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graphics architectures are in the midst of a 
major transition. In the past, these were 
specialized architectures designed to support 
a single rendering algorithm: the standard 
Z buffer. Realtime 3D graphics has now 
advanced to the point where the Z-buf-
fer algorithm has serious shortcomings for 
generating the next generation of higher-
quality visual effects demanded by games 
and other interactive 3D applications. There 
is also a desire to use the high computa-
tional capability of graphics architectures 
to support collision detection, approximate 
physics simulations, scene management, and 
simple artificial intelligence. In response to 

these forces, graphics architectures are evolving 
toward a general-purpose parallel-programming 
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model that will support a variety of image-synthesis algo-
rithms, as well as nongraphics tasks. 

This architectural transformation presents both 
opportunities and challenges. For hardware designers, the 
primary challenge is to balance the demand for greater 
programmability with the need to continue deliver-
ing high performance on traditional image-synthesis 
algorithms. Software developers have an opportunity to 
escape from the constraints of hardware-dictated image-
synthesis algorithms so that almost any desired algorithm 
can be implemented, even those that have nothing to do 
with graphics. With this opportunity, however, comes the 
challenge of writing efficient, high-performance parallel 
software to run on the new graphics architectures. Writ-
ing such software is substantially more difficult than writ-
ing the single-threaded software that most developers are 
accustomed to, and it requires that programmers address 
challenges such as algorithm parallelization, load balanc-
ing, synchronization, and management of data locality. 

The transformation of graphics hardware from a spe-
cialized architecture to a flexible high-throughput parallel 
architecture will have an impact far beyond the domain 
of computer graphics. For a variety of technical and busi-
ness reasons, graphics architectures are likely to evolve 
into the dominant high-throughput “manycore” architec-
tures of the future. 

This article begins by describing the high-level forces 
that drive the evolution of realtime graphics systems, 
then moves on to some of the detailed technical trends 
in realtime graphics algorithms that are emerging in 
response to these high-level forces. Finally, it considers 
how future graphics architectures are expected to evolve 
to accommodate these changes in graphics algorithms 
and discusses the challenges that these architectures will 
present for software developers. 

To understand what form future graphics architectures 
are likely to take, we need to examine the forces that are 
driving the evolution of these architectures. As with any 
engineered artifact, graphics architectures are designed to 
deliver the maximum benefit to the end user within the 
fundamental technology constraints that determine what 
is affordable at a particular point in time. As VLSI (very 
large-scale integration) fabrication technology advances, 

the boundary of what is affordable changes, so that each 
generation of graphics architecture can provide additional 
capabilities at the same cost as the previous generation. 
Thus, the key high-level question is: What do we want 
these new capabilities to be? 

Roughly speaking, graphics hardware is used for three 
purposes: 3D graphics, particularly entertainment applica-
tions (i.e., games); 2D desktop display, which used to be 
strictly 2D but now uses 3D capabilities for compositing 
desktops such as those found in Microsoft’s Vista and 
Apple’s Mac OS X; and video playback (i.e., decompres-
sion and display of streaming video and DVDs). 

Although for most users desktop display and video 
playback are more important than 3D graphics, this 
article focuses on the needs of 3D graphics because these 
applications, with their significant demands for perfor-
mance and functionality, have been the strongest force 
driving the evolution of graphics architectures. 

Designing a graphics system for future 3D entertain-
ment applications is particularly tricky because at a 
technical level the goals are ill defined. It is currently not 
possible to compute an image of the ideal quality at real-
time frame rates, as evidenced by the fact that the images 
in computer-generated movies are of higher quality than 
those in computer games. Thus, designers must make 
approximations to the ideal computation. There are an 
enormous variety of possible approximations to choose 
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from, each of which introduces a different kind of visual 
artifact in the image, and each of which uses different 
algorithms that may in turn run best on different archi-
tectures. In essence, the system design problem is reduced 
to the ill-specified problem of which system (software and 
hardware) produces the best-quality game images for a 
specific cost. Figure 1 illustrates this problem. In prac-
tice, there are also other constraints, such as backward 
compatibility and a desire to build systems that facilitate 
content creation. 

As VLSI technology advances with time, the system 
designer is provided with more transistors. If we assume 
that the frame rate is fixed at 60 Hz, the additional 
computational capability provided by these transistors 
can be used in three fundamental ways: increasing the 
screen resolution; increasing the scene detail (polygon 
count or material shader complexity); and changing the 
overall approximations, by changing the basic rendering 
algorithm or specific components of it. 

Looking back at the past six years, we can see these 
forces at work. Games 
have adopted program-
mable shaders that allow 
sophisticated modeling of 
materials and multipass 
techniques that approxi-
mate shadows, reflections, 
and other effects. Graphics 
architectures have enabled 
these changes through the 
addition of programmable 
vertex and fragment units, 
as well as more flexibil-
ity in how data moves 
between stages in the 
graphics pipeline. 

Current graphics proces-
sors use the programming 
model illustrated in figure 
2a. This model supports 
the traditional Z-buffer 
algorithm and is organized 
around a predefined pipe-
line structure that is only 
partially reconfigurable 
by the application.1 The 
predefined pipeline struc-
ture employs specialized 
hardware for the Z-buffer 
algorithm (in particular 

for polygon rasterization and Z-buffer read-modify-write 
operations), as well as for other operations such as the 
thread scheduling needed by the programmable stages. 

Many of the individual pipeline stages are program-
mable (to support programmable material shading 
computations in particular), with all of the program-
mable stages multiplexed onto a single set of homoge-
neous programmable hardware processors. The programs 
executing within these pipeline stages, however, are 
heavily restricted in how they can communicate with 
each other and in how—if at all—they can access the 
global shared memory. This programming model provides 
high performance for the computations it is designed to 
support, but makes it difficult to support other computa-
tions efficiently. 

It is important to realize that modern game applica-
tions fundamentally require programmability in the 
graphics hardware. This is because the real world contains 
an enormous variety of materials (wood, metal, glass, 
skin, fur, ...), and the only reasonable way to specify the 
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interactions of these materials with light is to use a differ-
ent program for each material. 

This situation is very different from that found for 
other high-performance tasks, such as video decode, 
which does not inherently require programmable 
hardware; one could design fixed-function hardware 
sufficient to support the standard video formats without 
any programmability at all. As a practical matter most 
video-decode hardware does include some program-
mable units, but this is an implementation choice, not a 
fundamental requirement. This need for programmability 
by 3D graphics applications makes graphics architectures 
uniquely well positioned to evolve into more general 
high-throughput parallel computer architectures that 
handle tasks beyond graphics. 

Limits of the traditional Z-buffer  
graphics pipeline 
The Z-buffer graphics pipeline with programmable shad-
ing that is used as the basis of today’s graphics architec-
tures makes certain fundamental approximations and 
assumptions that impose a practical upper limit on the 
image quality. For example, a Z buffer cannot efficiently 
determine if two arbitrarily chosen points are visible from 
each other, as is needed for many advanced visual effects. 
A ray tracer, on the other hand, can efficiently make this 
determination. For this reason, computer-generated mov-
ies use rendering techniques such as ray-tracing algo-
rithms and the Reyes (renders everything you ever saw) 
algorithm2 that are more sophisticated than the standard 
Z-buffer graphics pipeline. 

Over the past few years, it has become clear that the 
next frontier for improved visual quality in realtime 3D 
graphics will involve modeling lighting and complex 
illumination effects more realistically (but not necessarily 
photo-realistically) so as to produce images that are closer 
in quality to those of computer-generated movies. These 
effects include hard-edged shadows (from small lights), 
soft-edged shadows (from large lights), reflections from 
water, and approximations to more complex effects such 
as diffuse lighting interactions that dominate most inte-
rior environments. There is also a desire to model effects 
such as motion blur and to use higher-quality anti-alias-
ing techniques. Most of these effects are challenging to 
produce with the traditional Z-buffer graphics pipeline. 

Modern game engines (e.g., Unreal Engine 3, CryEn-

gine 2) have begun to support some of these effects using 
today’s graphics hardware, but with significant limita-
tions. For example, Unreal Engine 3 uses four different 
shadow algorithms, because no one algorithm provides 
an acceptable combination of performance and image 
quality in all situations. This problem is a result of limita-
tions on the visibility queries that are supported by the 
traditional Z-buffer pipeline. Furthermore, it is common 
for different effects such as shadows and partial transpar-
ency to be mutually incompatible (e.g., partially trans-
parent objects cast shadows as if they were fully opaque 
objects). This lack of algorithmic robustness and gener-
ality is a problem for both game-engine programmers 
and for the artists who create the game content. These 
limitations can also be viewed as violations of impor-
tant principles of good system design such as abstrac-
tion (a capability should work for all relevant cases) and 
orthogonality (different capabilities should not interact in 
unexpected ways). 

The underlying problem is that the traditional Z-buffer 
graphics pipeline was designed to compute visibility (i.e., 
the first surface hit) for regularly spaced rays originat-
ing at a single point (see figure 3a), but effects such as 
hard-edged shadows, soft-edged shadows, reflections, and 
diffuse lighting interactions all require more general vis-
ibility computations. In particular, reflections and diffuse 
lighting interactions require the ability to compute visible 
surfaces efficiently along rays with a variety of origins 
and directions (figure 3d). These types of visibility queries 
cannot be performed efficiently with the traditional 
graphics pipeline, but VLSI technology now provides 
enough transistors to support more sophisticated realtime 
visibility algorithms that can perform these queries 
efficiently. These transistors, however, must be organized 
into an architecture that can efficiently support the more 
sophisticated visibility algorithms. 

Since the Z-buffer graphics pipeline is ill suited for 
producing the desired effects, the natural solution is to 
design graphics systems around more powerful visibil-
ity algorithms. Figure 3 provides an overview of some 
of these algorithms. I believe that these more powerful 
visibility algorithms will be gradually adopted over the 
next few years in response to the inadequacies of the 
standard Z buffer, although there is substantial debate in 
the graphics community as to how rapidly this change 
will occur. In particular, algorithms such as ray tracing 
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are likely to be adopted much more rapidly in realtime 
graphics than they were in movie rendering, because real-
time graphics does not permit the hand-tweaking of light-
ing for every shot that is common in movie rendering. 

THE ARGUMENT FOR GENERAL-PURPOSE 
GRAPHICS HARDWARE 
Given the desire to support more powerful visibility algo-
rithms, graphics architects could take several approaches. 
Should the new visibility techniques be implemented in 
some kind of specialized hardware (like today’s Z-buffer 
visibility computations), or should they be implemented 
in software on a flexible parallel architecture? I believe 
that a flexible parallel architecture is the best choice, 
because it supports the following software capabilities: 

Mixing visibility techniques. Flexible hardware sup-
ports multiple visibility algorithms, ranging from the 
traditional Z buffer to ray tracing and beam tracing. 
Each application can choose the best algorithm(s) for its 
needs. The more sophisticated of these visibility algo-
rithms require the ability to build and traverse irregular 
data structures such as KD-trees, which demands a more 
flexible parallel programming model than that used by 
today’s GPUs. 

Application-tailored approximations. Rendering 
images at realtime frame rates requires making math-
ematical approximations (e.g., for particular lighting 
effects), but the variety of possible approximations is 
enormous. Often, different approximations use very 
different overall rendering algorithms and have very 
different performance characteristics. Since the best 
approximation and algorithm vary from application to 
application and sometimes even within an application, 
an architecture that allows the application to choose its 
approximations can provide far greater efficiency for the 
overall rendering task than an architecture that lacks this 
flexibility. 

Integration of rendering with scene management.
Traditionally, realtime graphics systems have used one set 
of data structures to represent the persistent state of the 
scene (e.g., object positions, velocities, and groupings) 
and a different set of data structures to compute visibility. 
The two sets of data structures are on opposite sides of 
an intervening API such as DirectX or OpenGL. For every 
frame, all of the visible geometry is transferred across this 
API. In a Z-buffer system this approach works because it 
is relatively straightforward to determine which geometry 
might be visible. In a ray-tracing system, however, this 
approach does not work very well, and it is desirable to 
integrate the two sets of data structures more tightly, with 

both residing on the graphics processor (figure 4). It is 
also desirable to change the traditional layering of APIs 
so that the game engine takes over most of the low-level 
rendering tasks currently handled by graphics hardware 
(figure 5). A highly programmable architecture makes it 
much easier to do this integration while still preserving 
flexibility for the application to maintain the persistent 
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data structures in the most efficient manner. It also allows 
scene management computations to be performed on 
the high-performance graphics hardware, eliminating a 
bottleneck on the CPU.

Support for game physics and AI. A flexible parallel 
architecture can easily support computations such as 
collision detection, fluid dynamics simulations (e.g., for 
explosions), and artificial intelligence for game play. It 
also allows these computations to be tightly integrated 
with the rendering computation.

Rapid innovation. Software can be changed more rap-
idly than hardware, so a flexible parallel architecture that 
uses software to express its graphics algorithms enables 
more rapid innovation than traditional designs. 

The best choice for the system as a whole is to use flex-
ible parallel hardware that permits software to use aggres-

sive algorithmic specialization and optimization, rather 
than to use specialized parallel hardware that mandates a 
particular algorithm. 

When I say that future graphics architectures are likely 
to support an extremely flexible parallel programming 
model, what do I mean? There is considerable debate 
within the graphics hardware community as to the 
specific programming model that graphics architectures 
should adopt in the near future. I expect that in the short 
term each of the major graphics hardware companies 
will take a somewhat different path. There are a variety 
of reasons for this diversity: different emphasis placed on 
adding new capabilities versus improving performance of 
the old programming models; fundamental philosophical 
differences in tackling the parallel programming prob-
lem; and the desire by some companies to evolve existing 
designs incrementally. 

In the longer term (five years or so), the program-
ming models will probably converge, but there is not 
yet a consensus on what such a converged programming 
model would look like. This section presents some of 
the key issues that today’s graphics architects face, as 
well as thoughts on what a converged future program-
ming model could look like and the challenges that it 
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will present for programmers. Most of the programming 
challenges discussed here will be applicable to all future 
graphics architectures, even those that are somewhat dif-
ferent from the one I am expecting. 

End of the hardware-defined pipeline 
Graphics processors will evolve toward a programming 
model similar to that illustrated in figure 2b. User-written 
software specifies the overall structure of the computa-
tion, expressed in an extremely flexible parallel program-
ming model similar to that used to program today’s 
multicore CPUs. The user-written software may option-
ally use specialized hardware to accelerate specific tasks 
such as texture mapping. The specialized hardware may 
be accessed via a combination of instructions in the ISA 
(instruction set architecture), special memory-mapped 
registers, and special inter-processor messages. 

The latest generation of GPUs (graphics process-
ing units) from NVIDIA and AMD have already taken a 
significant step toward this future graphics programming 
model by supporting a separate programming model for 
nongraphics computations that is more flexible than 
the programming model used for graphics. This second 
programming model is an assembly-level parallel-pro-
gramming model with some capabilities for fine-grained 
synchronization and data sharing across hardware 
threads. NVIDIA calls its model PTX (Parallel Thread 
Execution), and AMD’s is known as CTM (Close to Metal). 
Note that NVIDIA’s C-like CUDA language (see “Scalable 
Parallel Programming with CUDA” in this issue) is a layer 
on top of the assembly-level PTX. It is important to real-
ize, however, that PTX and CTM have some significant 
limitations compared with traditional general-purpose 
parallel programming models. PTX and CTM are still 
fairly restrictive, especially in their memory and concur-
rency models. 

These limitations become obvious when comparing 
PTX and CTM with the programming models supported 
by other single-chip highly parallel processors, such as 
Sun’s Niagara server chips. I believe that the program-
ming model of future graphics architectures will be 
substantially more flexible than PTX and CTM. 

Task parallelism and multithreading 
The parallelism supported by current GPUs primarily 
takes the form of data parallelism—that is, the GPU oper-
ates simultaneously on many data elements (such as ver-
tices or pixels or elements in an array). In contrast, task 
parallelism is not supported well, except for the specific 
case of concurrent processing of pixels and vertices. Since 

better support for task parallelism is necessary to support 
user-defined rendering pipelines efficiently, I expect that 
future GPUs will support task parallelism much more 
aggressively. In particular, multiple tasks will be able to 
execute asynchronously from each other and from the 
CPU, and will be able to communicate and synchronize 
with each other. These changes will require a substantially 
more sophisticated software runtime environment than 
the one used for today’s GPUs and will introduce signifi-
cant complexity into the hardware/software interactions 
for thread management. 

As with today’s GPUs and Sun’s Niagara processor, 
each core will use hardware multithreading,3 possibly aug-
mented by additional software multithreading along the 
lines of that used by programmers of the Cell architec-
ture. This multithreading serves two purposes: 
• �First, it allows the core to remain fully utilized even if 

each individual instruction has a pipeline latency of 

several cycles—the core just executes an instruction 
from another thread. 

• �Second, it allows the core to remain fully utilized even if 
one or more of the threads on the core stalls because of 
an off-chip DRAM access such as those that occur when 
fetching data from a texture. Programmers will face the 
challenge of exposing parallelism for multiple cores 
and for multiple threads on each core. This challenge 
is already starting to appear with programming models 
such as NVIDIA’s CUDA. 

SIMD execution within each core 
An important concern in the design of graphics hardware 
is obtaining the maximum possible performance using a 
fixed number of transistors on a chip. If one instruction 
cache/fetch/decode unit can be shared among several 
arithmetic units, the die area and power requirements 
of the hardware are reduced, as compared with a design 
that has one instruction unit per arithmetic unit. That 

Future GPUs will support 
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is, a SIMD (single instruction, multiple data) execution 
model increases efficiency as long as most of the elements 
in the SIMD vectors are kept active most of the time. A 
SIMD execution model also provides a simple form of 
fine-grained synchronization that helps to ensure that 
memory accesses have good locality. 

Current graphics hardware uses a SIMD execu-
tion model, although it is sometimes hidden from the 
programmer behind a scalar programming interface as 
in NVIDIA’s hardware. One area of ongoing debate and 
change is likely to be in the underlying hardware SIMD 
width; there is a tension between the efficiency gained 
for regular computations as SIMD width increases and 
the efficiency gained for irregular computations as SIMD 
width decreases. NVIDIA GPUs (GeForce 8000 and 9000 
series) have an effective SIMD width of 32, but the trend 
has been for the SIMD width of GPUs to decrease to 
improve the efficiency of algorithms with irregular con-
trol flow. 

There is also debate about how to expose the SIMD 
execution model. It can be directly exposed to the pro-
grammer with register-SIMD instructions, as is done with 
x86 SSE instructions, or it may be nominally hidden from 
the programmer behind a scalar programming model, as 
is the case with NVIDIA’s GeForce 9000 series. If the SIMD 
execution model is hidden, the conversion from the 
scalar programming model to the SIMD hardware may be 
performed by either the hardware (as in the GeForce 9000 
series) or a compiler or some combination of the two. 
Regardless of which strategy is used, programmers who 
are concerned with performance will need to be aware of 
the underlying SIMD execution model and width. 

Small amounts of local storage 
One of the most important differences between GPUs and 
CPUs is that GPUs devote a greater fraction of their tran-
sistors to arithmetic units, whereas CPUs devote a greater 
fraction of their transistors to cache. This difference is 
one of the primary reasons that the peak performance of 
a GPU is much higher than that of a CPU. 

I expect that this difference will continue in the 
future. The impact on programmers will be significant: 
although the overall programming model of future GPUs 
will become much closer to that of today’s CPUs, pro-
grammers will need to manage data locality much more 
carefully on future GPUs than they do on today’s CPUs. 

This problem is made even more challenging by 
multithreading; if there are N threads on each core, the 
amount of local storage per thread per core is effectively 
1/N of the core’s total local storage. This issue can be 
mitigated if the N threads on a core are sharing a working 
set, but to do this the programmer must think of the N 
threads as being closely coupled to each other. Similarly, 
programmers will have to think about how to share a 
working set across threads on different cores. 

These considerations are already becoming apparent 
with CUDA. The constraints are likely to be frustrating 
to programmers who are accustomed to the large caches 
of CPUs, but they need to realize that extra local storage 
would come at the cost of fewer ALUs (arithmetic logic 
units), and they will need to work closely with hardware 
designers to determine the optimum balance between 
cache and ALUs. 

Cache-coherent shared memory 
The most important aspect of any parallel architecture is 
its overall memory and communication model. To illus-
trate the importance of this aspect of the design, consider 
four (of many) possible alternatives (of course, hybrids 
and enhancements of these models are possible): 
• �A message-passing architecture, in which each processor 

core has its own memory space and all communication 
occurs through explicit message passing. Most large-
scale supercomputers (those with 100-plus processors) 
use this model. 

• �An architecture such as the Sony/Toshiba/IBM Cell with 
a noncached, noncoherent shared memory. In such an 
architecture, all transfers of data between a core’s small 
private memory and the global memory must be orches-
trated through explicit memory-transfer commands. 

• �An architecture such as NVIDIA’s GeForce 8800 with 
what amounts to a minimally cached, noncoherent 
shared memory, with support for load/store to this 
memory. 

• �An architecture such as modern multicore CPUs, with 
cached, coherent shared memory. In such architectures, 
hardware mechanisms manage transfer of data between 
cache and main memory and ensure that data in caches 
of different processors remains consistent. 

There is considerable debate within the graphics archi-
tecture community as to which memory and communi-
cation model would be best for future architectures, and 
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in the near term different hardware vendors are taking 
different approaches. Software programmers should think 
carefully about these issues so that they are prepared to 
influence the debate.

Which approach is most likely to dominate in the 
medium to long term? I have previously argued that the 
trend in rendering algorithms is toward those that build 
and traverse irregular data structures. These irregular data 
structures allow algorithms to adapt to the scene geom-
etry and the current viewpoint. Explicitly managing all 
data locality for these algorithms is painful, especially if 
multiple cores share a read/write data structure. In my 
experience, it is easier to develop these algorithms on a 
cache-coherent architecture, even if achieving optimal 

performance often still requires thinking very carefully 
about the communication and memory-access patterns of 
the performance-critical kernels. 

For these and other reasons too detailed to discuss 
here, I believe that future graphics architectures will 
efficiently support a cache-coherent memory model, and 
that any architecture lacking these capabilities will be a 
second choice at best for programmers who are develop-
ing innovative rendering techniques. Sun’s Niagara archi-
tecture provides a good preview of the kind of memory 
and threading model that I anticipate for future GPUs. I 
also expect, however, that cache-coherent graphics archi-
tectures will include a variety of mechanisms that provide 
the programmer with explicit control over communica-
tion and memory access, such as streaming loads that 
bypass the cache. 

Fine-grained specialization 
The desire to support greater algorithmic diversity will 
drive future graphics architectures toward greater flex-
ibility and generality, but specialization will still be used 
where it provides a sufficiently large benefit for the major-
ity of applications. Most of this specialization will be at 
a fine granularity, used to accelerate specific operations, 

in contrast to the coarse, monolithic granularity used to 
dictate the overall structure of the algorithms executed on 
the hardware in the past. 

In particular, I expect the following specialization will 
continue to exist for graphics architectures: 

Texture hardware. Texture addressing and filtering 
operations use low-precision (typically 16-bit) values that 
are decompressed on the fly from a compressed represen-
tation stored in memory. The amount of data accessed is 
large and requires multithreading to deal effectively with 
cache misses. These operations are a significant fraction 
of the overall rendering cost and benefit enormously from 
specialized hardware. 

Specialized floating-point operations. Rendering 
makes heavy use of floating-point square-root and recip-
rocal operations. Current graphics hardware provides 
high-performance instructions for these operations, as 
well as other operations used for shading such as swiz-
zling and trigonometric functions. Future graphics hard-
ware will need to do the same. 

Video playback and desktop compositing. Video play-
back and 2D and 2.5D desktop window operations benefit 
significantly from specialized hardware. Specialization of 
these operations is especially important for power effi-
ciency. I anticipate that much of this hardware will follow 
the traditional coarse-grained monolithic fixed-function 
model and thus will not be useful for user-written 3D 
graphics programs. 

Current graphics hardware also includes specialized 
hardware to assist with triangle rasterization, but I expect 
that this task will be taken over by software within a 
few years. The reason is that rasterization is gradually 
becoming a smaller fraction of total rendering costs, so 
the penalty for implementing it in software is decreasing. 
This trend will accelerate as more sophisticated visibility 
algorithms supplement or replace the Z buffer. 

As graphics software switches to more powerful vis-
ibility algorithms such as ray tracing, it may become clear 
that certain operations represent a sufficiently large por-
tion of the total computation cost that hardware accelera-
tion would be justified. For example, future architectures 
could include specialized instructions to accelerate the 
data-structure traversal operations used by ray tracing. 

The challenge for graphics architects 
At a high level, the key challenge facing future graphics 
architectures is to strike the best balance between the 
desire to provide high performance on existing graph-
ics algorithms and the desire to provide the flexibility 
needed to support new algorithms with high perfor-
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mance, including nongraphics algorithms and the next 
generation of more capable and sophisticated graphics 
algorithms. I believe that the opportunity for improved 
visual quality and robustness provided by more sophis-
ticated graphics algorithms will cause the transition to 
more flexible architectures to happen relatively rapidly, 
an opinion that remains a matter of debate within the 
graphics architecture community. 

the future of graphics architectures
In the past, graphics architectures defined the algorithms 
used for rendering and their performance. In the future, 
graphics architectures will cease to define the render-
ing algorithms and will simply set the performance and 
power efficiency limits within which software developers 
may do whatever they want. 

For the programmer, future graphics architectures are 
likely to be very similar to today’s multicore CPU archi-
tectures, but with greater SIMD instruction widths and 
the availability of specialized instructions and processing 
units for some operations. Like today’s Niagara processor, 
however, the amount of cache per processor core will be 
relatively small. To achieve peak performance, program-
mers will have to think more carefully about memory-
access patterns and data-structure sizes than they have 
been accustomed to with the large caches of modern 
CPUs. 

Future graphics architectures will enable a golden age 
of innovation in graphics; I expect that over the next 
few years we will see the development of a variety of new 
rendering algorithms that are more efficient and more 
capable than the ones used in the past. For computer 
games, these architectures will allow game logic, phys-
ics simulation, and AI to be more tightly integrated with 
rendering than before. For data-visualization applications, 
these architectures will allow tight integration of domain-
specific data analysis with the rendering computations 
used to display the results of this analysis. The general-
purpose nature of these architectures combined with the 
low cost enabled by their high-volume market will also 
cause them to become the preferred platform for almost 
all high-performance floating-point computations. Q

Acknowledgments and further reading 
Don Fussell, Kurt Akeley, Matt Pharr, Pat Hanrahan, Mark 
Horowitz, Stephen Junkins, and several graphics hardware 

architects contributed directly and indirectly to the ideas 
in this article through many fun and productive discus-
sions. More details about many of the ideas discussed in 
this article can be found in another article I wrote with 
Don Fussell in 2005.4 The tendency of graphics hardware 
to become increasingly general until the temptation 
emerges to incorporate new specialized units has existed 
for a long time and was described in 1968 as the “wheel 
of reincarnation” by Myer and Sutherland.5 The funda-
mental need for programmability in realtime graphics 
hardware, however, is much more important now than it 
was then. 

REFERENCES
1. �Blythe, D. 2006. The Direct3D 10 system. In ACM SIG-

GRAPH 2006 Papers: 724–734.
2. �Cook, R.L., Carpenter, L., Catmull, E. 1987. The Reyes 

image rendering architecture. Computer Graphics (Pro-
ceedings of ACM SIGGRAPH): 95–102.

3. �Laudon, J., Gupta, A., Horowitz, M. 1994. Interleaving: 
a multithreading technique targeting multiprocessors 
and workstations. In Proceedings of the Sixth Interna-
tional Conference on Architectural Support for Programming 
Languages and Operating Systems: 308–318.

4. �Mark, W., Fussell, D. 2005. Real-time rendering systems 
in 2010. Technical Report 05-18, University of Texas. 

5. �Myer, T.H., Sutherland, I.E. 1968. On the design of 
display processors. Communications of the ACM, 11(6): 
410–414.

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

BILL MARK leads Intel’s advanced graphics research lab. 
He is on leave from the University of Texas at Austin, where 
until January 2008 he led a research group that investigated 
future graphics algorithms and architectures. In 2001-2002 
he was the technical leader of the team at NVIDIA that co-
designed (with Microsoft) the Cg language for programma-
ble graphics hardware and developed the first release of the 
NVIDIA Cg compiler. His research interests focus on systems 
and hardware architectures for realtime computer graphics 
and on the opportunity to extend these systems to support 
more general parallel computation and a broader range of 
graphics algorithms, including interactive ray tracing.
© 2008 ACM 1542-7730/08/0300 $5.00

GPUsFO
CU

S
FUTURE GRAPHICS ARCHITECTURES




