
Consistency Store Buffer Speculation WritersBlock Results Conclusions

NON-SPECULATIVE REORDERING OF MEMORY

OPERATIONS WITH STRONG CONSISTENCY

Alberto Ros

Universidad de Murcia

November 29th, 2017

Alberto Ros Multicore Day, Kista November 29th, 2017 1 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

OUTLINE

1 MEMORY CONSISTENCY AND PROGRAM ORDER

2 RELAXING PROGRAM ORDER WITH A STORE BUFFER

3 KEEPING PROGRAM ORDER VIA SPECULATION

4 A NON-SPECULATIVE SOLUTION: WRITERSBLOCK

5 EVALUATION RESULTS

6 CONCLUSIONS

Alberto Ros Multicore Day, Kista November 29th, 2017 2 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

OUTLINE

1 MEMORY CONSISTENCY AND PROGRAM ORDER

2 RELAXING PROGRAM ORDER WITH A STORE BUFFER

3 KEEPING PROGRAM ORDER VIA SPECULATION

4 A NON-SPECULATIVE SOLUTION: WRITERSBLOCK

5 EVALUATION RESULTS

6 CONCLUSIONS

Alberto Ros Multicore Day, Kista November 29th, 2017 3 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

PROGRAM ORDER (P.O.)

Programmer intuition: instructions execute in the order
they appear in the program

THREAD 1
$r0 = X; // load
$r1 = Y; // load

THREAD 2
Y = 1; // store
X = 1; // store

What happens if the core/memory changes this order?

THREAD 1
$r1 = Y; // load
$r0 = X; // load

THREAD 2
Y = 1; // store
X = 1; // store

Alberto Ros Multicore Day, Kista November 29th, 2017 4 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

PROGRAM ORDER (P.O.)

Programmer intuition: instructions execute in the order
they appear in the program

THREAD 1
$r0 = X; // load
$r1 = Y; // load

THREAD 2
Y = 1; // store
X = 1; // store

What happens if the core/memory changes this order?

THREAD 1
$r1 = Y; // load
$r0 = X; // load

THREAD 2
Y = 1; // store
X = 1; // store

Alberto Ros Multicore Day, Kista November 29th, 2017 4 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

PROGRAM ORDER (P.O.)

Programmer intuition: instructions execute in the order
they appear in the program

THREAD 1
$r0 = X; // load
$r1 = Y; // load

THREAD 2
Y = 1; // store
X = 1; // store

What happens if the core/memory changes this order?

THREAD 1
$r1 = Y; // load
$r0 = X; // load

THREAD 2
Y = 1; // store
X = 1; // store

Alberto Ros Multicore Day, Kista November 29th, 2017 4 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

POSSIBLE RESULTS ASSUMING PROGRAM ORDER

INITIALLY X=0, Y=0
lx: $r0 = X;
ly: $r1 = Y;

sy: Y = 1;
sx: X = 1;

SIX POSSIBLE INTERLEAVINGS AND VALUES FOR ($R0, $R1)
lx
ly

sy
sx

(0,0)

lx
sy

ly
sx

(0,1)

lx
sy
sx

ly

(0,1)

sy
lx
ly

sx

(0,1)

sy
lx

sx
ly

(0,1)

sy
sx

lx
ly

(1,1)

(1,0) is not possible if operations execute in program order

Alberto Ros Multicore Day, Kista November 29th, 2017 5 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

POSSIBLE RESULTS ASSUMING PROGRAM ORDER

INITIALLY X=0, Y=0
lx: $r0 = X;
ly: $r1 = Y;

sy: Y = 1;
sx: X = 1;

SIX POSSIBLE INTERLEAVINGS AND VALUES FOR ($R0, $R1)
lx
ly

sy
sx

(0,0)

lx
sy

ly
sx

(0,1)

lx
sy
sx

ly

(0,1)

sy
lx
ly

sx

(0,1)

sy
lx

sx
ly

(0,1)

sy
sx

lx
ly

(1,1)

(1,0) is not possible if operations execute in program order

Alberto Ros Multicore Day, Kista November 29th, 2017 5 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

RELAXING PROGRAM ORDER (LOADS)

INITIALLY X=0, Y=0

lx: $r0 = X;
ly: $r1 = Y;

sy: Y = 1;
sx: X = 1;

SIX POSSIBLE INTERLEAVINGS AND VALUES FOR ($R0, $R1)

ly
lx

sy
sx

(0,0)

ly
sy

lx
sx

(0,0)

ly
sy
sx

lx

(1,0)

sy
ly
lx

sx

(0,1)

sy
ly

sx
lx

(1,1)

sy
sx

ly
lx

(1,1)

(1,0) is possible by relaxing the order in which loads
execute

The same result can be achieved by relaxing the stores

Alberto Ros Multicore Day, Kista November 29th, 2017 6 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

RELAXING PROGRAM ORDER (LOADS)

INITIALLY X=0, Y=0

lx: $r0 = X;
ly: $r1 = Y;

sy: Y = 1;
sx: X = 1;

SIX POSSIBLE INTERLEAVINGS AND VALUES FOR ($R0, $R1)

ly
lx

sy
sx

(0,0)

ly
sy

lx
sx

(0,0)

ly
sy
sx

lx

(1,0)

sy
ly
lx

sx

(0,1)

sy
ly

sx
lx

(1,1)

sy
sx

ly
lx

(1,1)

(1,0) is possible by relaxing the order in which loads
execute

The same result can be achieved by relaxing the stores

Alberto Ros Multicore Day, Kista November 29th, 2017 6 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

THE MEMORY CONSISTENCY MODEL

The memory consistency model defines the behavior of
the programs

In particular, the behavior of the memory operations:
load and store

ld1

P.O.
ld2

load→load

ld1

P.O.
st2

load→store

st1
P.O.

ld2

store→load

st1
P.O.

st2

store→store

Consistency rules

Alberto Ros Multicore Day, Kista November 29th, 2017 7 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

THE MEMORY CONSISTENCY MODEL

The memory consistency model defines the behavior of
the programs

In particular, the behavior of the memory operations:
load and store

ld1

P.O.
ld2

load→load

ld1

P.O.
st2

load→store

st1
P.O.

ld2

store→load

st1
P.O.

st2

store→store

Consistency rules

Alberto Ros Multicore Day, Kista November 29th, 2017 7 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

THE MEMORY CONSISTENCY MODEL

The memory consistency model defines the behavior of
the programs

In particular, the behavior of the memory operations:
load and store

ld1

P.O.
ld2

load→load

ld1

P.O.
st2

load→store

st1
P.O.

ld2

store→load

st1
P.O.

st2

store→store

Consistency rules

Alberto Ros Multicore Day, Kista November 29th, 2017 7 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

THE MEMORY CONSISTENCY MODEL

The memory consistency model defines the behavior of
the programs

In particular, the behavior of the memory operations:
load and store

ld1

P.O.
ld2

load→load

ld1

P.O.
st2

load→store

st1
P.O.

ld2

store→load

st1
P.O.

st2

store→store

Consistency rules

Alberto Ros Multicore Day, Kista November 29th, 2017 7 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

THE MEMORY CONSISTENCY MODEL

The memory consistency model defines the behavior of
the programs

In particular, the behavior of the memory operations:
load and store

ld1

P.O.
ld2

load→load

ld1

P.O.
st2

load→store

st1
P.O.

ld2

store→load

st1
P.O.

st2

store→store

Consistency rules

Alberto Ros Multicore Day, Kista November 29th, 2017 7 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

THE MEMORY CONSISTENCY MODEL

The memory consistency model defines the behavior of
the programs

In particular, the behavior of the memory operations:
load and store

ld1

P.O.
ld2

load→load

ld1

P.O.
st2

load→store

st1
P.O.

ld2

store→load

st1
P.O.

st2

store→store

Consistency rules

Alberto Ros Multicore Day, Kista November 29th, 2017 7 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

CORRECTNESS/PERFORMANCE ISSUE

Correctness
The programmer intuition is program order

Performance

Waiting for a memory operation to finish in order to start the
execution of the next operation is very inefficient
Processors execute multiple memory operations
simultaneously

Memory level parallelism

Operations can be reordered by the memory hierarchy, or
even be issued out-of-order
This is correct for single-core processors, but not in
multicores

Solution: Store Buffer and Speculation

Alberto Ros Multicore Day, Kista November 29th, 2017 8 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

CORRECTNESS/PERFORMANCE ISSUE

Correctness
The programmer intuition is program order

Performance
Waiting for a memory operation to finish in order to start the
execution of the next operation is very inefficient
Processors execute multiple memory operations
simultaneously

Memory level parallelism

Operations can be reordered by the memory hierarchy, or
even be issued out-of-order
This is correct for single-core processors, but not in
multicores

Solution: Store Buffer and Speculation

Alberto Ros Multicore Day, Kista November 29th, 2017 8 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

CORRECTNESS/PERFORMANCE ISSUE

Correctness
The programmer intuition is program order

Performance
Waiting for a memory operation to finish in order to start the
execution of the next operation is very inefficient
Processors execute multiple memory operations
simultaneously

Memory level parallelism

Operations can be reordered by the memory hierarchy, or
even be issued out-of-order

This is correct for single-core processors, but not in
multicores

Solution: Store Buffer and Speculation

Alberto Ros Multicore Day, Kista November 29th, 2017 8 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

CORRECTNESS/PERFORMANCE ISSUE

Correctness
The programmer intuition is program order

Performance
Waiting for a memory operation to finish in order to start the
execution of the next operation is very inefficient
Processors execute multiple memory operations
simultaneously

Memory level parallelism

Operations can be reordered by the memory hierarchy, or
even be issued out-of-order
This is correct for single-core processors, but not in
multicores

Solution: Store Buffer and Speculation

Alberto Ros Multicore Day, Kista November 29th, 2017 8 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

CORRECTNESS/PERFORMANCE ISSUE

Correctness
The programmer intuition is program order

Performance
Waiting for a memory operation to finish in order to start the
execution of the next operation is very inefficient
Processors execute multiple memory operations
simultaneously

Memory level parallelism

Operations can be reordered by the memory hierarchy, or
even be issued out-of-order
This is correct for single-core processors, but not in
multicores

Solution: Store Buffer and Speculation

Alberto Ros Multicore Day, Kista November 29th, 2017 8 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

OUTLINE

1 MEMORY CONSISTENCY AND PROGRAM ORDER

2 RELAXING PROGRAM ORDER WITH A STORE BUFFER

3 KEEPING PROGRAM ORDER VIA SPECULATION

4 A NON-SPECULATIVE SOLUTION: WRITERSBLOCK

5 EVALUATION RESULTS

6 CONCLUSIONS

Alberto Ros Multicore Day, Kista November 29th, 2017 9 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

THE STORE BUFFER

A store operation requires write permission to perform
Write permission request

Cache coherence protocol
Unique copy: may require invalidating other copies
A long-latency operation

Solution implemented in x86 processors (Intel, AMD)

⇒ The store buffer

Alberto Ros Multicore Day, Kista November 29th, 2017 10 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

THE STORE BUFFER

A store operation requires write permission to perform
Write permission request

Cache coherence protocol
Unique copy: may require invalidating other copies
A long-latency operation

Solution implemented in x86 processors (Intel, AMD)
⇒ The store buffer

Alberto Ros Multicore Day, Kista November 29th, 2017 10 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

THE STORE BUFFER BREAKS STORE→LOAD

How the store buffer (SB) works?

Program

st1
ld2

head

RoB

head

SB

Memory

Order

ld2

st1

The store buffer breaks the store→load rule

Alberto Ros Multicore Day, Kista November 29th, 2017 11 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

THE STORE BUFFER BREAKS STORE→LOAD

How the store buffer (SB) works?

Program

st1
ld2

head

RoB

head

SB

Memory

Order

ld2

st1

The store buffer breaks the store→load rule

Alberto Ros Multicore Day, Kista November 29th, 2017 11 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

THE STORE BUFFER BREAKS STORE→LOAD

How the store buffer (SB) works?

Program

st1
ld2

head

RoB

head

SB

Memory

Order

ld2

st1

The store buffer breaks the store→load rule

Alberto Ros Multicore Day, Kista November 29th, 2017 11 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

THE STORE BUFFER BREAKS STORE→LOAD

How the store buffer (SB) works?

Program

st1
ld2

head

RoB

head

SB

Memory

st1ld2

Order

ld2

st1

The store buffer breaks the store→load rule

Alberto Ros Multicore Day, Kista November 29th, 2017 11 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

THE STORE BUFFER BREAKS STORE→LOAD

How the store buffer (SB) works?

Program

st1
ld2

head

RoB

head

SB

Memory

st1

ld2

Order

ld2

st1

The store buffer breaks the store→load rule

Alberto Ros Multicore Day, Kista November 29th, 2017 11 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

THE STORE BUFFER BREAKS STORE→LOAD

How the store buffer (SB) works?

Program

st1
ld2

head

RoB

head

SB

Memory

read st1

ld2

Order

ld2

st1

The store buffer breaks the store→load rule

Alberto Ros Multicore Day, Kista November 29th, 2017 11 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

THE STORE BUFFER BREAKS STORE→LOAD

How the store buffer (SB) works?

Program

st1
ld2

head

RoB

head

SB

Memory

read

write

st1

ld2

Order

ld2

st1

The store buffer breaks the store→load rule

Alberto Ros Multicore Day, Kista November 29th, 2017 11 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

THE STORE BUFFER BREAKS STORE→LOAD

How the store buffer (SB) works?

Program

st1
ld2

head

RoB

head

SB

Memory

read

write

st1

ld2

Order

ld2

st1

The store buffer breaks the store→load rule

Alberto Ros Multicore Day, Kista November 29th, 2017 11 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

TOTAL STORE ORDER (TSO)

x86 processors (Intel, AMD) provide a Total Store Order
(TSO) memory consistency model

TSO RULES

load→load

load→store

store→store

TSO does not enforce store→load
Performance over programmer intuition

Alberto Ros Multicore Day, Kista November 29th, 2017 12 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

TOTAL STORE ORDER (TSO)

x86 processors (Intel, AMD) provide a Total Store Order
(TSO) memory consistency model

TSO RULES

load→load

load→store

store→store

TSO does not enforce store→load
Performance over programmer intuition

Alberto Ros Multicore Day, Kista November 29th, 2017 12 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

TOTAL STORE ORDER (TSO)

x86 processors (Intel, AMD) provide a Total Store Order
(TSO) memory consistency model

TSO RULES

load→load

load→store

store→store

TSO does not enforce store→load
Performance over programmer intuition

Alberto Ros Multicore Day, Kista November 29th, 2017 12 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

THE STORE BUFFER: CONSEQUENCES

store→load
⇒ Relaxed

load→store

⇒ No need to execute stores before the loads since stores are
out of the critical path

store→store1

⇒ Less critical than without a store buffer, unless the store
buffer fills

load→load

⇒ It is now the bottleneck

1 A. Ros and S. Kaxiras, “Racer: TSO Consistency via Race Detection”. MICRO, 2016.

Alberto Ros Multicore Day, Kista November 29th, 2017 13 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

THE STORE BUFFER: CONSEQUENCES

store→load
⇒ Relaxed

load→store
⇒ No need to execute stores before the loads since stores are

out of the critical path

store→store1

⇒ Less critical than without a store buffer, unless the store
buffer fills

load→load

⇒ It is now the bottleneck

1 A. Ros and S. Kaxiras, “Racer: TSO Consistency via Race Detection”. MICRO, 2016.

Alberto Ros Multicore Day, Kista November 29th, 2017 13 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

THE STORE BUFFER: CONSEQUENCES

store→load
⇒ Relaxed

load→store
⇒ No need to execute stores before the loads since stores are

out of the critical path
store→store1

⇒ Less critical than without a store buffer, unless the store
buffer fills

load→load

⇒ It is now the bottleneck

1 A. Ros and S. Kaxiras, “Racer: TSO Consistency via Race Detection”. MICRO, 2016.

Alberto Ros Multicore Day, Kista November 29th, 2017 13 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

THE STORE BUFFER: CONSEQUENCES

store→load
⇒ Relaxed

load→store
⇒ No need to execute stores before the loads since stores are

out of the critical path
store→store1

⇒ Less critical than without a store buffer, unless the store
buffer fills

load→load
⇒ It is now the bottleneck

1 A. Ros and S. Kaxiras, “Racer: TSO Consistency via Race Detection”. MICRO, 2016.

Alberto Ros Multicore Day, Kista November 29th, 2017 13 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

OUTLINE

1 MEMORY CONSISTENCY AND PROGRAM ORDER

2 RELAXING PROGRAM ORDER WITH A STORE BUFFER

3 KEEPING PROGRAM ORDER VIA SPECULATION

4 A NON-SPECULATIVE SOLUTION: WRITERSBLOCK

5 EVALUATION RESULTS

6 CONCLUSIONS

Alberto Ros Multicore Day, Kista November 29th, 2017 14 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

LOAD→LOAD REORDERING

Executing load operations out of order can break the
load→load order

Program

ld1

ld2

ld3

ld4

ld5

ld6

head

LQ

Order

ld1

ld3

ld4

ld6

ld2

ld5

Alberto Ros Multicore Day, Kista November 29th, 2017 15 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

LOAD→LOAD REORDERING

Executing load operations out of order can break the
load→load order

Program

ld1

ld2

ld3

ld4

ld5

ld6

head

LQ

Order

ld1

ld3

ld4

ld6

ld2

ld5

Alberto Ros Multicore Day, Kista November 29th, 2017 15 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

LOAD→LOAD REORDERING

Executing load operations out of order can break the
load→load order

Program

ld1

ld2

ld3

ld4

ld5

ld6

head

LQ ld1

Order

ld1

ld3

ld4

ld6

ld2

ld5

Alberto Ros Multicore Day, Kista November 29th, 2017 15 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

LOAD→LOAD REORDERING

Executing load operations out of order can break the
load→load order

Program

ld1

ld2

ld3

ld4

ld5

ld6

head

LQ ld1ld1

Hit

Order

ld1

ld3

ld4

ld6

ld2

ld5

Alberto Ros Multicore Day, Kista November 29th, 2017 15 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

LOAD→LOAD REORDERING

Executing load operations out of order can break the
load→load order

Program

ld1

ld2

ld3

ld4

ld5

ld6

head

LQ ld1ld1

Hit

ld2

Miss

Order

ld1

ld3

ld4

ld6

ld2

ld5

Alberto Ros Multicore Day, Kista November 29th, 2017 15 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

LOAD→LOAD REORDERING

Executing load operations out of order can break the
load→load order

Program

ld1

ld2

ld3

ld4

ld5

ld6

head

LQ ld1ld1

Hit

ld2

Miss

ld3ld4ld5ld6

Order

ld1

ld3

ld4

ld6

ld2

ld5

Alberto Ros Multicore Day, Kista November 29th, 2017 15 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

LOAD→LOAD REORDERING

Executing load operations out of order can break the
load→load order

Program

ld1

ld2

ld3

ld4

ld5

ld6

head

LQ ld1ld1

Hit

ld2

Miss

ld3ld4ld5ld6

Order

ld1

ld3

ld4

ld6

ld2

ld5

Alberto Ros Multicore Day, Kista November 29th, 2017 15 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

LOAD→LOAD REORDERING

In multicore processors reordering loads can affect the
expected result

But always?

INITIALLY X=0, Y=0
$r0 = X;
$r1 = Y;

Y = 1;
X = 1;

/* (1,0) not allowed */

POSSIBLE EXECUTION

$r0 = Y;

$r1 = X;

$r1 = X;

Y = 1;
X = 1;

No, if the other cores do not see the reordering

Alberto Ros Multicore Day, Kista November 29th, 2017 16 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

LOAD→LOAD REORDERING

In multicore processors reordering loads can affect the
expected result

But always?

INITIALLY X=0, Y=0
$r0 = X;
$r1 = Y;

Y = 1;
X = 1;

/* (1,0) not allowed */

POSSIBLE EXECUTION

$r0 = Y;

$r1 = X;

$r1 = X;

Y = 1;
X = 1;

No, if the other cores do not see the reordering

Alberto Ros Multicore Day, Kista November 29th, 2017 16 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

LOAD→LOAD REORDERING

In multicore processors reordering loads can affect the
expected result

But always?

INITIALLY X=0, Y=0
$r0 = X;
$r1 = Y;

Y = 1;
X = 1;

/* (1,0) not allowed */

POSSIBLE EXECUTION

$r0 = Y;
$r1 = X;

$r1 = X;

Y = 1;
X = 1;

/* (0, 0) allowed */

No, if the other cores do not see the reordering

Alberto Ros Multicore Day, Kista November 29th, 2017 16 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

LOAD→LOAD REORDERING

In multicore processors reordering loads can affect the
expected result

But always?

INITIALLY X=0, Y=0
$r0 = X;
$r1 = Y;

Y = 1;
X = 1;

/* (1,0) not allowed */

POSSIBLE EXECUTION

$r0 = Y;

$r1 = X;

$r1 = X;

Y = 1;
X = 1;

/* (1, 0) not allowed */

No, if the other cores do not see the reordering

Alberto Ros Multicore Day, Kista November 29th, 2017 16 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

LOAD→LOAD REORDERING

In multicore processors reordering loads can affect the
expected result

But always?

INITIALLY X=0, Y=0
$r0 = X;
$r1 = Y;

Y = 1;
X = 1;

/* (1,0) not allowed */

POSSIBLE EXECUTION

$r0 = Y;

$r1 = X;

$r1 = X;

Y = 1;
X = 1;

/* (1, 0) not allowed */

No, if the other cores do not see the reordering

Alberto Ros Multicore Day, Kista November 29th, 2017 16 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

LOAD→LOAD SPECULATION

Solution: To allow speculative load→load reordering
Some definitions2: performed, ordered, source of
speculation (SoS)

Program

ld1

ld2

ld3

ld4

ld5

ld6

head

LQ ld1ld1ld2ld3ld4ld5ld6

Order

ld1

ld3

ld4

ld6

ld2

ld5

performedM-spec

orderedno ordered

2 A. Ros, T. E. Carlson, M. Alipour, and S. Kaxiras, “Non-Speculative Load-Load
Reordering in TSO”. ISCA, 2017.

Alberto Ros Multicore Day, Kista November 29th, 2017 17 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

LOAD→LOAD SPECULATION

Solution: To allow speculative load→load reordering
Some definitions2: performed, ordered, source of
speculation (SoS)

Program

ld1

ld2

ld3

ld4

ld5

ld6

head

LQ ld1ld1ld2ld3ld4ld5ld6

Order

ld1

ld3

ld4

ld6

ld2

ld5

performedM-spec

orderedno ordered

2 A. Ros, T. E. Carlson, M. Alipour, and S. Kaxiras, “Non-Speculative Load-Load
Reordering in TSO”. ISCA, 2017.

Alberto Ros Multicore Day, Kista November 29th, 2017 17 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

LOAD→LOAD SPECULATION

Solution: To allow speculative load→load reordering
Some definitions2: performed, ordered, source of
speculation (SoS)

Program

ld1

ld2

ld3

ld4

ld5

ld6

head

LQ ld1ld1ld2ld3ld4ld5ld6

Order

ld1

ld3

ld4

ld6

ld2

ld5

performed

M-spec

orderedno ordered

2 A. Ros, T. E. Carlson, M. Alipour, and S. Kaxiras, “Non-Speculative Load-Load
Reordering in TSO”. ISCA, 2017.

Alberto Ros Multicore Day, Kista November 29th, 2017 17 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

LOAD→LOAD SPECULATION

Solution: To allow speculative load→load reordering
Some definitions2: performed, ordered, source of
speculation (SoS)

Program

ld1

ld2

ld3

ld4

ld5

ld6

head

LQ ld1ld1ld2ld3ld4ld5ld6

Order

ld1

ld3

ld4

ld6

ld2

ld5

performed

M-spec

orderedno ordered

2 A. Ros, T. E. Carlson, M. Alipour, and S. Kaxiras, “Non-Speculative Load-Load
Reordering in TSO”. ISCA, 2017.

Alberto Ros Multicore Day, Kista November 29th, 2017 17 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

LOAD→LOAD SPECULATION

Solution: To allow speculative load→load reordering
Some definitions2: performed, ordered, source of
speculation (SoS)

Program

ld1

ld2

ld3

ld4

ld5

ld6

head

LQ ld1ld1ld2ld3ld4ld5ld6

Order

ld1

ld3

ld4

ld6

ld2

ld5

performed

M-spec SoS

orderedno ordered

2 A. Ros, T. E. Carlson, M. Alipour, and S. Kaxiras, “Non-Speculative Load-Load
Reordering in TSO”. ISCA, 2017.

Alberto Ros Multicore Day, Kista November 29th, 2017 17 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

LOAD→LOAD SPECULATION

Solution: To allow speculative load→load reordering
Some definitions2: performed, ordered, source of
speculation (SoS)

Program

ld1

ld2

ld3

ld4

ld5

ld6

head

LQ ld1ld1ld2ld3ld4ld5ld6

Order

ld1

ld3

ld4

ld6

ld2

ld5

performed

M-spec SoS

orderedno ordered

2 A. Ros, T. E. Carlson, M. Alipour, and S. Kaxiras, “Non-Speculative Load-Load
Reordering in TSO”. ISCA, 2017.

Alberto Ros Multicore Day, Kista November 29th, 2017 17 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

SQUASH AND RE-EXECUTE UPON INVALIDATION

Current multicore avoid incorrect results
With the help of the cache coherence protocol

Squashing and re-executing on remote writes

ly
sy
sx

lx

(1,0)

LQ lx

L1 L1

LLC

1. G
etS

x

sy

1.
GetX

y

Alberto Ros Multicore Day, Kista November 29th, 2017 18 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

SQUASH AND RE-EXECUTE UPON INVALIDATION

Current multicore avoid incorrect results
With the help of the cache coherence protocol

Squashing and re-executing on remote writes

ly
sy
sx

lx

(1,0)

LQ lx

L1 L1

LLC

1. G
etS

x

SoS
lx

sy

1.
GetX

y

Alberto Ros Multicore Day, Kista November 29th, 2017 18 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

SQUASH AND RE-EXECUTE UPON INVALIDATION

Current multicore avoid incorrect results
With the help of the cache coherence protocol

Squashing and re-executing on remote writes

ly
sy
sx

lx

(1,0)

LQ lx

L1 L1

LLC

1. G
etS

x

M-spec

ly

ly

sy

1.
GetX

y

Alberto Ros Multicore Day, Kista November 29th, 2017 18 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

SQUASH AND RE-EXECUTE UPON INVALIDATION

Current multicore avoid incorrect results
With the help of the cache coherence protocol

Squashing and re-executing on remote writes

ly
sy
sx

lx

(1,0)

LQ lx

L1 L1

LLC

1. G
etS

x

ly

sy

1.
GetX

y

Alberto Ros Multicore Day, Kista November 29th, 2017 18 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

SQUASH AND RE-EXECUTE UPON INVALIDATION

Current multicore avoid incorrect results
With the help of the cache coherence protocol

Squashing and re-executing on remote writes

ly
sy
sx

lx

(1,0)

LQ lx

L1 L1

LLC

1. G
etS

x

ly

sy

1.
GetX

y

2. Invy

M-spec

Alberto Ros Multicore Day, Kista November 29th, 2017 18 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

SQUASH AND RE-EXECUTE UPON INVALIDATION

Current multicore avoid incorrect results
With the help of the cache coherence protocol
Squashing and re-executing on remote writes

ly
sy
sx

lx

(1,0)

LQ lx

L1 L1

LLC

1. G
etS

x

sy

1.
GetX

y

2. Invy

ly

Alberto Ros Multicore Day, Kista November 29th, 2017 18 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

SQUASH AND RE-EXECUTE UPON EVICTIONS

What happens when a cache block loaded by an M-spec
load is evicted?

If the directory stops tracking the block, the M-spec load will
not receive an invalidation

Solution: Squash and re-execute upon evictions
This impacts the performance of sequential applications!

ly
sy
sx

lx

(1,0)

lx

L1

1. P
uty

ly

M-spec

ly

Alberto Ros Multicore Day, Kista November 29th, 2017 19 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

SQUASH AND RE-EXECUTE UPON EVICTIONS

What happens when a cache block loaded by an M-spec
load is evicted?

If the directory stops tracking the block, the M-spec load will
not receive an invalidation

Solution: Squash and re-execute upon evictions
This impacts the performance of sequential applications!

ly
sy
sx

lx

(1,0)

lx

L1

1. P
uty

ly

M-spec

ly

Alberto Ros Multicore Day, Kista November 29th, 2017 19 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

SQUASH AND RE-EXECUTE UPON EVICTIONS

What happens when a cache block loaded by an M-spec
load is evicted?

If the directory stops tracking the block, the M-spec load will
not receive an invalidation

Solution: Squash and re-execute upon evictions
This impacts the performance of sequential applications!

ly
sy
sx

lx

(1,0)

lx

L1

1. P
uty

ly

M-spec

ly

Alberto Ros Multicore Day, Kista November 29th, 2017 19 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

PROBLEMS OF SPECULATION

Memory-related speculation is the current solution to have
MLP and load→load

Why is good?

Squashing is not frequent!

Why is bad?

Speculative loads hold critical resources (LQ, RoB)
The processor needs to keep continuously the rollback path

QUESTION

Can we execute loads out of order, non-speculatively and
guaranteeing load→load?

Alberto Ros Multicore Day, Kista November 29th, 2017 20 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

PROBLEMS OF SPECULATION

Memory-related speculation is the current solution to have
MLP and load→load
Why is good?

Squashing is not frequent!

Why is bad?

Speculative loads hold critical resources (LQ, RoB)
The processor needs to keep continuously the rollback path

QUESTION

Can we execute loads out of order, non-speculatively and
guaranteeing load→load?

Alberto Ros Multicore Day, Kista November 29th, 2017 20 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

PROBLEMS OF SPECULATION

Memory-related speculation is the current solution to have
MLP and load→load
Why is good?

Squashing is not frequent!
Why is bad?

Speculative loads hold critical resources (LQ, RoB)
The processor needs to keep continuously the rollback path

QUESTION

Can we execute loads out of order, non-speculatively and
guaranteeing load→load?

Alberto Ros Multicore Day, Kista November 29th, 2017 20 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

PROBLEMS OF SPECULATION

Memory-related speculation is the current solution to have
MLP and load→load
Why is good?

Squashing is not frequent!
Why is bad?

Speculative loads hold critical resources (LQ, RoB)
The processor needs to keep continuously the rollback path

QUESTION

Can we execute loads out of order, non-speculatively and
guaranteeing load→load?

Alberto Ros Multicore Day, Kista November 29th, 2017 20 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

OUTLINE

1 MEMORY CONSISTENCY AND PROGRAM ORDER

2 RELAXING PROGRAM ORDER WITH A STORE BUFFER

3 KEEPING PROGRAM ORDER VIA SPECULATION

4 A NON-SPECULATIVE SOLUTION: WRITERSBLOCK

5 EVALUATION RESULTS

6 CONCLUSIONS

Alberto Ros Multicore Day, Kista November 29th, 2017 21 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

WRITERSBLOCK IN A NUTSHELL2

WHAT?
Multiple loads executing simultaneously
Load→load
Without memory-related speculation

HOW?
Blocking write requests
With the help of the cache coherence protocol

2 A. Ros, T. E. Carlson, M. Alipour, and S. Kaxiras, “Non-Speculative Load-Load
Reordering in TSO”. ISCA, 2017.

Alberto Ros Multicore Day, Kista November 29th, 2017 22 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

HOW?

With the help of the cache coherence protocol

Blocking and delaying the remote write (WritersBlock)
Until when? Until the load stop being M-spec

ly
sy
sx

lx

(1,0)

ly
sy

lx
sx

(0,0)

LQ lx

L1 L1

LLC

sy

2.
GetX

y

Alberto Ros Multicore Day, Kista November 29th, 2017 23 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

HOW?

With the help of the cache coherence protocol

Blocking and delaying the remote write (WritersBlock)
Until when? Until the load stop being M-spec

ly
sy
sx

lx

(1,0)

ly
sy

lx
sx

(0,0)

LQ lx

L1 L1

LLC

1. G
etS

x

lx

sy

2.
GetX

y

Alberto Ros Multicore Day, Kista November 29th, 2017 23 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

HOW?

With the help of the cache coherence protocol

Blocking and delaying the remote write (WritersBlock)
Until when? Until the load stop being M-spec

ly
sy
sx

lx

(1,0)

ly
sy

lx
sx

(0,0)

LQ lx

L1 L1

LLC

1. G
etS

x

lx
SoS

sy

2.
GetX

y

Alberto Ros Multicore Day, Kista November 29th, 2017 23 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

HOW?

With the help of the cache coherence protocol

Blocking and delaying the remote write (WritersBlock)
Until when? Until the load stop being M-spec

ly
sy
sx

lx

(1,0)

ly
sy

lx
sx

(0,0)

LQ lx

L1 L1

LLC

1. G
etS

x

ly

ly

sy

2.
GetX

y

M-spec

Alberto Ros Multicore Day, Kista November 29th, 2017 23 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

HOW?

With the help of the cache coherence protocol

Blocking and delaying the remote write (WritersBlock)
Until when? Until the load stop being M-spec

ly
sy
sx

lx

(1,0)

ly
sy

lx
sx

(0,0)

LQ lx

L1 L1

LLC

1. G
etS

x

ly

sy

2.
GetX

y

M-spec

Alberto Ros Multicore Day, Kista November 29th, 2017 23 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

HOW?

With the help of the cache coherence protocol

Blocking and delaying the remote write (WritersBlock)
Until when? Until the load stop being M-spec

ly
sy
sx

lx

(1,0)

ly
sy

lx
sx

(0,0)

LQ lx

L1 L1

LLC

1. G
etS

x

ly

sy

2.
GetX

y

3. Invy

M-spec

Alberto Ros Multicore Day, Kista November 29th, 2017 23 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

HOW?

With the help of the cache coherence protocol
Blocking and delaying the remote write (WritersBlock)

Until when? Until the load stop being M-spec

ly
sy
sx

lx

(1,0)

ly
sy

lx
sx

(0,0)

LQ lx

L1 L1

LLC

ly

sy

2.
GetX

y

3. Invy

M-spec

Alberto Ros Multicore Day, Kista November 29th, 2017 23 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

HOW?

With the help of the cache coherence protocol
Blocking and delaying the remote write (WritersBlock)
Until when? Until the load stop being M-spec

ly
sy
sx

lx

(1,0)

ly
sy

lx
sx

(0,0)

LQ lx

L1 L1

LLC

ly

sy

2.
GetX

y

3. Invy
1. GetS

x

Alberto Ros Multicore Day, Kista November 29th, 2017 23 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

HOW?

With the help of the cache coherence protocol
Blocking and delaying the remote write (WritersBlock)
Until when? Until the load stop being M-spec

ly
sy
sx

lx

(1,0)

ly
sy

lx
sx

(0,0)

LQ lx

L1 L1

LLC

ly

sy

2.
GetX

y

3. Invy
1. GetS

x

lx

4. Data
x

Alberto Ros Multicore Day, Kista November 29th, 2017 23 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

HOW?

With the help of the cache coherence protocol
Blocking and delaying the remote write (WritersBlock)
Until when? Until the load stop being M-spec

ly
sy
sx

lx

(1,0)

ly
sy

lx
sx

(0,0)

LQ lx

L1 L1

LLC

ly

sy

2.
GetX

y

3. Invy
1. GetS

x

lx

4. Data
x

Alberto Ros Multicore Day, Kista November 29th, 2017 23 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

EVICTIONS

What happens upon an eviction? Do we squash loads?

No, just need to guarantee that the invalidation will arrive
upon a remote write

Solution:

Clean blocks implement silent evictions3

Dirty blocks write back the data but the directory still keeps
track

LQ lx
L1

1. P
uty

1. Keep
y

ly

M-spec

3 R. Fernandez-Pascual, A. Ros, and M. E. Acacio, “To Be Silent or Not: On the Impact
of Evictions of Clean Data in Cache-Coherent Multicores”, Journal of Supercomputing,
2017.

Alberto Ros Multicore Day, Kista November 29th, 2017 24 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

EVICTIONS

What happens upon an eviction? Do we squash loads?
No, just need to guarantee that the invalidation will arrive
upon a remote write

Solution:

Clean blocks implement silent evictions3

Dirty blocks write back the data but the directory still keeps
track

LQ lx
L1

1. P
uty

1. Keep
y

ly

M-spec

3 R. Fernandez-Pascual, A. Ros, and M. E. Acacio, “To Be Silent or Not: On the Impact
of Evictions of Clean Data in Cache-Coherent Multicores”, Journal of Supercomputing,
2017.

Alberto Ros Multicore Day, Kista November 29th, 2017 24 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

EVICTIONS

What happens upon an eviction? Do we squash loads?
No, just need to guarantee that the invalidation will arrive
upon a remote write

Solution:
Clean blocks implement silent evictions3

Dirty blocks write back the data but the directory still keeps
track

LQ lx
L1

1. P
uty

1. Keep
y

ly

M-spec

3 R. Fernandez-Pascual, A. Ros, and M. E. Acacio, “To Be Silent or Not: On the Impact
of Evictions of Clean Data in Cache-Coherent Multicores”, Journal of Supercomputing,
2017.

Alberto Ros Multicore Day, Kista November 29th, 2017 24 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

EVICTIONS

What happens upon an eviction? Do we squash loads?
No, just need to guarantee that the invalidation will arrive
upon a remote write

Solution:
Clean blocks implement silent evictions3

Dirty blocks write back the data but the directory still keeps
track

LQ lx
L1

1. P
uty

1. Keep
y

ly

M-spec

3 R. Fernandez-Pascual, A. Ros, and M. E. Acacio, “To Be Silent or Not: On the Impact
of Evictions of Clean Data in Cache-Coherent Multicores”, Journal of Supercomputing,
2017.

Alberto Ros Multicore Day, Kista November 29th, 2017 24 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

DEADLOCK

Blocking writes can cause deadlocks
If x and y are two words within the same cache line

Solution: Blocked writes allow reads to be resolved

ly
sy
sx

lx

(1,0)

LQ lx

L1 L1

LLC

1. G
etS

x

ly

sy

2.
GetX

y

3. Invy

M-spec

Alberto Ros Multicore Day, Kista November 29th, 2017 25 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

DEADLOCK

Blocking writes can cause deadlocks
If x and y are two words within the same cache line

Solution: Blocked writes allow reads to be resolved

ly
sy
sx

lx

(1,0)

LQ lx

L1 L1

LLC

ly

sy

2.
GetX

y

3. Invy

M-spec

1. GetS
x

Alberto Ros Multicore Day, Kista November 29th, 2017 25 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

DEADLOCK

Blocking writes can cause deadlocks
If x and y are two words within the same cache line
Solution: Blocked writes allow reads to be resolved

ly
sy
sx

lx

(1,0)

LQ lx

L1 L1

LLC

ly

sy

2.
GetX

y

3. Invy

M-spec

1. GetS
x

4. Data
x

Alberto Ros Multicore Day, Kista November 29th, 2017 25 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

DEADLOCK

Blocking writes can cause deadlocks
If x and y are two words within the same cache line
Solution: Blocked writes allow reads to be resolved

ly
sy
sx

lx

(1,0)

LQ

L1 L1

LLC

ly

sy

2.
GetX

y

3. Invy

M-spec

1. GetS
x

4. Data
x

lx

Alberto Ros Multicore Day, Kista November 29th, 2017 25 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

DEADLOCK

Blocking writes can cause deadlocks
If x and y are two words within the same cache line
Solution: Blocked writes allow reads to be resolved

ly
sy
sx

lx

(1,0)

LQ

L1 L1

LLC

ly

sy

2.
GetX

y

3. Invy

M-spec

1. GetS
x

4. Data
x

lx

Alberto Ros Multicore Day, Kista November 29th, 2017 25 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

LIVELOCK

Resolving reads while blocking writes can cause livelock
Resolving a read once the data has been invalidated will
cause a second invalidation
Blockedi , Readj , Unblocki , Invalidatej , Blockedj , ...

Solution

Reads resolved through WritersBlock are non-cacheable

⇒ No invalidations needed

and cannot resolve M-spec loads

⇒ No invalidation will be received

Alberto Ros Multicore Day, Kista November 29th, 2017 26 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

LIVELOCK

Resolving reads while blocking writes can cause livelock
Resolving a read once the data has been invalidated will
cause a second invalidation
Blockedi , Readj , Unblocki , Invalidatej , Blockedj , ...

Solution
Reads resolved through WritersBlock are non-cacheable
⇒ No invalidations needed

and cannot resolve M-spec loads
⇒ No invalidation will be received

Alberto Ros Multicore Day, Kista November 29th, 2017 26 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

DEADLOCK AVOIDANCE

WRITERSBLOCK cause writes to be blocked
Until a load stop being M-speculative

Deadlock-free condition:

⇒ Loads are not stopped by pending write misses

Other blocking causes and solutions:

MSHR address occupied by write miss

⇒ Duplicate read-write MSHR allocation

Full directory/LLC

⇒ Non-cacheable loads

Atomic Read-Modify-Write

⇒ Non-speculative (ordered)

Alberto Ros Multicore Day, Kista November 29th, 2017 27 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

DEADLOCK AVOIDANCE

WRITERSBLOCK cause writes to be blocked
Until a load stop being M-speculative

Deadlock-free condition:
⇒ Loads are not stopped by pending write misses

Other blocking causes and solutions:

MSHR address occupied by write miss

⇒ Duplicate read-write MSHR allocation

Full directory/LLC

⇒ Non-cacheable loads

Atomic Read-Modify-Write

⇒ Non-speculative (ordered)

Alberto Ros Multicore Day, Kista November 29th, 2017 27 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

DEADLOCK AVOIDANCE

WRITERSBLOCK cause writes to be blocked
Until a load stop being M-speculative

Deadlock-free condition:
⇒ Loads are not stopped by pending write misses

Other blocking causes and solutions:
MSHR address occupied by write miss
⇒ Duplicate read-write MSHR allocation

Full directory/LLC
⇒ Non-cacheable loads

Atomic Read-Modify-Write
⇒ Non-speculative (ordered)

Alberto Ros Multicore Day, Kista November 29th, 2017 27 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

CASE OF USE: OUT-OF-ORDER COMMIT

Out-of-order commit4 allows the processor to retire
instructions from the reorder buffer (RoB) even if they are
not at the head
It cannot retire instructions that can be squashed

WRITERSBLOCK allows the retirement of out-of-order loads
Better RoB/LQ usage

head

ld1ld1ld2ld3ld4ld5ld6

M-spec SoS

orderedno ordered

4 G. B. Bell and M. H. Lipasti, “Deconstructing Commit”, ISPASS, 2004.

Alberto Ros Multicore Day, Kista November 29th, 2017 28 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

CASE OF USE: OUT-OF-ORDER COMMIT

Out-of-order commit4 allows the processor to retire
instructions from the reorder buffer (RoB) even if they are
not at the head
It cannot retire instructions that can be squashed
WRITERSBLOCK allows the retirement of out-of-order loads
Better RoB/LQ usage

head

ld1ld1ld2ld3ld4ld5ld6

M-spec SoS

orderedno ordered

4 G. B. Bell and M. H. Lipasti, “Deconstructing Commit”, ISPASS, 2004.

Alberto Ros Multicore Day, Kista November 29th, 2017 28 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

CASE OF USE: OUT-OF-ORDER COMMIT

Out-of-order commit4 allows the processor to retire
instructions from the reorder buffer (RoB) even if they are
not at the head
It cannot retire instructions that can be squashed
WRITERSBLOCK allows the retirement of out-of-order loads
Better RoB/LQ usage

head

ld1ld1ld2ld3ld4ld5ld6

M-spec SoS

orderedno ordered

4 G. B. Bell and M. H. Lipasti, “Deconstructing Commit”, ISPASS, 2004.

Alberto Ros Multicore Day, Kista November 29th, 2017 28 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

OUTLINE

1 MEMORY CONSISTENCY AND PROGRAM ORDER

2 RELAXING PROGRAM ORDER WITH A STORE BUFFER

3 KEEPING PROGRAM ORDER VIA SPECULATION

4 A NON-SPECULATIVE SOLUTION: WRITERSBLOCK

5 EVALUATION RESULTS

6 CONCLUSIONS

Alberto Ros Multicore Day, Kista November 29th, 2017 29 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

SIMULATION ENVIRONMENT

Simulator: GEMS + OoO processor (TSO)

16-core multicore
Silvermont (32-entry RoB), Nehalem (128-entry RoB), and
Haswell (192-entry RoB)
Benchmarks: Splash-3 5 and Parsec-3.0
Protocols

DIRECTORY: Directory-based MESI protocol
WRITERSBLOCK: Extensions to DIRECTORY

Commit technique
INORDERCOMMIT
OOOCOMMIT

5 C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, “Splash-3: A Properly
Synchronized Benchmark Suite for Contemporary Research”, ISPASS, 2016.

Alberto Ros Multicore Day, Kista November 29th, 2017 30 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

SIMULATION ENVIRONMENT

Simulator: GEMS + OoO processor (TSO)
16-core multicore
Silvermont (32-entry RoB), Nehalem (128-entry RoB), and
Haswell (192-entry RoB)

Benchmarks: Splash-3 5 and Parsec-3.0
Protocols

DIRECTORY: Directory-based MESI protocol
WRITERSBLOCK: Extensions to DIRECTORY

Commit technique
INORDERCOMMIT
OOOCOMMIT

5 C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, “Splash-3: A Properly
Synchronized Benchmark Suite for Contemporary Research”, ISPASS, 2016.

Alberto Ros Multicore Day, Kista November 29th, 2017 30 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

SIMULATION ENVIRONMENT

Simulator: GEMS + OoO processor (TSO)
16-core multicore
Silvermont (32-entry RoB), Nehalem (128-entry RoB), and
Haswell (192-entry RoB)
Benchmarks: Splash-3 5 and Parsec-3.0

Protocols
DIRECTORY: Directory-based MESI protocol
WRITERSBLOCK: Extensions to DIRECTORY

Commit technique
INORDERCOMMIT
OOOCOMMIT

5 C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, “Splash-3: A Properly
Synchronized Benchmark Suite for Contemporary Research”, ISPASS, 2016.

Alberto Ros Multicore Day, Kista November 29th, 2017 30 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

SIMULATION ENVIRONMENT

Simulator: GEMS + OoO processor (TSO)
16-core multicore
Silvermont (32-entry RoB), Nehalem (128-entry RoB), and
Haswell (192-entry RoB)
Benchmarks: Splash-3 5 and Parsec-3.0
Protocols

DIRECTORY: Directory-based MESI protocol
WRITERSBLOCK: Extensions to DIRECTORY

Commit technique
INORDERCOMMIT
OOOCOMMIT

5 C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, “Splash-3: A Properly
Synchronized Benchmark Suite for Contemporary Research”, ISPASS, 2016.

Alberto Ros Multicore Day, Kista November 29th, 2017 30 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

SIMULATION ENVIRONMENT

Simulator: GEMS + OoO processor (TSO)
16-core multicore
Silvermont (32-entry RoB), Nehalem (128-entry RoB), and
Haswell (192-entry RoB)
Benchmarks: Splash-3 5 and Parsec-3.0
Protocols

DIRECTORY: Directory-based MESI protocol
WRITERSBLOCK: Extensions to DIRECTORY

Commit technique
INORDERCOMMIT
OOOCOMMIT

5 C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, “Splash-3: A Properly
Synchronized Benchmark Suite for Contemporary Research”, ISPASS, 2016.

Alberto Ros Multicore Day, Kista November 29th, 2017 30 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

WRITERSBLOCK: BLOCKED WRITES

Results for INORDERCOMMIT

Normalized to DIRECTORY

The larger the RoB, the more loads executed out-of-order, and
the more blocked writes
Less that 5 blocks per 10,000 stores, on average

barnes

blackscholes
bodytrack

canneal
cholesky

dedup
ferret fft

fluidanimate fmm
freqmine

lu_cb
lu_ncb

ocean_cp

ocean_ncp
radiosity radix

raytrace

streamcluster
swaptions vips

volrend

water_nsquared

water_spatial
x264

Average
0.0

0.1

0.2

0.3

0.4

0.5

0.6

B
lo

ck
ed

 w
rit

es
 p

er
 K

st
or

es

SLM-class WritersBlock NHM-class WritersBlock HSW-class WritersBlock 2.2
9.2

8.3

Alberto Ros Multicore Day, Kista November 29th, 2017 31 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

WRITERSBLOCK: BLOCKED WRITES

Results for INORDERCOMMIT

Normalized to DIRECTORY

The larger the RoB, the more loads executed out-of-order, and
the more blocked writes

Less that 5 blocks per 10,000 stores, on average

barnes

blackscholes
bodytrack

canneal
cholesky

dedup
ferret fft

fluidanimate fmm
freqmine

lu_cb
lu_ncb

ocean_cp

ocean_ncp
radiosity radix

raytrace

streamcluster
swaptions vips

volrend

water_nsquared

water_spatial
x264

Average
0.0

0.1

0.2

0.3

0.4

0.5

0.6

B
lo

ck
ed

 w
rit

es
 p

er
 K

st
or

es

SLM-class WritersBlock NHM-class WritersBlock HSW-class WritersBlock 2.2
9.2

8.3

Alberto Ros Multicore Day, Kista November 29th, 2017 31 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

WRITERSBLOCK: BLOCKED WRITES

Results for INORDERCOMMIT

Normalized to DIRECTORY

The larger the RoB, the more loads executed out-of-order, and
the more blocked writes
Less that 5 blocks per 10,000 stores, on average

barnes

blackscholes
bodytrack

canneal
cholesky

dedup
ferret fft

fluidanimate fmm
freqmine

lu_cb
lu_ncb

ocean_cp

ocean_ncp
radiosity radix

raytrace

streamcluster
swaptions vips

volrend

water_nsquared

water_spatial
x264

Average
0.0

0.1

0.2

0.3

0.4

0.5

0.6

B
lo

ck
ed

 w
rit

es
 p

er
 K

st
or

es

SLM-class WritersBlock NHM-class WritersBlock HSW-class WritersBlock 2.2
9.2

8.3

Alberto Ros Multicore Day, Kista November 29th, 2017 31 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

WRITERSBLOCK: NON-CACHEABLE DATA

Results for INORDERCOMMIT

Normalized to DIRECTORY

The larger the RoB, the more writes blocked, and the more
non-cacheable data
≈ 1 non-cacheable data per 100,000 loads, on average

barnes

blackscholes
bodytrack

canneal
cholesky

dedup
ferret fft

fluidanimate fmm
freqmine

lu_cb
lu_ncb

ocean_cp

ocean_ncp
radiosity radix

raytrace

streamcluster
swaptions vips

volrend

water_nsquared

water_spatial
x264

Average
0.0

0.02

0.04

0.06

0.08

0.1

N
o-

ca
ch

e
re

ad
s

pe
r

K
lo

ad
s

SLM-class WritersBlock NHM-class WritersBlock HSW-class WritersBlock

Alberto Ros Multicore Day, Kista November 29th, 2017 32 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

WRITERSBLOCK: NON-CACHEABLE DATA

Results for INORDERCOMMIT

Normalized to DIRECTORY

The larger the RoB, the more writes blocked, and the more
non-cacheable data

≈ 1 non-cacheable data per 100,000 loads, on average

barnes

blackscholes
bodytrack

canneal
cholesky

dedup
ferret fft

fluidanimate fmm
freqmine

lu_cb
lu_ncb

ocean_cp

ocean_ncp
radiosity radix

raytrace

streamcluster
swaptions vips

volrend

water_nsquared

water_spatial
x264

Average
0.0

0.02

0.04

0.06

0.08

0.1

N
o-

ca
ch

e
re

ad
s

pe
r

K
lo

ad
s

SLM-class WritersBlock NHM-class WritersBlock HSW-class WritersBlock

Alberto Ros Multicore Day, Kista November 29th, 2017 32 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

WRITERSBLOCK: NON-CACHEABLE DATA

Results for INORDERCOMMIT

Normalized to DIRECTORY

The larger the RoB, the more writes blocked, and the more
non-cacheable data
≈ 1 non-cacheable data per 100,000 loads, on average

barnes

blackscholes
bodytrack

canneal
cholesky

dedup
ferret fft

fluidanimate fmm
freqmine

lu_cb
lu_ncb

ocean_cp

ocean_ncp
radiosity radix

raytrace

streamcluster
swaptions vips

volrend

water_nsquared

water_spatial
x264

Average
0.0

0.02

0.04

0.06

0.08

0.1

N
o-

ca
ch

e
re

ad
s

pe
r

K
lo

ad
s

SLM-class WritersBlock NHM-class WritersBlock HSW-class WritersBlock

Alberto Ros Multicore Day, Kista November 29th, 2017 32 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

OUT-OF-ORDER COMMIT: PROCESSOR STALLS

Normalized to DIRECTORY + INORDERCOMMIT

INORDERCOMMIT

WRITERSBLOCK does not increases SQ stalls

OOOCOMMIT

WRITERSBLOCK reduces RoB and LQ stalls on average
respect to DIRECTORY

barnes

blackscholes
bodytrack

canneal
cholesky

dedup
ferret fft

fluidanimate fmm
freqmine

lu_cb
lu_ncb

ocean_cp

ocean_ncp
radiosity radix

raytrace

streamcluster
swaptions vips

volrend

water_nsquared

water_spatial
x264

Average
0.0

10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

P
ro

ce
ss

or
 s

ta
lls

 (
%

) SQ LQ ROB

1. Directory InOrderCommit 2. WritersBlock InOrderCommit 3. Directory OoOCommit 4. WritersBlock OoOCommit

Alberto Ros Multicore Day, Kista November 29th, 2017 33 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

OUT-OF-ORDER COMMIT: PROCESSOR STALLS

Normalized to DIRECTORY + INORDERCOMMIT

INORDERCOMMIT

WRITERSBLOCK does not increases SQ stalls

OOOCOMMIT

WRITERSBLOCK reduces RoB and LQ stalls on average
respect to DIRECTORY

barnes

blackscholes
bodytrack

canneal
cholesky

dedup
ferret fft

fluidanimate fmm
freqmine

lu_cb
lu_ncb

ocean_cp

ocean_ncp
radiosity radix

raytrace

streamcluster
swaptions vips

volrend

water_nsquared

water_spatial
x264

Average
0.0

10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

P
ro

ce
ss

or
 s

ta
lls

 (
%

) SQ LQ ROB

1. Directory InOrderCommit 2. WritersBlock InOrderCommit 3. Directory OoOCommit 4. WritersBlock OoOCommit

Alberto Ros Multicore Day, Kista November 29th, 2017 33 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

OUT-OF-ORDER COMMIT: PROCESSOR STALLS

Normalized to DIRECTORY + INORDERCOMMIT

INORDERCOMMIT

WRITERSBLOCK does not increases SQ stalls
OOOCOMMIT

WRITERSBLOCK reduces RoB and LQ stalls on average
respect to DIRECTORY

barnes

blackscholes
bodytrack

canneal
cholesky

dedup
ferret fft

fluidanimate fmm
freqmine

lu_cb
lu_ncb

ocean_cp

ocean_ncp
radiosity radix

raytrace

streamcluster
swaptions vips

volrend

water_nsquared

water_spatial
x264

Average
0.0

10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

P
ro

ce
ss

or
 s

ta
lls

 (
%

) SQ LQ ROB

1. Directory InOrderCommit 2. WritersBlock InOrderCommit 3. Directory OoOCommit 4. WritersBlock OoOCommit

Alberto Ros Multicore Day, Kista November 29th, 2017 33 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

OUT-OF-ORDER COMMIT: EXECUTION TIME

Normalized to DIRECTORY + INORDERCOMMIT

INORDERCOMMIT

WRITERSBLOCK does not harm performance on average
respect to DIRECTORY

OOOCOMMIT

WRITERSBLOCK improves performance by 11% on average
respect to DIRECTORY

barnes

blackscholes
bodytrack

canneal
cholesky

dedup
ferret fft

fluidanimate fmm
freqmine

lu_cb
lu_ncb

ocean_cp

ocean_ncp
radiosity radix

raytrace

streamcluster
swaptions vips

volrend

water_nsquared

water_spatial
x264

Average
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

WritersBlock InOrderCommit Directory OoOCommit WritersBlock OoOCommit

Alberto Ros Multicore Day, Kista November 29th, 2017 34 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

OUT-OF-ORDER COMMIT: EXECUTION TIME

Normalized to DIRECTORY + INORDERCOMMIT

INORDERCOMMIT

WRITERSBLOCK does not harm performance on average
respect to DIRECTORY

OOOCOMMIT

WRITERSBLOCK improves performance by 11% on average
respect to DIRECTORY

barnes

blackscholes
bodytrack

canneal
cholesky

dedup
ferret fft

fluidanimate fmm
freqmine

lu_cb
lu_ncb

ocean_cp

ocean_ncp
radiosity radix

raytrace

streamcluster
swaptions vips

volrend

water_nsquared

water_spatial
x264

Average
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

WritersBlock InOrderCommit Directory OoOCommit WritersBlock OoOCommit

Alberto Ros Multicore Day, Kista November 29th, 2017 34 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

OUT-OF-ORDER COMMIT: EXECUTION TIME

Normalized to DIRECTORY + INORDERCOMMIT

INORDERCOMMIT

WRITERSBLOCK does not harm performance on average
respect to DIRECTORY

OOOCOMMIT

WRITERSBLOCK improves performance by 11% on average
respect to DIRECTORY

barnes

blackscholes
bodytrack

canneal
cholesky

dedup
ferret fft

fluidanimate fmm
freqmine

lu_cb
lu_ncb

ocean_cp

ocean_ncp
radiosity radix

raytrace

streamcluster
swaptions vips

volrend

water_nsquared

water_spatial
x264

Average
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

WritersBlock InOrderCommit Directory OoOCommit WritersBlock OoOCommit

Alberto Ros Multicore Day, Kista November 29th, 2017 34 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

OUTLINE

1 MEMORY CONSISTENCY AND PROGRAM ORDER

2 RELAXING PROGRAM ORDER WITH A STORE BUFFER

3 KEEPING PROGRAM ORDER VIA SPECULATION

4 A NON-SPECULATIVE SOLUTION: WRITERSBLOCK

5 EVALUATION RESULTS

6 CONCLUSIONS

Alberto Ros Multicore Day, Kista November 29th, 2017 35 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

CONCLUSIONS

With the help of the cache coherence protocol,
and without harming performance,

we can execute loads out of order and without speculation,
and obtaining results as if the loads were executed in order

(LOAD→LOAD)

Non-speculative loads can increase performance of
out-of-order commit by 11%

Alberto Ros Multicore Day, Kista November 29th, 2017 36 / 37

Consistency Store Buffer Speculation WritersBlock Results Conclusions

CONCLUSIONS

With the help of the cache coherence protocol,
and without harming performance,

we can execute loads out of order and without speculation,
and obtaining results as if the loads were executed in order

(LOAD→LOAD)

Non-speculative loads can increase performance of
out-of-order commit by 11%

Alberto Ros Multicore Day, Kista November 29th, 2017 36 / 37

Questions?

NON-SPECULATIVE REORDERING OF MEMORY

OPERATIONS WITH STRONG CONSISTENCY

Alberto Ros

Universidad de Murcia

November 29th, 2017

Alberto Ros Multicore Day, Kista November 29th, 2017 37 / 37

	Appendix

