
Background WritersBlock Results Conclusions

NON-SPECULATIVE

LOAD→LOAD REORDERING IN TSO1

Alberto Ros

Universidad de Murcia

October 17th, 2017

1 A. Ros, T. E. Carlson, M. Alipour, and S. Kaxiras, "Non-Speculative Load-Load
Reordering in TSO". ISCA, 2017.

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 1 / 32

Background WritersBlock Results Conclusions

OUTLINE

1 BACKGROUND

2 WRITERSBLOCK

3 RESULTS

4 CONCLUSIONS

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 2 / 32

Background WritersBlock Results Conclusions

PROGRAM ORDER

Programmer intuition: instructions execute in the order
they appear in the program

THREAD 1
$r0 = X; // load
$r1 = Y; // load

THREAD 2
Y = 1; // store
X = 1; // store

What happens if the order changes?

THREAD 1
$r1 = Y; // load
$r0 = X; // load

THREAD 2
Y = 1; // store
X = 1; // store

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 3 / 32

Background WritersBlock Results Conclusions

PROGRAM ORDER

Programmer intuition: instructions execute in the order
they appear in the program

THREAD 1
$r0 = X; // load
$r1 = Y; // load

THREAD 2
Y = 1; // store
X = 1; // store

What happens if the order changes?

THREAD 1
$r1 = Y; // load
$r0 = X; // load

THREAD 2
Y = 1; // store
X = 1; // store

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 3 / 32

Background WritersBlock Results Conclusions

PROGRAM ORDER

Programmer intuition: instructions execute in the order
they appear in the program

THREAD 1
$r0 = X; // load
$r1 = Y; // load

THREAD 2
Y = 1; // store
X = 1; // store

What happens if the order changes?

THREAD 1
$r1 = Y; // load
$r0 = X; // load

THREAD 2
Y = 1; // store
X = 1; // store

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 3 / 32

Background WritersBlock Results Conclusions

TOTAL STORE ORDER (TSO)

The memory consistency model defines the behavior of
the programs

In particular, the behavior of the memory operations: load
and store

x86 processors (Intel, AMD) implement a Total Store Order
(TSO)

TSO RULES

load→load

store→store

2

load→store

This talk focus on the load→load order

2 A. Ros and S. Kaxiras, “Racer: TSO Consistency via Race Detection”, MICRO, 2016.

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 4 / 32

Background WritersBlock Results Conclusions

TOTAL STORE ORDER (TSO)

The memory consistency model defines the behavior of
the programs

In particular, the behavior of the memory operations: load
and store

x86 processors (Intel, AMD) implement a Total Store Order
(TSO)

TSO RULES

load→load

store→store

2

load→store

This talk focus on the load→load order

2 A. Ros and S. Kaxiras, “Racer: TSO Consistency via Race Detection”, MICRO, 2016.

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 4 / 32

Background WritersBlock Results Conclusions

TOTAL STORE ORDER (TSO)

The memory consistency model defines the behavior of
the programs

In particular, the behavior of the memory operations: load
and store

x86 processors (Intel, AMD) implement a Total Store Order
(TSO)

TSO RULES

load→load

store→store2

load→store

This talk focus on the load→load order

2 A. Ros and S. Kaxiras, “Racer: TSO Consistency via Race Detection”, MICRO, 2016.

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 4 / 32

Background WritersBlock Results Conclusions

TOTAL STORE ORDER (TSO)

The memory consistency model defines the behavior of
the programs

In particular, the behavior of the memory operations: load
and store

x86 processors (Intel, AMD) implement a Total Store Order
(TSO)

TSO RULES

load→load

store→store2

load→store

This talk focus on the load→load order

2 A. Ros and S. Kaxiras, “Racer: TSO Consistency via Race Detection”, MICRO, 2016.

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 4 / 32

Background WritersBlock Results Conclusions

POSSIBLE RESULTS UNDER LOAD→LOAD (E.G. TSO)

INITIALLY X=0, Y=0
lx: $r0 = X;
ly: $r1 = Y;

sy: Y = 1;
sx: X = 1;

SIX POSSIBLE INTERLEAVINGS AND VALUES FOR ($R0, $R1)
lx
ly

sy
sx

(0,0)

lx
sy

ly
sx

(0,1)

lx
sy
sx

ly

(0,1)

sy
lx
ly

sx

(0,1)

sy
lx

sx
ly

(0,1)

sy
sx

lx
ly

(1,1)

(1,0) is not possible if load→load & store→store

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 5 / 32

Background WritersBlock Results Conclusions

POSSIBLE RESULTS UNDER LOAD→LOAD (E.G. TSO)

INITIALLY X=0, Y=0
lx: $r0 = X;
ly: $r1 = Y;

sy: Y = 1;
sx: X = 1;

SIX POSSIBLE INTERLEAVINGS AND VALUES FOR ($R0, $R1)
lx
ly

sy
sx

(0,0)

lx
sy

ly
sx

(0,1)

lx
sy
sx

ly

(0,1)

sy
lx
ly

sx

(0,1)

sy
lx

sx
ly

(0,1)

sy
sx

lx
ly

(1,1)

(1,0) is not possible if load→load & store→store

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 5 / 32

Background WritersBlock Results Conclusions

RELAXING LOAD→LOAD

INITIALLY X=0, Y=0

lx: $r0 = X;
ly: $r1 = Y;

sy: Y = 1;
sx: X = 1;

SIX POSSIBLE INTERLEAVINGS AND VALUES FOR ($R0, $R1)

ly
lx

sy
sx

(0,0)

ly
sy

lx
sx

(0,0)

ly
sy
sx

lx

(1,0)

sy
ly
lx

sx

(0,1)

sy
ly

sx
lx

(1,1)

sy
sx

ly
lx

(1,1)

(1,0) is possible by relaxing load→load

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 6 / 32

Background WritersBlock Results Conclusions

LOAD→LOAD REORDERING

Waiting for a load to finish to start the execution of the next
load is very inefficient

High-performance processors execute multiple load
operations simultaneously

Memory level parallelism

Load operations can execute out of order
This is correct for single-core processors

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 7 / 32

Background WritersBlock Results Conclusions

LOAD→LOAD REORDERING

Waiting for a load to finish to start the execution of the next
load is very inefficient
High-performance processors execute multiple load
operations simultaneously

Memory level parallelism

Load operations can execute out of order
This is correct for single-core processors

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 7 / 32

Background WritersBlock Results Conclusions

LOAD→LOAD REORDERING

Executing load operations out of order can relax the
load→load order

Program

ld1

ld2

ld3

ld4

ld5

ld6

head

LQ

Order

ld1

ld3

ld4

ld6

ld2

ld5

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 8 / 32

Background WritersBlock Results Conclusions

LOAD→LOAD REORDERING

Executing load operations out of order can relax the
load→load order

Program

ld1

ld2

ld3

ld4

ld5

ld6

head

LQ

Order

ld1

ld3

ld4

ld6

ld2

ld5

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 8 / 32

Background WritersBlock Results Conclusions

LOAD→LOAD REORDERING

Executing load operations out of order can relax the
load→load order

Program

ld1

ld2

ld3

ld4

ld5

ld6

head

LQ ld1

Order

ld1

ld3

ld4

ld6

ld2

ld5

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 8 / 32

Background WritersBlock Results Conclusions

LOAD→LOAD REORDERING

Executing load operations out of order can relax the
load→load order

Program

ld1

ld2

ld3

ld4

ld5

ld6

head

LQ ld1ld1

Hit

Order

ld1

ld3

ld4

ld6

ld2

ld5

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 8 / 32

Background WritersBlock Results Conclusions

LOAD→LOAD REORDERING

Executing load operations out of order can relax the
load→load order

Program

ld1

ld2

ld3

ld4

ld5

ld6

head

LQ ld1ld1

Hit

ld2

Miss

Order

ld1

ld3

ld4

ld6

ld2

ld5

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 8 / 32

Background WritersBlock Results Conclusions

LOAD→LOAD REORDERING

Executing load operations out of order can relax the
load→load order

Program

ld1

ld2

ld3

ld4

ld5

ld6

head

LQ ld1ld1

Hit

ld2

Miss

ld3ld4ld5ld6

Order

ld1

ld3

ld4

ld6

ld2

ld5

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 8 / 32

Background WritersBlock Results Conclusions

LOAD→LOAD REORDERING

Executing load operations out of order can relax the
load→load order

Program

ld1

ld2

ld3

ld4

ld5

ld6

head

LQ ld1ld1

Hit

ld2

Miss

ld3ld4ld5ld6

Order

ld1

ld3

ld4

ld6

ld2

ld5

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 8 / 32

Background WritersBlock Results Conclusions

LOAD→LOAD REORDERING

In multicore processors reordering loads can affect the
expected result
It is necessary to always maintain the load→load order?

INITIALLY X=0, Y=0
$r0 = X;
$r1 = Y;

Y = 1;
X = 1;

/* (1,0) not allowed */

POSSIBLE EXECUTION

$r0 = Y;

$r1 = X;

$r1 = X;

Y = 1;
X = 1;

No, if the other cores do not see the reordering

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 9 / 32

Background WritersBlock Results Conclusions

LOAD→LOAD REORDERING

In multicore processors reordering loads can affect the
expected result
It is necessary to always maintain the load→load order?

INITIALLY X=0, Y=0
$r0 = X;
$r1 = Y;

Y = 1;
X = 1;

/* (1,0) not allowed */

POSSIBLE EXECUTION

$r0 = Y;

$r1 = X;

$r1 = X;

Y = 1;
X = 1;

No, if the other cores do not see the reordering

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 9 / 32

Background WritersBlock Results Conclusions

LOAD→LOAD REORDERING

In multicore processors reordering loads can affect the
expected result
It is necessary to always maintain the load→load order?

INITIALLY X=0, Y=0
$r0 = X;
$r1 = Y;

Y = 1;
X = 1;

/* (1,0) not allowed */

POSSIBLE EXECUTION

$r0 = Y;
$r1 = X;

$r1 = X;

Y = 1;
X = 1;

/* (0, 0) allowed */

No, if the other cores do not see the reordering

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 9 / 32

Background WritersBlock Results Conclusions

LOAD→LOAD REORDERING

In multicore processors reordering loads can affect the
expected result
It is necessary to always maintain the load→load order?

INITIALLY X=0, Y=0
$r0 = X;
$r1 = Y;

Y = 1;
X = 1;

/* (1,0) not allowed */

POSSIBLE EXECUTION

$r0 = Y;

$r1 = X;

$r1 = X;

Y = 1;
X = 1;

/* (1, 0) not allowed */

No, if the other cores do not see the reordering

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 9 / 32

Background WritersBlock Results Conclusions

LOAD→LOAD REORDERING

In multicore processors reordering loads can affect the
expected result
It is necessary to always maintain the load→load order?

INITIALLY X=0, Y=0
$r0 = X;
$r1 = Y;

Y = 1;
X = 1;

/* (1,0) not allowed */

POSSIBLE EXECUTION

$r0 = Y;

$r1 = X;

$r1 = X;

Y = 1;
X = 1;

/* (1, 0) not allowed */

No, if the other cores do not see the reordering

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 9 / 32

Background WritersBlock Results Conclusions

RELAXING LOAD→LOAD

INITIALLY X=0, Y=0

lx: $r0 = X;
ly: $r1 = Y;

sy: Y = 1;
sx: X = 1;

SIX POSSIBLE INTERLEAVINGS AND VALUES FOR ($R0, $R1)

ly
lx

sy
sx

(0,0)

ly
sy

lx
sx

(0,0)

ly
sy
sx

lx

(1,0)

sy
ly
lx

sx

(0,1)

sy
ly

sx
lx

(1,1)

sy
sx

ly
lx

(1,1)

(1,0) is possible by relaxing load→load

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 10 / 32

Background WritersBlock Results Conclusions

LOAD→LOAD SPECULATION

Solution: To allow speculative load→load reordering
Some definitions: performed, ordered, source of
speculation (SoS)

Program

ld1

ld2

ld3

ld4

ld5

ld6

head

LQ ld1ld1ld2ld3ld4ld5ld6

Order

ld1

ld3

ld4

ld6

ld2

ld5

performedM-spec

orderedno ordered

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 11 / 32

Background WritersBlock Results Conclusions

LOAD→LOAD SPECULATION

Solution: To allow speculative load→load reordering
Some definitions: performed, ordered, source of
speculation (SoS)

Program

ld1

ld2

ld3

ld4

ld5

ld6

head

LQ ld1ld1ld2ld3ld4ld5ld6

Order

ld1

ld3

ld4

ld6

ld2

ld5

performedM-spec

orderedno ordered

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 11 / 32

Background WritersBlock Results Conclusions

LOAD→LOAD SPECULATION

Solution: To allow speculative load→load reordering
Some definitions: performed, ordered, source of
speculation (SoS)

Program

ld1

ld2

ld3

ld4

ld5

ld6

head

LQ ld1ld1ld2ld3ld4ld5ld6

Order

ld1

ld3

ld4

ld6

ld2

ld5

performed

M-spec

orderedno ordered

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 11 / 32

Background WritersBlock Results Conclusions

LOAD→LOAD SPECULATION

Solution: To allow speculative load→load reordering
Some definitions: performed, ordered, source of
speculation (SoS)

Program

ld1

ld2

ld3

ld4

ld5

ld6

head

LQ ld1ld1ld2ld3ld4ld5ld6

Order

ld1

ld3

ld4

ld6

ld2

ld5

performed

M-spec

orderedno ordered

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 11 / 32

Background WritersBlock Results Conclusions

LOAD→LOAD SPECULATION

Solution: To allow speculative load→load reordering
Some definitions: performed, ordered, source of
speculation (SoS)

Program

ld1

ld2

ld3

ld4

ld5

ld6

head

LQ ld1ld1ld2ld3ld4ld5ld6

Order

ld1

ld3

ld4

ld6

ld2

ld5

performed

M-spec SoS

orderedno ordered

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 11 / 32

Background WritersBlock Results Conclusions

LOAD→LOAD SPECULATION

Solution: To allow speculative load→load reordering
Some definitions: performed, ordered, source of
speculation (SoS)

Program

ld1

ld2

ld3

ld4

ld5

ld6

head

LQ ld1ld1ld2ld3ld4ld5ld6

Order

ld1

ld3

ld4

ld6

ld2

ld5

performed

M-spec SoS

orderedno ordered

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 11 / 32

Background WritersBlock Results Conclusions

SQUASH AND RE-EXECUTE UPON INVALIDATION

Current multicore avoid incorrect results
With the help of the cache coherence protocol

Squashing and re-executing on remote writes

ly
sy
sx

lx

(1,0)

LQ lx

L1 L1

LLC

1. G
etS

x

sy

1.
GetX

y

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 12 / 32

Background WritersBlock Results Conclusions

SQUASH AND RE-EXECUTE UPON INVALIDATION

Current multicore avoid incorrect results
With the help of the cache coherence protocol

Squashing and re-executing on remote writes

ly
sy
sx

lx

(1,0)

LQ lx

L1 L1

LLC

1. G
etS

x

SoS
lx

sy

1.
GetX

y

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 12 / 32

Background WritersBlock Results Conclusions

SQUASH AND RE-EXECUTE UPON INVALIDATION

Current multicore avoid incorrect results
With the help of the cache coherence protocol

Squashing and re-executing on remote writes

ly
sy
sx

lx

(1,0)

LQ lx

L1 L1

LLC

1. G
etS

x

M-spec

ly

ly

sy

1.
GetX

y

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 12 / 32

Background WritersBlock Results Conclusions

SQUASH AND RE-EXECUTE UPON INVALIDATION

Current multicore avoid incorrect results
With the help of the cache coherence protocol

Squashing and re-executing on remote writes

ly
sy
sx

lx

(1,0)

LQ lx

L1 L1

LLC

1. G
etS

x

ly

sy

1.
GetX

y

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 12 / 32

Background WritersBlock Results Conclusions

SQUASH AND RE-EXECUTE UPON INVALIDATION

Current multicore avoid incorrect results
With the help of the cache coherence protocol

Squashing and re-executing on remote writes

ly
sy
sx

lx

(1,0)

LQ lx

L1 L1

LLC

1. G
etS

x

ly

sy

1.
GetX

y

2. Invy

M-spec

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 12 / 32

Background WritersBlock Results Conclusions

SQUASH AND RE-EXECUTE UPON INVALIDATION

Current multicore avoid incorrect results
With the help of the cache coherence protocol
Squashing and re-executing on remote writes

ly
sy
sx

lx

(1,0)

LQ lx

L1 L1

LLC

1. G
etS

x

sy

1.
GetX

y

2. Invy

ly

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 12 / 32

Background WritersBlock Results Conclusions

SQUASH AND RE-EXECUTE UPON EVICTIONS

What happens when a cache block loaded by an M-spec
load is evicted?

If the directory stops tracking the block, the M-spec load will
not receive an invalidation

Solution: Squash and re-execute upon evictions
This impacts the performance of sequential applications!!!

ly
sy
sx

lx

(1,0)

lx

L1

1. P
uty

ly

M-spec

ly

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 13 / 32

Background WritersBlock Results Conclusions

SQUASH AND RE-EXECUTE UPON EVICTIONS

What happens when a cache block loaded by an M-spec
load is evicted?

If the directory stops tracking the block, the M-spec load will
not receive an invalidation

Solution: Squash and re-execute upon evictions
This impacts the performance of sequential applications!!!

ly
sy
sx

lx

(1,0)

lx

L1

1. P
uty

ly

M-spec

ly

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 13 / 32

Background WritersBlock Results Conclusions

SQUASH AND RE-EXECUTE UPON EVICTIONS

What happens when a cache block loaded by an M-spec
load is evicted?

If the directory stops tracking the block, the M-spec load will
not receive an invalidation

Solution: Squash and re-execute upon evictions
This impacts the performance of sequential applications!!!

ly
sy
sx

lx

(1,0)

lx

L1

1. P
uty

ly

M-spec

ly

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 13 / 32

Background WritersBlock Results Conclusions

PROBLEMS OF SPECULATION

Memory-related speculation is the current solution to issue
loads out of order while keeping the load→load order

Why is good?

Because squashing is not frequent!

Why is bad?

Because speculative loads hold critical resources (LQ,
RoB)
Because the processor needs to keep continuously the
rollback path

QUESTION

Can we execute loads out of order without speculation and
guaranteeing load→load?

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 14 / 32

Background WritersBlock Results Conclusions

PROBLEMS OF SPECULATION

Memory-related speculation is the current solution to issue
loads out of order while keeping the load→load order
Why is good?

Because squashing is not frequent!

Why is bad?

Because speculative loads hold critical resources (LQ,
RoB)
Because the processor needs to keep continuously the
rollback path

QUESTION

Can we execute loads out of order without speculation and
guaranteeing load→load?

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 14 / 32

Background WritersBlock Results Conclusions

PROBLEMS OF SPECULATION

Memory-related speculation is the current solution to issue
loads out of order while keeping the load→load order
Why is good?

Because squashing is not frequent!
Why is bad?

Because speculative loads hold critical resources (LQ,
RoB)
Because the processor needs to keep continuously the
rollback path

QUESTION

Can we execute loads out of order without speculation and
guaranteeing load→load?

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 14 / 32

Background WritersBlock Results Conclusions

PROBLEMS OF SPECULATION

Memory-related speculation is the current solution to issue
loads out of order while keeping the load→load order
Why is good?

Because squashing is not frequent!
Why is bad?

Because speculative loads hold critical resources (LQ,
RoB)
Because the processor needs to keep continuously the
rollback path

QUESTION

Can we execute loads out of order without speculation and
guaranteeing load→load?

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 14 / 32

Background WritersBlock Results Conclusions

OUTLINE

1 BACKGROUND

2 WRITERSBLOCK

3 RESULTS

4 CONCLUSIONS

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 15 / 32

Background WritersBlock Results Conclusions

WRITERSBLOCK ACHIEVEMENT

Current multicore processors speculatively execute loads
out of order
If a conflict happens, loads are squashed and re-executed

WRITERSBLOCK

Makes possible removing this speculation, executing loads out
of order, and making that an executed load is never squashed
because of the consistency model

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 16 / 32

Background WritersBlock Results Conclusions

WRITERSBLOCK ACHIEVEMENT

Current multicore processors speculatively execute loads
out of order
If a conflict happens, loads are squashed and re-executed

WRITERSBLOCK

Makes possible removing this speculation, executing loads out
of order, and making that an executed load is never squashed
because of the consistency model

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 16 / 32

Background WritersBlock Results Conclusions

HOW?

With the help of the cache coherence protocol

Blocking and delaying the remote write (WritersBlock)
Until when? Until the load stop being M-spec

ly
sy
sx

lx

(1,0)

ly
sy

lx
sx

(0,0)

LQ lx

L1 L1

LLC

sy

2.
GetX

y

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 17 / 32

Background WritersBlock Results Conclusions

HOW?

With the help of the cache coherence protocol

Blocking and delaying the remote write (WritersBlock)
Until when? Until the load stop being M-spec

ly
sy
sx

lx

(1,0)

ly
sy

lx
sx

(0,0)

LQ lx

L1 L1

LLC

1. G
etS

x

lx

sy

2.
GetX

y

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 17 / 32

Background WritersBlock Results Conclusions

HOW?

With the help of the cache coherence protocol

Blocking and delaying the remote write (WritersBlock)
Until when? Until the load stop being M-spec

ly
sy
sx

lx

(1,0)

ly
sy

lx
sx

(0,0)

LQ lx

L1 L1

LLC

1. G
etS

x

lx
SoS

sy

2.
GetX

y

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 17 / 32

Background WritersBlock Results Conclusions

HOW?

With the help of the cache coherence protocol

Blocking and delaying the remote write (WritersBlock)
Until when? Until the load stop being M-spec

ly
sy
sx

lx

(1,0)

ly
sy

lx
sx

(0,0)

LQ lx

L1 L1

LLC

1. G
etS

x

ly

ly

sy

2.
GetX

y

M-spec

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 17 / 32

Background WritersBlock Results Conclusions

HOW?

With the help of the cache coherence protocol

Blocking and delaying the remote write (WritersBlock)
Until when? Until the load stop being M-spec

ly
sy
sx

lx

(1,0)

ly
sy

lx
sx

(0,0)

LQ lx

L1 L1

LLC

1. G
etS

x

ly

sy

2.
GetX

y

M-spec

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 17 / 32

Background WritersBlock Results Conclusions

HOW?

With the help of the cache coherence protocol

Blocking and delaying the remote write (WritersBlock)
Until when? Until the load stop being M-spec

ly
sy
sx

lx

(1,0)

ly
sy

lx
sx

(0,0)

LQ lx

L1 L1

LLC

1. G
etS

x

ly

sy

2.
GetX

y

3. Invy

M-spec

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 17 / 32

Background WritersBlock Results Conclusions

HOW?

With the help of the cache coherence protocol
Blocking and delaying the remote write (WritersBlock)

Until when? Until the load stop being M-spec

ly
sy
sx

lx

(1,0)

ly
sy

lx
sx

(0,0)

LQ lx

L1 L1

LLC

ly

sy

2.
GetX

y

3. Invy

M-spec

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 17 / 32

Background WritersBlock Results Conclusions

HOW?

With the help of the cache coherence protocol
Blocking and delaying the remote write (WritersBlock)
Until when? Until the load stop being M-spec

ly
sy
sx

lx

(1,0)

ly
sy

lx
sx

(0,0)

LQ lx

L1 L1

LLC

ly

sy

2.
GetX

y

3. Invy
1. GetS

x

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 17 / 32

Background WritersBlock Results Conclusions

HOW?

With the help of the cache coherence protocol
Blocking and delaying the remote write (WritersBlock)
Until when? Until the load stop being M-spec

ly
sy
sx

lx

(1,0)

ly
sy

lx
sx

(0,0)

LQ lx

L1 L1

LLC

ly

sy

2.
GetX

y

3. Invy
1. GetS

x

lx

4. Data
x

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 17 / 32

Background WritersBlock Results Conclusions

HOW?

With the help of the cache coherence protocol
Blocking and delaying the remote write (WritersBlock)
Until when? Until the load stop being M-spec

ly
sy
sx

lx

(1,0)

ly
sy

lx
sx

(0,0)

LQ lx

L1 L1

LLC

ly

sy

2.
GetX

y

3. Invy
1. GetS

x

lx

4. Data
x

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 17 / 32

Background WritersBlock Results Conclusions

EVICTIONS

What happens upon an eviction? Do we squash loads?

No, just need to guarantee that the invalidation will arrive
upon a remote write

Solution:

Clean blocks implement silent evictions3

Dirty blocks write back the data but the directory still keeps
track

LQ lx
L1

1. P
uty

1. Keep
y

ly

M-spec

3 R. Fernandez-Pascual, A. Ros, and M. E. Acacio, “To Be Silent or Not: On the Impact
of Evictions of Clean Data in Cache-Coherent Multicores”, Journal of Supercomputing,
2017.

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 18 / 32

Background WritersBlock Results Conclusions

EVICTIONS

What happens upon an eviction? Do we squash loads?
No, just need to guarantee that the invalidation will arrive
upon a remote write

Solution:

Clean blocks implement silent evictions3

Dirty blocks write back the data but the directory still keeps
track

LQ lx
L1

1. P
uty

1. Keep
y

ly

M-spec

3 R. Fernandez-Pascual, A. Ros, and M. E. Acacio, “To Be Silent or Not: On the Impact
of Evictions of Clean Data in Cache-Coherent Multicores”, Journal of Supercomputing,
2017.

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 18 / 32

Background WritersBlock Results Conclusions

EVICTIONS

What happens upon an eviction? Do we squash loads?
No, just need to guarantee that the invalidation will arrive
upon a remote write

Solution:
Clean blocks implement silent evictions3

Dirty blocks write back the data but the directory still keeps
track

LQ lx
L1

1. P
uty

1. Keep
y

ly

M-spec

3 R. Fernandez-Pascual, A. Ros, and M. E. Acacio, “To Be Silent or Not: On the Impact
of Evictions of Clean Data in Cache-Coherent Multicores”, Journal of Supercomputing,
2017.

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 18 / 32

Background WritersBlock Results Conclusions

EVICTIONS

What happens upon an eviction? Do we squash loads?
No, just need to guarantee that the invalidation will arrive
upon a remote write

Solution:
Clean blocks implement silent evictions3

Dirty blocks write back the data but the directory still keeps
track

LQ lx
L1

1. P
uty

1. Keep
y

ly

M-spec

3 R. Fernandez-Pascual, A. Ros, and M. E. Acacio, “To Be Silent or Not: On the Impact
of Evictions of Clean Data in Cache-Coherent Multicores”, Journal of Supercomputing,
2017.

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 18 / 32

Background WritersBlock Results Conclusions

DEADLOCK

Blocking writes can cause deadlocks
If x and y are two words within the same cache line

Solution: Blocked writes allow reads to be resolved

ly
sy
sx

lx

(1,0)

LQ lx

L1 L1

LLC

1. G
etS

x

ly

sy

2.
GetX

y

3. Invy

M-spec

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 19 / 32

Background WritersBlock Results Conclusions

DEADLOCK

Blocking writes can cause deadlocks
If x and y are two words within the same cache line

Solution: Blocked writes allow reads to be resolved

ly
sy
sx

lx

(1,0)

LQ lx

L1 L1

LLC

ly

sy

2.
GetX

y

3. Invy

M-spec

1. GetS
x

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 19 / 32

Background WritersBlock Results Conclusions

DEADLOCK

Blocking writes can cause deadlocks
If x and y are two words within the same cache line
Solution: Blocked writes allow reads to be resolved

ly
sy
sx

lx

(1,0)

LQ lx

L1 L1

LLC

ly

sy

2.
GetX

y

3. Invy

M-spec

1. GetS
x

4. Data
x

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 19 / 32

Background WritersBlock Results Conclusions

DEADLOCK

Blocking writes can cause deadlocks
If x and y are two words within the same cache line
Solution: Blocked writes allow reads to be resolved

ly
sy
sx

lx

(1,0)

LQ

L1 L1

LLC

ly

sy

2.
GetX

y

3. Invy

M-spec

1. GetS
x

4. Data
x

lx

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 19 / 32

Background WritersBlock Results Conclusions

DEADLOCK

Blocking writes can cause deadlocks
If x and y are two words within the same cache line
Solution: Blocked writes allow reads to be resolved

ly
sy
sx

lx

(1,0)

LQ

L1 L1

LLC

ly

sy

2.
GetX

y

3. Invy

M-spec

1. GetS
x

4. Data
x

lx

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 19 / 32

Background WritersBlock Results Conclusions

LIVELOCK

Resolving reads while blocking writes can cause livelock
Resolving a read once the data is invalidated will cause a
second invalidation

Solution

Reads resolved through WritersBlock must be
non-cacheable
and cannot resolve M-spec loads (no invalidation will be
received)

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 20 / 32

Background WritersBlock Results Conclusions

LIVELOCK

Resolving reads while blocking writes can cause livelock
Resolving a read once the data is invalidated will cause a
second invalidation

Solution
Reads resolved through WritersBlock must be
non-cacheable
and cannot resolve M-spec loads (no invalidation will be
received)

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 20 / 32

Background WritersBlock Results Conclusions

DEADLOCK AVOIDANCE

WRITERSBLOCK cause writes to be blocked
Until a load stop being M-speculative

Deadlocks will not happen if loads cannot be stopped by a
pending write miss
Other blocking causes:

MSHR address occupied by write miss⇒ Duplicate
read-write MSHR allocation
Full directory/LLC⇒ Non-cacheable loads
Atomic Read-Modify-Write⇒ Non-speculative

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 21 / 32

Background WritersBlock Results Conclusions

CASE OF USE: OUT-OF-ORDER COMMIT

Out-of-order commit4 allows the processor to retire
instructions from the reorder buffer (RoB) even if they are
not at the head
It cannot retire instructions that may squash

WRITERSBLOCK allows the retirement of out-of-order loads
Better RoB/LQ usage

head

ld1ld1ld2ld3ld4ld5ld6

M-spec SoS

orderedno ordered

4 G. B. Bell and M. H. Lipasti, “Deconstructing Commit”, ISPASS, 2004.

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 22 / 32

Background WritersBlock Results Conclusions

CASE OF USE: OUT-OF-ORDER COMMIT

Out-of-order commit4 allows the processor to retire
instructions from the reorder buffer (RoB) even if they are
not at the head
It cannot retire instructions that may squash
WRITERSBLOCK allows the retirement of out-of-order loads
Better RoB/LQ usage

head

ld1ld1ld2ld3ld4ld5ld6

M-spec SoS

orderedno ordered

4 G. B. Bell and M. H. Lipasti, “Deconstructing Commit”, ISPASS, 2004.

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 22 / 32

Background WritersBlock Results Conclusions

CASE OF USE: OUT-OF-ORDER COMMIT

Out-of-order commit4 allows the processor to retire
instructions from the reorder buffer (RoB) even if they are
not at the head
It cannot retire instructions that may squash
WRITERSBLOCK allows the retirement of out-of-order loads
Better RoB/LQ usage

head

ld1ld1ld2ld3ld4ld5ld6

M-spec SoS

orderedno ordered

4 G. B. Bell and M. H. Lipasti, “Deconstructing Commit”, ISPASS, 2004.

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 22 / 32

Background WritersBlock Results Conclusions

OUTLINE

1 BACKGROUND

2 WRITERSBLOCK

3 RESULTS

4 CONCLUSIONS

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 23 / 32

Background WritersBlock Results Conclusions

SIMULATION ENVIRONMENT

Simulator: GEMS + OoO processor (TSO)

16-core multicore
Silvermont (32-entry RoB), Nehalem (128-entry RoB), and
Haswell (192-entry RoB)
Benchmarks: Splash-35 and Parsec-3.0
Protocols

DIRECTORY: Directory-based MESI protocol
WRITERSBLOCK: Extensions to DIRECTORY

Commit technique
INORDERCOMMIT
OOOCOMMIT

5 C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, “Splash-3: A Properly
Synchronized Benchmark Suite for Contemporary Research”, ISPASS, 2016.

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 24 / 32

Background WritersBlock Results Conclusions

SIMULATION ENVIRONMENT

Simulator: GEMS + OoO processor (TSO)
16-core multicore
Silvermont (32-entry RoB), Nehalem (128-entry RoB), and
Haswell (192-entry RoB)

Benchmarks: Splash-35 and Parsec-3.0
Protocols

DIRECTORY: Directory-based MESI protocol
WRITERSBLOCK: Extensions to DIRECTORY

Commit technique
INORDERCOMMIT
OOOCOMMIT

5 C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, “Splash-3: A Properly
Synchronized Benchmark Suite for Contemporary Research”, ISPASS, 2016.

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 24 / 32

Background WritersBlock Results Conclusions

SIMULATION ENVIRONMENT

Simulator: GEMS + OoO processor (TSO)
16-core multicore
Silvermont (32-entry RoB), Nehalem (128-entry RoB), and
Haswell (192-entry RoB)
Benchmarks: Splash-35 and Parsec-3.0

Protocols
DIRECTORY: Directory-based MESI protocol
WRITERSBLOCK: Extensions to DIRECTORY

Commit technique
INORDERCOMMIT
OOOCOMMIT

5 C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, “Splash-3: A Properly
Synchronized Benchmark Suite for Contemporary Research”, ISPASS, 2016.

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 24 / 32

Background WritersBlock Results Conclusions

SIMULATION ENVIRONMENT

Simulator: GEMS + OoO processor (TSO)
16-core multicore
Silvermont (32-entry RoB), Nehalem (128-entry RoB), and
Haswell (192-entry RoB)
Benchmarks: Splash-35 and Parsec-3.0
Protocols

DIRECTORY: Directory-based MESI protocol
WRITERSBLOCK: Extensions to DIRECTORY

Commit technique
INORDERCOMMIT
OOOCOMMIT

5 C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, “Splash-3: A Properly
Synchronized Benchmark Suite for Contemporary Research”, ISPASS, 2016.

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 24 / 32

Background WritersBlock Results Conclusions

SIMULATION ENVIRONMENT

Simulator: GEMS + OoO processor (TSO)
16-core multicore
Silvermont (32-entry RoB), Nehalem (128-entry RoB), and
Haswell (192-entry RoB)
Benchmarks: Splash-35 and Parsec-3.0
Protocols

DIRECTORY: Directory-based MESI protocol
WRITERSBLOCK: Extensions to DIRECTORY

Commit technique
INORDERCOMMIT
OOOCOMMIT

5 C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, “Splash-3: A Properly
Synchronized Benchmark Suite for Contemporary Research”, ISPASS, 2016.

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 24 / 32

Background WritersBlock Results Conclusions

WRITERSBLOCK: BLOCKED WRITES

Results for INORDERCOMMIT

Normalized to DIRECTORY

The larger the RoB, the more misspeculations, and the more
blocked writes
Less that 5 blocks per 10,000 stores, on average

barnes
blackscholes

bodytrack
canneal

cholesky
dedup ferret fft

fluidanimate fmm
freqmine lu_cb

lu_ncb
ocean_cp

ocean_ncp
radiosity radix

raytrace
streamcluster

swaptions vips
volrend

water_nsquared
water_spatial x264

Average
0.0

0.1

0.2

0.3

0.4

0.5

0.6

B
lo

ck
ed

 w
rit

es
 p

er
 K

st
or

es SLM-class WritersBlock NHM-class WritersBlock HSW-class WritersBlock 2.2
9.2

8.3

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 25 / 32

Background WritersBlock Results Conclusions

WRITERSBLOCK: BLOCKED WRITES

Results for INORDERCOMMIT

Normalized to DIRECTORY

The larger the RoB, the more misspeculations, and the more
blocked writes

Less that 5 blocks per 10,000 stores, on average

barnes
blackscholes

bodytrack
canneal

cholesky
dedup ferret fft

fluidanimate fmm
freqmine lu_cb

lu_ncb
ocean_cp

ocean_ncp
radiosity radix

raytrace
streamcluster

swaptions vips
volrend

water_nsquared
water_spatial x264

Average
0.0

0.1

0.2

0.3

0.4

0.5

0.6

B
lo

ck
ed

 w
rit

es
 p

er
 K

st
or

es SLM-class WritersBlock NHM-class WritersBlock HSW-class WritersBlock 2.2
9.2

8.3

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 25 / 32

Background WritersBlock Results Conclusions

WRITERSBLOCK: BLOCKED WRITES

Results for INORDERCOMMIT

Normalized to DIRECTORY

The larger the RoB, the more misspeculations, and the more
blocked writes
Less that 5 blocks per 10,000 stores, on average

barnes
blackscholes

bodytrack
canneal

cholesky
dedup ferret fft

fluidanimate fmm
freqmine lu_cb

lu_ncb
ocean_cp

ocean_ncp
radiosity radix

raytrace
streamcluster

swaptions vips
volrend

water_nsquared
water_spatial x264

Average
0.0

0.1

0.2

0.3

0.4

0.5

0.6

B
lo

ck
ed

 w
rit

es
 p

er
 K

st
or

es SLM-class WritersBlock NHM-class WritersBlock HSW-class WritersBlock 2.2
9.2

8.3

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 25 / 32

Background WritersBlock Results Conclusions

WRITERSBLOCK: NON-CACHEABLE DATA

Results for INORDERCOMMIT

Normalized to DIRECTORY

The larger the RoB, the more misspeculations, and the more
non-cacheable data
≈ 1 non-cacheable data per 100,000 loads, on average

barnes
blackscholes

bodytrack
canneal

cholesky
dedup ferret fft

fluidanimate fmm
freqmine lu_cb

lu_ncb
ocean_cp

ocean_ncp
radiosity radix

raytrace
streamcluster

swaptions vips
volrend

water_nsquared
water_spatial x264

Average
0.0

0.02

0.04

0.06

0.08

0.1

N
o-

ca
ch

e
re

ad
s

pe
r

K
lo

ad
s

SLM-class WritersBlock NHM-class WritersBlock HSW-class WritersBlock

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 26 / 32

Background WritersBlock Results Conclusions

WRITERSBLOCK: NON-CACHEABLE DATA

Results for INORDERCOMMIT

Normalized to DIRECTORY

The larger the RoB, the more misspeculations, and the more
non-cacheable data

≈ 1 non-cacheable data per 100,000 loads, on average

barnes
blackscholes

bodytrack
canneal

cholesky
dedup ferret fft

fluidanimate fmm
freqmine lu_cb

lu_ncb
ocean_cp

ocean_ncp
radiosity radix

raytrace
streamcluster

swaptions vips
volrend

water_nsquared
water_spatial x264

Average
0.0

0.02

0.04

0.06

0.08

0.1

N
o-

ca
ch

e
re

ad
s

pe
r

K
lo

ad
s

SLM-class WritersBlock NHM-class WritersBlock HSW-class WritersBlock

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 26 / 32

Background WritersBlock Results Conclusions

WRITERSBLOCK: NON-CACHEABLE DATA

Results for INORDERCOMMIT

Normalized to DIRECTORY

The larger the RoB, the more misspeculations, and the more
non-cacheable data
≈ 1 non-cacheable data per 100,000 loads, on average

barnes
blackscholes

bodytrack
canneal

cholesky
dedup ferret fft

fluidanimate fmm
freqmine lu_cb

lu_ncb
ocean_cp

ocean_ncp
radiosity radix

raytrace
streamcluster

swaptions vips
volrend

water_nsquared
water_spatial x264

Average
0.0

0.02

0.04

0.06

0.08

0.1

N
o-

ca
ch

e
re

ad
s

pe
r

K
lo

ad
s

SLM-class WritersBlock NHM-class WritersBlock HSW-class WritersBlock

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 26 / 32

Background WritersBlock Results Conclusions

WRITERSBLOCK: NETWORK TRAFFIC

Results for INORDERCOMMIT

Normalized to DIRECTORY

Network traffic on par

barnes

blackscholes

bodytra
ck

canneal

cholesky
dedup

ferre
t fft

fluidanimate fmm

fre
qmine

lu_cb
lu_ncb

ocean_cp

ocean_ncp

radiosity
radix

raytra
ce

stre
amcluster

swaptions
vips

volrend

water_nsquared

water_spatial
x264

Average
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

iz
ed

 n
et

w
or

k
tr

af
fic

Directory InOrderCommit WritersBlock InOrderCommit

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 27 / 32

Background WritersBlock Results Conclusions

WRITERSBLOCK: NETWORK TRAFFIC

Results for INORDERCOMMIT

Normalized to DIRECTORY

Network traffic on par

barnes

blackscholes

bodytra
ck

canneal

cholesky
dedup

ferre
t fft

fluidanimate fmm

fre
qmine

lu_cb
lu_ncb

ocean_cp

ocean_ncp

radiosity
radix

raytra
ce

stre
amcluster

swaptions
vips

volrend

water_nsquared

water_spatial
x264

Average
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

iz
ed

 n
et

w
or

k
tr

af
fic

Directory InOrderCommit WritersBlock InOrderCommit

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 27 / 32

Background WritersBlock Results Conclusions

OUT-OF-ORDER COMMIT: PROCESSOR STALLS

Normalized to DIRECTORY + INORDERCOMMIT

INORDERCOMMIT

WRITERSBLOCK does not increases SQ stalls

OOOCOMMIT

WRITERSBLOCK reduces RoB and LQ stalls on average
respect to DIRECTORY

barnes
blackscholes

bodytrack
canneal

cholesky
dedup ferret fft

fluidanimate fmm
freqmine lu_cb

lu_ncb
ocean_cp

ocean_ncp
radiosity radix

raytrace
streamcluster

swaptions vips
volrend

water_nsquared
water_spatial x264

Average
0.0

10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

P
ro

ce
ss

or
 s

ta
lls

SQ LQ ROB1. Directory InOrderCommit 2. WritersBlock InOrderCommit 3. Directory OoOCommit 4. WritersBlock OoOCommit

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 28 / 32

Background WritersBlock Results Conclusions

OUT-OF-ORDER COMMIT: PROCESSOR STALLS

Normalized to DIRECTORY + INORDERCOMMIT

INORDERCOMMIT

WRITERSBLOCK does not increases SQ stalls

OOOCOMMIT

WRITERSBLOCK reduces RoB and LQ stalls on average
respect to DIRECTORY

barnes
blackscholes

bodytrack
canneal

cholesky
dedup ferret fft

fluidanimate fmm
freqmine lu_cb

lu_ncb
ocean_cp

ocean_ncp
radiosity radix

raytrace
streamcluster

swaptions vips
volrend

water_nsquared
water_spatial x264

Average
0.0

10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

P
ro

ce
ss

or
 s

ta
lls

SQ LQ ROB1. Directory InOrderCommit 2. WritersBlock InOrderCommit 3. Directory OoOCommit 4. WritersBlock OoOCommit

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 28 / 32

Background WritersBlock Results Conclusions

OUT-OF-ORDER COMMIT: PROCESSOR STALLS

Normalized to DIRECTORY + INORDERCOMMIT

INORDERCOMMIT

WRITERSBLOCK does not increases SQ stalls
OOOCOMMIT

WRITERSBLOCK reduces RoB and LQ stalls on average
respect to DIRECTORY

barnes
blackscholes

bodytrack
canneal

cholesky
dedup ferret fft

fluidanimate fmm
freqmine lu_cb

lu_ncb
ocean_cp

ocean_ncp
radiosity radix

raytrace
streamcluster

swaptions vips
volrend

water_nsquared
water_spatial x264

Average
0.0

10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

P
ro

ce
ss

or
 s

ta
lls

SQ LQ ROB1. Directory InOrderCommit 2. WritersBlock InOrderCommit 3. Directory OoOCommit 4. WritersBlock OoOCommit

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 28 / 32

Background WritersBlock Results Conclusions

OUT-OF-ORDER COMMIT: EXECUTION TIME

Normalized to DIRECTORY + INORDERCOMMIT

INORDERCOMMIT

WRITERSBLOCK does not harm performance on average
respect to DIRECTORY

OOOCOMMIT

WRITERSBLOCK improves performance by 11% on average
respect to DIRECTORY

barnes

blackscholes

bodytra
ck

canneal

cholesky
dedup

ferre
t fft

fluidanimate fmm

fre
qmine

lu_cb
lu_ncb

ocean_cp

ocean_ncp

radiosity
radix

raytra
ce

stre
amcluster

swaptions
vips

volrend

water_nsquared

water_spatial
x264

Average
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

T
ie

m
po

 (
no

rm
al

iz
ad

o)

WritersBlock InOrderCommit Directory OoOCommit WritersBlock OoOCommit

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 29 / 32

Background WritersBlock Results Conclusions

OUT-OF-ORDER COMMIT: EXECUTION TIME

Normalized to DIRECTORY + INORDERCOMMIT

INORDERCOMMIT

WRITERSBLOCK does not harm performance on average
respect to DIRECTORY

OOOCOMMIT

WRITERSBLOCK improves performance by 11% on average
respect to DIRECTORY

barnes

blackscholes

bodytra
ck

canneal

cholesky
dedup

ferre
t fft

fluidanimate fmm

fre
qmine

lu_cb
lu_ncb

ocean_cp

ocean_ncp

radiosity
radix

raytra
ce

stre
amcluster

swaptions
vips

volrend

water_nsquared

water_spatial
x264

Average
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

T
ie

m
po

 (
no

rm
al

iz
ad

o)

WritersBlock InOrderCommit Directory OoOCommit WritersBlock OoOCommit

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 29 / 32

Background WritersBlock Results Conclusions

OUT-OF-ORDER COMMIT: EXECUTION TIME

Normalized to DIRECTORY + INORDERCOMMIT

INORDERCOMMIT

WRITERSBLOCK does not harm performance on average
respect to DIRECTORY

OOOCOMMIT

WRITERSBLOCK improves performance by 11% on average
respect to DIRECTORY

barnes

blackscholes

bodytra
ck

canneal

cholesky
dedup

ferre
t fft

fluidanimate fmm

fre
qmine

lu_cb
lu_ncb

ocean_cp

ocean_ncp

radiosity
radix

raytra
ce

stre
amcluster

swaptions
vips

volrend

water_nsquared

water_spatial
x264

Average
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

T
ie

m
po

 (
no

rm
al

iz
ad

o)

WritersBlock InOrderCommit Directory OoOCommit WritersBlock OoOCommit

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 29 / 32

Background WritersBlock Results Conclusions

OUTLINE

1 BACKGROUND

2 WRITERSBLOCK

3 RESULTS

4 CONCLUSIONS

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 30 / 32

Background WritersBlock Results Conclusions

CONCLUSIONS

With the help of the cache coherence protocol,
and without harming performance,

we can execute loads out of order and without speculation,
and obtaining results as if the loads were executed in order

(LOAD→LOAD)

Non-speculative loads can increase performance of
out-of-order commit by 11%

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 31 / 32

Background WritersBlock Results Conclusions

CONCLUSIONS

With the help of the cache coherence protocol,
and without harming performance,

we can execute loads out of order and without speculation,
and obtaining results as if the loads were executed in order

(LOAD→LOAD)

Non-speculative loads can increase performance of
out-of-order commit by 11%

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 31 / 32

Questions?

NON-SPECULATIVE

LOAD→LOAD REORDERING IN TSO1

Alberto Ros

Universidad de Murcia

October 17th, 2017

1 A. Ros, T. E. Carlson, M. Alipour, and S. Kaxiras, "Non-Speculative Load-Load
Reordering in TSO". ISCA, 2017.

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 32 / 32

	Appendix

