
pdf/portada

RACER: TSO CONSISTENCY VIA RACE

DETECTION

Alberto Ros1 Stefanos Kaxiras2

1Universidad de Murcia
aros@ditec.um.es

2Uppsala University
stefanos.kaxiras@it.uu.se

Nov 28th, 2016

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 1 / 22

OUTLINE

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 2 / 22

OUTLINE

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 3 / 22

CACHE COHERENCE (SC)

Cache coherence problem studied for several decades
Cache coherence serves as a black box to support strict
consistency models: e.g., Sequential Consistency (SC)

Single-writer-multiple-readers (SWMR) invariant
Invalidation/update of the copies on every write
Large amount of traffic⇒ increases energy consumption

OBSERVATION 1
Most processors offer consistency models weaker than SC

Why implement protocols that provide
more functionality than necessary?
Protocol as a black box?

Break the layer between the consistency
model and the coherence protocol!

Consistency model

Cache coherence

SC

SWMR ⇒ Energy

TSO RMO

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 4 / 22

CACHE COHERENCE (SC)

Cache coherence problem studied for several decades
Cache coherence serves as a black box to support strict
consistency models: e.g., Sequential Consistency (SC)

Single-writer-multiple-readers (SWMR) invariant
Invalidation/update of the copies on every write
Large amount of traffic⇒ increases energy consumption

OBSERVATION 1
Most processors offer consistency models weaker than SC

Why implement protocols that provide
more functionality than necessary?
Protocol as a black box?

Break the layer between the consistency
model and the coherence protocol!

Consistency model

Cache coherence

SC

SWMR ⇒ Energy

TSO RMO

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 4 / 22

CACHE COHERENCE (SC)

Cache coherence problem studied for several decades
Cache coherence serves as a black box to support strict
consistency models: e.g., Sequential Consistency (SC)

Single-writer-multiple-readers (SWMR) invariant
Invalidation/update of the copies on every write
Large amount of traffic⇒ increases energy consumption

OBSERVATION 1
Most processors offer consistency models weaker than SC

Why implement protocols that provide
more functionality than necessary?
Protocol as a black box?

Break the layer between the consistency
model and the coherence protocol!

Consistency model

Cache coherence

SC

SWMR ⇒ Energy

TSO RMO

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 4 / 22

CACHE COHERENCE (SC)

Cache coherence problem studied for several decades
Cache coherence serves as a black box to support strict
consistency models: e.g., Sequential Consistency (SC)

Single-writer-multiple-readers (SWMR) invariant
Invalidation/update of the copies on every write
Large amount of traffic⇒ increases energy consumption

OBSERVATION 1
Most processors offer consistency models weaker than SC

Why implement protocols that provide
more functionality than necessary?

Protocol as a black box?

Break the layer between the consistency
model and the coherence protocol!

Consistency model

Cache coherence

SC

SWMR ⇒ Energy

TSO RMO

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 4 / 22

CACHE COHERENCE (SC)

Cache coherence problem studied for several decades
Cache coherence serves as a black box to support strict
consistency models: e.g., Sequential Consistency (SC)

Single-writer-multiple-readers (SWMR) invariant
Invalidation/update of the copies on every write
Large amount of traffic⇒ increases energy consumption

OBSERVATION 1
Most processors offer consistency models weaker than SC

Why implement protocols that provide
more functionality than necessary?
Protocol as a black box?

Break the layer between the consistency
model and the coherence protocol!

Consistency model

Cache coherence

SC

SWMR ⇒ Energy

TSO RMO

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 4 / 22

CACHE COHERENCE (SC-FOR-DRF)

Simple cache coherence: VIPS-M [Ros & Kaxiras, PACT’12]

Strictly request-response⇒ Simple
Allows virtual caches without reverse translation⇒ Efficient
Coherence distributed across cores⇒ Scalable
No directory⇒ Simple and scalable

How? Synchronization exposed to the protocol

Release: SELF-DOWNGRADE (SD)

⇒ Write-through dirty blocks

Acquire: SELF-INVALIDATION (SI)

⇒ Empty the cache

EXAMPLE OF DRF CODE

X = 1;
SIGNAL(cond);

WAIT(cond);
$r1 = X;

OBSERVATION 2
SI & SD are conservatively performed because of static synchronization
even if there is no actual value propagation between cores

SD SI

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 5 / 22

CACHE COHERENCE (SC-FOR-DRF)

Simple cache coherence: VIPS-M [Ros & Kaxiras, PACT’12]

Strictly request-response⇒ Simple
Allows virtual caches without reverse translation⇒ Efficient
Coherence distributed across cores⇒ Scalable
No directory⇒ Simple and scalable

How? Synchronization exposed to the protocol

Release: SELF-DOWNGRADE (SD)

⇒ Write-through dirty blocks

Acquire: SELF-INVALIDATION (SI)

⇒ Empty the cache

EXAMPLE OF DRF CODE

X = 1;
SIGNAL(cond);

WAIT(cond);
$r1 = X;

OBSERVATION 2
SI & SD are conservatively performed because of static synchronization
even if there is no actual value propagation between cores

SD SI

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 5 / 22

CACHE COHERENCE (SC-FOR-DRF)

Simple cache coherence: VIPS-M [Ros & Kaxiras, PACT’12]

Strictly request-response⇒ Simple
Allows virtual caches without reverse translation⇒ Efficient
Coherence distributed across cores⇒ Scalable
No directory⇒ Simple and scalable

How? Synchronization exposed to the protocol

Release: SELF-DOWNGRADE (SD)
⇒ Write-through dirty blocks

Acquire: SELF-INVALIDATION (SI)

⇒ Empty the cache

EXAMPLE OF DRF CODE

X = 1;
SIGNAL(cond);

WAIT(cond);
$r1 = X;

OBSERVATION 2
SI & SD are conservatively performed because of static synchronization
even if there is no actual value propagation between cores

SD

SI

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 5 / 22

CACHE COHERENCE (SC-FOR-DRF)

Simple cache coherence: VIPS-M [Ros & Kaxiras, PACT’12]

Strictly request-response⇒ Simple
Allows virtual caches without reverse translation⇒ Efficient
Coherence distributed across cores⇒ Scalable
No directory⇒ Simple and scalable

How? Synchronization exposed to the protocol

Release: SELF-DOWNGRADE (SD)
⇒ Write-through dirty blocks

Acquire: SELF-INVALIDATION (SI)
⇒ Empty the cache

EXAMPLE OF DRF CODE

X = 1;
SIGNAL(cond);

WAIT(cond);
$r1 = X;

OBSERVATION 2
SI & SD are conservatively performed because of static synchronization
even if there is no actual value propagation between cores

SD SI

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 5 / 22

CACHE COHERENCE (SC-FOR-DRF)

Simple cache coherence: VIPS-M [Ros & Kaxiras, PACT’12]

Strictly request-response⇒ Simple
Allows virtual caches without reverse translation⇒ Efficient
Coherence distributed across cores⇒ Scalable
No directory⇒ Simple and scalable

How? Synchronization exposed to the protocol

Release: SELF-DOWNGRADE (SD)
⇒ Write-through dirty blocks

Acquire: SELF-INVALIDATION (SI)
⇒ Empty the cache

EXAMPLE OF DRF CODE

X = 1;
SIGNAL(cond);

WAIT(cond);
$r1 = X;

OBSERVATION 2
SI & SD are conservatively performed because of static synchronization
even if there is no actual value propagation between cores

SD SI

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 5 / 22

SC VERSUS SC-FOR-DRF COHERENCE

SC

L1

LLC

L1

2. Inv

3. Ack

4. Unbl

2. Ack

1. GetX
/

, Works for
all codes

SC-FOR-DRF

L1

LLC1. Request

2. Response

,
/ Only works for

DRF codes

RACER (TOTAL-STORE-ORDER – TSO)

L1

LLC1. Request

2. Response

,
, Works for all

(TSO) codes

First efficient, request-response protocol for all codes

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 6 / 22

SC VERSUS SC-FOR-DRF COHERENCE

SC

L1

LLC

L1

2. Inv

3. Ack

4. Unbl

2. Ack

1. GetX
/

, Works for
all codes

SC-FOR-DRF

L1

LLC1. Request

2. Response

,
/ Only works for

DRF codes

RACER (TOTAL-STORE-ORDER – TSO)

L1

LLC1. Request

2. Response

,
, Works for all

(TSO) codes

First efficient, request-response protocol for all codes

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 6 / 22

TSO MEMORY CONSISTENCY

TSO RULES

load→load

store→store

load→store

OBSERVATION 3
Memory operations can be safely
reordered as long as they are not
observed by other cores

Is it always necessary to ensure these rules?

CODE EXAMPLE

/* Initially X, Y = 0 */

X = 1;
Y = 1;

$r1 = Y;
$r2 = X;

/* $r1 == 1 and $r2 == 0 not allowed */

POSSIBLE EXECUTION

Y = 1;

X = 1;

X = 1;

$r1 = Y;
$r2 = X;

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 7 / 22

TSO MEMORY CONSISTENCY

TSO RULES

load→load

store→store

load→store

OBSERVATION 3
Memory operations can be safely
reordered as long as they are not
observed by other cores

Is it always necessary to ensure these rules?

CODE EXAMPLE

/* Initially X, Y = 0 */

X = 1;
Y = 1;

$r1 = Y;
$r2 = X;

/* $r1 == 1 and $r2 == 0 not allowed */

POSSIBLE EXECUTION

Y = 1;

X = 1;

X = 1;

$r1 = Y;
$r2 = X;

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 7 / 22

TSO MEMORY CONSISTENCY

TSO RULES

load→load

store→store

load→store

OBSERVATION 3
Memory operations can be safely
reordered as long as they are not
observed by other cores

Is it always necessary to ensure these rules?

CODE EXAMPLE

/* Initially X, Y = 0 */

X = 1;
Y = 1;

$r1 = Y;
$r2 = X;

/* $r1 == 1 and $r2 == 0 not allowed */

POSSIBLE EXECUTION

Y = 1;

X = 1;

X = 1;

$r1 = Y;
$r2 = X;

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 7 / 22

TSO MEMORY CONSISTENCY

TSO RULES

load→load

store→store

load→store

OBSERVATION 3
Memory operations can be safely
reordered as long as they are not
observed by other cores

Is it always necessary to ensure these rules?

CODE EXAMPLE

/* Initially X, Y = 0 */

X = 1;
Y = 1;

$r1 = Y;
$r2 = X;

/* $r1 == 1 and $r2 == 0 not allowed */

POSSIBLE EXECUTION

Y = 1;
X = 1;

X = 1;

$r1 = Y;
$r2 = X;

/* (1, 1) allowed */

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 7 / 22

TSO MEMORY CONSISTENCY

TSO RULES

load→load

store→store

load→store

OBSERVATION 3
Memory operations can be safely
reordered as long as they are not
observed by other cores

Is it always necessary to ensure these rules?

CODE EXAMPLE

/* Initially X, Y = 0 */

X = 1;
Y = 1;

$r1 = Y;
$r2 = X;

/* $r1 == 1 and $r2 == 0 not allowed */

POSSIBLE EXECUTION

Y = 1;

X = 1;

X = 1;

$r1 = Y;
$r2 = X;

/* (1, 0) not allowed */

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 7 / 22

TSO MEMORY CONSISTENCY

TSO RULES

load→load

store→store

load→store

OBSERVATION 3
Memory operations can be safely
reordered as long as they are not
observed by other cores

Is it always necessary to ensure these rules?

CODE EXAMPLE

/* Initially X, Y = 0 */

X = 1;
Y = 1;

$r1 = Y;
$r2 = X;

/* $r1 == 1 and $r2 == 0 not allowed */

POSSIBLE EXECUTION

Y = 1;

X = 1;

X = 1;

$r1 = Y;
$r2 = X;

/* (1, 0) not allowed */

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 7 / 22

OUTLINE

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 8 / 22

RACER AT A GLANCE

A novel way of supporting TSO consistency (Obs.1)
⇒ At the cache coherence protocol level

We start with a very simple request-response protocol

⇒ Order enforced on SI & SD

When it is necessary to enforce
order?

⇒ In SC-for-DRF conservatively on
synchronization (Obs.2)

⇒ In RACER only when it is possible
to see a reordering (Obs.3)

⇒ On actual (read-after-write) RAW
races

Consistency only enforced for
shared data [Singh et al. ISCA’12]

Core0 LLC Core1
tim

e

ST X

LD Y

ST Y

LD X

R
AW

Rel

Acq

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 9 / 22

RACER AT A GLANCE

A novel way of supporting TSO consistency (Obs.1)
⇒ At the cache coherence protocol level

We start with a very simple request-response protocol
⇒ Order enforced on SI & SD

When it is necessary to enforce
order?

⇒ In SC-for-DRF conservatively on
synchronization (Obs.2)

⇒ In RACER only when it is possible
to see a reordering (Obs.3)

⇒ On actual (read-after-write) RAW
races

Consistency only enforced for
shared data [Singh et al. ISCA’12]

Core0 LLC Core1
tim

e

ST X

LD Y

ST Y

LD X

R
AW

Rel

Acq

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 9 / 22

RACER AT A GLANCE

A novel way of supporting TSO consistency (Obs.1)
⇒ At the cache coherence protocol level

We start with a very simple request-response protocol
⇒ Order enforced on SI & SD

When it is necessary to enforce
order?
⇒ In SC-for-DRF conservatively on

synchronization (Obs.2)

⇒ In RACER only when it is possible
to see a reordering (Obs.3)

⇒ On actual (read-after-write) RAW
races

Consistency only enforced for
shared data [Singh et al. ISCA’12]

Core0 LLC Core1
tim

e

ST X

LD Y

ST Y

LD X

R
AW

Rel

Acq

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 9 / 22

RACER AT A GLANCE

A novel way of supporting TSO consistency (Obs.1)
⇒ At the cache coherence protocol level

We start with a very simple request-response protocol
⇒ Order enforced on SI & SD

When it is necessary to enforce
order?
⇒ In SC-for-DRF conservatively on

synchronization (Obs.2)
⇒ In RACER only when it is possible

to see a reordering (Obs.3)
⇒ On actual (read-after-write) RAW

races

Consistency only enforced for
shared data [Singh et al. ISCA’12]

Core0 LLC Core1
tim

e

ST X

LD Y

ST Y

LD X

R
AW

Rel

Acq

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 9 / 22

RACER AT A GLANCE

A novel way of supporting TSO consistency (Obs.1)
⇒ At the cache coherence protocol level

We start with a very simple request-response protocol
⇒ Order enforced on SI & SD

When it is necessary to enforce
order?
⇒ In SC-for-DRF conservatively on

synchronization (Obs.2)
⇒ In RACER only when it is possible

to see a reordering (Obs.3)
⇒ On actual (read-after-write) RAW

races

Consistency only enforced for
shared data [Singh et al. ISCA’12]

Core0 LLC Core1
tim

e

ST X

LD Y

ST Y

LD X

R
AW

Rel

Acq

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 9 / 22

RACER AT A GLANCE

A novel way of supporting TSO consistency (Obs.1)
⇒ At the cache coherence protocol level

We start with a very simple request-response protocol
⇒ Order enforced on SI & SD

When it is necessary to enforce
order?
⇒ In SC-for-DRF conservatively on

synchronization (Obs.2)
⇒ In RACER only when it is possible

to see a reordering (Obs.3)
⇒ On actual (read-after-write) RAW

races

Consistency only enforced for
shared data [Singh et al. ISCA’12]

Core0 LLC Core1
tim

e

ST X

LD Y

ST Y

LD X

R
AW

Rel

Acq

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 9 / 22

RACER AT A GLANCE

A novel way of supporting TSO consistency (Obs.1)
⇒ At the cache coherence protocol level

We start with a very simple request-response protocol
⇒ Order enforced on SI & SD

When it is necessary to enforce
order?
⇒ In SC-for-DRF conservatively on

synchronization (Obs.2)
⇒ In RACER only when it is possible

to see a reordering (Obs.3)
⇒ On actual (read-after-write) RAW

races

Consistency only enforced for
shared data [Singh et al. ISCA’12]

Core0 LLC Core1
tim

e

ST X

LD Y

ST Y

LD X

R
AW

Rel

Acq

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 9 / 22

RACER AT A GLANCE

A novel way of supporting TSO consistency (Obs.1)
⇒ At the cache coherence protocol level

We start with a very simple request-response protocol
⇒ Order enforced on SI & SD

When it is necessary to enforce
order?
⇒ In SC-for-DRF conservatively on

synchronization (Obs.2)
⇒ In RACER only when it is possible

to see a reordering (Obs.3)
⇒ On actual (read-after-write) RAW

races

Consistency only enforced for
shared data [Singh et al. ISCA’12]

Core0 LLC Core1
tim

e

ST X

LD Y

ST Y

LD X

R
AW

Rel

Acq

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 9 / 22

RACER AT A GLANCE

A novel way of supporting TSO consistency (Obs.1)
⇒ At the cache coherence protocol level

We start with a very simple request-response protocol
⇒ Order enforced on SI & SD

When it is necessary to enforce
order?
⇒ In SC-for-DRF conservatively on

synchronization (Obs.2)
⇒ In RACER only when it is possible

to see a reordering (Obs.3)
⇒ On actual (read-after-write) RAW

races

Consistency only enforced for
shared data [Singh et al. ISCA’12]

Core0 LLC Core1
tim

e

ST X

LD Y

ST Y

LD X

R
AW

Rel

Acq

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 9 / 22

RACER AT A GLANCE

A novel way of supporting TSO consistency (Obs.1)
⇒ At the cache coherence protocol level

We start with a very simple request-response protocol
⇒ Order enforced on SI & SD

When it is necessary to enforce
order?
⇒ In SC-for-DRF conservatively on

synchronization (Obs.2)
⇒ In RACER only when it is possible

to see a reordering (Obs.3)
⇒ On actual (read-after-write) RAW

races

Consistency only enforced for
shared data [Singh et al. ISCA’12]

Core0 LLC Core1
tim

e

ST X

LD Y

ST Y

LD X

R
AW

Rel

Acq

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 9 / 22

BASIC OPERATION

LLC

Network

L1 L1 L1 L1

Core0 Core1 Core2 Core3

RAWR DETECTOR

Core Bloom filter
0
1
2
3

One bloom filter per core

X

ST
X

Stores do not require write
permission (no SWMR invariant)

Cores 1, 2, and 3 have
not seen the write to X

X

A
C

K

ACK to guarantee order
of store operations

Y

Y

LD Y

Last value of Y has been
seen by Core1 ⇒ Ok

Y

DATA Y
ST Y ACK

LD X

Clean Core1 bloom filter.
Filters are naturally cleared when detecting races!

X

DATA X + SI

SELF-INVALIDATE (shared)
Core1 cache contentCore0 LLC Core1

tim
e

ST X

LD Y

ST Y

LD X

R
AW

Rel

Acq

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 10 / 22

BASIC OPERATION

LLC

Network

L1 L1 L1 L1

Core0 Core1 Core2 Core3

RAWR DETECTOR

Core Bloom filter
0
1
2
3

One bloom filter per core

X

ST
X

Stores do not require write
permission (no SWMR invariant)

Cores 1, 2, and 3 have
not seen the write to X

X

A
C

K

ACK to guarantee order
of store operations

Y

Y

LD Y

Last value of Y has been
seen by Core1 ⇒ Ok

Y

DATA Y
ST Y ACK

LD X

Clean Core1 bloom filter.
Filters are naturally cleared when detecting races!

X

DATA X + SI

SELF-INVALIDATE (shared)
Core1 cache content

Core0 LLC Core1

tim
e

ST X

LD Y

ST Y

LD X

R
AW

Rel

Acq

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 10 / 22

BASIC OPERATION

LLC

Network

L1 L1 L1 L1

Core0 Core1 Core2 Core3

RAWR DETECTOR

Core Bloom filter
0
1
2
3

One bloom filter per core

X

ST
X

Stores do not require write
permission (no SWMR invariant)

Cores 1, 2, and 3 have
not seen the write to X

X

A
C

K

ACK to guarantee order
of store operations

Y

Y

LD Y

Last value of Y has been
seen by Core1 ⇒ Ok

Y

DATA Y
ST Y ACK

LD X

Clean Core1 bloom filter.
Filters are naturally cleared when detecting races!

X

DATA X + SI

SELF-INVALIDATE (shared)
Core1 cache content

Core0 LLC Core1

tim
e

ST X

LD Y

ST Y

LD X

R
AW

Rel

Acq

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 10 / 22

BASIC OPERATION

LLC

Network

L1 L1 L1 L1

Core0 Core1 Core2 Core3

RAWR DETECTOR

Core Bloom filter
0
1
2
3

One bloom filter per core

X

ST
X

Stores do not require write
permission (no SWMR invariant)

Cores 1, 2, and 3 have
not seen the write to X

X

A
C

K

ACK to guarantee order
of store operations

Y

Y

LD Y

Last value of Y has been
seen by Core1 ⇒ Ok

Y

DATA Y
ST Y ACK

LD X

Clean Core1 bloom filter.
Filters are naturally cleared when detecting races!

X

DATA X + SI

SELF-INVALIDATE (shared)
Core1 cache content

Core0 LLC Core1

tim
e

ST X

LD Y

ST Y

LD X

R
AW

Rel

Acq

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 10 / 22

BASIC OPERATION

LLC

Network

L1 L1 L1 L1

Core0 Core1 Core2 Core3

RAWR DETECTOR

Core Bloom filter
0
1
2
3

One bloom filter per core

X

ST
X

Stores do not require write
permission (no SWMR invariant)

Cores 1, 2, and 3 have
not seen the write to X

X

A
C

K

ACK to guarantee order
of store operations

Y

Y

LD Y

Last value of Y has been
seen by Core1 ⇒ Ok

Y

DATA Y
ST Y ACK

LD X

Clean Core1 bloom filter.
Filters are naturally cleared when detecting races!

X

DATA X + SI

SELF-INVALIDATE (shared)
Core1 cache content

Core0 LLC Core1

tim
e

ST X

LD Y

ST Y

LD X

R
AW

Rel

Acq

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 10 / 22

BASIC OPERATION

LLC

Network

L1 L1 L1 L1

Core0 Core1 Core2 Core3

RAWR DETECTOR

Core Bloom filter
0
1
2
3

One bloom filter per core

X

ST
X

Stores do not require write
permission (no SWMR invariant)

Cores 1, 2, and 3 have
not seen the write to X

X

A
C

K

ACK to guarantee order
of store operations

Y

Y

LD Y

Last value of Y has been
seen by Core1 ⇒ Ok

Y

DATA Y

ST Y ACK
LD X

Clean Core1 bloom filter.
Filters are naturally cleared when detecting races!

X

DATA X + SI

SELF-INVALIDATE (shared)
Core1 cache content

Core0 LLC Core1

tim
e

ST X

LD Y

ST Y

LD X

R
AW

Rel

Acq

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 10 / 22

BASIC OPERATION

LLC

Network

L1 L1 L1 L1

Core0 Core1 Core2 Core3

RAWR DETECTOR

Core Bloom filter
0
1
2
3

One bloom filter per core

X

ST
X

Stores do not require write
permission (no SWMR invariant)

Cores 1, 2, and 3 have
not seen the write to X

X

A
C

K

ACK to guarantee order
of store operations

Y

Y

LD Y

Last value of Y has been
seen by Core1 ⇒ Ok

Y

DATA Y

ST Y ACK

LD X

Clean Core1 bloom filter.
Filters are naturally cleared when detecting races!

X

DATA X + SI

SELF-INVALIDATE (shared)
Core1 cache content

Core0 LLC Core1

tim
e

ST X

LD Y

ST Y

LD X

R
AW

Rel

Acq

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 10 / 22

BASIC OPERATION

LLC

Network

L1 L1 L1 L1

Core0 Core1 Core2 Core3

RAWR DETECTOR

Core Bloom filter
0
1
2
3

One bloom filter per core

X

ST
X

Stores do not require write
permission (no SWMR invariant)

Cores 1, 2, and 3 have
not seen the write to X

X

A
C

K

ACK to guarantee order
of store operations

Y

Y

LD Y

Last value of Y has been
seen by Core1 ⇒ Ok

Y

DATA Y
ST Y ACK

LD X

Clean Core1 bloom filter.
Filters are naturally cleared when detecting races!

X

DATA X + SI

SELF-INVALIDATE (shared)
Core1 cache content

Core0 LLC Core1

tim
e

ST X

LD Y

ST Y

LD X

R
AW

Rel

Acq

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 10 / 22

BASIC OPERATION

LLC

Network

L1 L1 L1 L1

Core0 Core1 Core2 Core3

RAWR DETECTOR

Core Bloom filter
0
1
2
3

One bloom filter per core

X

ST
X

Stores do not require write
permission (no SWMR invariant)

Cores 1, 2, and 3 have
not seen the write to X

X

A
C

K

ACK to guarantee order
of store operations

Y

Y

LD Y

Last value of Y has been
seen by Core1 ⇒ Ok

Y

DATA Y
ST Y ACK

LD X

Clean Core1 bloom filter.
Filters are naturally cleared when detecting races!

X

DATA X + SI

SELF-INVALIDATE (shared)
Core1 cache content

Core0 LLC Core1

tim
e

ST X

LD Y

ST Y

LD X

R
AW

Rel

Acq

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 10 / 22

BASIC OPERATION

LLC

Network

L1 L1 L1 L1

Core0 Core1 Core2 Core3

RAWR DETECTOR

Core Bloom filter
0
1
2
3

One bloom filter per core

X

ST
X

Stores do not require write
permission (no SWMR invariant)

Cores 1, 2, and 3 have
not seen the write to X

X

A
C

K

ACK to guarantee order
of store operations

Y

Y

LD Y

Last value of Y has been
seen by Core1 ⇒ Ok

Y

DATA Y
ST Y ACK

LD X

Clean Core1 bloom filter.
Filters are naturally cleared when detecting races!

X

DATA X + SI

SELF-INVALIDATE (shared)
Core1 cache contentCore0 LLC Core1

tim
e

ST X

LD Y

ST Y

LD X

R
AW

Rel

Acq

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 10 / 22

EFFICIENCY ISSUES OF BASIC OPERATION

, Basic operation⇒ Request-response protocol for TSO
/ But it has two efficiency problems

1 Write-through⇒ Traffic, energy

Solution: Coalesce, but keep TSO order

2 L1 hits cannot detect races⇒ Starvation

Solution: Check-for-race, but efficient

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 11 / 22

EFFICIENCY ISSUES OF BASIC OPERATION

, Basic operation⇒ Request-response protocol for TSO
/ But it has two efficiency problems

1 Write-through⇒ Traffic, energy
Solution: Coalesce, but keep TSO order

2 L1 hits cannot detect races⇒ Starvation

Solution: Check-for-race, but efficient

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 11 / 22

EFFICIENCY ISSUES OF BASIC OPERATION

, Basic operation⇒ Request-response protocol for TSO
/ But it has two efficiency problems

1 Write-through⇒ Traffic, energy
Solution: Coalesce, but keep TSO order

2 L1 hits cannot detect races⇒ Starvation
Solution: Check-for-race, but efficient

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 11 / 22

COALESCING AND TSO ORDER

How to coalesce without violating TSO order?
Write coalescing violates the store→store order

Only a problem if someone sees the reordering (Obs.3)
Solution: COLLAPSED ORDER

⇒ Allows to coalesce non-consecutive stores
⇒ By not allowing observing reorderings

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 12 / 22

COALESCING AND TSO ORDER

How to coalesce without violating TSO order?
Write coalescing violates the store→store order

Only a problem if someone sees the reordering (Obs.3)
Solution: COLLAPSED ORDER

⇒ Allows to coalesce non-consecutive stores
⇒ By not allowing observing reorderings

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 12 / 22

COALESCING AND COLLAPSED ORDER

LLC

Network

L1 L1 L1 L1

Core0 Core1 Core2 Core3

RAWR DETECTOR

Core Bloom filter
0
1
2
3

Local COALESCING
STORE BUFFER (CSB)

CSB

ST
XVersion number

X0

ST
Y

No coalescing:
⇒ version number (+1)

Y1

ST X
X0

Coalescing:
⇒ all version numbers between
coalescing writes the same

Y0

Writes with same version
number are propagated to
LLC in bulk fashion

⇒ No order imposed

X
Y

YX

ST X ST Y LD X

Reads see all or no writes

Reads to already written
addresses are delayed until all
writes finish

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 13 / 22

COALESCING AND COLLAPSED ORDER

LLC

Network

L1 L1 L1 L1

Core0 Core1 Core2 Core3

RAWR DETECTOR

Core Bloom filter
0
1
2
3

Local COALESCING
STORE BUFFER (CSB)

CSB

ST
XVersion number

X0

ST
Y

No coalescing:
⇒ version number (+1)

Y1

ST X
X0

Coalescing:
⇒ all version numbers between
coalescing writes the same

Y0

Writes with same version
number are propagated to
LLC in bulk fashion

⇒ No order imposed

X
Y

YX

ST X ST Y LD X

Reads see all or no writes

Reads to already written
addresses are delayed until all
writes finish

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 13 / 22

COALESCING AND COLLAPSED ORDER

LLC

Network

L1 L1 L1 L1

Core0 Core1 Core2 Core3

RAWR DETECTOR

Core Bloom filter
0
1
2
3

Local COALESCING
STORE BUFFER (CSB)

CSB

ST
XVersion number

X0

ST
Y

No coalescing:
⇒ version number (+1)

Y1

ST X
X0

Coalescing:
⇒ all version numbers between
coalescing writes the same

Y0

Writes with same version
number are propagated to
LLC in bulk fashion

⇒ No order imposed

X
Y

YX

ST X ST Y LD X

Reads see all or no writes

Reads to already written
addresses are delayed until all
writes finish

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 13 / 22

COALESCING AND COLLAPSED ORDER

LLC

Network

L1 L1 L1 L1

Core0 Core1 Core2 Core3

RAWR DETECTOR

Core Bloom filter
0
1
2
3

Local COALESCING
STORE BUFFER (CSB)

CSB

ST
XVersion number

X0

ST
Y

No coalescing:
⇒ version number (+1)

Y1

ST X
X0

Coalescing:
⇒ all version numbers between
coalescing writes the same

Y0

Writes with same version
number are propagated to
LLC in bulk fashion

⇒ No order imposed

X
Y

YX

ST X ST Y LD X

Reads see all or no writes

Reads to already written
addresses are delayed until all
writes finish

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 13 / 22

COALESCING AND COLLAPSED ORDER

LLC

Network

L1 L1 L1 L1

Core0 Core1 Core2 Core3

RAWR DETECTOR

Core Bloom filter
0
1
2
3

Local COALESCING
STORE BUFFER (CSB)

CSB

ST
XVersion number

X0

ST
Y

No coalescing:
⇒ version number (+1)

Y1

ST X
X0

Coalescing:
⇒ all version numbers between
coalescing writes the same

Y0

Writes with same version
number are propagated to
LLC in bulk fashion

⇒ No order imposed

X
Y

YX

ST X ST Y LD X

Reads see all or no writes

Reads to already written
addresses are delayed until all
writes finish

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 13 / 22

COALESCING AND COLLAPSED ORDER

LLC

Network

L1 L1 L1 L1

Core0 Core1 Core2 Core3

RAWR DETECTOR

Core Bloom filter
0
1
2
3

Local COALESCING
STORE BUFFER (CSB)

CSB

ST
XVersion number

X0

ST
Y

No coalescing:
⇒ version number (+1)

Y1

ST X
X0

Coalescing:
⇒ all version numbers between
coalescing writes the same

Y0

Writes with same version
number are propagated to
LLC in bulk fashion

⇒ No order imposed

X
Y

YX

ST X ST Y LD X

Reads see all or no writes

Reads to already written
addresses are delayed until all
writes finish

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 13 / 22

COALESCING AND COLLAPSED ORDER

LLC

Network

L1 L1 L1 L1

Core0 Core1 Core2 Core3

RAWR DETECTOR

Core Bloom filter
0
1
2
3

Local COALESCING
STORE BUFFER (CSB)

CSB

ST
XVersion number

X0

ST
Y

No coalescing:
⇒ version number (+1)

Y1

ST X
X0

Coalescing:
⇒ all version numbers between
coalescing writes the same

Y0

Writes with same version
number are propagated to
LLC in bulk fashion

⇒ No order imposed

X
Y

YX

ST X ST Y

LD X

Reads see all or no writes

Reads to already written
addresses are delayed until all
writes finish

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 13 / 22

COALESCING AND COLLAPSED ORDER

LLC

Network

L1 L1 L1 L1

Core0 Core1 Core2 Core3

RAWR DETECTOR

Core Bloom filter
0
1
2
3

Local COALESCING
STORE BUFFER (CSB)

CSB

ST
XVersion number

X0

ST
Y

No coalescing:
⇒ version number (+1)

Y1

ST X
X0

Coalescing:
⇒ all version numbers between
coalescing writes the same

Y0

Writes with same version
number are propagated to
LLC in bulk fashion

⇒ No order imposed

X
Y

YX

ST X ST Y LD X

Reads see all or no writes

Reads to already written
addresses are delayed until all
writes finish

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 13 / 22

CHECK RACE AND RACE PREDICTION

In RACER, SELF-INVALIDATION is performed on RAW races
Cache hits prevent the detection of races⇒ Starvation

To guarantee progress, it is necessary to check for races
even in the case of hits

RACER issues a CHECK-RACE request after a timeout

Large timeouts delay observing new values

/ Slow write propagation

RACE PREDICTOR to check more frequently racy operations

, Fast propagation of writes

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 14 / 22

CHECK RACE AND RACE PREDICTION

In RACER, SELF-INVALIDATION is performed on RAW races
Cache hits prevent the detection of races⇒ Starvation

To guarantee progress, it is necessary to check for races
even in the case of hits

RACER issues a CHECK-RACE request after a timeout

Large timeouts delay observing new values

/ Slow write propagation

RACE PREDICTOR to check more frequently racy operations

, Fast propagation of writes

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 14 / 22

CHECK RACE AND RACE PREDICTION

In RACER, SELF-INVALIDATION is performed on RAW races
Cache hits prevent the detection of races⇒ Starvation

To guarantee progress, it is necessary to check for races
even in the case of hits

RACER issues a CHECK-RACE request after a timeout
Large timeouts delay observing new values
/ Slow write propagation

RACE PREDICTOR to check more frequently racy operations

, Fast propagation of writes

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 14 / 22

CHECK RACE AND RACE PREDICTION

In RACER, SELF-INVALIDATION is performed on RAW races
Cache hits prevent the detection of races⇒ Starvation

To guarantee progress, it is necessary to check for races
even in the case of hits

RACER issues a CHECK-RACE request after a timeout
Large timeouts delay observing new values
/ Slow write propagation

RACE PREDICTOR to check more frequently racy operations
, Fast propagation of writes

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 14 / 22

TSO GUARANTEES

Load→Load
SI of (shared) cached copies on races
Only when the race actually happens

Store→Store

Writes are constantly SD in COLLAPSED ORDER
Store coalescing is allowed

Load→Store

SD performed after all previous loads are resolved

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 15 / 22

TSO GUARANTEES

Load→Load
SI of (shared) cached copies on races
Only when the race actually happens

Store→Store
Writes are constantly SD in COLLAPSED ORDER
Store coalescing is allowed

Load→Store

SD performed after all previous loads are resolved

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 15 / 22

TSO GUARANTEES

Load→Load
SI of (shared) cached copies on races
Only when the race actually happens

Store→Store
Writes are constantly SD in COLLAPSED ORDER
Store coalescing is allowed

Load→Store
SD performed after all previous loads are resolved

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 15 / 22

OUTLINE

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 16 / 22

SIMULATION ENVIRONMENT

64-core tiled-CMP (GEMS simulator)
L1 (private): 32KB 4-way
LLC (shared): 256KB 16-way (per tile)
RAWR DETECTOR: 256-byte bloom filter
RACER overhead: ≈18KB per tile

Benchmarks: Splash-3 and Parsec-2.1
Protocols evaluated:

MESI: Directory-based SC protocol
MESI-TSO: Directory-based TSO protocol
VIPS-M: SC-for-DRF protocol
RACER: TSO protocol

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 17 / 22

EXECUTION TIME

Normalized to MESI

VIPS-M: Conservative SI & SD results in dramatic slow-downs
for Fluidanimate and Canneal (Obs.2)
RACER ≈ non-scalable MESI-TSO
RACER: better performance than VIPS-M, while providing
stronger consistency, but only when needed at run time

Barnes
Cholesky FFT FMM LU

Ocean
Radix

Raytrace
Volrend

Water-Nsq
Water-Sp

Blackscholes
Bodytrack

Canneal

Fluidanimate

Streamcluster

Swaptions
Geomean

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

MESI-TSO VIPS-M Racer
2.48 3.14

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 18 / 22

EXECUTION TIME

Normalized to MESI
VIPS-M: Conservative SI & SD results in dramatic slow-downs
for Fluidanimate and Canneal (Obs.2)

RACER ≈ non-scalable MESI-TSO
RACER: better performance than VIPS-M, while providing
stronger consistency, but only when needed at run time

Barnes
Cholesky FFT FMM LU

Ocean
Radix

Raytrace
Volrend

Water-Nsq
Water-Sp

Blackscholes
Bodytrack

Canneal

Fluidanimate

Streamcluster

Swaptions
Geomean

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

MESI-TSO VIPS-M Racer
2.48 3.14

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 18 / 22

EXECUTION TIME

Normalized to MESI
VIPS-M: Conservative SI & SD results in dramatic slow-downs
for Fluidanimate and Canneal (Obs.2)
RACER ≈ non-scalable MESI-TSO
RACER: better performance than VIPS-M, while providing
stronger consistency, but only when needed at run time

Barnes
Cholesky FFT FMM LU

Ocean
Radix

Raytrace
Volrend

Water-Nsq
Water-Sp

Blackscholes
Bodytrack

Canneal

Fluidanimate

Streamcluster

Swaptions
Geomean

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

MESI-TSO VIPS-M Racer
2.48 3.14

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 18 / 22

ENERGY CONSUMPTION

Energy of TLBs, L1 caches, network, LLC, and RAWR
Normalized to MESI

RACER gets the best from MESI-TSO and VIPS-M

TLB consumption mitigated by using virtual caches (as VIPS-M)
LLC and network consumption of MESI-TSO (runtime synchronization)

Barnes
Cholesky FFT FMM LU

Ocean
Radix

Raytrace
Volrend

Water-Nsq
Water-Sp

Blackscholes
Bodytrack

Canneal

Fluidanimate

Streamcluster

Swaptions
Average

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

TLB L1 Network LLC RAWR+OSO

1.48

1. MESI-TSO 2. VIPS-M 3. Racer

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 19 / 22

ENERGY CONSUMPTION

Energy of TLBs, L1 caches, network, LLC, and RAWR
Normalized to MESI
RACER gets the best from MESI-TSO and VIPS-M

TLB consumption mitigated by using virtual caches (as VIPS-M)
LLC and network consumption of MESI-TSO (runtime synchronization)

Barnes
Cholesky FFT FMM LU

Ocean
Radix

Raytrace
Volrend

Water-Nsq
Water-Sp

Blackscholes
Bodytrack

Canneal

Fluidanimate

Streamcluster

Swaptions
Average

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

TLB L1 Network LLC RAWR+OSO

1.48

1. MESI-TSO 2. VIPS-M 3. Racer

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 19 / 22

ENERGY CONSUMPTION

Energy of TLBs, L1 caches, network, LLC, and RAWR
Normalized to MESI
RACER gets the best from MESI-TSO and VIPS-M

TLB consumption mitigated by using virtual caches (as VIPS-M)

LLC and network consumption of MESI-TSO (runtime synchronization)

Barnes
Cholesky FFT FMM LU

Ocean
Radix

Raytrace
Volrend

Water-Nsq
Water-Sp

Blackscholes
Bodytrack

Canneal

Fluidanimate

Streamcluster

Swaptions
Average

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

TLB L1 Network LLC RAWR+OSO

1.48

1. MESI-TSO 2. VIPS-M 3. Racer

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 19 / 22

ENERGY CONSUMPTION

Energy of TLBs, L1 caches, network, LLC, and RAWR
Normalized to MESI
RACER gets the best from MESI-TSO and VIPS-M

TLB consumption mitigated by using virtual caches (as VIPS-M)
LLC and network consumption of MESI-TSO (runtime synchronization)

Barnes
Cholesky FFT FMM LU

Ocean
Radix

Raytrace
Volrend

Water-Nsq
Water-Sp

Blackscholes
Bodytrack

Canneal

Fluidanimate

Streamcluster

Swaptions
Average

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

TLB L1 Network LLC RAWR+OSO

1.48

1. MESI-TSO 2. VIPS-M 3. Racer

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 19 / 22

OUTLINE

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 20 / 22

CONCLUSIONS

RACER is a novel way of providing TSO consistency
⇒ First efficient, request-response protocol for TSO

Main benefits of RACER

⇒ No indirection: supports low-cost virtual caches
⇒ No timestamps: collapsed order
⇒ Fast write propagation thanks to race prediction
⇒ Low area overhead

More in the paper

⇒ Implementation of a distributed RAWR
⇒ Implementation for OoO cores with speculation

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 21 / 22

CONCLUSIONS

RACER is a novel way of providing TSO consistency
⇒ First efficient, request-response protocol for TSO

Main benefits of RACER

⇒ No indirection: supports low-cost virtual caches
⇒ No timestamps: collapsed order
⇒ Fast write propagation thanks to race prediction
⇒ Low area overhead

More in the paper

⇒ Implementation of a distributed RAWR
⇒ Implementation for OoO cores with speculation

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 21 / 22

CONCLUSIONS

RACER is a novel way of providing TSO consistency
⇒ First efficient, request-response protocol for TSO

Main benefits of RACER

⇒ No indirection: supports low-cost virtual caches
⇒ No timestamps: collapsed order
⇒ Fast write propagation thanks to race prediction
⇒ Low area overhead

More in the paper
⇒ Implementation of a distributed RAWR
⇒ Implementation for OoO cores with speculation

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 21 / 22

pdf/portada

RACER: TSO CONSISTENCY VIA RACE

DETECTION

Alberto Ros1 Stefanos Kaxiras2

1Universidad de Murcia
aros@ditec.um.es

2Uppsala University
stefanos.kaxiras@it.uu.se

Nov 28th, 2016

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 22 / 22

SELF-INVALIDATION

Barnes
Cholesky FFT FMM LU

Ocean
Radix

Raytrace
Volrend

Water-Nsq
Water-Sp

Blackscholes
Bodytrack

Canneal

Fluidanimate

Streamcluster

Swaptions
Geomean

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

N
or

m
al

iz
ed

 #
 o

f s
el

f-
in

va
lid

at
io

ns Static Racer-Perfect-Word Racer-Perfect-Line Racer-16KB Racer-8KB Racer-4KB
3.39

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 23 / 22

NETWORK TRAFFIC

Barnes
Cholesky FFT FMM LU

Ocean
Radix

Raytrace
Volrend

Water-Nsq
Water-Sp

Blackscholes
Bodytrack

Canneal

Fluidanimate

Streamcluster

Swaptions
Average

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

N
or

m
al

iz
ed

 n
et

w
or

k
tr

af
fic

WT-Data Data WB-Data Control

2.12

1. Static 2. Racer-Word 3. Racer-Line 4. Racer-Bulk

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 24 / 22

SENSITIVITY

0.64 0.68 0.72 0.76 0.8 0.84 0.88 0.92 0.96 1.0

Normalized network traffic (geomean)

0.76
0.78
0.8

0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98
1.0

1.02

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e
(g

eo
m

ea
n)

Check-race delay (cycles)

50
10020050010002000

5000

10000

20000

0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1.0 1.02

Normalized network traffic (geomean)

0.76
0.78
0.8

0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98
1.0

1.02

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e
(g

eo
m

ea
n)

Write-through delay (cycles)

50
100

20050010002000

5000

10000

20000

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 25 / 22

PROTOCOL WEAKNESSES AND RELATED WORK

Protocol Strength DRF Dir Time- Broad- Indirection Slow
stamps cast release

DIRECTORY SC — 3 — — 3 —
SNOOPING SC — — — 3 3 —
DENOVO [ASPLOS’15] SC-for-DRF 3 — — — 3 —
VIPS/CALLBACKS [ISCA’15] SC-for-DRF 3 — — — — —
TSO-CC [HPCA’14] TSO — — 3 3 3 3
TARDIS 2.0 [PACT’16] TSO — — 3 — 3 3
RACER TSO — — — — — —

DRF: Not widely supported, software cooperation, conservative
DIR: Non-scalable directory memory overhead
TIMESTAMPS: Size (L1), rollback, evictions
BROADCAST: Increases traffic and energy consumption
INDIRECTION: Latency, complexity (protocol states, virtual
caches require reverse translation)
SLOW RELEASE: Slowdown application progress (performance)

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 26 / 22

PROTOCOL WEAKNESSES AND RELATED WORK

Protocol Strength DRF Dir Time- Broad- Indirection Slow
stamps cast release

DIRECTORY SC — 3 — — 3 —

SNOOPING SC — — — 3 3 —
DENOVO [ASPLOS’15] SC-for-DRF 3 — — — 3 —
VIPS/CALLBACKS [ISCA’15] SC-for-DRF 3 — — — — —
TSO-CC [HPCA’14] TSO — — 3 3 3 3
TARDIS 2.0 [PACT’16] TSO — — 3 — 3 3
RACER TSO — — — — — —

DRF: Not widely supported, software cooperation, conservative

DIR: Non-scalable directory memory overhead

TIMESTAMPS: Size (L1), rollback, evictions
BROADCAST: Increases traffic and energy consumption

INDIRECTION: Latency, complexity (protocol states, virtual
caches require reverse translation)

SLOW RELEASE: Slowdown application progress (performance)

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 26 / 22

PROTOCOL WEAKNESSES AND RELATED WORK

Protocol Strength DRF Dir Time- Broad- Indirection Slow
stamps cast release

DIRECTORY SC — 3 — — 3 —
SNOOPING SC — — — 3 3 —

DENOVO [ASPLOS’15] SC-for-DRF 3 — — — 3 —
VIPS/CALLBACKS [ISCA’15] SC-for-DRF 3 — — — — —
TSO-CC [HPCA’14] TSO — — 3 3 3 3
TARDIS 2.0 [PACT’16] TSO — — 3 — 3 3
RACER TSO — — — — — —

DRF: Not widely supported, software cooperation, conservative

DIR: Non-scalable directory memory overhead

TIMESTAMPS: Size (L1), rollback, evictions

BROADCAST: Increases traffic and energy consumption
INDIRECTION: Latency, complexity (protocol states, virtual
caches require reverse translation)

SLOW RELEASE: Slowdown application progress (performance)

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 26 / 22

PROTOCOL WEAKNESSES AND RELATED WORK

Protocol Strength DRF Dir Time- Broad- Indirection Slow
stamps cast release

DIRECTORY SC — 3 — — 3 —
SNOOPING SC — — — 3 3 —
DENOVO [ASPLOS’15] SC-for-DRF 3 — — — 3 —
VIPS/CALLBACKS [ISCA’15] SC-for-DRF 3 — — — — —

TSO-CC [HPCA’14] TSO — — 3 3 3 3
TARDIS 2.0 [PACT’16] TSO — — 3 — 3 3
RACER TSO — — — — — —

DRF: Not widely supported, software cooperation, conservative
DIR: Non-scalable directory memory overhead

TIMESTAMPS: Size (L1), rollback, evictions

BROADCAST: Increases traffic and energy consumption
INDIRECTION: Latency, complexity (protocol states, virtual
caches require reverse translation)

SLOW RELEASE: Slowdown application progress (performance)

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 26 / 22

PROTOCOL WEAKNESSES AND RELATED WORK

Protocol Strength DRF Dir Time- Broad- Indirection Slow
stamps cast release

DIRECTORY SC — 3 — — 3 —
SNOOPING SC — — — 3 3 —
DENOVO [ASPLOS’15] SC-for-DRF 3 — — — 3 —
VIPS/CALLBACKS [ISCA’15] SC-for-DRF 3 — — — — —
TSO-CC [HPCA’14] TSO — — 3 3 3 3
TARDIS 2.0 [PACT’16] TSO — — 3 — 3 3

RACER TSO — — — — — —

DRF: Not widely supported, software cooperation, conservative
DIR: Non-scalable directory memory overhead
TIMESTAMPS: Size (L1), rollback, evictions
BROADCAST: Increases traffic and energy consumption
INDIRECTION: Latency, complexity (protocol states, virtual
caches require reverse translation)
SLOW RELEASE: Slowdown application progress (performance)

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 26 / 22

PROTOCOL WEAKNESSES AND RELATED WORK

Protocol Strength DRF Dir Time- Broad- Indirection Slow
stamps cast release

DIRECTORY SC — 3 — — 3 —
SNOOPING SC — — — 3 3 —
DENOVO [ASPLOS’15] SC-for-DRF 3 — — — 3 —
VIPS/CALLBACKS [ISCA’15] SC-for-DRF 3 — — — — —
TSO-CC [HPCA’14] TSO — — 3 3 3 3
TARDIS 2.0 [PACT’16] TSO — — 3 — 3 3
RACER TSO — — — — — —

DRF: Not widely supported, software cooperation, conservative
DIR: Non-scalable directory memory overhead
TIMESTAMPS: Size (L1), rollback, evictions
BROADCAST: Increases traffic and energy consumption
INDIRECTION: Latency, complexity (protocol states, virtual
caches require reverse translation)
SLOW RELEASE: Slowdown application progress (performance)

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 26 / 22

OPTIMIZING WRITE-BACK TRAFFIC

LLC

Network

L1 L1 L1 L1

Core0 Core1 Core2 Core3

RAWR DETECTOR

Core Bloom filter
0
1
2
3

Local coalescing store buffer (CSB)

Stores the address, the value,
and a version number CSB

ST X

X0

ST Y

A write that does not
coalesce with a previous
one gets a new version
number (+1)

Y1

ST Z
Z2 ST Y’

A write that coalesces forces all
version numbers between the
last one and the coalesced one
to be same (e.g., coalesced
order 1)

Z1

Writes with the same
version number are prop-
agated to the LLC in a
bulk fashion

ST XACKST Y ST Z

While writing in the LLC reads to
already written addresses are not
allowed to progress (addresses
tracked in an structure called
OSO, Outstanding-Store Owner)

ACK ACK

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 27 / 22

OPTIMIZING WRITE-BACK TRAFFIC

LLC

Network

L1 L1 L1 L1

Core0 Core1 Core2 Core3

RAWR DETECTOR

Core Bloom filter
0
1
2
3

Local coalescing store buffer (CSB)

Stores the address, the value,
and a version number CSB

ST X

X0

ST Y

A write that does not
coalesce with a previous
one gets a new version
number (+1)

Y1

ST Z
Z2 ST Y’

A write that coalesces forces all
version numbers between the
last one and the coalesced one
to be same (e.g., coalesced
order 1)

Z1

Writes with the same
version number are prop-
agated to the LLC in a
bulk fashion

ST XACKST Y ST Z

While writing in the LLC reads to
already written addresses are not
allowed to progress (addresses
tracked in an structure called
OSO, Outstanding-Store Owner)

ACK ACK

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 27 / 22

OPTIMIZING WRITE-BACK TRAFFIC

LLC

Network

L1 L1 L1 L1

Core0 Core1 Core2 Core3

RAWR DETECTOR

Core Bloom filter
0
1
2
3

Local coalescing store buffer (CSB)

Stores the address, the value,
and a version number

CSB

ST X

X0

ST Y

A write that does not
coalesce with a previous
one gets a new version
number (+1)

Y1

ST Z
Z2 ST Y’

A write that coalesces forces all
version numbers between the
last one and the coalesced one
to be same (e.g., coalesced
order 1)

Z1

Writes with the same
version number are prop-
agated to the LLC in a
bulk fashion

ST XACKST Y ST Z

While writing in the LLC reads to
already written addresses are not
allowed to progress (addresses
tracked in an structure called
OSO, Outstanding-Store Owner)

ACK ACK

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 27 / 22

OPTIMIZING WRITE-BACK TRAFFIC

LLC

Network

L1 L1 L1 L1

Core0 Core1 Core2 Core3

RAWR DETECTOR

Core Bloom filter
0
1
2
3

Local coalescing store buffer (CSB)

Stores the address, the value,
and a version number

CSB

ST X

X0

ST Y

A write that does not
coalesce with a previous
one gets a new version
number (+1)

Y1

ST Z
Z2 ST Y’

A write that coalesces forces all
version numbers between the
last one and the coalesced one
to be same (e.g., coalesced
order 1)

Z1

Writes with the same
version number are prop-
agated to the LLC in a
bulk fashion

ST XACKST Y ST Z

While writing in the LLC reads to
already written addresses are not
allowed to progress (addresses
tracked in an structure called
OSO, Outstanding-Store Owner)

ACK ACK

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 27 / 22

OPTIMIZING WRITE-BACK TRAFFIC

LLC

Network

L1 L1 L1 L1

Core0 Core1 Core2 Core3

RAWR DETECTOR

Core Bloom filter
0
1
2
3

Local coalescing store buffer (CSB)

Stores the address, the value,
and a version number

CSB

ST X

X0

ST Y

A write that does not
coalesce with a previous
one gets a new version
number (+1)

Y1

ST Z
Z2

ST Y’

A write that coalesces forces all
version numbers between the
last one and the coalesced one
to be same (e.g., coalesced
order 1)

Z1

Writes with the same
version number are prop-
agated to the LLC in a
bulk fashion

ST XACKST Y ST Z

While writing in the LLC reads to
already written addresses are not
allowed to progress (addresses
tracked in an structure called
OSO, Outstanding-Store Owner)

ACK ACK

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 27 / 22

OPTIMIZING WRITE-BACK TRAFFIC

LLC

Network

L1 L1 L1 L1

Core0 Core1 Core2 Core3

RAWR DETECTOR

Core Bloom filter
0
1
2
3

Local coalescing store buffer (CSB)

Stores the address, the value,
and a version number

CSB

ST X

X0

ST Y

A write that does not
coalesce with a previous
one gets a new version
number (+1)

Y1

ST Z
Z2

ST Y’

A write that coalesces forces all
version numbers between the
last one and the coalesced one
to be same (e.g., coalesced
order 1)

Z1

Writes with the same
version number are prop-
agated to the LLC in a
bulk fashion

ST XACKST Y ST Z

While writing in the LLC reads to
already written addresses are not
allowed to progress (addresses
tracked in an structure called
OSO, Outstanding-Store Owner)

ACK ACK

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 27 / 22

OPTIMIZING WRITE-BACK TRAFFIC

LLC

Network

L1 L1 L1 L1

Core0 Core1 Core2 Core3

RAWR DETECTOR

Core Bloom filter
0
1
2
3

Local coalescing store buffer (CSB)

Stores the address, the value,
and a version number

CSB

ST X

X0

ST Y

A write that does not
coalesce with a previous
one gets a new version
number (+1)

Y1

ST Z
Z2 ST Y’

A write that coalesces forces all
version numbers between the
last one and the coalesced one
to be same (e.g., coalesced
order 1)

Z1

Writes with the same
version number are prop-
agated to the LLC in a
bulk fashion

ST XACKST Y ST Z

While writing in the LLC reads to
already written addresses are not
allowed to progress (addresses
tracked in an structure called
OSO, Outstanding-Store Owner)

ACK ACK

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 27 / 22

OPTIMIZING WRITE-BACK TRAFFIC

LLC

Network

L1 L1 L1 L1

Core0 Core1 Core2 Core3

RAWR DETECTOR

Core Bloom filter
0
1
2
3

Local coalescing store buffer (CSB)

Stores the address, the value,
and a version number

CSB

ST X

X0

ST Y

A write that does not
coalesce with a previous
one gets a new version
number (+1)

Y1

ST Z
Z2 ST Y’

A write that coalesces forces all
version numbers between the
last one and the coalesced one
to be same (e.g., coalesced
order 1)

Z1

Writes with the same
version number are prop-
agated to the LLC in a
bulk fashion

ST X

ACKST Y ST Z

While writing in the LLC reads to
already written addresses are not
allowed to progress (addresses
tracked in an structure called
OSO, Outstanding-Store Owner)

ACK ACK

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 27 / 22

OPTIMIZING WRITE-BACK TRAFFIC

LLC

Network

L1 L1 L1 L1

Core0 Core1 Core2 Core3

RAWR DETECTOR

Core Bloom filter
0
1
2
3

Local coalescing store buffer (CSB)

Stores the address, the value,
and a version number

CSB

ST X

X0

ST Y

A write that does not
coalesce with a previous
one gets a new version
number (+1)

Y1

ST Z
Z2 ST Y’

A write that coalesces forces all
version numbers between the
last one and the coalesced one
to be same (e.g., coalesced
order 1)

Z1

Writes with the same
version number are prop-
agated to the LLC in a
bulk fashion

ST X

ACK

ST Y ST Z

While writing in the LLC reads to
already written addresses are not
allowed to progress (addresses
tracked in an structure called
OSO, Outstanding-Store Owner)

ACK ACK

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 27 / 22

OPTIMIZING WRITE-BACK TRAFFIC

LLC

Network

L1 L1 L1 L1

Core0 Core1 Core2 Core3

RAWR DETECTOR

Core Bloom filter
0
1
2
3

Local coalescing store buffer (CSB)

Stores the address, the value,
and a version number

CSB

ST X

X0

ST Y

A write that does not
coalesce with a previous
one gets a new version
number (+1)

Y1

ST Z
Z2 ST Y’

A write that coalesces forces all
version numbers between the
last one and the coalesced one
to be same (e.g., coalesced
order 1)

Z1

Writes with the same
version number are prop-
agated to the LLC in a
bulk fashion

ST XACK

ST Y ST Z

While writing in the LLC reads to
already written addresses are not
allowed to progress (addresses
tracked in an structure called
OSO, Outstanding-Store Owner)

ACK ACK

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 27 / 22

OPTIMIZING WRITE-BACK TRAFFIC

LLC

Network

L1 L1 L1 L1

Core0 Core1 Core2 Core3

RAWR DETECTOR

Core Bloom filter
0
1
2
3

Local coalescing store buffer (CSB)

Stores the address, the value,
and a version number

CSB

ST X

X0

ST Y

A write that does not
coalesce with a previous
one gets a new version
number (+1)

Y1

ST Z
Z2 ST Y’

A write that coalesces forces all
version numbers between the
last one and the coalesced one
to be same (e.g., coalesced
order 1)

Z1

Writes with the same
version number are prop-
agated to the LLC in a
bulk fashion

ST XACKST Y ST Z

While writing in the LLC reads to
already written addresses are not
allowed to progress (addresses
tracked in an structure called
OSO, Outstanding-Store Owner)

ACK ACK

A. Ros & S. Kaxiras NUMAScale @ Oslo, Norway Nov 28th, 2016 27 / 22

	Appendix

