frequent!

Why is bad?

Because speculative loads hold critical resources (LQ,
RoB)
Because the processor needs to keep continuously the
rollback path

QUESTION

Can we execute loads out of order without speculation and
guaranteeing load→load?
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WRITERSBLOCK ACHIEVEMENT

Current multicore processors speculatively execute loads
out of order
If a conflict happens, loads are squashed and re-executed

WRITERSBLOCK

Makes possible removing this speculation, executing loads out
of order, and making that an executed load is never squashed
because of the consistency model
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HOW?

With the help of the cache coherence protocol

Blocking and delaying the remote write (WritersBlock)
Until when? Until the load stop being M-spec
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What happens upon an eviction? Do we squash loads?

No, just need to guarantee that the invalidation will arrive
upon a remote write

Solution:

Clean blocks implement silent evictions3

Dirty blocks write back the data but the directory still keeps
track
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3 R. Fernandez-Pascual, A. Ros, and M. E. Acacio, “To Be Silent or Not: On the Impact
of Evictions of Clean Data in Cache-Coherent Multicores”, Journal of Supercomputing,
2017.
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LIVELOCK

Resolving reads while blocking writes can cause livelock
Resolving a read once the data is invalidated will cause a
second invalidation

Solution

Reads resolved through WritersBlock must be
non-cacheable
and cannot resolve M-spec loads (no invalidation will be
received)
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DEADLOCK AVOIDANCE

WRITERSBLOCK cause writes to be blocked
Until a load stop being M-speculative

Deadlocks will not happen if loads cannot be stopped by a
pending write miss
Other blocking causes:

MSHR address occupied by write miss⇒ Duplicate
read-write MSHR allocation
Full directory/LLC⇒ Non-cacheable loads
Atomic Read-Modify-Write⇒ Non-speculative
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CASE OF USE: OUT-OF-ORDER COMMIT

Out-of-order commit4 allows the processor to retire
instructions from the reorder buffer (RoB) even if they are
not at the head
It cannot retire instructions that may squash

WRITERSBLOCK allows the retirement of out-of-order loads
Better RoB/LQ usage

head

ld1ld1ld2ld3ld4ld5ld6

M-spec SoS

orderedno ordered

4 G. B. Bell and M. H. Lipasti, “Deconstructing Commit”, ISPASS, 2004.
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Background WritersBlock Results Conclusions

SIMULATION ENVIRONMENT

Simulator: GEMS + OoO processor (TSO)

16-core multicore
Silvermont (32-entry RoB), Nehalem (128-entry RoB), and
Haswell (192-entry RoB)
Benchmarks: Splash-35 and Parsec-3.0
Protocols

DIRECTORY: Directory-based MESI protocol
WRITERSBLOCK: Extensions to DIRECTORY

Commit technique
INORDERCOMMIT
OOOCOMMIT

5 C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, “Splash-3: A Properly
Synchronized Benchmark Suite for Contemporary Research”, ISPASS, 2016.
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WRITERSBLOCK: BLOCKED WRITES

Results for INORDERCOMMIT

Normalized to DIRECTORY

The larger the RoB, the more misspeculations, and the more
blocked writes
Less that 5 blocks per 10,000 stores, on average
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WRITERSBLOCK: NON-CACHEABLE DATA

Results for INORDERCOMMIT
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OUT-OF-ORDER COMMIT: PROCESSOR STALLS

Normalized to DIRECTORY + INORDERCOMMIT

INORDERCOMMIT

WRITERSBLOCK does not increases SQ stalls

OOOCOMMIT

WRITERSBLOCK reduces RoB and LQ stalls on average
respect to DIRECTORY
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OUT-OF-ORDER COMMIT: EXECUTION TIME

Normalized to DIRECTORY + INORDERCOMMIT

INORDERCOMMIT

WRITERSBLOCK does not harm performance on average
respect to DIRECTORY

OOOCOMMIT

WRITERSBLOCK improves performance by 11% on average
respect to DIRECTORY

barnes

blackscholes

bodytra
ck

canneal

cholesky
dedup

ferre
t fft

fluidanimate fmm

fre
qmine

lu_cb
lu_ncb

ocean_cp

ocean_ncp

radiosity
radix

raytra
ce

stre
amcluster

swaptions
vips

volrend

water_nsquared

water_spatial
x264

Average
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

T
ie

m
po

 (
no

rm
al

iz
ad

o)

WritersBlock InOrderCommit Directory OoOCommit WritersBlock OoOCommit

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 29 / 32



Background WritersBlock Results Conclusions

OUT-OF-ORDER COMMIT: EXECUTION TIME

Normalized to DIRECTORY + INORDERCOMMIT

INORDERCOMMIT

WRITERSBLOCK does not harm performance on average
respect to DIRECTORY

OOOCOMMIT

WRITERSBLOCK improves performance by 11% on average
respect to DIRECTORY

barnes

blackscholes

bodytra
ck

canneal

cholesky
dedup

ferre
t fft

fluidanimate fmm

fre
qmine

lu_cb
lu_ncb

ocean_cp

ocean_ncp

radiosity
radix

raytra
ce

stre
amcluster

swaptions
vips

volrend

water_nsquared

water_spatial
x264

Average
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

T
ie

m
po

 (
no

rm
al

iz
ad

o)

WritersBlock InOrderCommit Directory OoOCommit WritersBlock OoOCommit

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 29 / 32



Background WritersBlock Results Conclusions

OUT-OF-ORDER COMMIT: EXECUTION TIME

Normalized to DIRECTORY + INORDERCOMMIT

INORDERCOMMIT

WRITERSBLOCK does not harm performance on average
respect to DIRECTORY

OOOCOMMIT

WRITERSBLOCK improves performance by 11% on average
respect to DIRECTORY

barnes

blackscholes

bodytra
ck

canneal

cholesky
dedup

ferre
t fft

fluidanimate fmm

fre
qmine

lu_cb
lu_ncb

ocean_cp

ocean_ncp

radiosity
radix

raytra
ce

stre
amcluster

swaptions
vips

volrend

water_nsquared

water_spatial
x264

Average
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

T
ie

m
po

 (
no

rm
al

iz
ad

o)

WritersBlock InOrderCommit Directory OoOCommit WritersBlock OoOCommit

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 29 / 32



Background WritersBlock Results Conclusions

OUTLINE

1 BACKGROUND

2 WRITERSBLOCK

3 RESULTS

4 CONCLUSIONS

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 30 / 32
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CONCLUSIONS

With the help of the cache coherence protocol,
and without harming performance,

we can execute loads out of order and without speculation,
and obtaining results as if the loads were executed in order

(LOAD→LOAD)

Non-speculative loads can increase performance of
out-of-order commit by 11%
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NON-SPECULATIVE

LOAD→LOAD REORDERING IN TSO1

Alberto Ros

Universidad de Murcia

October 17th, 2017

1 A. Ros, T. E. Carlson, M. Alipour, and S. Kaxiras, "Non-Speculative Load-Load
Reordering in TSO". ISCA, 2017.
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