
54 March/April 2008 ACM QUEUE rants: feedback@acmqueue.com

FUTURE GRAPHICS ARCHITECTURES

WILLIAM MARK, INTEL AND UNIVERSITY OF TEXAS, AUSTIN

ACM QUEUE March/April 2008 55 more queue: www.acmqueue.com

graphics architectures are in the midst of a
major transition. In the past, these were
specialized architectures designed to support
a single rendering algorithm: the standard
Z buffer. Realtime 3D graphics has now
advanced to the point where the Z-buf-
fer algorithm has serious shortcomings for
generating the next generation of higher-
quality visual effects demanded by games
and other interactive 3D applications. There
is also a desire to use the high computa-
tional capability of graphics architectures
to support collision detection, approximate
physics simulations, scene management, and
simple artificial intelligence. In response to

these forces, graphics architectures are evolving
toward a general-purpose parallel-programming

FUTURE GRAPHICS ARCHITECTURES GPUs continue to evolve rapidly, but toward what?

GPUsFO
CU

S

56 March/April 2008 rants: feedback@acmqueue.com

model that will support a variety of image-synthesis algo-
rithms, as well as nongraphics tasks.

This architectural transformation presents both
opportunities and challenges. For hardware designers, the
primary challenge is to balance the demand for greater
programmability with the need to continue deliver-
ing high performance on traditional image-synthesis
algorithms. Software developers have an opportunity to
escape from the constraints of hardware-dictated image-
synthesis algorithms so that almost any desired algorithm
can be implemented, even those that have nothing to do
with graphics. With this opportunity, however, comes the
challenge of writing efficient, high-performance parallel
software to run on the new graphics architectures. Writ-
ing such software is substantially more difficult than writ-
ing the single-threaded software that most developers are
accustomed to, and it requires that programmers address
challenges such as algorithm parallelization, load balanc-
ing, synchronization, and management of data locality.

The transformation of graphics hardware from a spe-
cialized architecture to a flexible high-throughput parallel
architecture will have an impact far beyond the domain
of computer graphics. For a variety of technical and busi-
ness reasons, graphics architectures are likely to evolve
into the dominant high-throughput “manycore” architec-
tures of the future.

This article begins by describing the high-level forces
that drive the evolution of realtime graphics systems,
then moves on to some of the detailed technical trends
in realtime graphics algorithms that are emerging in
response to these high-level forces. Finally, it considers
how future graphics architectures are expected to evolve
to accommodate these changes in graphics algorithms
and discusses the challenges that these architectures will
present for software developers.

To understand what form future graphics architectures
are likely to take, we need to examine the forces that are
driving the evolution of these architectures. As with any
engineered artifact, graphics architectures are designed to
deliver the maximum benefit to the end user within the
fundamental technology constraints that determine what
is affordable at a particular point in time. As VLSI (very
large-scale integration) fabrication technology advances,

the boundary of what is affordable changes, so that each
generation of graphics architecture can provide additional
capabilities at the same cost as the previous generation.
Thus, the key high-level question is: What do we want
these new capabilities to be?

Roughly speaking, graphics hardware is used for three
purposes: 3D graphics, particularly entertainment applica-
tions (i.e., games); 2D desktop display, which used to be
strictly 2D but now uses 3D capabilities for compositing
desktops such as those found in Microsoft’s Vista and
Apple’s Mac OS X; and video playback (i.e., decompres-
sion and display of streaming video and DVDs).

Although for most users desktop display and video
playback are more important than 3D graphics, this
article focuses on the needs of 3D graphics because these
applications, with their significant demands for perfor-
mance and functionality, have been the strongest force
driving the evolution of graphics architectures.

Designing a graphics system for future 3D entertain-
ment applications is particularly tricky because at a
technical level the goals are ill defined. It is currently not
possible to compute an image of the ideal quality at real-
time frame rates, as evidenced by the fact that the images
in computer-generated movies are of higher quality than
those in computer games. Thus, designers must make
approximations to the ideal computation. There are an
enormous variety of possible approximations to choose

FUTURE GRAPHICS ARCHITECTURES

GPUsFO
CU

S

Link between Applications and Architectures

graphics
architectures

graphics
applications

medium-term
influence

short-term
influence

FIG 1FIG 1

March/April 2008 57more queue: www.acmqueue.com

from, each of which introduces a different kind of visual
artifact in the image, and each of which uses different
algorithms that may in turn run best on different archi-
tectures. In essence, the system design problem is reduced
to the ill-specified problem of which system (software and
hardware) produces the best-quality game images for a
specific cost. Figure 1 illustrates this problem. In prac-
tice, there are also other constraints, such as backward
compatibility and a desire to build systems that facilitate
content creation.

As VLSI technology advances with time, the system
designer is provided with more transistors. If we assume
that the frame rate is fixed at 60 Hz, the additional
computational capability provided by these transistors
can be used in three fundamental ways: increasing the
screen resolution; increasing the scene detail (polygon
count or material shader complexity); and changing the
overall approximations, by changing the basic rendering
algorithm or specific components of it.

Looking back at the past six years, we can see these
forces at work. Games
have adopted program-
mable shaders that allow
sophisticated modeling of
materials and multipass
techniques that approxi-
mate shadows, reflections,
and other effects. Graphics
architectures have enabled
these changes through the
addition of programmable
vertex and fragment units,
as well as more flexibil-
ity in how data moves
between stages in the
graphics pipeline.

Current graphics proces-
sors use the programming
model illustrated in figure
2a. This model supports
the traditional Z-buffer
algorithm and is organized
around a predefined pipe-
line structure that is only
partially reconfigurable
by the application.1 The
predefined pipeline struc-
ture employs specialized
hardware for the Z-buffer
algorithm (in particular

for polygon rasterization and Z-buffer read-modify-write
operations), as well as for other operations such as the
thread scheduling needed by the programmable stages.

Many of the individual pipeline stages are program-
mable (to support programmable material shading
computations in particular), with all of the program-
mable stages multiplexed onto a single set of homoge-
neous programmable hardware processors. The programs
executing within these pipeline stages, however, are
heavily restricted in how they can communicate with
each other and in how—if at all—they can access the
global shared memory. This programming model provides
high performance for the computations it is designed to
support, but makes it difficult to support other computa-
tions efficiently.

It is important to realize that modern game applica-
tions fundamentally require programmability in the
graphics hardware. This is because the real world contains
an enormous variety of materials (wood, metal, glass,
skin, fur, ...), and the only reasonable way to specify the

Evolution of Graphics Programming Models

vertex
program

geometry
program

rasterizer

fragment
program

2 D

video decode

non-programmable
programmable

texture
unit

output
merger
(ROP)

flexible multicore
architecture

rasterizer

2 D

video decode

texture
unit

specialized
ISA

extensions

a. today’s graphics programming model b. future graphics programming model

FIG 2FIG 2

58 March/April 2008 ACM QUEUE rants: feedback@acmqueue.com

interactions of these materials with light is to use a differ-
ent program for each material.

This situation is very different from that found for
other high-performance tasks, such as video decode,
which does not inherently require programmable
hardware; one could design fixed-function hardware
sufficient to support the standard video formats without
any programmability at all. As a practical matter most
video-decode hardware does include some program-
mable units, but this is an implementation choice, not a
fundamental requirement. This need for programmability
by 3D graphics applications makes graphics architectures
uniquely well positioned to evolve into more general
high-throughput parallel computer architectures that
handle tasks beyond graphics.

Limits of the traditional Z-buffer
graphics pipeline
The Z-buffer graphics pipeline with programmable shad-
ing that is used as the basis of today’s graphics architec-
tures makes certain fundamental approximations and
assumptions that impose a practical upper limit on the
image quality. For example, a Z buffer cannot efficiently
determine if two arbitrarily chosen points are visible from
each other, as is needed for many advanced visual effects.
A ray tracer, on the other hand, can efficiently make this
determination. For this reason, computer-generated mov-
ies use rendering techniques such as ray-tracing algo-
rithms and the Reyes (renders everything you ever saw)
algorithm2 that are more sophisticated than the standard
Z-buffer graphics pipeline.

Over the past few years, it has become clear that the
next frontier for improved visual quality in realtime 3D
graphics will involve modeling lighting and complex
illumination effects more realistically (but not necessarily
photo-realistically) so as to produce images that are closer
in quality to those of computer-generated movies. These
effects include hard-edged shadows (from small lights),
soft-edged shadows (from large lights), reflections from
water, and approximations to more complex effects such
as diffuse lighting interactions that dominate most inte-
rior environments. There is also a desire to model effects
such as motion blur and to use higher-quality anti-alias-
ing techniques. Most of these effects are challenging to
produce with the traditional Z-buffer graphics pipeline.

Modern game engines (e.g., Unreal Engine 3, CryEn-

gine 2) have begun to support some of these effects using
today’s graphics hardware, but with significant limita-
tions. For example, Unreal Engine 3 uses four different
shadow algorithms, because no one algorithm provides
an acceptable combination of performance and image
quality in all situations. This problem is a result of limita-
tions on the visibility queries that are supported by the
traditional Z-buffer pipeline. Furthermore, it is common
for different effects such as shadows and partial transpar-
ency to be mutually incompatible (e.g., partially trans-
parent objects cast shadows as if they were fully opaque
objects). This lack of algorithmic robustness and gener-
ality is a problem for both game-engine programmers
and for the artists who create the game content. These
limitations can also be viewed as violations of impor-
tant principles of good system design such as abstrac-
tion (a capability should work for all relevant cases) and
orthogonality (different capabilities should not interact in
unexpected ways).

The underlying problem is that the traditional Z-buffer
graphics pipeline was designed to compute visibility (i.e.,
the first surface hit) for regularly spaced rays originat-
ing at a single point (see figure 3a), but effects such as
hard-edged shadows, soft-edged shadows, reflections, and
diffuse lighting interactions all require more general vis-
ibility computations. In particular, reflections and diffuse
lighting interactions require the ability to compute visible
surfaces efficiently along rays with a variety of origins
and directions (figure 3d). These types of visibility queries
cannot be performed efficiently with the traditional
graphics pipeline, but VLSI technology now provides
enough transistors to support more sophisticated realtime
visibility algorithms that can perform these queries
efficiently. These transistors, however, must be organized
into an architecture that can efficiently support the more
sophisticated visibility algorithms.

Since the Z-buffer graphics pipeline is ill suited for
producing the desired effects, the natural solution is to
design graphics systems around more powerful visibil-
ity algorithms. Figure 3 provides an overview of some
of these algorithms. I believe that these more powerful
visibility algorithms will be gradually adopted over the
next few years in response to the inadequacies of the
standard Z buffer, although there is substantial debate in
the graphics community as to how rapidly this change
will occur. In particular, algorithms such as ray tracing

GPUsFO
CU

S
FUTURE GRAPHICS ARCHITECTURES

March/April 2008 59more queue: www.acmqueue.com

are likely to be adopted much more rapidly in realtime
graphics than they were in movie rendering, because real-
time graphics does not permit the hand-tweaking of light-
ing for every shot that is common in movie rendering.

THE ARGUMENT FOR GENERAL-PURPOSE
GRAPHICS HARDWARE
Given the desire to support more powerful visibility algo-
rithms, graphics architects could take several approaches.
Should the new visibility techniques be implemented in
some kind of specialized hardware (like today’s Z-buffer
visibility computations), or should they be implemented
in software on a flexible parallel architecture? I believe
that a flexible parallel architecture is the best choice,
because it supports the following software capabilities:

Mixing visibility techniques. Flexible hardware sup-
ports multiple visibility algorithms, ranging from the
traditional Z buffer to ray tracing and beam tracing.
Each application can choose the best algorithm(s) for its
needs. The more sophisticated of these visibility algo-
rithms require the ability to build and traverse irregular
data structures such as KD-trees, which demands a more
flexible parallel programming model than that used by
today’s GPUs.

Application-tailored approximations. Rendering
images at realtime frame rates requires making math-
ematical approximations (e.g., for particular lighting
effects), but the variety of possible approximations is
enormous. Often, different approximations use very
different overall rendering algorithms and have very
different performance characteristics. Since the best
approximation and algorithm vary from application to
application and sometimes even within an application,
an architecture that allows the application to choose its
approximations can provide far greater efficiency for the
overall rendering task than an architecture that lacks this
flexibility.

Integration of rendering with scene management.
Traditionally, realtime graphics systems have used one set
of data structures to represent the persistent state of the
scene (e.g., object positions, velocities, and groupings)
and a different set of data structures to compute visibility.
The two sets of data structures are on opposite sides of
an intervening API such as DirectX or OpenGL. For every
frame, all of the visible geometry is transferred across this
API. In a Z-buffer system this approach works because it
is relatively straightforward to determine which geometry
might be visible. In a ray-tracing system, however, this
approach does not work very well, and it is desirable to
integrate the two sets of data structures more tightly, with

both residing on the graphics processor (figure 4). It is
also desirable to change the traditional layering of APIs
so that the game engine takes over most of the low-level
rendering tasks currently handled by graphics hardware
(figure 5). A highly programmable architecture makes it
much easier to do this integration while still preserving
flexibility for the application to maintain the persistent

Evolution of Visibility Techniques

a. z-buffer

b. irregular z-buffer

c. reyes

d. ray-tracing

e. beam tracing

FIG 3FIG 3

60 March/April 2008 rants: feedback@acmqueue.com

data structures in the most efficient manner. It also allows
scene management computations to be performed on
the high-performance graphics hardware, eliminating a
bottleneck on the CPU.

Support for game physics and AI. A flexible parallel
architecture can easily support computations such as
collision detection, fluid dynamics simulations (e.g., for
explosions), and artificial intelligence for game play. It
also allows these computations to be tightly integrated
with the rendering computation.

Rapid innovation. Software can be changed more rap-
idly than hardware, so a flexible parallel architecture that
uses software to express its graphics algorithms enables
more rapid innovation than traditional designs.

The best choice for the system as a whole is to use flex-
ible parallel hardware that permits software to use aggres-

sive algorithmic specialization and optimization, rather
than to use specialized parallel hardware that mandates a
particular algorithm.

When I say that future graphics architectures are likely
to support an extremely flexible parallel programming
model, what do I mean? There is considerable debate
within the graphics hardware community as to the
specific programming model that graphics architectures
should adopt in the near future. I expect that in the short
term each of the major graphics hardware companies
will take a somewhat different path. There are a variety
of reasons for this diversity: different emphasis placed on
adding new capabilities versus improving performance of
the old programming models; fundamental philosophical
differences in tackling the parallel programming prob-
lem; and the desire by some companies to evolve existing
designs incrementally.

In the longer term (five years or so), the program-
ming models will probably converge, but there is not
yet a consensus on what such a converged programming
model would look like. This section presents some of
the key issues that today’s graphics architects face, as
well as thoughts on what a converged future program-
ming model could look like and the challenges that it

Evolution of Data Structures

a. current systems

scene graph for
scene management

CPU specialized
hardware

z-buffer
rendering/
visibility

on graphics
processor

no spatial
data structure

b. future systems

unified data structure scene
management and visibility

scene graph
visibility data structure

(lazy) (lazy)

(lazy)

general-purpose parallel graphics hardware

Evolution of Overall Graphics System

a. today b. future

application artist
tools

game engine
(includes high-level

rendering algorithms)

graphics driver

graphics API
(DirectX, Open GL)

graphics hardware
(includes low-level

rendering algorithms)

application artist
tools

graphics hardware

game engine
(includes all

rendering
algorithms and
management of

parallelism)

GPUsFO
CU

S
FUTURE GRAPHICS ARCHITECTURES

FIG 4FIG 4 FIG 5FIG 5

ACM QUEUE March/April 2008 61 more queue: www.acmqueue.com

will present for programmers. Most of the programming
challenges discussed here will be applicable to all future
graphics architectures, even those that are somewhat dif-
ferent from the one I am expecting.

End of the hardware-defined pipeline
Graphics processors will evolve toward a programming
model similar to that illustrated in figure 2b. User-written
software specifies the overall structure of the computa-
tion, expressed in an extremely flexible parallel program-
ming model similar to that used to program today’s
multicore CPUs. The user-written software may option-
ally use specialized hardware to accelerate specific tasks
such as texture mapping. The specialized hardware may
be accessed via a combination of instructions in the ISA
(instruction set architecture), special memory-mapped
registers, and special inter-processor messages.

The latest generation of GPUs (graphics process-
ing units) from NVIDIA and AMD have already taken a
significant step toward this future graphics programming
model by supporting a separate programming model for
nongraphics computations that is more flexible than
the programming model used for graphics. This second
programming model is an assembly-level parallel-pro-
gramming model with some capabilities for fine-grained
synchronization and data sharing across hardware
threads. NVIDIA calls its model PTX (Parallel Thread
Execution), and AMD’s is known as CTM (Close to Metal).
Note that NVIDIA’s C-like CUDA language (see “Scalable
Parallel Programming with CUDA” in this issue) is a layer
on top of the assembly-level PTX. It is important to real-
ize, however, that PTX and CTM have some significant
limitations compared with traditional general-purpose
parallel programming models. PTX and CTM are still
fairly restrictive, especially in their memory and concur-
rency models.

These limitations become obvious when comparing
PTX and CTM with the programming models supported
by other single-chip highly parallel processors, such as
Sun’s Niagara server chips. I believe that the program-
ming model of future graphics architectures will be
substantially more flexible than PTX and CTM.

Task parallelism and multithreading
The parallelism supported by current GPUs primarily
takes the form of data parallelism—that is, the GPU oper-
ates simultaneously on many data elements (such as ver-
tices or pixels or elements in an array). In contrast, task
parallelism is not supported well, except for the specific
case of concurrent processing of pixels and vertices. Since

better support for task parallelism is necessary to support
user-defined rendering pipelines efficiently, I expect that
future GPUs will support task parallelism much more
aggressively. In particular, multiple tasks will be able to
execute asynchronously from each other and from the
CPU, and will be able to communicate and synchronize
with each other. These changes will require a substantially
more sophisticated software runtime environment than
the one used for today’s GPUs and will introduce signifi-
cant complexity into the hardware/software interactions
for thread management.

As with today’s GPUs and Sun’s Niagara processor,
each core will use hardware multithreading,3 possibly aug-
mented by additional software multithreading along the
lines of that used by programmers of the Cell architec-
ture. This multithreading serves two purposes:
• �First, it allows the core to remain fully utilized even if

each individual instruction has a pipeline latency of

several cycles—the core just executes an instruction
from another thread.

• �Second, it allows the core to remain fully utilized even if
one or more of the threads on the core stalls because of
an off-chip DRAM access such as those that occur when
fetching data from a texture. Programmers will face the
challenge of exposing parallelism for multiple cores
and for multiple threads on each core. This challenge
is already starting to appear with programming models
such as NVIDIA’s CUDA.

SIMD execution within each core
An important concern in the design of graphics hardware
is obtaining the maximum possible performance using a
fixed number of transistors on a chip. If one instruction
cache/fetch/decode unit can be shared among several
arithmetic units, the die area and power requirements
of the hardware are reduced, as compared with a design
that has one instruction unit per arithmetic unit. That

Future GPUs will support
task parallelism much more aggressively.

62 March/April 2008 ACM QUEUE rants: feedback@acmqueue.com

is, a SIMD (single instruction, multiple data) execution
model increases efficiency as long as most of the elements
in the SIMD vectors are kept active most of the time. A
SIMD execution model also provides a simple form of
fine-grained synchronization that helps to ensure that
memory accesses have good locality.

Current graphics hardware uses a SIMD execu-
tion model, although it is sometimes hidden from the
programmer behind a scalar programming interface as
in NVIDIA’s hardware. One area of ongoing debate and
change is likely to be in the underlying hardware SIMD
width; there is a tension between the efficiency gained
for regular computations as SIMD width increases and
the efficiency gained for irregular computations as SIMD
width decreases. NVIDIA GPUs (GeForce 8000 and 9000
series) have an effective SIMD width of 32, but the trend
has been for the SIMD width of GPUs to decrease to
improve the efficiency of algorithms with irregular con-
trol flow.

There is also debate about how to expose the SIMD
execution model. It can be directly exposed to the pro-
grammer with register-SIMD instructions, as is done with
x86 SSE instructions, or it may be nominally hidden from
the programmer behind a scalar programming model, as
is the case with NVIDIA’s GeForce 9000 series. If the SIMD
execution model is hidden, the conversion from the
scalar programming model to the SIMD hardware may be
performed by either the hardware (as in the GeForce 9000
series) or a compiler or some combination of the two.
Regardless of which strategy is used, programmers who
are concerned with performance will need to be aware of
the underlying SIMD execution model and width.

Small amounts of local storage
One of the most important differences between GPUs and
CPUs is that GPUs devote a greater fraction of their tran-
sistors to arithmetic units, whereas CPUs devote a greater
fraction of their transistors to cache. This difference is
one of the primary reasons that the peak performance of
a GPU is much higher than that of a CPU.

I expect that this difference will continue in the
future. The impact on programmers will be significant:
although the overall programming model of future GPUs
will become much closer to that of today’s CPUs, pro-
grammers will need to manage data locality much more
carefully on future GPUs than they do on today’s CPUs.

This problem is made even more challenging by
multithreading; if there are N threads on each core, the
amount of local storage per thread per core is effectively
1/N of the core’s total local storage. This issue can be
mitigated if the N threads on a core are sharing a working
set, but to do this the programmer must think of the N
threads as being closely coupled to each other. Similarly,
programmers will have to think about how to share a
working set across threads on different cores.

These considerations are already becoming apparent
with CUDA. The constraints are likely to be frustrating
to programmers who are accustomed to the large caches
of CPUs, but they need to realize that extra local storage
would come at the cost of fewer ALUs (arithmetic logic
units), and they will need to work closely with hardware
designers to determine the optimum balance between
cache and ALUs.

Cache-coherent shared memory
The most important aspect of any parallel architecture is
its overall memory and communication model. To illus-
trate the importance of this aspect of the design, consider
four (of many) possible alternatives (of course, hybrids
and enhancements of these models are possible):
• �A message-passing architecture, in which each processor

core has its own memory space and all communication
occurs through explicit message passing. Most large-
scale supercomputers (those with 100-plus processors)
use this model.

• �An architecture such as the Sony/Toshiba/IBM Cell with
a noncached, noncoherent shared memory. In such an
architecture, all transfers of data between a core’s small
private memory and the global memory must be orches-
trated through explicit memory-transfer commands.

• �An architecture such as NVIDIA’s GeForce 8800 with
what amounts to a minimally cached, noncoherent
shared memory, with support for load/store to this
memory.

• �An architecture such as modern multicore CPUs, with
cached, coherent shared memory. In such architectures,
hardware mechanisms manage transfer of data between
cache and main memory and ensure that data in caches
of different processors remains consistent.

There is considerable debate within the graphics archi-
tecture community as to which memory and communi-
cation model would be best for future architectures, and

GPUsFO
CU

S
FUTURE GRAPHICS ARCHITECTURES

ACM QUEUE March/April 2008 63 more queue: www.acmqueue.com

in the near term different hardware vendors are taking
different approaches. Software programmers should think
carefully about these issues so that they are prepared to
influence the debate.

Which approach is most likely to dominate in the
medium to long term? I have previously argued that the
trend in rendering algorithms is toward those that build
and traverse irregular data structures. These irregular data
structures allow algorithms to adapt to the scene geom-
etry and the current viewpoint. Explicitly managing all
data locality for these algorithms is painful, especially if
multiple cores share a read/write data structure. In my
experience, it is easier to develop these algorithms on a
cache-coherent architecture, even if achieving optimal

performance often still requires thinking very carefully
about the communication and memory-access patterns of
the performance-critical kernels.

For these and other reasons too detailed to discuss
here, I believe that future graphics architectures will
efficiently support a cache-coherent memory model, and
that any architecture lacking these capabilities will be a
second choice at best for programmers who are develop-
ing innovative rendering techniques. Sun’s Niagara archi-
tecture provides a good preview of the kind of memory
and threading model that I anticipate for future GPUs. I
also expect, however, that cache-coherent graphics archi-
tectures will include a variety of mechanisms that provide
the programmer with explicit control over communica-
tion and memory access, such as streaming loads that
bypass the cache.

Fine-grained specialization
The desire to support greater algorithmic diversity will
drive future graphics architectures toward greater flex-
ibility and generality, but specialization will still be used
where it provides a sufficiently large benefit for the major-
ity of applications. Most of this specialization will be at
a fine granularity, used to accelerate specific operations,

in contrast to the coarse, monolithic granularity used to
dictate the overall structure of the algorithms executed on
the hardware in the past.

In particular, I expect the following specialization will
continue to exist for graphics architectures:

Texture hardware. Texture addressing and filtering
operations use low-precision (typically 16-bit) values that
are decompressed on the fly from a compressed represen-
tation stored in memory. The amount of data accessed is
large and requires multithreading to deal effectively with
cache misses. These operations are a significant fraction
of the overall rendering cost and benefit enormously from
specialized hardware.

Specialized floating-point operations. Rendering
makes heavy use of floating-point square-root and recip-
rocal operations. Current graphics hardware provides
high-performance instructions for these operations, as
well as other operations used for shading such as swiz-
zling and trigonometric functions. Future graphics hard-
ware will need to do the same.

Video playback and desktop compositing. Video play-
back and 2D and 2.5D desktop window operations benefit
significantly from specialized hardware. Specialization of
these operations is especially important for power effi-
ciency. I anticipate that much of this hardware will follow
the traditional coarse-grained monolithic fixed-function
model and thus will not be useful for user-written 3D
graphics programs.

Current graphics hardware also includes specialized
hardware to assist with triangle rasterization, but I expect
that this task will be taken over by software within a
few years. The reason is that rasterization is gradually
becoming a smaller fraction of total rendering costs, so
the penalty for implementing it in software is decreasing.
This trend will accelerate as more sophisticated visibility
algorithms supplement or replace the Z buffer.

As graphics software switches to more powerful vis-
ibility algorithms such as ray tracing, it may become clear
that certain operations represent a sufficiently large por-
tion of the total computation cost that hardware accelera-
tion would be justified. For example, future architectures
could include specialized instructions to accelerate the
data-structure traversal operations used by ray tracing.

The challenge for graphics architects
At a high level, the key challenge facing future graphics
architectures is to strike the best balance between the
desire to provide high performance on existing graph-
ics algorithms and the desire to provide the flexibility
needed to support new algorithms with high perfor-

Programmers will have to
think more carefully about
memory-access patterns and
data-structure sizes.

64 March/April 2008 ACM QUEUE rants: feedback@acmqueue.com

mance, including nongraphics algorithms and the next
generation of more capable and sophisticated graphics
algorithms. I believe that the opportunity for improved
visual quality and robustness provided by more sophis-
ticated graphics algorithms will cause the transition to
more flexible architectures to happen relatively rapidly,
an opinion that remains a matter of debate within the
graphics architecture community.

the future of graphics architectures
In the past, graphics architectures defined the algorithms
used for rendering and their performance. In the future,
graphics architectures will cease to define the render-
ing algorithms and will simply set the performance and
power efficiency limits within which software developers
may do whatever they want.

For the programmer, future graphics architectures are
likely to be very similar to today’s multicore CPU archi-
tectures, but with greater SIMD instruction widths and
the availability of specialized instructions and processing
units for some operations. Like today’s Niagara processor,
however, the amount of cache per processor core will be
relatively small. To achieve peak performance, program-
mers will have to think more carefully about memory-
access patterns and data-structure sizes than they have
been accustomed to with the large caches of modern
CPUs.

Future graphics architectures will enable a golden age
of innovation in graphics; I expect that over the next
few years we will see the development of a variety of new
rendering algorithms that are more efficient and more
capable than the ones used in the past. For computer
games, these architectures will allow game logic, phys-
ics simulation, and AI to be more tightly integrated with
rendering than before. For data-visualization applications,
these architectures will allow tight integration of domain-
specific data analysis with the rendering computations
used to display the results of this analysis. The general-
purpose nature of these architectures combined with the
low cost enabled by their high-volume market will also
cause them to become the preferred platform for almost
all high-performance floating-point computations. Q

Acknowledgments and further reading
Don Fussell, Kurt Akeley, Matt Pharr, Pat Hanrahan, Mark
Horowitz, Stephen Junkins, and several graphics hardware

architects contributed directly and indirectly to the ideas
in this article through many fun and productive discus-
sions. More details about many of the ideas discussed in
this article can be found in another article I wrote with
Don Fussell in 2005.4 The tendency of graphics hardware
to become increasingly general until the temptation
emerges to incorporate new specialized units has existed
for a long time and was described in 1968 as the “wheel
of reincarnation” by Myer and Sutherland.5 The funda-
mental need for programmability in realtime graphics
hardware, however, is much more important now than it
was then.

REFERENCES
1. �Blythe, D. 2006. The Direct3D 10 system. In ACM SIG-

GRAPH 2006 Papers: 724–734.
2. �Cook, R.L., Carpenter, L., Catmull, E. 1987. The Reyes

image rendering architecture. Computer Graphics (Pro-
ceedings of ACM SIGGRAPH): 95–102.

3. �Laudon, J., Gupta, A., Horowitz, M. 1994. Interleaving:
a multithreading technique targeting multiprocessors
and workstations. In Proceedings of the Sixth Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems: 308–318.

4. �Mark, W., Fussell, D. 2005. Real-time rendering systems
in 2010. Technical Report 05-18, University of Texas.

5. �Myer, T.H., Sutherland, I.E. 1968. On the design of
display processors. Communications of the ACM, 11(6):
410–414.

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

BILL MARK leads Intel’s advanced graphics research lab.
He is on leave from the University of Texas at Austin, where
until January 2008 he led a research group that investigated
future graphics algorithms and architectures. In 2001-2002
he was the technical leader of the team at NVIDIA that co-
designed (with Microsoft) the Cg language for programma-
ble graphics hardware and developed the first release of the
NVIDIA Cg compiler. His research interests focus on systems
and hardware architectures for realtime computer graphics
and on the opportunity to extend these systems to support
more general parallel computation and a broader range of
graphics algorithms, including interactive ray tracing.
© 2008 ACM 1542-7730/08/0300 $5.00

GPUsFO
CU

S
FUTURE GRAPHICS ARCHITECTURES

