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PROGRAM ORDER

e Programmer intuition: instructions execute in the order
they appear in the program

$r0 = X; // load
$r1 =7Y; //load
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e Programmer intuition: instructions execute in the order
they appear in the program

$r0 = X; // load
$r1 =7Y; //load

// store
// store
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TOTAL STORE ORDER (TSO)

e The memory consistency model defines the behavior of
the programs
e In particular, the behavior of the memory operations: load
and store
@ x86 processors (Intel, AMD) implement a Total Store Order
(TSO)

@ load—load

) store—>store2

@ load—store

e This talk focus on the load—load order

2 A. Ros and S. Kaxiras, “Racer: TSO Consistency via Race Detection”, MICRO, 2016.
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INITIALLY X=0, Y=0

1x: $r0 = X; sy: Y = 1;
ly: $r1 =Y, sx: X = 1;
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INITIALLY X=0, Y=0

1x: $r0 = X; sy: Y = 1;
ly: $r1 =Y; sx: X = 1;

SIX POSSIBLE INTERLEAVINGS AND VALUES FOR ($RO, $R1)

1x 1x 1x sy sy sy
ly sy sy 1x 1x sX
sy ly sx ly sx 1x
SX sX ly SX ly ly
(0,0) (0,1) (0,1) (0,1) (0,1) 1,1

e (1,0) is not possible if load—load & store—store
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RELAXING LOAD—LOAD

INITIALLY X=0, Y=0

1x: $r0 = X; sy: Y = 1;
ly: $r1 =Y; sx: X =1,

SIX POSSIBLE INTERLEAVINGS AND VALUES FOR ($RO, $RrR1)

ly ly ly sy sy sy
1x sy sy ly ly SX
&y Ix 54 1x sX ly
sX sX 1x SX 1x 1x
(0,0) (0,0) (1,00 0,1) 1,1 (1,1)

e (1,0) is possible by relaxing load—load
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e Waiting for a load to finish to start the execution of the next
load is very inefficient
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Background
@000

LOAD—LOAD REORDERING

e Waiting for a load to finish to start the execution of the next
load is very inefficient

e High-performance processors execute multiple load
operations simultaneously

e Memory level parallelism
o Load operations can execute out of order
e This is correct for single-core processors
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LOAD—LOAD REORDERING

e Executing load operations out of order can relax the
load—load order

Program Order
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LOAD—LOAD REORDERING

e In multicore processors reordering loads can affect the
expected result

e lItis necessary to always maintain the load—load order?

POSSIBLE EXECUTION

$r0 = Y;
$rl1 = X;

INITIALLY X=0, Y=0

$rl ; s Y
X

1
1
/* (1,0) not allowed */

/* (0, 0) allowed */
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LOAD—LOAD REORDERING

e In multicore processors reordering loads can affect the
expected result

e lItis necessary to always maintain the load—load order?

POSSIBLE EXECUTION

$r0 = Y;

INITIALLY X=0, Y=0

$rl ; s Y
X

$rl = X;

1
1
/* (1,0) not allowed */
/* (1, 0) not allowed */

e No, if the other cores do not see the reordering
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RELAXING LOAD—LOAD

INITIALLY X=0, Y=0

1x: $r0 = X; sy: Y = 1;
ly: $r1 =Y; sx: X =1,

SIX POSSIBLE INTERLEAVINGS AND VALUES FOR ($RO, $RrR1)

ly ly ly sy sy sy
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LOAD—LOAD SPECULATION

e Solution: To allow speculative load—load reordering

e Some definitions: performed, ordered, source of
speculation (SoS)

Program Order
l head
Id Id
Id LQ |Ids |Ids | 10 |15 [1dz |1 | dy
= T 111
Ide M-spec SoS Ids
Ide no ordered  ordered ds
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SQUASH AND RE-EXECUTE UPON INVALIDATION

e Current multicore avoid incorrect results

o With the help of the cache coherence protocol
e Squashing and re-executing on remote writes
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SQUASH AND RE-EXECUTE UPON EVICTIONS

e What happens when a cache block loaded by an M-spec
load is evicted?
o If the directory stops tracking the block, the M-spec load will
not receive an invalidation
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SQUASH AND RE-EXECUTE UPON EVICTIONS

e What happens when a cache block loaded by an M-spec
load is evicted?

o If the directory stops tracking the block, the M-spec load will
not receive an invalidation

e Solution: Squash and re-execute upon evictions
e This impacts the performance of sequential applications!!!
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PROBLEMS OF SPECULATION

e Memory-related speculation is the current solution to issue
loads out of order while keeping the load—load order
e Why is good?
e Because squashing is not frequent!
e Why is bad?
e Because speculative loads hold critical resources (LQ,
RoB)

e Because the processor needs to keep continuously the
rollback path

Can we execute loads out of order without speculation and
guaranteeing load—load?
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WRITERSBLOCK ACHIEVEMENT

e Current multicore processors speculatively execute loads
out of order

e If a conflict happens, loads are squashed and re-executed
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WRITERSBLOCK ACHIEVEMENT

e Current multicore processors speculatively execute loads
out of order

e If a conflict happens, loads are squashed and re-executed

WRITERSBLOCK

Makes possible removing this speculation, executing loads out
of order, and making that an executed load is never squashed
because of the consistency model
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e With the help of the cache coherence protocol
e Blocking and delaying the remote write (WritersBlock)
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e With the help of the cache coherence protocol

e Blocking and delaying the remote write (WritersBlock)
e Until when? Until the load stop being M-spec
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e With the help of the cache coherence protocol

e Blocking and delaying the remote write (WritersBlock)
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EVICTIONS

e What happens upon an eviction? Do we squash loads?

M-spec

fnd -V \:
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o No, just need to guarantee that the invalidation will arrive
upon a remote write
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EVICTIONS

e What happens upon an eviction? Do we squash loads?

o No, just need to guarantee that the invalidation will arrive
upon a remote write

e Solution:
o Clean blocks implement silent evictions®

La @

M-spec

3 R. Fernandez-Pascual, A. Ros, and M. E. Acacio, “To Be Silent or Not: On the Impact
of Evictions of Clean Data in Cache-Coherent Multicores”, Journal of Supercomputing,
2017.
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EVICTIONS

e What happens upon an eviction? Do we squash loads?

o No, just need to guarantee that the invalidation will arrive
upon a remote write

e Solution:

o Clean blocks implement silent evictions®
o Dirty blocks write back the data but the directory still keeps

track

J

Ve
/

/\(\997\‘\ \‘\

M-spec

3 R. Fernandez-Pascual, A. Ros, and M. E. Acacio, “To Be Silent or Not: On the Impact
of Evictions of Clean Data in Cache-Coherent Multicores”, Journal of Supercomputing,
2017.
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DEADLOCK

e Blocking writes can cause deadlocks
e If x and y are two words within the same cache line
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LIVELOCK

e Resolving reads while blocking writes can cause livelock

e Resolving a read once the data is invalidated will cause a
second invalidation
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LIVELOCK

e Resolving reads while blocking writes can cause livelock
e Resolving a read once the data is invalidated will cause a
second invalidation
e Solution
o Reads resolved through WritersBlock must be
non-cacheable
e and cannot resolve M-spec loads (no invalidation will be
received)
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DEADLOCK AVOIDANCE

e WRITERSBLOCK cause writes to be blocked
e Until a load stop being M-speculative
e Deadlocks will not happen if loads cannot be stopped by a
pending write miss
e Other blocking causes:

e MSHR address occupied by write miss = Duplicate
read-write MSHR allocation

o Full directory/LLC = Non-cacheable loads

e Atomic Read-Modify-Write = Non-speculative
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CASE OF USE: OUT-OF-ORDER COMMIT

e Out-of-order commit* allows the processor to retire
instructions from the reorder buffer (RoB) even if they are
not at the head

e It cannot retire instructions that may squash

4 G. B. Bell and M. H. Lipasti, “Deconstructing Commit”, ISPASS, 2004.

Alberto Ros Informatics Forun, Edinburgh October 17th, 2017 22/32



WritersBlock
0O0000e

CASE OF USE: OUT-OF-ORDER COMMIT

e Out-of-order commit* allows the processor to retire
instructions from the reorder buffer (RoB) even if they are
not at the head

e It cannot retire instructions that may squash
e WRITERSBLOCK allows the retirement of out-of-order loads
e Better RoB/LQ usage

jead
‘Ids | Ids ‘ Ida ‘ Ids ‘Idz | Id ‘

T 111

M-spec SoS

no ordered  ordered

4 G. B. Bell and M. H. Lipasti, “Deconstructing Commit”, ISPASS, 2004.
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CASE OF USE: OUT-OF-ORDER COMMIT

e Out-of-order commit* allows the processor to retire
instructions from the reorder buffer (RoB) even if they are
not at the head

e It cannot retire instructions that may squash
e WRITERSBLOCK allows the retirement of out-of-order loads
e Better RoB/LQ usage

M-spec SoS

no ordered  ordered

4 G. B. Bell and M. H. Lipasti, “Deconstructing Commit”, ISPASS, 2004.
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SIMULATION ENVIRONMENT

e Simulator: GEMS + 000 processor (TSO)
e 16-core multicore

e Silvermont (32-entry RoB), Nehalem (128-entry RoB), and
Haswell (192-entry RoB)

e Benchmarks: Splash-3° and Parsec-3.0

5 C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, “Splash-3: A Properly
Synchronized Benchmark Suite for Contemporary Research”, ISPASS, 2016.
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WRITERSBLOCK: BLOCKED WRITES

@ Results for INORDERCOMMIT
@ Normalized to DIRECTORY

@ The larger the RoB, the more misspeculations, and the more
blocked writes

@ Less that 5 blocks per 10,000 stores, on average
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WRITERSBLOCK: NON-CACHEABLE DATA
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@ Results for INORDERCOMMIT
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WRITERSBLOCK: NON-CACHEABLE DATA

@ Results for INORDERCOMMIT
@ Normalized to DIRECTORY

@ The larger the RoB, the more misspeculations, and the more
non-cacheable data

@ ~ 1 non-cacheable data per 100,000 loads, on average
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WRITERSBLOCK: NETWORK TRAFFIC

@ Results for INORDERCOMMIT
@ Normalized to DIRECTORY
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WRITERSBLOCK: NETWORK TRAFFIC

@ Results for INORDERCOMMIT
@ Normalized to DIRECTORY
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OUT-OF-ORDER COMMIT: PROCESSOR STALLS
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OUT-OF-ORDER COMMIT: PROCESSOR STALLS

@ Normalized to DIRECTORY + INORDERCOMMIT
@ INORDERCOMMIT

e WRITERSBLOCK does not increases SQ stalls
@ OoOCOMMIT
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OUT-OF-ORDER COMMIT: EXECUTION TIME
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OUT-OF-ORDER COMMIT: EXECUTION TIME

@ Normalized to DIRECTORY + INORDERCOMMIT

@ INORDERCOMMIT
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OUT-OF-ORDER COMMIT: EXECUTION TIME

Tiempo (normalizado)
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@ INORDERCOMMIT
e WRITERSBLOCK does not harm performance on average
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and without harming performance,
we can execute loads out of order and without speculation,
and obtaining results as if the loads were executed in order
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NON-SPECULATIVE

LOAD—L.OAD REORDERING IN TSO
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