NON-SPECULATIVE
LOAD—L.OAD REORDERING IN TSO

Alberto Ros
Universidad de Murcia

October 17th, 2017

' A. Ros, T. E. Carlson, M. Alipour, and S. Kaxiras, "Non-Speculative Load-Load
Reordering in TSO". ISCA, 2017.

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 1/32

Background

OUTLINE

@ BACKGROUND

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 2/32

Background
[]

PROGRAM ORDER

e Programmer intuition: instructions execute in the order
they appear in the program

$r0 = X; // load
$r1 =7Y; //load

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 3/32

Background
[]

PROGRAM ORDER

e Programmer intuition: instructions execute in the order
they appear in the program

$r0 = X; // load
$r1 =7Y; //load

e What happens if the order changes?

$r1 =7Y; //load
$r0 = X; // load

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 3/32

Background
[]

PROGRAM ORDER

e Programmer intuition: instructions execute in the order
they appear in the program

$r0 = X; // load
$r1 =7Y; //load

// store
// store

(|
s

bl

e What happens if the order changes?

$r1 =7Y; //load
$r0 = X; // load

// store
// store

bl
(]

o

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 3/32

Background
[Je]

TOTAL STORE ORDER (TSO)

e The memory consistency model defines the behavior of
the programs
e In particular, the behavior of the memory operations: load
and store

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 4/32

Background
[Je]

TOTAL STORE ORDER (TSO)

e The memory consistency model defines the behavior of
the programs
e In particular, the behavior of the memory operations: load
and store
@ x86 processors (Intel, AMD) implement a Total Store Order
(TSO)

@ load—load

@ store—store

@ load—store

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017

4/32

Background
[Je]

TOTAL STORE ORDER (TSO)

e The memory consistency model defines the behavior of
the programs
e In particular, the behavior of the memory operations: load
and store
@ x86 processors (Intel, AMD) implement a Total Store Order
(TSO)

@ load—load

) StOIe*)StOIGZ

@ load—store

2 A. Ros and S. Kaxiras, “Racer: TSO Consistency via Race Detection”, MICRO, 2016.

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017

4/32

Background
[Je]

TOTAL STORE ORDER (TSO)

e The memory consistency model defines the behavior of
the programs
e In particular, the behavior of the memory operations: load
and store
@ x86 processors (Intel, AMD) implement a Total Store Order
(TSO)

@ load—load

) store—>store2

@ load—store

e This talk focus on the load—load order

2 A. Ros and S. Kaxiras, “Racer: TSO Consistency via Race Detection”, MICRO, 2016.

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017

4/32

Background
oe

POSSIBLE RESULTS UNDER LOAD—LOAD (E.G. TSO)

INITIALLY X=0, Y=0

1x: $r0 = X; sy: Y = 1;
ly: $r1 =Y, sx: X = 1;

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 5/32

Background
oe

POSSIBLE RESULTS UNDER LOAD—LOAD (E.G. TSO)

INITIALLY X=0, Y=0

1x: $r0 = X; sy: Y = 1;
ly: $r1 =Y; sx: X = 1;

SIX POSSIBLE INTERLEAVINGS AND VALUES FOR ($RO, $R1)

1x 1x 1x sy sy sy
ly sy sy 1x 1x sX
sy ly sx ly sx 1x
SX sX ly SX ly ly
(0,0) (0,1) (0,1) (0,1) (0,1) 1,1

e (1,0) is not possible if load—load & store—store

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 5/32

Background
[]

RELAXING LOAD—LOAD

INITIALLY X=0, Y=0

1x: $r0 = X; sy: Y = 1;
ly: $r1 =Y; sx: X =1,

SIX POSSIBLE INTERLEAVINGS AND VALUES FOR ($RO, $RrR1)

ly ly ly sy sy sy
1x sy sy ly ly SX
&y Ix 54 1x sX ly
sX sX 1x SX 1x 1x
(0,0) (0,0) (1,00 0,1) 1,1 (1,1)

e (1,0) is possible by relaxing load—load

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 6/32

Background
@000

LOAD—LOAD REORDERING

e Waiting for a load to finish to start the execution of the next
load is very inefficient

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 7132

Background
@000

LOAD—LOAD REORDERING

e Waiting for a load to finish to start the execution of the next
load is very inefficient

e High-performance processors execute multiple load
operations simultaneously

e Memory level parallelism
o Load operations can execute out of order
e This is correct for single-core processors

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 7132

Background
[o] le]e}

LOAD—LOAD REORDERING

e Executing load operations out of order can relax the
load—load order

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 8/32

Background
[o] le]e}

LOAD—LOAD REORDERING

e Executing load operations out of order can relax the
load—load order

Program

oy
e el [[[[]]
Ids
Id
Ids
Ids

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 8/32

Background
[o] le]e}

LOAD—LOAD REORDERING

e Executing load operations out of order can relax the
load—load order

Program

d head
.
Id2 LQ

Id3
Id4
Ids
Ids

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 8/32

Background
[o] le]e}

LOAD—LOAD REORDERING

e Executing load operations out of order can relax the
load—load order

Program

d head
. m_‘_‘_‘_ﬁ

Id2 LQ

Ids Hit

Ids

Ids

Ide

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 8/32

Background
[o] le]e}

LOAD—LOAD REORDERING

e Executing load operations out of order can relax the
load—load order

Program

lhead
Ids
i el [| [[efu]
Ids Miss Hit
lds
Ids
Ide

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 8/32

Background
[o] le]e}

LOAD—LOAD REORDERING

e Executing load operations out of order can relax the
load—load order

Program

l head
Id;
Id, LQ ‘ Ide | Ids ‘ Id, ‘ Ids ‘ Id> | Id; ‘
Ids Miss Hit
Id,
Ids
Ids

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 8/32

Background
[o] le]e}

LOAD—LOAD REORDERING

e Executing load operations out of order can relax the
load—load order

Program Order
l head
Id1 |d1
Id LQ |Ids |Ids | 10 |1 [1dz |1 | ids
Ids Miss Hit Idq
Ids Ids
Ids Id>
Ide Ids

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 8/32

Background
[o]e] leo}

LOAD—LOAD REORDERING

e In multicore processors reordering loads can affect the
expected result

e ltis necessary to always maintain the load—load order?

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 9/32

Background
[o]e] leo}

LOAD—LOAD REORDERING

e In multicore processors reordering loads can affect the
expected result

e ltis necessary to always maintain the load—load order?

INITIALLY X=0, Y=0

$ril 3

/* (1,0) not allowed */

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 9/32

Background
[o]e] leo}

LOAD—LOAD REORDERING

e In multicore processors reordering loads can affect the
expected result

e lItis necessary to always maintain the load—load order?

POSSIBLE EXECUTION

$r0 = Y;
$rl1 = X;

INITIALLY X=0, Y=0

$rl ; s Y
X

1
1
/* (1,0) not allowed */

/* (0, 0) allowed */

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017

9/32

Background
[o]e] leo}

LOAD—LOAD REORDERING

e In multicore processors reordering loads can affect the
expected result

e lItis necessary to always maintain the load—load order?

POSSIBLE EXECUTION

$r0 = Y;

INITIALLY X=0, Y=0

$rl ; s Y
X

$rl = X;

1
1
/* (1,0) not allowed */
/* (1, 0) not allowed */

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 9/32

Background
[o]e] leo}

LOAD—LOAD REORDERING

e In multicore processors reordering loads can affect the
expected result

e lItis necessary to always maintain the load—load order?

POSSIBLE EXECUTION

$r0 = Y;

INITIALLY X=0, Y=0

$rl ; s Y
X

$rl = X;

1
1
/* (1,0) not allowed */
/* (1, 0) not allowed */

e No, if the other cores do not see the reordering

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 9/32

Background
Qo0e

RELAXING LOAD—LOAD

INITIALLY X=0, Y=0

1x: $r0 = X; sy: Y = 1;
ly: $r1 =Y; sx: X =1,

SIX POSSIBLE INTERLEAVINGS AND VALUES FOR ($RO, $RrR1)

ly ly ly sy sy sy
1x sy sy ly ly sX
&y Ix 54 1x sX ly
sX sX 1x SX 1x 1x
(0,0) (0,0) (1,0 0,1) 1,1 (1,1)

@ (1,0) is possible by relaxing load—load

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 10/32

Background
@000

LOAD—LOAD SPECULATION

e Solution: To allow speculative load—load reordering

e Some definitions: performed, ordered, source of
speculation (SoS)

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 11/32

Background
@000

LOAD—LOAD SPECULATION

e Solution: To allow speculative load—load reordering

e Some definitions: performed, ordered, source of
speculation (SoS)

Program Order
l head
Id1 |d1
Id LQ |Ids |Ids | I |15 [1dz |1 | id
Id3 Idyg
Idg4 Ide
Ids Ida
Ide Ids

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 11/32

Background
@000

LOAD—LOAD SPECULATION

e Solution: To allow speculative load—load reordering

e Some definitions: performed, ordered, source of
speculation (SoS)

Program Order
l head
Id1 |d1
Id LQ |Ids |Ids | I |15 [1dz |1 | id
Id3 Ids
Ids Ide
Ide performed Ids
Ids Ids

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 11/32

Background
@000

LOAD—LOAD SPECULATION

e Solution: To allow speculative load—load reordering

e Some definitions: performed, ordered, source of
speculation (SoS)

Program Order
) lhead)
Id LQ |Ids |Ids | I |15 [1dz |1 | dy
Id Id
|dj T M_Splc T Id:
Ids Ida
Ide Ids

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 11/32

Background
@000

LOAD—LOAD SPECULATION

e Solution: To allow speculative load—load reordering

e Some definitions: performed, ordered, source of
speculation (SoS)

Program Order
l head
Id1 |d1
Id LQ |Ids |Ids | 10 |15 [1dz |1 | id
Ids T T '[T ds
Ids Ide
Ide M-spec SoS Ids
|d6 |d5

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 11/32

Background
@000

LOAD—LOAD SPECULATION

e Solution: To allow speculative load—load reordering

e Some definitions: performed, ordered, source of
speculation (SoS)

Program Order
l head
Id Id
Id LQ |Ids |Ids | 10 |15 [1dz |1 | dy
= T 111
Ide M-spec SoS Ids
Ide no ordered ordered ds

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 11/32

Background
[o] le]e}

SQUASH AND RE-EXECUTE UPON INVALIDATION

e Current multicore avoid incorrect results
o With the help of the cache coherence protocol

ly
sy
SX
1x
(1,0)

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 12/32

Background
[o] le]e}

SQUASH AND RE-EXECUTE UPON INVALIDATION

e Current multicore avoid incorrect results
o With the help of the cache coherence protocol

iy SoS
sy (L1 (L1
ox N __
1x <
Q
(1,0) %
LLC

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 12/32

Background
[o] le]e}

SQUASH AND RE-EXECUTE UPON INVALIDATION

e Current multicore avoid incorrect results
o With the help of the cache coherence protocol

LQ l|y

M-spec

Ty ‘L1 ‘L1
sx N4 __
1x -
®
(1,0) %
LLC

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 12/32

Background
[o] le]e}

SQUASH AND RE-EXECUTE UPON INVALIDATION

e Current multicore avoid incorrect results
o With the help of the cache coherence protocol

o 6%

sy
1 ya 7 Y /7'\\\
Ty ‘L1 ‘L1
5 N N4
1x <
o
(1,0) %3 3
ke P 0@:
LLC* ~

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 12/32

Background
[o] le]e}

SQUASH AND RE-EXECUTE UPON INVALIDATION

e Current multicore avoid incorrect results
o With the help of the cache coherence protocol

5y (L1) (L1)
SX ~
1x < \
o
(1,0) % /’”2
%

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 12/32

Background
[o] le]e}

SQUASH AND RE-EXECUTE UPON INVALIDATION

e Current multicore avoid incorrect results

o With the help of the cache coherence protocol
e Squashing and re-executing on remote writes

E

5y (1) (L1)
SX ~
1x < \
o
(1,0) % /’”2
%

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 12/32

Background
[o]e] le}

SQUASH AND RE-EXECUTE UPON EVICTIONS

e What happens when a cache block loaded by an M-spec
load is evicted?
o If the directory stops tracking the block, the M-spec load will
not receive an invalidation

sy M-spec ’ N
sx (L1)
1x ~
-~
(1,0))
Z

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 13/32

Background
[o]e] le}

SQUASH AND RE-EXECUTE UPON EVICTIONS

e What happens when a cache block loaded by an M-spec
load is evicted?
o If the directory stops tracking the block, the M-spec load will
not receive an invalidation

ly o
sy // \\
sx (L1

Ix ~

-
(1,0) B!

<,

z

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 13/32

Background
[o]e] le}

SQUASH AND RE-EXECUTE UPON EVICTIONS

e What happens when a cache block loaded by an M-spec
load is evicted?

o If the directory stops tracking the block, the M-spec load will
not receive an invalidation

e Solution: Squash and re-execute upon evictions
e This impacts the performance of sequential applications!!!

ly o
sy // \\
sx (L1

Ix ~

-
(1,0) B!

<,

z

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 13/32

Background
oooe

PROBLEMS OF SPECULATION

e Memory-related speculation is the current solution to issue
loads out of order while keeping the load—load order

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 14/32

Background
oooe

PROBLEMS OF SPECULATION

e Memory-related speculation is the current solution to issue
loads out of order while keeping the load—load order

e Why is good?
e Because squashing is not frequent!

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 14/32

Background
oooe

PROBLEMS OF SPECULATION

e Memory-related speculation is the current solution to issue
loads out of order while keeping the load—load order
e Why is good?
e Because squashing is not frequent!
e Why is bad?
e Because speculative loads hold critical resources (LQ,
RoB)

e Because the processor needs to keep continuously the
rollback path

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 14/32

Background
oooe

PROBLEMS OF SPECULATION

e Memory-related speculation is the current solution to issue
loads out of order while keeping the load—load order
e Why is good?
e Because squashing is not frequent!
e Why is bad?
e Because speculative loads hold critical resources (LQ,
RoB)

e Because the processor needs to keep continuously the
rollback path

Can we execute loads out of order without speculation and
guaranteeing load—load?

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 14/32

WritersBlock

OUTLINE

© WRITERSBLOCK

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 15/32

WritersBlock
[]

WRITERSBLOCK ACHIEVEMENT

e Current multicore processors speculatively execute loads
out of order

e If a conflict happens, loads are squashed and re-executed

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 16 /32

WritersBlock
[]

WRITERSBLOCK ACHIEVEMENT

e Current multicore processors speculatively execute loads
out of order

e If a conflict happens, loads are squashed and re-executed

WRITERSBLOCK

Makes possible removing this speculation, executing loads out
of order, and making that an executed load is never squashed
because of the consistency model

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 16 /32

WritersBlock
@00000

e With the help of the cache coherence protocol

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 17 /32

WritersBlock
@00000

e With the help of the cache coherence protocol

| \\\ /,, - \\\\
(L1) (L1)
\\77 > J \\777/,/
-
Q
k)
w::f;LCw

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 17 /32

WritersBlock
@00000

e With the help of the cache coherence protocol

Ix
(L1) (L1
AN J AN J

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 17 /32

WritersBlock
@00000

e With the help of the cache coherence protocol

- rlly

M-spec

(L1) (1)
Q
ki,
LLC
N

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 17 /32

WritersBlock
@00000

e With the help of the cache coherence protocol

sy
M-spec T VN
(L1) (L1)
\\77 > J N\ .
-
e
o
3
93 AT Oéz\‘
LLC* v

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 17 /32

WritersBlock
@00000

e With the help of the cache coherence protocol

(L1) (L1)
AN - J 6) \\ //,/
o)
(0/
- AT OQ‘;\‘*
w:;’;Lo QY

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 17 /32

WritersBlock
@00000

e With the help of the cache coherence protocol
e Blocking and delaying the remote write (WritersBlock)

o
o

M-spec -

ly ly / \ /
sy sy \ L1 (L1 \
sx Ix *@ g, S
1x sX /712
(1,0) 3
LLC* ¥

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 17 /32

WritersBlock
@00000

e With the help of the cache coherence protocol

e Blocking and delaying the remote write (WritersBlock)
e Until when? Until the load stop being M-spec

o

ly ly VAN

sy sy ‘\\ Ll) ‘\ Ll /‘
sx lx \\\»,,— N \\\\ _ 4
1x sX
(1,0))
) s

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 17 /32

WritersBlock
@00000

e With the help of the cache coherence protocol

e Blocking and delaying the remote write (WritersBlock)
e Until when? Until the load stop being M-spec

o

ly ly VAN

sy sy (L1) (L1)
sx lx \\x, B N \\\ _ /
1x SX
(1,0))
O‘Sd~
v

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 17 /32

WritersBlock
@00000

e With the help of the cache coherence protocol

e Blocking and delaying the remote write (WritersBlock)
e Until when? Until the load stop being M-spec

o

I 1 /,/' “\\\ /,, \\\\
v sy v sy { L1 { L1)
sx bz A A4
1x SX
(1,0 3
] s

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 17 /32

WritersBlock
O@0000

EVICTIONS

e What happens upon an eviction? Do we squash loads?

M-spec

fnd -V \:

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 18/32

WritersBlock
O@0000

EVICTIONS

e What happens upon an eviction? Do we squash loads?

o No, just need to guarantee that the invalidation will arrive
upon a remote write

M-spec

fnd -V \:

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 18/32

WritersBlock
O@0000

EVICTIONS

e What happens upon an eviction? Do we squash loads?

o No, just need to guarantee that the invalidation will arrive
upon a remote write

e Solution:
o Clean blocks implement silent evictions®

La @

M-spec

3 R. Fernandez-Pascual, A. Ros, and M. E. Acacio, “To Be Silent or Not: On the Impact
of Evictions of Clean Data in Cache-Coherent Multicores”, Journal of Supercomputing,
2017.

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 18/32

WritersBlock
O@0000

EVICTIONS

e What happens upon an eviction? Do we squash loads?

o No, just need to guarantee that the invalidation will arrive
upon a remote write

e Solution:

o Clean blocks implement silent evictions®
o Dirty blocks write back the data but the directory still keeps

track

J

Ve
/

/\(\997\‘\ \‘\

M-spec

3 R. Fernandez-Pascual, A. Ros, and M. E. Acacio, “To Be Silent or Not: On the Impact
of Evictions of Clean Data in Cache-Coherent Multicores”, Journal of Supercomputing,
2017.

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 18/32

WritersBlock
O0e000

DEADLOCK

e Blocking writes can cause deadlocks
e If x and y are two words within the same cache line

sy
M-spec AT
(L1) (L1)
AN \,,,/® \\\ - /,//
? It
AN
o
¢ \
LLC v

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 19/32

WritersBlock
O0e000

DEADLOCK

e Blocking writes can cause deadlocks
e If x and y are two words within the same cache line

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 19/32

WritersBlock
O0e000

DEADLOCK

e Blocking writes can cause deadlocks

e If x and y are two words within the same cache line
e Solution: Blocked writes allow reads to be resolved

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 19/32

WritersBlock
O0e000

DEADLOCK

e Blocking writes can cause deadlocks

e If x and y are two words within the same cache line
e Solution: Blocked writes allow reads to be resolved

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 19/32

WritersBlock
O0e000

DEADLOCK

e Blocking writes can cause deadlocks

e If x and y are two words within the same cache line
e Solution: Blocked writes allow reads to be resolved

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 19/32

WritersBlock
000e00

LIVELOCK

e Resolving reads while blocking writes can cause livelock

e Resolving a read once the data is invalidated will cause a
second invalidation

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 20/32

WritersBlock
000e00

LIVELOCK

e Resolving reads while blocking writes can cause livelock
e Resolving a read once the data is invalidated will cause a
second invalidation
e Solution
o Reads resolved through WritersBlock must be
non-cacheable
e and cannot resolve M-spec loads (no invalidation will be
received)

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 20/32

WritersBlock
000080

DEADLOCK AVOIDANCE

e WRITERSBLOCK cause writes to be blocked
e Until a load stop being M-speculative
e Deadlocks will not happen if loads cannot be stopped by a
pending write miss
e Other blocking causes:

e MSHR address occupied by write miss = Duplicate
read-write MSHR allocation

o Full directory/LLC = Non-cacheable loads

e Atomic Read-Modify-Write = Non-speculative

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 21/32

WritersBlock
0O0000e

CASE OF USE: OUT-OF-ORDER COMMIT

e Out-of-order commit* allows the processor to retire
instructions from the reorder buffer (RoB) even if they are
not at the head

e It cannot retire instructions that may squash

4 G. B. Bell and M. H. Lipasti, “Deconstructing Commit”, ISPASS, 2004.

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 22/32

WritersBlock
0O0000e

CASE OF USE: OUT-OF-ORDER COMMIT

e Out-of-order commit* allows the processor to retire
instructions from the reorder buffer (RoB) even if they are
not at the head

e It cannot retire instructions that may squash
e WRITERSBLOCK allows the retirement of out-of-order loads
e Better RoB/LQ usage

jead
‘Ids | Ids ‘ Ida ‘ Ids ‘Idz | Id ‘

T 111

M-spec SoS

no ordered ordered

4 G. B. Bell and M. H. Lipasti, “Deconstructing Commit”, ISPASS, 2004.

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 22/32

WritersBlock
0O0000e

CASE OF USE: OUT-OF-ORDER COMMIT

e Out-of-order commit* allows the processor to retire
instructions from the reorder buffer (RoB) even if they are
not at the head

e It cannot retire instructions that may squash
e WRITERSBLOCK allows the retirement of out-of-order loads
e Better RoB/LQ usage

M-spec SoS

no ordered ordered

4 G. B. Bell and M. H. Lipasti, “Deconstructing Commit”, ISPASS, 2004.
Alberto Ros Informatics Forun, Edinburgh October 17th, 2017

22/32

Results

OUTLINE

© RESULTS

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 23/32

Results
[]

SIMULATION ENVIRONMENT

e Simulator: GEMS + 000 processor (TSO)

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 24/32

Results
[]

SIMULATION ENVIRONMENT

e Simulator: GEMS + 000 processor (TSO)
e 16-core multicore

e Silvermont (32-entry RoB), Nehalem (128-entry RoB), and
Haswell (192-entry RoB)

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 24/32

Results
[]

SIMULATION ENVIRONMENT

e Simulator: GEMS + 000 processor (TSO)
e 16-core multicore

e Silvermont (32-entry RoB), Nehalem (128-entry RoB), and
Haswell (192-entry RoB)

e Benchmarks: Splash-3° and Parsec-3.0

5 C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, “Splash-3: A Properly
Synchronized Benchmark Suite for Contemporary Research”, ISPASS, 2016.

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 24/32

Results
[]

SIMULATION ENVIRONMENT

e Simulator: GEMS + 000 processor (TSO)

e 16-core multicore

Silvermont (32-entry RoB), Nehalem (128-entry RoB), and
Haswell (192-entry RoB)

Benchmarks: Splash-3° and Parsec-3.0

Protocols

e DIRECTORY: Directory-based MESI protocol
e WRITERSBLOCK: Extensions to DIRECTORY

5 C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, “Splash-3: A Properly
Synchronized Benchmark Suite for Contemporary Research”, ISPASS, 2016.

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017

24/32

Results
[]

SIMULATION ENVIRONMENT

e Simulator: GEMS + 000 processor (TSO)

e 16-core multicore

Silvermont (32-entry RoB), Nehalem (128-entry RoB), and
Haswell (192-entry RoB)

Benchmarks: Splash-3° and Parsec-3.0

Protocols
e DIRECTORY: Directory-based MESI protocol
o WRITERSBLOCK: Extensions to DIRECTORY
e Commit technique

o INORDERCOMMIT
e O0O0OCOMMIT

5 C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, “Splash-3: A Properly
Synchronized Benchmark Suite for Contemporary Research”, ISPASS, 2016.

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 24/32

Results
[le]e}

WRITERSBLOCK: BLOCKED WRITES

@ Results for INORDERCOMMIT
@ Normalized to DIRECTORY

9.2
22 3

$06 \ W SLM-class Wi [NHM-class Wri [HSW-class

;mfﬂ;ﬂ_ffﬂmm ﬂmﬂm ol 0. _

oSRecogiaeamegioest ged? et Hma® mqnin® w0 ngBan o noRgost o gt R At Tuaed oot 25 eres®

Alberto Ros Informatics Forun, Edinbur October 17th, 2017 25/32

Results
[le]e}

WRITERSBLOCK: BLOCKED WRITES

@ Results for INORDERCOMMIT
@ Normalized to DIRECTORY

@ The larger the RoB, the more misspeculations, and the more
blocked writes

9.2

$ 0-67) (@ SLM-class Wri [NHM-class Wri [HSW-class 22 (83 ;
gos 3
X 0.4 |
2o, |
. m [H |
: dl il 1 |

01 |
g, e . il al] . [~ I
£ o
= 2\ AY \ \ A
& ng{gce\?scm\géaw3““cam“"ém\esw e fertet arimet® gt w0y 000 Ban nPyios’ ‘aﬂ‘?agggg?“c\us‘sﬁﬂap\\"“s V\vsg\)g(e‘:\%nﬁg‘\g?fspa“ﬂ X20 yered®

et !

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 25/32

Results
[le]e}

WRITERSBLOCK: BLOCKED WRITES

@ Results for INORDERCOMMIT
@ Normalized to DIRECTORY

@ The larger the RoB, the more misspeculations, and the more
blocked writes

@ Less that 5 blocks per 10,000 stores, on average

9.2
0.67 (W SLM-class Wri @ NHM-class Wri [HSW-class 22183
0.5

T A

0.4
DGR ar oo g0t et s iqn® P

oo
=

Blocked writes per Kstores

D | | i X ce er S S d ed @\ 64 e
J‘oceaﬂﬁcgar\j\ Pagiost rad Yaggga“\c\us\s Ol aption® i "a(\)g(e‘;‘mﬁ%‘\ €0 gpat® x20Ryerad
waer !

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 25/32

Results
(o] le}

WRITERSBLOCK: NON-CACHEABLE DATA

@ Results for INORDERCOMMIT
@ Normalized to DIRECTORY

€ 1-|[ESLiciass T NHM-class T HSW-class i

s H

< 0,01 ;

g |
2006 ;

E ;

5 0.04
200 |

S o ——— m S mo_ e _im
g o

K] ‘)aﬂa\g‘fscho\es aytreCgnned) glesy gedu® ferret da“\ma\e W Peqrit® Py “ccea“ocga“ “c?ad\ogw (el V“ag?“ c\us‘e‘apw“s vm o“e“aq ua‘e 593“3\ 1294 erag®

Alberto Ros Informatics Forun, Edinbur October 17th, 2017 26 /32

Results
(o] le}

WRITERSBLOCK: NON-CACHEABLE DATA

@ Results for INORDERCOMMIT
@ Normalized to DIRECTORY

@ The larger the RoB, the more misspeculations, and the more
non-cacheable data

£ (1| [ESLMclass 0 NHM-class T HSW-class i

=] - H

¥ 0.0 i

5 I

20.06 +

E ;

§ 004 ;

200 :

S o — m - W - _ e _ i

g o

5 3\ X - " 0 \ A

2 ng{ggéscm\gzma%n“e%ho\esw 4eduP gerre! “u\ga“\ma\e eqm®® 1y 10ean Bon nCPyiost Vad‘?aégggﬁ\c\uﬁm\\““s V‘“S\éggf“‘\‘éqxg{g?jva\‘“ 1254 ere0®
aer !

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 26 /32

Results
(o] le}

WRITERSBLOCK: NON-CACHEABLE DATA

@ Results for INORDERCOMMIT
@ Normalized to DIRECTORY

@ The larger the RoB, the more misspeculations, and the more
non-cacheable data

@ ~ 1 non-cacheable data per 100,000 loads, on average

0.1-| (A SLM-class H NHM-class H HSW-class

0.0

0.06

0.04

0.0 i
— m - [[P _ _em i,

0.4

S S\ irack. a\ et it ate) e 0 0 " " e (S S, d d \ A e
‘,S{ggkscho\go““a cam\echo\esw QeduP gert “u\da“‘"‘a feqmin® \ul‘gcea“gé‘gaﬂ,“c?ad\os‘w *a““ag}gggmc\ui‘*;%« opionS P g;g;‘f‘\\sav“,%‘x%é"““a ¥28! Ryerad
waer !

No-cache reads per Kloads

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 26 /32

Results
[efe]]

WRITERSBLOCK: NETWORK TRAFFIC

@ Results for INORDERCOMMIT
@ Normalized to DIRECTORY

PVwhoo~N©:

M Directory InOrderCommit @ WritersBlock InOrderCommit

5 % o o A AR (@ R e @ P (PR P S @t O 0® o0 e @ ot @
007 7 (@ (€% (o) OOV xS @ @ QPP P (RO @S O (00 (B (o 07 (@ 80 A 907 o
o~ A S O N AN\ Y NS i GV I\ N o e
o SIS FE e W e? @‘*‘ o WO o o = W
N

Normalized network traffic
[eNeNeoNeololoNoNoNoNoN

o £ 3
N P @
9

A
A o a@x PG

Alberto Ros Informatics Forun, Edinbur October 17th, 2017 2732

Results
[efe]]

WRITERSBLOCK: NETWORK TRAFFIC

@ Results for INORDERCOMMIT
@ Normalized to DIRECTORY
@ Network traffic on par

PVwhoo~N©:

M Directory InOrderCommit @ WritersBlock InOrderCommit

5 % o o A AR (@ R e @ P (PR P S @t O 0® o0 e @ ot @
007 7 (@ (€% (o) OOV xS @ @ QPP P (RO @S O (00 (B (o 07 (@ 80 A 907 o
o~ A S O N AN\ Y NS i GV I\ N o e
o SIS FE e W e? @‘*‘ o WO o o = W
N

Normalized network traffic
[eNeNeoNeololoNoNoNoNoN

o £ 3
N P @
9

A
A o a@x PG

Alberto Ros Informatics Forun, Edinbur October 17th, 2017 2732

Results
L o)

OUT-OF-ORDER COMMIT: PROCESSOR STALLS

@ Normalized to DIRECTORY + INORDERCOMMIT

100.0 1. Directory InOrderCommit - 2. WritersBlock InOrderCommit . 3. Directory OoOCommit . 4. WritersBlock OoOCommit ESQELQEROB

Processor stalls
@
3

\
namezcno\ggwac\‘ a““e%“o\es\k\l deduP gerret f nate ““‘\“\eqﬂ“"e \“‘cb\u/ncgeaﬂscgan'“c\?ad‘os\\\] ‘5“‘%#‘

ace el GonS \ipS, el | ared aidl 064 e
"piack E quiden™ AR WWV?\B(‘E/ 0re0 goatiel 264 era

5
o Yirea™ uoer_nsarer S

Alberto Ros Informatics Forun, Edinbi October 17th, 2017 28/32

Results
L o)

OUT-OF-ORDER COMMIT: PROCESSOR STALLS

@ Normalized to DIRECTORY + INORDERCOMMIT
@ INORDERCOMMIT
e WRITERSBLOCK does not increases SQ stalls

1. Directory InOrderCommit - 2. WritersBlock InOrderCommit . 3. Directory OoOCommit . 4. WritersBlock OoOCommit ESQELQEROB

Processor stalls

s oles, wack el \ e e Py, ned % BCe sl oS S gend ared _atied
“g{;‘gksmo\gﬂw“acCanneg“o\esw geduP ferre! ““‘g;“\ma‘ ™ 10 13ean Ban Nagios™ ‘5d\‘a\£§gg‘“d\15‘s?“ap\\u“ i i‘\"e‘re‘;‘f'“ﬁaa‘&g“g"a“a 128 yerad®
et

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 28/32

Results
L o)

OUT-OF-ORDER COMMIT: PROCESSOR STALLS

@ Normalized to DIRECTORY + INORDERCOMMIT
@ INORDERCOMMIT

e WRITERSBLOCK does not increases SQ stalls
@ OoOCOMMIT

e WRITERSBLOCK reduces RoB and LQ stalls on average
respect to DIRECTORY

100.0 1. Directory InOrderCommit - 2. WritersBlock InOrderCommit . 3. Directory OoOCommit . 4. WritersBlock OoOCommit ESQELQEROB .

Processor stalls
@
3

S S 'y \ 28 e e 0 0 0y e t S S A d \ e
ng{;‘&g,cm\gw“accanneg“o\esw geduP erre “\,&“\ma‘ ™ 100 1Bean Ban Nacios™ ‘ad\mggggmdus‘;wap“uﬂ N g,\ex‘er;ﬁqx%r‘g@va“ﬂ 1254 erad
e !

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 28/32

Results
oe

OUT-OF-ORDER COMMIT: EXECUTION TIME

@ Normalized to DIRECTORY + INORDERCOMMIT

10 =] W
0.
go.
gor
5 0.
Eos
Lo4
30.
£0.
£ 0.1 [mwri k InOrderCommit I Directory OoOCommit &I k OoOCommit |
0.
@ o ot o L q® @ gl @ P PR (@ g §F @ o (o @ g e
AN SN SR I P RO PN RS S AR S R N PN g N @0 (8 @ 0
v\e&s o (\u\@“ & B (@ e @‘4‘“&‘0 o o 8 W
o 9 R

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 29/32

Results
oe

OUT-OF-ORDER COMMIT: EXECUTION TIME

@ Normalized to DIRECTORY + INORDERCOMMIT

@ INORDERCOMMIT
e WRITERSBLOCK does not harm performance on average
respect to DIRECTORY

1_U\ - = -
0.
go.
g 0.7
5 0.
Eos
Lo4
92 0.
£0.
£ 0.1 [mwri k InOrderCommit I Directory OoOCommit &I k OoOCommit |
0.4
5 o o B A G @ gl (@ P PR (@ a8 o @ i geh e
0 0% (GO 0 g0 (@ e W @0 0 0 3 @ @ (3 g W (@ @@ @ 0 e
W (T (S (0 w\@v\ @ BT e e e @ @‘4‘“&@0\ o qo‘&wa@‘ S e
B FEad
Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 29/32

Results
oe

OUT-OF-ORDER COMMIT: EXECUTION TIME

Tiempo (normalizado)
cocoooooooor

Normalized to DIRECTORY + INORDERCOMMIT

@ INORDERCOMMIT
e WRITERSBLOCK does not harm performance on average
respect to DIRECTORY

@ OoOCoMMIT

e WRITERSBLOCK improves performance by 11% on average
respect to DIRECTORY

o
7
5
4
177 I Wit k InOrderCommit I Directory OoOCommit &I k OoOCommit |

@ ot A @ g @ @ P (O R ST e T S SR S - S N L] ©
\ﬁ‘“ &9 M@ oS o\'a‘" & e @\\“\a \‘(‘“eﬂ‘“\ RS ce‘a“’ 60‘-‘ <& \4\@ s\“ & N O . P P?‘Q‘QQ

¢ oo o5 «a@/
W

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 29/32

Conclusions

OUTLINE

@ ConcLUSIONS

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 30/32

Conclusions
[]

CONCLUSIONS

With the help of the cache coherence protocol,
and without harming performance,
we can execute loads out of order and without speculation,
and obtaining results as if the loads were executed in order
(LOAD—LOAD)

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 31/32

Conclusions
[]

CONCLUSIONS

With the help of the cache coherence protocol,
and without harming performance,
we can execute loads out of order and without speculation,
and obtaining results as if the loads were executed in order
(LOAD—LOAD)

Non-speculative loads can increase performance of
out-of-order commit by 11%

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 31/32

Questions?

NON-SPECULATIVE

LOAD—L.OAD REORDERING IN TSO

Alberto Ros
Universidad de Murcia

October 17th, 2017

' A. Ros, T. E. Carlson, M. Alipour, and S. Kaxiras, "Non-Speculative Load-Load
Reordering in TSO". ISCA, 2017.

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 32/32

	Appendix

