
Consistency Store Buffer Speculation WritersBlock Results Conclusions

NON-SPECULATIVE REORDERING OF MEMORY

OPERATIONS WITH STRONG CONSISTENCY

Alberto Ros

Universidad de Murcia

November 29th, 2017

Alberto Ros Multicore Day, Kista November 29th, 2017 1 / 37



Consistency Store Buffer Speculation WritersBlock Results Conclusions

OUTLINE

1 MEMORY CONSISTENCY AND PROGRAM ORDER

2 RELAXING PROGRAM ORDER WITH A STORE BUFFER

3 KEEPING PROGRAM ORDER VIA SPECULATION

4 A NON-SPECULATIVE SOLUTION: WRITERSBLOCK

5 EVALUATION RESULTS

6 CONCLUSIONS

Alberto Ros Multicore Day, Kista November 29th, 2017 2 / 37



Consistency Store Buffer Speculation WritersBlock Results Conclusions

OUTLINE

1 MEMORY CONSISTENCY AND PROGRAM ORDER

2 RELAXING PROGRAM ORDER WITH A STORE BUFFER

3 KEEPING PROGRAM ORDER VIA SPECULATION

4 A NON-SPECULATIVE SOLUTION: WRITERSBLOCK

5 EVALUATION RESULTS

6 CONCLUSIONS

Alberto Ros Multicore Day, Kista November 29th, 2017 3 / 37



Consistency Store Buffer Speculation WritersBlock Results Conclusions

PROGRAM ORDER (P.O.)

Programmer intuition: instructions execute in the order
they appear in the program

THREAD 1
$r0 = X; // load
$r1 = Y; // load

THREAD 2
Y = 1; // store
X = 1; // store

What happens if the core/memory changes this order?

THREAD 1
$r1 = Y; // load
$r0 = X; // load

THREAD 2
Y = 1; // store
X = 1; // store
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POSSIBLE RESULTS ASSUMING PROGRAM ORDER

INITIALLY X=0, Y=0
lx: $r0 = X;
ly: $r1 = Y;

sy: Y = 1;
sx: X = 1;

SIX POSSIBLE INTERLEAVINGS AND VALUES FOR ($R0, $R1)
lx
ly
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(1,1)

(1,0) is not possible if operations execute in program order
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RELAXING PROGRAM ORDER (LOADS)
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(1,0) is possible by relaxing the order in which loads
execute

The same result can be achieved by relaxing the stores
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THE MEMORY CONSISTENCY MODEL

The memory consistency model defines the behavior of
the programs

In particular, the behavior of the memory operations:
load and store

ld1

P.O.
ld2

load→load

ld1

P.O.
st2

load→store

st1
P.O.

ld2

store→load

st1
P.O.

st2

store→store

Consistency rules
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CORRECTNESS/PERFORMANCE ISSUE

Correctness
The programmer intuition is program order

Performance

Waiting for a memory operation to finish in order to start the
execution of the next operation is very inefficient
Processors execute multiple memory operations
simultaneously

Memory level parallelism

Operations can be reordered by the memory hierarchy, or
even be issued out-of-order
This is correct for single-core processors, but not in
multicores

Solution: Store Buffer and Speculation
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THE STORE BUFFER

A store operation requires write permission to perform
Write permission request

Cache coherence protocol
Unique copy: may require invalidating other copies
A long-latency operation

Solution implemented in x86 processors (Intel, AMD)

⇒ The store buffer
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THE STORE BUFFER BREAKS STORE→LOAD

How the store buffer (SB) works?

Program

st1
ld2

head

RoB

head

SB

Memory

Order

ld2

st1

The store buffer breaks the store→load rule
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TOTAL STORE ORDER (TSO)

x86 processors (Intel, AMD) provide a Total Store Order
(TSO) memory consistency model

TSO RULES

load→load

load→store

store→store

TSO does not enforce store→load
Performance over programmer intuition
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THE STORE BUFFER: CONSEQUENCES

store→load
⇒ Relaxed

load→store

⇒ No need to execute stores before the loads since stores are
out of the critical path

store→store1

⇒ Less critical than without a store buffer, unless the store
buffer fills

load→load

⇒ It is now the bottleneck

1 A. Ros and S. Kaxiras, “Racer: TSO Consistency via Race Detection”. MICRO, 2016.
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LOAD→LOAD REORDERING

Executing load operations out of order can break the
load→load order

Program

ld1

ld2

ld3

ld4

ld5

ld6

head

LQ

Order

ld1

ld3

ld4

ld6

ld2

ld5
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LOAD→LOAD REORDERING

In multicore processors reordering loads can affect the
expected result

But always?

INITIALLY X=0, Y=0
$r0 = X;
$r1 = Y;

Y = 1;
X = 1;

/* (1,0) not allowed */

POSSIBLE EXECUTION

$r0 = Y;

$r1 = X;

$r1 = X;

Y = 1;
X = 1;

No, if the other cores do not see the reordering
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LOAD→LOAD SPECULATION

Solution: To allow speculative load→load reordering
Some definitions2: performed, ordered, source of
speculation (SoS)

Program

ld1

ld2

ld3

ld4

ld5

ld6

head

LQ ld1ld1ld2ld3ld4ld5ld6

Order

ld1

ld3

ld4

ld6

ld2

ld5

performedM-spec

orderedno ordered

2 A. Ros, T. E. Carlson, M. Alipour, and S. Kaxiras, “Non-Speculative Load-Load
Reordering in TSO”. ISCA, 2017.
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SQUASH AND RE-EXECUTE UPON EVICTIONS

What happens when a cache block loaded by an M-spec
load is evicted?

If the directory stops tracking the block, the M-spec load will
not receive an invalidation

Solution: Squash and re-execute upon evictions
This impacts the performance of sequential applications!
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PROBLEMS OF SPECULATION

Memory-related speculation is the current solution to have
MLP and load→load

Why is good?

Squashing is not frequent!

Why is bad?

Speculative loads hold critical resources (LQ, RoB)
The processor needs to keep continuously the rollback path

QUESTION

Can we execute loads out of order, non-speculatively and
guaranteeing load→load?
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WRITERSBLOCK IN A NUTSHELL2

WHAT?
Multiple loads executing simultaneously
Load→load
Without memory-related speculation

HOW?
Blocking write requests
With the help of the cache coherence protocol

2 A. Ros, T. E. Carlson, M. Alipour, and S. Kaxiras, “Non-Speculative Load-Load
Reordering in TSO”. ISCA, 2017.

Alberto Ros Multicore Day, Kista November 29th, 2017 22 / 37



Consistency Store Buffer Speculation WritersBlock Results Conclusions

HOW?

With the help of the cache coherence protocol
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EVICTIONS

What happens upon an eviction? Do we squash loads?

No, just need to guarantee that the invalidation will arrive
upon a remote write

Solution:

Clean blocks implement silent evictions3

Dirty blocks write back the data but the directory still keeps
track

LQ lx
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3 R. Fernandez-Pascual, A. Ros, and M. E. Acacio, “To Be Silent or Not: On the Impact
of Evictions of Clean Data in Cache-Coherent Multicores”, Journal of Supercomputing,
2017.
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DEADLOCK

Blocking writes can cause deadlocks
If x and y are two words within the same cache line

Solution: Blocked writes allow reads to be resolved
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LIVELOCK

Resolving reads while blocking writes can cause livelock
Resolving a read once the data has been invalidated will
cause a second invalidation
Blockedi , Readj , Unblocki , Invalidatej , Blockedj , ...

Solution

Reads resolved through WritersBlock are non-cacheable

⇒ No invalidations needed

and cannot resolve M-spec loads

⇒ No invalidation will be received
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DEADLOCK AVOIDANCE

WRITERSBLOCK cause writes to be blocked
Until a load stop being M-speculative

Deadlock-free condition:

⇒ Loads are not stopped by pending write misses

Other blocking causes and solutions:

MSHR address occupied by write miss

⇒ Duplicate read-write MSHR allocation

Full directory/LLC

⇒ Non-cacheable loads

Atomic Read-Modify-Write

⇒ Non-speculative (ordered)
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CASE OF USE: OUT-OF-ORDER COMMIT

Out-of-order commit4 allows the processor to retire
instructions from the reorder buffer (RoB) even if they are
not at the head
It cannot retire instructions that can be squashed

WRITERSBLOCK allows the retirement of out-of-order loads
Better RoB/LQ usage

head

ld1ld1ld2ld3ld4ld5ld6

M-spec SoS

orderedno ordered

4 G. B. Bell and M. H. Lipasti, “Deconstructing Commit”, ISPASS, 2004.
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SIMULATION ENVIRONMENT

Simulator: GEMS + OoO processor (TSO)

16-core multicore
Silvermont (32-entry RoB), Nehalem (128-entry RoB), and
Haswell (192-entry RoB)
Benchmarks: Splash-3 5 and Parsec-3.0
Protocols

DIRECTORY: Directory-based MESI protocol
WRITERSBLOCK: Extensions to DIRECTORY

Commit technique
INORDERCOMMIT
OOOCOMMIT

5 C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, “Splash-3: A Properly
Synchronized Benchmark Suite for Contemporary Research”, ISPASS, 2016.
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WRITERSBLOCK: BLOCKED WRITES

Results for INORDERCOMMIT

Normalized to DIRECTORY

The larger the RoB, the more loads executed out-of-order, and
the more blocked writes
Less that 5 blocks per 10,000 stores, on average
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WRITERSBLOCK: NON-CACHEABLE DATA

Results for INORDERCOMMIT

Normalized to DIRECTORY

The larger the RoB, the more writes blocked, and the more
non-cacheable data
≈ 1 non-cacheable data per 100,000 loads, on average
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OUT-OF-ORDER COMMIT: PROCESSOR STALLS

Normalized to DIRECTORY + INORDERCOMMIT

INORDERCOMMIT

WRITERSBLOCK does not increases SQ stalls

OOOCOMMIT

WRITERSBLOCK reduces RoB and LQ stalls on average
respect to DIRECTORY
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OUT-OF-ORDER COMMIT: EXECUTION TIME

Normalized to DIRECTORY + INORDERCOMMIT

INORDERCOMMIT

WRITERSBLOCK does not harm performance on average
respect to DIRECTORY

OOOCOMMIT

WRITERSBLOCK improves performance by 11% on average
respect to DIRECTORY
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CONCLUSIONS

With the help of the cache coherence protocol,
and without harming performance,

we can execute loads out of order and without speculation,
and obtaining results as if the loads were executed in order

(LOAD→LOAD)

Non-speculative loads can increase performance of
out-of-order commit by 11%
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