PRIVATE/SHARED CLASSIFICATION IN COMPLEXITY-EFFECTIVE COHERENCE PROTOCOLS

Alberto Ros¹ Stefanos Kaxiras²

Mahdad Davari² Konstantinos Koukos² Erik Hagersten²

¹Universidad de Murcia aros@ditec.um.es

²Uppsala University

Oct 22, 2015

AI	ber	to	R	os
	~~.	· · ·		~~~

2 DIR1-SISD: OS-AGNOSTIC CLASSIFICATION

3 VIPS-G: GPU-FRIENDLY CLASSIFICATION

Alberto Ros

Nvidia, Santa Clara

Oct 22, 2015 2 / 41

= 2000

< A >

OUTLINE

DIR1-SISD: OS-AGNOSTIC CLASSIFICATION

3 VIPS-G: GPU-FRIENDLY CLASSIFICATION

Alberto Ros

Nvidia, Santa Clara

Oct 22, 2015 3 / 41

- Cache coherence protocols ease programming
- Coherence overhead is an important issue
- But, coherence is sporadically needed
 - ightarrow Why pay always?

12

A E > A E > E

< D > < A >

- Cache coherence protocols ease programming
- Coherence overhead is an important issue
- But, coherence is sporadically needed
 - ightarrow Why pay always?
- $\bullet \ \ \text{Our goal} \to {\color{black}{\text{Simplify coherence}}}$
 - And enforce it only when needed

-< ∃ > .5

- Cache coherence protocols ease programming
- Coherence overhead is an important issue
- But, coherence is sporadically needed
 - \rightarrow Why pay always?
- Our goal \rightarrow Simplify coherence
 - And enforce it only when needed
- How? VIPS¹ family of cache coherence protocols

¹ Ros & Kaxiras, "Complexity-Effective Multicore Coherence", PACT'12

VIPS-M: MOTIVATION

- Write-through protocols are simple
 - Only Valid and Invalid states

			_
- ^ 1	bor	÷ • •	Doo.
- AU	Der	LU.	nus

(신문) 신문) (문) (문)

< < >> < <</>

VIPS-M: MOTIVATION

- Write-through protocols are simple
 - Only Valid and Invalid states
 - But they are not efficient because of write misses
- Which write misses?

1.2

VIPS-M: MOTIVATION

- Write-through protocols are simple
 - Only Valid and Invalid states
 - But they are not efficient because of write misses
- Which write misses?
- Mostly private data misses \approx 90%

12

A B > A B >

< A >

VIPS: WRITE POLICY

Dynamic write policy in the L1s (private caches, in general)

- Write-back for Private blocks
 - Simple (no coherence required) as in uniprocessors
 - $\bullet \ \ \text{Efficient} \rightarrow \text{no extra misses}$
- Write-through for Shared blocks
 - Simple (only two states, VI)
 - $\bullet \ \ \text{Efficient} \rightarrow \text{coherence misses}$
- VIPS: Valid/Invalid Private/Shared

VIPS-M: SELF-INVALIDATION

- We provide sequential consistency for DRF programs
- Self-Invalidation of shared data from L1s
 - Selective Flush (SF) upon synchronization points
 - We eliminate invalidations
 - The directory is gone!
- Multiple writers allowed for shared data
 - No need to request write permission
 - Write-through of diffs

김 글 제 김 교 이 그 그 그

VIPS: THE GOOD PART

- Simplifies the protocol to just two states (VI)
- Write-throughs eliminate the need of tracking writers
 - \rightarrow No indirection for read misses
 - \rightarrow Directory area reduction
- Self-invalidation eliminates the need to track readers
 - \rightarrow No need to send invalidations
 - \rightarrow Indirection completely removed
 - → The directory is gone!

VIPS: THE PROBLEMATIC PART

• Classify data (cache blocks) into private and shared

- Page-level classification using the OS and the TLBs
- Both page table and TLB entries have a P/S bit
- The first TLB miss by a core sets the page to P
- Subsequent TLB misses from other cores set the page to S
 - Interrupts the single core having the page as P
 - Forces the WT of every dirty block in the page

_	-	_
	DOM:	Poo
		 In U.S.

VIPS: THE PROBLEMATIC PART

• Classify data (cache blocks) into private and shared

- Page-level classification using the OS and the TLBs
- Both page table and TLB entries have a P/S bit
- The first TLB miss by a core sets the page to P
- Subsequent TLB misses from other cores set the page to S
 - Interrupts the single core having the page as P
 - Forces the WT of every dirty block in the page

This talk focuses on the PS classification!

viPS: IDEAL CLASSIFICATION

• Characteristics of an ideal PS classification:

- Fine granularity
- OS agnostic
- No remote interruptions
- No indirection
 - $\rightarrow~$ Unexpected messages from the physical to virtual word
 - \rightarrow Allows for simple virtual-cache coherence²

² Kaxiras & Ros, "A New Perspective for Efficient Virtual-Cache Coherence", ISCA'13

	-	_	
	bort		<u> </u>
- AI	Deri	nu	-

VIPS: IDEAL CLASSIFICATION

• Characteristics of an ideal PS classification:

- Fine granularity 😊
- OS agnostic (2)
- No remote interruptions (2)
- No indirection 🙂
 - $\rightarrow~$ Unexpected messages from the physical to virtual word
 - $\rightarrow~$ Allows for simple virtual-cache coherence^2 ~

² Kaxiras & Ros, "A New Perspective for Efficient Virtual-Cache Coherence", ISCA'13

	-	_	
	bort		<u> </u>
- AI	Deri	nu	-

OUTLINE

2 DIR1-SISD: OS-AGNOSTIC CLASSIFICATION

3 VIPS-G: GPU-FRIENDLY CLASSIFICATION

Alberto Ros

Nvidia, Santa Clara

Oct 22, 2015 11 / 41

- Idea: Fine-grain classification in hardware with a single-pointer directory: DIR₁ directory
- Advantages of DIR₁ directories (e.g. DIR₁-B, DIR₁-NB)
 - Only need to store the owner of the block
 - O(log n) storage
- Drawbacks of DIR₁ directories
 - Wide sharing
 - $\rightarrow~Not~allowed~DIR_1\text{-}NB$ or broadcast $DIR_1\text{-}NB$
 - Lost of information
 - \rightarrow Invalidation or backup storage

PROPOSAL

Our solution

- DIR₁-SISD: Self-contained, self-corrected directory
- Allows wide sharing
- Does not employ broadcast/multicast
- No invalidations required upon lost of information
 - Directory and cache contents are not inclusive
- No backup required
 - Self-contained
- How?
 - Private blocks: tracked by DIR1
 - Shared blocks: coherence responsibility delegated to cores
 - Self-invalidation, self-downgrade SISD

 	-	Dee
		1.1.1.1

· 프 · · 프 · 프 프

Alberto Ros	Nvidia, Santa Clara	Oct 22, 2015	14 / 41

Alberto Ros	Nvidia, Santa Clara	Oct 22, 2015	14 / 41

Alberto Ros	Nvidia, Santa Clara	Oct 22, 2015	14 / 41

Alberto Ros	Nvidia, Santa Clara	Oct 22, 2015	14 / 41

Alberto Ros	Nvidia, Santa Clara	Oct 22, 2015	14 / 41

◆□ > ◆母 > ◆臣 > ◆臣 > 臣目目 のへで

Alberto Ros	Nvidia, Santa Clara	Oct 22, 2015	15 / 41

◆□ > ◆母 > ◆臣 > ◆臣 > 臣目目 のへで

Alberto Ros	Nvidia, Santa Clara	Oct 22, 2015	15 / 41

・ロト・日本・モート キャー ショー ショー

Alberto Ros	Nvidia, Santa Clara	Oct 22, 2015	15 / 41

Alberto Ros	Nvidia, Santa Clara	Oct 22, 2015	15 / 41

Alberto Ros	Nvidia, Santa Clara	Oct 22, 2015	15 / 41

VIPS-G

◆□ > ◆母 > ◆臣 > ◆臣 > 臣目目 のへで

EVICTION OF SHARED DIRECTORY ENTRIES

Alberto Ros	Nvidia, Santa Clara	Oct 22, 2015	16 / 41

VIPS-G 00000000000000

EVICTION OF SHARED DIRECTORY ENTRIES

VIPS-G 00000000000000

EVICTION OF SHARED DIRECTORY ENTRIES

VIPS-G 00000000000000

◆□ > ◆母 > ◆臣 > ◆臣 > 臣目目 のへで

EVICTION OF PRIVATE DIRECTORY ENTRIES

Alberto Ros	Nvidia, Santa Clara	Oct 22, 2015	17 / 41

VIPS-G 00000000000000

EVICTION OF PRIVATE DIRECTORY ENTRIES

VIPS-G 00000000000000

◆□ > ◆母 > ◆臣 > ◆臣 > 臣目目 のへで

EVICTION OF PRIVATE DIRECTORY ENTRIES

Alberto Ros	Nvidia, Santa Clara	Oct 22, 2015	17 / 41
VIPS-G 000000000000000

◆□ > ◆母 > ◆臣 > ◆臣 > 臣目目 のへで

EVICTION OF PRIVATE DIRECTORY ENTRIES

Alberto Ros	Nvidia, Santa Clara	Oct 22, 2015	17 / 41

VIPS-G 000000000000000

EVICTION OF PRIVATE DIRECTORY ENTRIES

Alberto Ros	Nvidia, Santa Clara	Oct 22, 2015	17 / 41

・ロト・日本・モート キャー ショー ショー

Alberto Ros	Nvidia, Santa Clara	Oct 22, 2015	18 / 41

◆□ > ◆母 > ◆臣 > ◆臣 > 臣目目 のへで

Alberto Ros	Nvidia, Santa Clara	Oct 22, 2015	18 / 41

◆□ > ◆母 > ◆臣 > ◆臣 > 臣目目 のへで

Alberto Ros	Nvidia, Santa Clara	Oct 22, 2015 18 / 4

・ロト・日本・モート キャー ショー ショー

Alberto Ros	Nvidia, Santa Clara	Oct 22, 2015	18 / 41

◆□ > ◆母 > ◆臣 > ◆臣 > 臣目目 のへで

Alberto Ros	Nvidia, Santa Clara	Oct 22, 2015	18 / 41

・ロト・日本・モート キャー ショー ショー

Alberto Ros	Nvidia, Santa Clara	Oct 22, 2015 1	8/41

Alberto Ros	Nvidia, Santa Clara	Oct 22, 2015	19 / 41

◆□ > ◆母 > ◆臣 > ◆臣 > 臣目目 のへで

Alberto Ros	Nvidia, Santa Clara	Oct 22, 2015	19 / 41

◆□ > ◆母 > ◆臣 > ◆臣 > 臣目目 のへで

Alberto Ros	Nvidia, Santa Clara	Oct 22, 2015	19 / 41

SIMULATION ENVIRONMENT

- Simulated a 16-core system with GEMS
 - L1 (private): 32KB 4-way
 - L2 (shared): 512KB 16-way (per bank)
- Benchmarks: SPLASH-2 and PARSEC
- Protocols:
 - MESI directory-based protocol
 - VIPS-M protocol:
 - OS-based classification
 - Backed up in the page table

VIPS-G 0000000000000

EXECUTION TIME

• Execution time improved by 7% compared to MESI

ELE NOR

VIPS-G 00000000000000

EXECUTION TIME

Execution time improved by 7% compared to MESI

ELE NOR

< ロ > < 同 > < 回 > < 回 > < 回 > <

VIPS-G 00000000000000

EXECUTION TIME

Execution time improved by 7% compared to MESI

ELE NOR

◆□ > ◆□ > ◆豆 > ◆豆 >

EXECUTION TIME

Execution time improved by 7% compared to MESI

31= 900

・ロン ・聞 と ・ ヨ と ・ ヨ と

EXECUTION TIME

- Network traffic improved by 15% compared to MESI
- 20% compared to VIPS-M (improvements in all benchmarks)
 - More selective self-invalidation; better classification

CONCLUSIONS

- A DIR₁ directory for efficient classification
- Self-contained directory
 - No inclusion enforced
 - No back up required
- Single pointer stored
 - But allows wide sharing
 - Without employing broadcasts

OUTLINE

1 MOTIVATION

2 DIR1-SISD: OS-AGNOSTIC CLASSIFICATION

3 VIPS-G: GPU-FRIENDLY CLASSIFICATION

Alberto Ros

Nvidia, Santa Clara

Oct 22, 2015 24 / 41

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Mo	tiv	ati	on
00	00		00

- Cache coherence in fused CPU-GPU devices
- Existing solutions use directories and invalidation
 - Heterogeneous MOESI/VI³

³ Power et al., "A Heterogeneous CPU-GPU Simulator", CAL'15

Μ	lo	ti	v	a	ti	0	n	
			С			00		

MOTIVATION

- Cache coherence in fused CPU-GPU devices
- Existing solutions use directories and invalidation
 - Heterogeneous MOESI/VI³
 - Not efficent for the CPU \Rightarrow Indirection to the GPU

³ Power et al., "A Heterogeneous CPU-GPU Simulator", CAL'15

Alberto Ros

- VIPS-M does not have indirection
- Can VIPS-M provide complexity-effective coherence in fused CPU-GPU devices?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- VIPS-M does not have indirection
- Can VIPS-M provide complexity-effective coherence in fused CPU-GPU devices?
 - Yes!
- Key aspects:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- VIPS-M does not have indirection
- Can VIPS-M provide complexity-effective coherence in fused CPU-GPU devices?
 - Yes!
- Key aspects:
 - Heterogeneous race free (HRF) semantics⁴

⁴ Hower et al., "Heterogeneous-race-free Memory Models", ASPLOS'14

	-		_
- • •	bord	0	Poe
- AI	Der	0	nus

- VIPS-M does not have indirection
- Can VIPS-M provide complexity-effective coherence in fused CPU-GPU devices?
 - Yes!
- Key aspects:
 - Heterogeneous race free (HRF) semantics⁴
 - Peterogeneous adaptive classification

⁴ Hower et al., "Heterogeneous-race-free Memory Models", ASPLOS'14

	hort	- L	200
- AI	Deri		nus

- VIPS-M does not have indirection
- Can VIPS-M provide complexity-effective coherence in fused CPU-GPU devices?
 - Yes!
- Key aspects:
 - Heterogeneous race free (HRF) semantics⁴
 - Peterogeneous adaptive classification
 - Virtual cache coherence⁵
- ⁴ Hower et al., "Heterogeneous-race-free Memory Models", ASPLOS'14
- ⁵ Kaxiras & Ros, "A New Perspective for Efficient Virtual-Cache Coherence", ISCA'13

<ロ> (日) (日) (日) (日) (日) (日) (日)

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ やくや

HRF AND SCOPED SYNCHRONIZATION

Main-Memory

Alberto Ros	Nvidia, Santa Clara	Oct 22, 2015	27 / 41

HRF AND SCOPED SYNCHRONIZATION

< □ > < □ > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

CURRENT SOLUTION FOR CLASSIFICATION: VIPS-H

- VIPS-H⁶: Hierarchical P/S classification
 - A block can be shared inside a cluster but be private outside
 - The level where this transition happens is the common sharing level (CSL)
 - Restrict SI/SD to shared blocks within a cluster
- Result
 - The protocol remains simple \Rightarrow NO hierarchical complexity
 - Hierarchical complexity transferred to classification \Rightarrow OS
 - So all complexity is transferred to software

⁶ Ros, Davari & Kaxiras, "Hierarchical Private/Shared Classification: the Key to Simple and Efficient Coherence for Clustered Cache Hierarchies", HPCA'15

▲掃▶ ▲ヨ▶ ▲ヨ▶ ヨヨ わなべ

COMMON SHARING LEVEL

Alb	orto	Poe	
AID	eriu	nus	

COMMON SHARING LEVEL

AI	bei	to	Ro	s
	Dei	ιu	nu	5

COMMON SHARING LEVEL

A I	bor	Por	
		 -101	

COMMON SHARING LEVEL

		_	
· •	bord	Poe	
	Der		
COMMON SHARING LEVEL

	hert	οŀ	206
_	Deri		103

COMMON SHARING LEVEL

- SI/SD only for blocks in shared pages
- SD propagated until the CSL

_	-		
	DO K	-	-
		-10	
			_

31= 900

< ロ > < 同 > < 回 > < 回 > :

COMPLEXITY, COST, AND AREA

- H-MOESI: Hierarchical full-map
- VIPS-H: P/S bit

NUMBER OF STATES AND EXTRA BITS REQUIRED (16X4)

	H-MOESI			VIPS-H		
	States	States Bitmap Total		States	P/S	Total
Controller	Tot./Base	bits	bits	Tot./Base	bit	bits
L1 cache	16 / 5	0	3	9/3	1	3
L2 cache	59 / 13	16	20	5/3	1	3
L3 cache	13 / 4	4	6	4/3	1	3
Total cost	844KB			204KB		

76% memory reduction compared to H-MOESI

		_	
- ^ 1	bor		00
- AI	Der		US

GPU INTERRUPTS

- This approach is not appropriate for fused CPU-GPU devices.
 - Interrupting all GPU cores on a CSL change?
- Solution:
 - GPUs are throughput oriented
 - \rightarrow Naïve classification for the GPU
 - CPUs are latency oriented
 - \rightarrow Efficient, adaptive classification for the CPU

VIPS-G ○○○○●○○○○○○○

CLASSIFICATION FOR FUSED DEVICES

VIPS-G ○○○○●○○○○○○○

CLASSIFICATION FOR FUSED DEVICES

- Inside the GPU blocks in L1 are considered always shared
 - No classification: Low synchronization / Low reuse
- L2 CPU with adaptive classification for efficiency
 - Critical for performance

_		_	
- ^ 1	hor		•
- 141		 nu	~

ADAPTATION WITH A MIRROR TLB

- A mirror TLB shows in the L2 CPU what is shared by the GPU
- The mirror TLB is updated along with the GPU TLB
 - Provides adaptation in the L2 CPU classification

VIRTUAL CACHE COHERENCE

- Requirements for simple virtual-cache coherence without reverse translation
 - No indirection (unexpected messages) from the physical to the virtual domain
 - ORF applications with synchronization exposed
- The proposed approach fulfill these requirements

VIRTUAL CACHE COHERENCE

SIMULATION ENVIRONMENT

- Simulated a 16-SM GPU with Gem5-GPU
- CPU
 - L1 32KB 8-way
 - L2 4MB 64-way (8 banks)
- GPU
 - L1 64KB 8-way
 - L2 2MB 32-way (16 banks)
- Benchmarks: Rodinia +3 more ported applications
- Protocols: MOESI/VI (VI_HAMMER) and VIPS-G

Speedup

• 45% speedup over VI_HAMMER

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

EDP AND ENERGY

- EDP reduction of 45% compared to VI_HAMMER
- $\bullet~\approx 20\%$ on average lower energy compared to VI_HAMMER

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

CONCLUSIONS

- VIPS-G complexity-effective coherence for fused CPU-GPU devices
 - Heterogeneous race free model
 - Heterogeneous adaptive PS classification
 - Support for virtual cache coherence

(이 문) 이 문 이 문 이 나는 것이 있는 것이 하는 것이 없는 것이 많이 했다.

< < >> < <</>

PRIVATE/SHARED CLASSIFICATION IN **COMPLEXITY-EFFECTIVE COHERENCE** PROTOCOLS

Alberto Ros¹ Stefanos Kaxiras² Mahdad Davari² Konstantinos Koukos² Erik Hagersten²

¹Universidad de Murcia aros@ditec.um.es

²Uppsala University

Oct 22, 2015