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WHY MULTICORE?

UPMARC Summer School on Multicore Computing
Why do we need multicores?

Need for higher performance
Increase frequency
Increase transistor count → Moore’s law

... but also for energy efficient
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POWER CONSUMPTION PROBLEM

Dynamic power Pdyn = αCV 2f
α: activity factor
C: capacitance
V: voltage
f: frequency
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NEED FOR MULTICORES
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BUILDING AND PROGRAMMING MULTICORES

Most multicores support shared memory in hardware
Single shared address space for all cores
Communication among cores through reads and writes
Eases programming

How to write correct (parallel) programs?
What is a correct (parallel) program?

Memory consistency model: defines correct behavior of reads and
writes (e.g. the value(s) that each read can get)
Must be simple / intuitive

Program

Consistency

Hardware

UPMARC Summer School @ Uppsala 15th of June, 2017 5 / 69



BUILDING AND PROGRAMMING MULTICORES

Most multicores support shared memory in hardware
Single shared address space for all cores
Communication among cores through reads and writes
Eases programming

How to write correct (parallel) programs?
What is a correct (parallel) program?

Memory consistency model: defines correct behavior of reads and
writes (e.g. the value(s) that each read can get)
Must be simple / intuitive

Program

Consistency

Hardware

UPMARC Summer School @ Uppsala 15th of June, 2017 5 / 69



BUILDING AND PROGRAMMING MULTICORES

Most multicores support shared memory in hardware
Single shared address space for all cores
Communication among cores through reads and writes
Eases programming

How to write correct (parallel) programs?
What is a correct (parallel) program?

Memory consistency model: defines correct behavior of reads and
writes (e.g. the value(s) that each read can get)
Must be simple / intuitive

Program

Consistency

Hardware

UPMARC Summer School @ Uppsala 15th of June, 2017 5 / 69



BUILDING AND PROGRAMMING MULTICORES

Memory consistency model: defines correct program behavior
Cache coherence protocol: eases the implementation of a
consistency model

Makes caches in a shared memory multicore functionally invisible
(timing can be inferred)

Program

Consistency

Coherence

Hardware

Interaction

This lecture is about coherence, consistency, and their interaction
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OUTLINE

1 CACHE COHERENCE

2 MEMORY CONSISTENCY

3 COHERENCE-CONSISTENCY INTERACTION

4 OPEN RESEARCH QUESTIONS
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Cache coherence

INTRODUCTION TO CACHE COHERENCE

Caches are fundamental for high performance
In multicore processors caches can cause incoherences
→ Two cores see different values of a data at the same time

Example: bank account

Memory

L1 L1 L1 L1

C C C C

300

ld

300

st 200

200

ld ld

Incoherence!
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Cache coherence

INTRODUCTION TO CACHE COHERENCE

The cache coherence protocol makes caches in a shared memory
functionally invisible

Main memory

L1 L1 L1 L1

L2 cache
Coherence+ =

Memory

C C C C

C C C C

Data appear to be in a single location
Operates per address→ each address is treated as independent
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Cache coherence Invariants

COHERENCE INVARIANTS

Two invariants suffice to accomplish the coherence goal

1. SWMR: SINGLE-WRITER–MULTIPLE-READER

For any given memory location, at any given
moment in time, there is either a single core
that may write it (and that may also read it) or
some number of cores that may read it

2. DATA VALUE

The value of a memory location at the start of
an epoch is the same as the value of the
memory location at the end of its last
read–write epoch

C0 C1 C2

time

Read-write
epoch RW

Read-only
epoch RORO

RW

RO RO RO
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Cache coherence Implementation

STANDARD IMPLEMENTATION

Read-only permission by all cores
Load operations require read-only permission to perform

Perform: load the data from memory into a register

Read-write permission by one core
Store operations require read-write permission to perform

Perform: write the data to memory

Single-core read-write permission obtained through invalidation
At which granularity are permissions granted?

In theory, it is possible at the finest granularity (1 byte)
In practice, this is too expensive.

A directory keeps track of all permissions per core and coherence unit
Caches store data at block granularity
Solution: the coherence unit is the memory block, e.g., 64 bytes

UPMARC Summer School @ Uppsala 15th of June, 2017 12 / 69



Cache coherence Implementation

STANDARD IMPLEMENTATION

Read-only permission by all cores
Load operations require read-only permission to perform

Perform: load the data from memory into a register

Read-write permission by one core
Store operations require read-write permission to perform

Perform: write the data to memory

Single-core read-write permission obtained through invalidation

At which granularity are permissions granted?

In theory, it is possible at the finest granularity (1 byte)
In practice, this is too expensive.

A directory keeps track of all permissions per core and coherence unit
Caches store data at block granularity
Solution: the coherence unit is the memory block, e.g., 64 bytes

UPMARC Summer School @ Uppsala 15th of June, 2017 12 / 69



Cache coherence Implementation

STANDARD IMPLEMENTATION

Read-only permission by all cores
Load operations require read-only permission to perform

Perform: load the data from memory into a register

Read-write permission by one core
Store operations require read-write permission to perform

Perform: write the data to memory

Single-core read-write permission obtained through invalidation
At which granularity are permissions granted?

In theory, it is possible at the finest granularity (1 byte)

In practice, this is too expensive.

A directory keeps track of all permissions per core and coherence unit
Caches store data at block granularity
Solution: the coherence unit is the memory block, e.g., 64 bytes

UPMARC Summer School @ Uppsala 15th of June, 2017 12 / 69



Cache coherence Implementation

STANDARD IMPLEMENTATION

Read-only permission by all cores
Load operations require read-only permission to perform

Perform: load the data from memory into a register

Read-write permission by one core
Store operations require read-write permission to perform

Perform: write the data to memory

Single-core read-write permission obtained through invalidation
At which granularity are permissions granted?

In theory, it is possible at the finest granularity (1 byte)
In practice, this is too expensive.

A directory keeps track of all permissions per core and coherence unit
Caches store data at block granularity
Solution: the coherence unit is the memory block, e.g., 64 bytes

UPMARC Summer School @ Uppsala 15th of June, 2017 12 / 69



Cache coherence Implementation

STANDARD IMPLEMENTATION

Each memory block can have the
following attributes

VALIDITY: it has a valid copy (may have
read-only permission)
EXCLUSIVITY: it is the one copy (may
have read-write permission)
DIRTINESS: it has been locally modified
OWNERSHIP: it will be provide the data
on a request

SWMR invariant→ VALIDITY and
EXCLUSIVITY attributes
Data value invariant→ DIRTINESS and
OWNERSHIP attributes

C0 C1 C2

time

Read-write
epoch RW

Read-only
epoch RORO

RW

RO RO RO
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Cache coherence Implementation

A SIMPLE MSI PROTOCOL

Blocks can be in a particular state (a collection of attributes)
Each memory has a coherence controller

State, event, action
One of the simplest protocols have 3 states: MSI

M (Modified): VALIDITY, EXCLUSIVITY, DIRTINESS, and OWNERSHIP
S (Shared): VALIDITY
I (Invalid): None
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Cache coherence Implementation

A MESI PROTOCOL

MSI is inefficient for sequential applications
The E state was introduced to avoid write-after-read to incur two
cache misses (read-only permission and read-write permission)
The states of the MESI protocol are:

M (Modified): VALIDITY, EXCLUSIVITY, DIRTINESS, and OWNERSHIP
E (Exclusive): VALIDITY, EXCLUSIVITY, and possibly OWNERSHIP
S (Shared): VALIDITY
I (Invalid): None
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Cache coherence Implementation

A MOESI PROTOCOL

The owner state was introduced for multiprocessors with high
access latency to shared memory

But it increases indirection
The states of the MOESI protocol are:

M (Modified): VALIDITY, EXCLUSIVITY, DIRTINESS, and OWNERSHIP
O (Owner): VALIDITY, DIRTINESS, and OWNERSHIP
E (Exclusive): VALIDITY, EXCLUSIVITY, and possibly OWNERSHIP
S (Shared): VALIDITY
I (Invalid): None
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Cache coherence Implementation

TRANSIENT STATES AND COMPLEXITY

Source: 1 D. Sorin, M. D. Hill, D. A. Wood “A Primer on Memory Consistency and Cache

Coherence”, 2011.
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Cache coherence Implementation

GETTING READ-ONLY PERMISSION

Load operations require read permission to perform
If the cache has not read permission⇒ cache miss
A read miss coherence transaction is generated

THE LLC HAS THE OWNERSHIP

L1

load

LLC

AN L1 HAS THE OWNERSHIP

L1

load

L1

LLC

LLC = Last Level Cache
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Cache coherence Implementation

GETTING READ-WRITE PERMISSION

Store operations require write permission to perform
If the cache has not write permission⇒ cache miss
A write miss coherence transaction is generated

THE LLC HAS THE OWNERSHIP

L1

store

L1

LLC

AN L1 HAS THE OWNERSHIP

L1

store

LLC

L1
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Cache coherence Cache evictions

EVICTING CACHE BLOCKS: SILENT VS. NOISY

Noisy cache evictions generate coherence messages
Noisy cache evictions are mandatory when the block has
DIRTINESS or OWNERSHIP properties

To ensure the data value invariant

They tell the directory not to track the copy anymore

THE L1 HAS THE OWNERSHIP

L1

LLC
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Cache coherence Cache evictions

EVICTING CACHE BLOCKS: SILENT VS. NOISY

Silent cache evictions do not generate coherence messages
Silent cache evictions are possible when the block has not
DIRTINESS or OWNERSHIP properties
Directory information is not updated

The directory will eventually send an invalidation
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Cache coherence Cache evictions

EVICTING CACHE BLOCKS: SILENT VS. NOISY

Replacement of clean and no-owner blocks (e.g. S) can be
implemented either using silent or noisy evictions2

Advantages of silent evictions
Less traffic on load-evict-load cases (no writes involved)

Advantages of noisy evictions
Faster write misses (less invalidations)
Updated directory

Less directory space
GetS sends exclusive copy if no sharers

But there are also more implications

2 R. Fernandez-Pascual, A. Ros, and M. E. Acacio, “To Be Silent or Not: On the Impact of
Evictions of Clean Data in Cache-Coherent Multicores”, Journal of Supercomputing, 2017.
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Cache coherence When to unblock

DEALING WITH PROTOCOL RACES

Simultaneous read and write misses.

How can the core (load) know if the read happened before or after
the write, in case of silent evictions?

It cannot ... but it should
Conflict order: the order in which load/store operations perform

Solution 1: Invalidate the data when it comes
Solution 2: Unblock the directory after the load performs

READ-WRITE RACE

L1

load

L1

store

LLC
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Cache coherence When to unblock

DEALING WITH PROTOCOL RACES

EARLY UNBLOCK

L1

load

LLC

1. GetS

2. Data

LATE UNBLOCK

L1

load

LLC

1. GetS

2. Data3. Unbl

Early unblock
cannot infer ordering on races
requires conservative invalidation to guarantee conflict order

Late unblock
can infer ordering on races
blocks the directory for longer

but read misses can be processed in parallel
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Cache coherence When to unblock

DEALING WITH PROTOCOL RACES

Early vs. Late unblock when the owner of the block is an L1

EARLY UNBLOCK

L1

load

L1

LLC

1. GetS 2.
Fwd

3. Data
3.

Data
/U

nb
l

LATE UNBLOCK

L1

load

L1

LLC

1. GetS 2.
Fwd

3. Data

3.
Data

4. Unbl

This decision also affects the implementation of the consistency
model
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Cache coherence Multicore examples

AMD CHT: COHERENT HYPERTRANSPORT

12-core Magny Cours chip
MOESI + S1 (Single sharer)
S1: VALIDITY, EXCLUSIVITY
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Cache coherence Multicore examples

INTEL QPI: QUICK-PATH INTERCONNECT

MESI + F (MESIF)
F: VALIDITY, OWNERSHIP
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Cache coherence Multicore examples

INTEL MIC: 60-CORE CO-PROCESSOR

MESI

UPMARC Summer School @ Uppsala 15th of June, 2017 28 / 69



Cache coherence Multicore examples

RECAP

The cache coherence protocol
hides the caches
works at cache-line granularity
provides conflict order (between two operations to the same
memory block being at least one of them a store)
cannot provide order between different memory blocks

The memory consistency model implementation relies on the
cache coherence protocol guarantees
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Memory consistency

OUTLINE

1 CACHE COHERENCE

2 MEMORY CONSISTENCY

3 COHERENCE-CONSISTENCY INTERACTION

4 OPEN RESEARCH QUESTIONS
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Memory consistency

DEKKER’S ALGORITHM

DEKKER’S ALGORITHM

/* Initially X = Y = 0 */

X = 1;
$r0 = Y;

Y = 1;
$r1 = X;

Can we get $r0==0, $r1==0?

Only if in a thread the load performs before the store in the same
thread
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Memory consistency

MEMORY CONSISTENCY MODEL

To argue about the correctness of a program, it is necessary to
define a memory consistency model (or consistency model)
The consistency model is the contract between the programmer
and the system

The programmer knows which results he can expect
The system know how much the program can be optimized

DEFINITION

The consistency model is an specification of the behaviour of
multithreaded programs executing under shared memory

In particular, the consistency model specifies the values returned
by every load and the final status of the memory when the
program finishes executing
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Memory consistency

CONSISTENCY MODELS

There are a large number of consistency models implemented in
multicores or proposed in the literature

Sequential Consistency (SC)
Total Store Order (TSO)
Processor Consistency (PC)
ARM consistency model
Power consistency model
Weak Consistency (WC)
Release Consistency (RC)
Scope Consistency (ScC)
Entry Consistency

We will review some of the most popular
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Memory consistency Sequential Consistency

SEQUENTIAL CONSISTENCY (SC)

FORMALIZED BY LAMPORT1

A multiprocessor provides SC if the result of any execution is
the same as if the operations of all the processors were
executed in some sequential order, and the operations of each
individual processor appear in this sequence in the order
specified by its program

POSSIBLE INTERLEAVINGS?
X = 1;
$r1 = Y;

Y = 1;
$r0 = X;

3 L. Lamport, “How to Make a Multiprocessor Computer that Correctly Executes Multiprocess
Programs”, IEEE Transactions on Computers, 1979.
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Memory consistency Sequential Consistency

SEQUENTIAL CONSISTENCY (SC)

POSSIBLE INTERLEAVINGS?
sx: X = 1;
ly: $r1 = Y;

sy: Y = 1;
lx: $r0 = X;

SIX POSSIBLE INTERLEAVINGS FOR SC
sx
ly

sy
lx

(1,0)

sx
sy

ly
lx

(1,1)

sx
sy
lx

ly

(1,1)

sy
sx
ly

lx

(1,1)

sy
sx

lx
ly

(1,1)

sy
lx

sx
ly

(0,1)

Effectively, (0,0) is not possible under SC
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Memory consistency Sequential Consistency

SEQUENTIAL CONSISTENCY (SC)

Being <p the order in which the operations appear in the program
Being <m the order in which the operations read/write from/to
memory

If L(a) <p L(b)⇒ L(a) <m L(b) /* Load→Load */
If L(a) <p S(b)⇒ L(a) <m S(b) /* Load→Store */
If S(a) <p S(b)⇒ S(a) <m S(b) /* Store→Store */
If S(a) <p L(b)⇒ S(a) <m L(b) /* Store→Load */
The same rules apply to atomic operations (RMW)

ORDERING RULES FOR SC
Op2

Load Store RMW
Load X X X

Op1 Store X X X
RMW X X X

The MIPS R10000 processor provides SC
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Memory consistency Total Store Order

MOTIVATION TOTAL STORE ORDER (TSO)

DEKKER’S ALGORITHM

X = 1;
$r1 = Y;

Y = 1;
$r0 = X;

Which results can we expect in an Intel or AMD processor?

We can get (0,0)! Why?

The processor may reorder the operations to improve performance
The processor cannot be blocked on store operations
Intel or AMD implement a Store Buffer (SB)
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Memory consistency Total Store Order

THE STORE BUFFER (SB)

A store operation requires write permission to perform
Write permission may require invalidating other copies
It is a long-latency operation
Solution

1 Move the data to the store buffer, delaying the write to cache
2 Process the next intructions
3 When the core has write permission, perform the write

How does this code executes in a multicore with SB?
⇒ We can get (0,0)
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Memory consistency Total Store Order

TOTAL STORE ORDER (TSO)

If L(a) <p L(b)⇒ L(a) <m L(b) /* Load→Load */
If L(a) <p S(b)⇒ L(a) <m S(b) /* Load→Store */
If S(a) <p S(b)⇒ S(a) <m S(b) /* Store→Store */
/* No Store→Load! */
Atomic operations (RMW) are ordered with respect to any other
memory operation

ORDERING RULES FOR TSO
Op2

Load Store RMW
Load X X X

Op1 Store B X X
RMW X X X

B means that a load finding a matching store in the SB takes the value
from the SB, not from memory
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Memory consistency Total Store Order

FENCES

A fence is used to avoid allowed reorderings
Two memory operations, having a fence in between them, cannot
be reordered

ORDERING RULES FOR TSO WITH FENCES

Op2
Load Store RMW Fence

Load X X X X

Op1 Store B X X X
RMW X X X X
Fence X X X X
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Memory consistency Total Store Order
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Memory consistency Total Store Order

FENCES

If we insert fences in between all memory operations, the result is
SC, no matter the consistency model

FENCED CODE

X = 1;
Fence;
$r1 = Y;

Y = 1;
Fence;
$r0 = X;
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Memory consistency Total Store Order

WHY TSO?

Is TSO a good consistency model if it allows unexpected results?

Yes, it work for most of the codes
For example:

SYNCHRONIZATION WITH FLAGS

/* Initially X = flag = 0 */

X = 1;
flag = 1; while (flag == 0);

$r0 = X;
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Memory consistency Weak Consistency

MOTIVATION WEAK CONSISTENCY (WC)2

SYNCHRONIZATION WITH FLAGS

/* Initially X = Y = flag = 0 */

X = 1;
Y = 2;
flag = 1;

while (flag == 0);
$r1 = X;
$r2 = Y;

Do we need to keep the order of the two load or of the two writes
to X and Y?

No, it does not matter the order they execute
We only need to keep the order when synchronizing the threads

4 M. Dubois et al., “Memory Access Buffering in Multiprocessors”, ISCA, 1986.
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Memory consistency Weak Consistency

WEAK CONSISTENCY (WC)

Synchronization operations act as fences
Sequential Consistency for Data-Race-Free programs (SC for
DRF)3

Synchronization must be exposed to the hardware

ORDERING RULES FOR WC
Op2

Load Store RMW Sync
Load A A A X

Op1 Store B A A X
RMW A A A X
Sync X X X X

5 S. V. Adve and M. D. Hill. “Weak Ordering–A New Definition”, ISCA, 1990
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Memory consistency Release Consistency

MOTIVATION RELEASE CONSISTENCY (RC)4

SYNCHRONIZATION WITH FLAGS

/* Initially X = Y = flag = 0 */

X = 1;
Y = 2;
flag = 1;

while (flag == 0);
$r1 = X;
$r2 = Y;

Do we always need to keep the order across all synchronization
operations?

No, not for all.
We can define two kings for synchronization operations: Acquire
and Release

Flag = 1 is an operation with Release semantics and the while loop
has Acquire semantics

6 K. Gharachorloo et al., “Memory Consistency and Event Ordering in Scalable Shared-Memory”,
ISCA, 1990.
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Memory consistency Release Consistency

RELEASE CONSISTENCY (RC)

It only ensures the orders ACQ→Load,Store & Load,Store→REL
Acquire and Release synchronization are exposed to the
hardware
Sequential Consistency for Data-Race-Free programs (SC for
DRF)

ORDERING RULES FOR RC

Op2
Load Store RMW ACQ REL

Load A A A A X
Store B A A A X

Op1 RMW A A A A X
ACQ X X X X X
REL A A A X X
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Memory consistency Release Consistency

CONSISTENCY VS. COHERENCE

Consistency and coherence are different
Coherence

provides conflict order to memory operations to the same block
do not defines the behaviour of the programs
makes cache memories transparent to the programmer
simplifies reasoning about consistency

Consistency
defines the behaviour of all accesses to different memory locations
can be defined with program order
can use coherence
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Coherence-Consistency Interaction

OUTLINE

1 CACHE COHERENCE

2 MEMORY CONSISTENCY

3 COHERENCE-CONSISTENCY INTERACTION

4 OPEN RESEARCH QUESTIONS
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Coherence-Consistency Interaction

INTEL-LIKE MULTICORE

Cache coherence protocol
Invalidation-based
MESI states

Memory consistency model
Total Store Order (TSO)

load→load
store→store
load→store
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Coherence-Consistency Interaction

PERFORMING AND COMMITING LOADS AND STORES

A load operation
enters the load queue (LQ) and re-order buffer (RoB) in order
performs when the data is loaded to the register
commits when it is retired from the LQ/RoB

A store operation
enters the store queue (SQ) and re-order buffer (RoB) in order
commits when it is retired from the SQ/RoB and enters the store
buffer (SB)
performs when the data is stored in cache (memory)
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Coherence-Consistency Interaction Naïve implementation

NAÏVE IMPLEMENTATION

A naïve way to enforce TSO consistency, given the guarantees of
the underlying coherence protocol (i.e. write-atomicity) is to
enforce the load→load, store→store, and load→store ordering
rules by delaying the second operation until the first one
completes.
Performance loss.
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Coherence-Consistency Interaction Naïve implementation

CODE EXAMPLE

INITIALLY X = Y = 0
lx: $r0 = X;
ly: $r1 = Y;

sy: Y = 1;
sx: X = 1;

SIX POSSIBLE INTERLEAVINGS AND VALUES FOR $R0 AND $R1
lx
ly

sy
sx

(0,0)

lx
sy

ly
sx

(0,1)

lx
sy
sx

ly

(0,1)

sy
lx
ly

sx

(0,1)

sy
lx

sx
ly

(0,1)

sy
sx

lx
ly

(1,1)

(1,0) is not possible under load→load & store→store
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Coherence-Consistency Interaction Speculation

SPECULATION

High-performance multicores perform many memory operations
simultaneously

Memory-level paralelism

They can execute loads out-of-order, so loads can be reordered
This could violate the load→load rule (e.g. hit-miss)
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Coherence-Consistency Interaction Speculation

SPECULATION

High-performance multicores perform many memory operations
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Coherence-Consistency Interaction Speculation

BREAKING LOAD→LOAD

INITIALLY X = Y = 0

lx: $r0 = X;
ly: $r1 = Y;

sy: Y = 1;
sx: X = 1;

SIX POSSIBLE INTERLEAVINGS BREAKING LOAD→LOAD

ly
lx

sy
sx

(0,0)

ly
sy

lx
sx

(0,0)

ly
sy
sx

lx

(1,0)

sy
ly
lx

sx

(0,1)

sy
ly

sx
lx

(1,1)

sy
sx

ly
lx

(1,1)

(1,0) is possible when relaxing load→load
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Coherence-Consistency Interaction Speculation

SQUASH AND RE-EXECUTE

Current multicores avoid non-valid results by
Interacting with the coherence protocol

Squashing and re-executing on remote writes

ly
sy
sx

lx

(1,0)

ly
sy

lx
sx

(0,0)

Do we really need to squash on invalidations?

No, we just need to delay sx7

7 A. Ros, T. E. Carlson, M. Alipour, S. Kaxiras, “Non-Speculative Load-Load Reordering in TSO”,
ISCA, 2017.
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Coherence-Consistency Interaction Speculation

SQUASH ON CACHE EVICTIONS

What happens if we need to evict a block used by an
M-speculative load?

If we perform a noisy eviction, and the directory stops tracking it,
we will not be able to see an invalidation
Solution: Squashing and re-executing on evictions

ly
sy
sx

lx

(1,0)

lx

L1

1. P
uty

ly

M-spec
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Coherence-Consistency Interaction Speculation

SQUASH ON CACHE EVICTIONS

Do we really need to squash on cache evictions?

No, we just need to force that the invalidation will come on a write
Use silent evictons for clean, non-owner blocks

An important reason to implement silent evictions when possible

Implement noisy and keep-track evictions for dirty, owner blocks7

ly
sy
sx

lx

(1,0)

lx

L1

1. P
uty

ly

M-spec

7 A. Ros, T. E. Carlson, M. Alipour, S. Kaxiras, “Non-Speculative Load-Load Reordering in TSO”,
ISCA, 2017.
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Coherence-Consistency Interaction Speculation

EARLY VS. LATE UNBLOCK

With early unblock the core cannot
infer if the load was ordered before or
after the write
The data cannot be cached, since
this could violate the SWMR invariant
Can the load can perform?

Only if it is the source of
speculation (SoS)
It may not receive an invalidation

READ-WRITE RACE

(EARLY UNBLOCK)

L1

load

L1

store

LLC

1. GetS 1.
GetX

2. Data

3. Inv

head

LQ ld1ld2ld3ld4ld5ld6

orderedunordered

SoS
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Open research questions

OUTLINE

1 CACHE COHERENCE

2 MEMORY CONSISTENCY

3 COHERENCE-CONSISTENCY INTERACTION

4 OPEN RESEARCH QUESTIONS
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Open research questions

OPEN RESEARCH QUESTIONS

What if the cache coherence protocol does not provides write
atomicity?
What if there is no cache coherence protocol or the memory
system allows incoherences?
What if the cache coherence protocol can provide stronger
guarantees?
What it we merge coherence and consistency?
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Open research questions Racer

CACHE COHERENCE (SC)

Cache coherence problem studied for several decades
Cache coherence serves as a black box to support strict
consistency models: e.g., Sequential Consistency (SC)

Single-writer-multiple-readers (SWMR) invariant
Invalidation/update of the copies on every write
Large amount of traffic⇒ increases energy consumption

OBSERVATION 1
Most processors offer consistency models weaker than SC

Why implement protocols that provide more
functionality than necessary?
Protocol as a black box?

Break the layer between the consistency model
and the coherence protocol!

Consistency model

Cache coherence

SC

SWMR ⇒ Energy

TSO RMO
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Open research questions Racer

CACHE COHERENCE (SC-FOR-DRF)

Simple cache coherence: VIPS-M [Ros & Kaxiras, PACT’12]

Strictly request-response⇒ Simple
Allows virtual caches without reverse translation⇒ Efficient
Coherence distributed across cores⇒ Scalable
No directory⇒ Simple and scalable

How? Synchronization exposed to the protocol

Release: SELF-DOWNGRADE (SD)

⇒ Write-through dirty blocks

Acquire: SELF-INVALIDATION (SI)

⇒ Empty the cache

EXAMPLE OF DRF CODE

X = 1;
SIGNAL(cond);

WAIT(cond);
$r1 = X;

OBSERVATION 2
SI & SD are conservatively performed because of static synchronization
even if there is no actual value propagation between cores

SD SI
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Open research questions Racer

SC VERSUS SC-FOR-DRF COHERENCE

SC

L1

LLC

L1

2. Inv

3. Ack

4. Unbl

2. Ack

1. GetX
/

, Works for all
codes

SC-FOR-DRF

L1

LLC1. Request

2. Response

,
/ Only works for

DRF codes

RACER (TOTAL-STORE-ORDER – TSO)

L1

LLC1. Request

2. Response

,
, Works for all

(TSO) codes

First efficient, request-response protocol for all codes
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Open research questions Racer

RACER AT A GLANCE

A novel way of supporting TSO consistency (Obs.1)
⇒ At the cache coherence protocol level

We start with a very simple request-response protocol

⇒ Order enforced on SI & SD

When it is necessary to enforce order?

⇒ In SC-for-DRF conservatively on
synchronization (Obs.2)

⇒ In RACER only when it is possible to see
a reordering (Obs.3)

⇒ On actual (read-after-write) RAW races

Consistency only enforced for shared
data [Singh et al. ISCA’12]

Core0 LLC Core1
tim

e
ST X

LD Y

ST Y

LD X

R
AW

Rel

Acq
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Open research questions Racer

BASIC OPERATION

LLC

Network

L1 L1 L1 L1

Core0 Core1 Core2 Core3

RAWR DETECTOR

Core Bloom filter
0
1
2
3

One bloom filter per core

X
ST

X

Stores do not require write
permission (no SWMR invariant)

Cores 1, 2, and 3 have
not seen the write to X

X

A
C

K

ACK to guarantee order
of store operations

Y

Y

LD Y

Last value of Y has been
seen by Core1 ⇒ Ok

Y

DATA Y
ST Y ACK

LD X

Clean Core1 bloom filter.
Filters are naturally cleared when detecting races!

X

DATA X + SI

SELF-INVALIDATE (shared)
Core1 cache contentCore0 LLC Core1

tim
e

ST X

LD Y

ST Y

LD X

R
AW

Rel

Acq
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Open research questions Racer

SIMULATION ENVIRONMENT

64-core tiled-CMP (GEMS simulator)
L1 (private): 32KB 4-way
LLC (shared): 256KB 16-way (per tile)
RAWR DETECTOR: 256-byte bloom filter
RACER overhead: ≈18KB per tile

Benchmarks: Splash-3 and Parsec-2.1
Protocols evaluated:

MESI: Directory-based SC protocol
MESI-TSO: Directory-based TSO protocol
VIPS-M: SC-for-DRF protocol
RACER: TSO protocol
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Open research questions Racer

EXECUTION TIME

Normalized to MESI

VIPS-M: Conservative SI & SD results in dramatic slow-downs for
Fluidanimate and Canneal (Obs.2)
RACER ≈ non-scalable MESI-TSO
RACER: better performance than VIPS-M, while providing stronger
consistency, but only when needed at run time

Barnes
Cholesky FFT FMM LU
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Open research questions Racer

ENERGY CONSUMPTION

Energy of TLBs, L1 caches, network, LLC, and RAWR
Normalized to MESI

RACER gets the best from MESI-TSO and VIPS-M

TLB consumption mitigated by using virtual caches (as VIPS-M)
LLC and network consumption of MESI-TSO (runtime synchronization)
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LLC and network consumption of MESI-TSO (runtime synchronization)
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Open research questions Racer

CONCLUSIONS

RACER is a novel way of providing TSO consistency
⇒ First efficient, request-response protocol for TSO

⇒ No indirection: supports low-cost virtual caches
⇒ Low area overhead

More about Racer

⇒ Coalesing write-through
⇒ Race prediction
⇒ Distributed RAWR
⇒ OoO cores with speculation
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