Future Generation Computer Systems 91 (2019) 177-190

Contents lists available at ScienceDirect a =
FIGICIS!
Future Generation Computer Systems
journal homepage: www.elsevier.com/locate/fgcs =
GPU-based processing of Hartmann-Shack images for accurate and N
high-speed ocular wavefront sensing e

Juan Mompean ***, Juan L. Aragén?, Pedro M. Prieto®, Pablo Artal

2 Departamento de Ingenieria y Tecnologia de Computadores, Universidad de Murcia, Spain
b Laboratorio de Optica, IUiOyN, Universidad de Murcia, Spain

HIGHLIGHTS

GPU-based high-speed processing of Hartmann-Shack wavefront sensor images.

A robust and accurate centroid detection algorithm based on dynamic pyramidal search.
A highly-parallel pupil tracking algorithm for Hartmann-Shack wavefront sensor images.
Parallel high-speed wavefront map calculation.

ARTICLE INFO

ABSTRACT

Article history:

Received 7 May 2018

Received in revised form 4 August 2018
Accepted 2 September 2018

Available online 6 September 2018

Keywords:

GPGPU

Image processing
Real time
Tracking
Hartmann-Shack
Wavefront sensing

Hartmann-Shack aberrometry is a widely used technique in the field of visual optics but, high-speed and
accurate processing of Hartmann-Shack images can be a computationally expensive/resource intensive
task. While some advancements have been made in achieving high-performance processing units, they
have not been specifically designed for processing Hartmann-Shack images of the human eye with
Graphics Processing Units. In this work, we present the first full-Graphics Processing Unit implementation
of a Hartmann-Shack sensor algorithm aimed at accurately measuring ocular aberrations at a high speed
from high-resolution spot pattern images. The proposed algorithm, called PAPYCS (Parallel Pyramidal
Centroid Search), is inherently parallel and performs a very robust centroid search to avoid image noise
and other artifacts. This is a field where the use of Graphics Processing Units have not been exploited
despite the fact that they can boost Adaptive Optics systems and related closed-loop approaches. Our
proposed implementation achieves processing speeds of 380 frames per second for high resolution
(1280x1280 pixels) images, in addition to showing a high resilience to system and image artifacts that
appear in Hartmann-Shack images from human eyes: more than 98% of the Hartmann-Shack images,
with aberrations of up to 4 L m Root Mean Square for a 5.12mm pupil diameter, were measured with less

than 0.05 . m Root Mean Square Error, which is basically negligible for ocular aberrations.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Optical aberrations are defined as the difference between the
perfect (flat or spherical) wavefront for an ideal optical system
and the bumpy wavefront generated by a real optical system.
Optical aberrations (defocus, astigmatism, coma, etc.) cause de-
viations to the rays of the light beam, therefore preventing them
from converging to a single focusing point and blurring the im-
age. Wavefront sensing, i.e., optical aberration measurement, is
routinely performed in a wide range of fields (e.g., Astronomy,
Microscopy, Communications) for different purposes (e.g., optical

* Correspondence to: Centro de investigacion en Optica y Nanofisica, Edif no 34,
Campus de Espinardo, 30100, Murcia, Spain.
E-mail addresses: juan.mompean@um.es (J. Mompean), jlaragon@um.es
(J.L. Aragén), pegrito@um.es (P.M. Prieto), pablo@um.es (P. Artal).

https://doi.org/10.1016/j.future.2018.09.010

quality determination, instrument calibration, optical design) [1].
Wavefront sensing is also pivotal in most Adaptive Optics (AO)
systems, widely used in astronomy and vision science. AO aims
to dynamically correct the fluctuating aberrations of a system in
real time by means of a wavefront corrector (deformable mirror or
liquid-crystal modulator) whose shape or refractive index distribu-
tion can be modified point-by-point to reshape the wavefront [2].
Due to the dynamics of the aberrations, an AO system requires very
fast wavefront sensing and image processing, therefore, being a
computationally intensive process. As wavefront sensing involves
heavy image analysis and processing, it is an intrinsically paral-
lelizable task which makes the use of General Purpose Graphic
Processing Units (GPGPUs) a perfect candidate to achieve real time
processing speeds.

The Hartmann-Shack (H-S) wavefront sensor, described in
1971 [3], which is based in the sensor proposed by Hartmann

0167-739X/© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).

https://doi.org/10.1016/j.future.2018.09.010
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2018.09.010&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:juan.mompean@um.es
mailto:jlaragon@um.es
mailto:pegrito@um.es
mailto:pablo@um.es
https://doi.org/10.1016/j.future.2018.09.010
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

178 J. Mompedn et al. / Future Generation Computer Systems 91 (2019) 177-190

Flat = Aberrated

Wavefront ~—_ " wavefront

w 00101 1010

Microlenses & HS

microlenses

Camera

Camera
sensor

Fig. 1. (a) H-S wavefront sensor diagram registering a flat wavefront. (b) H-S
wavefront sensor diagram registering an aberrated wavefront. (c) Obtained H-S
spot image for the perfect wavefront. The whole eye is shown on top and a zoomed
area below. (d) Obtained H-S spot image for the aberrated wavefront, including a
corneal reflection. Whole eye is shown on top, zoomed area below.

in 1900 [4], is the most widely used aberration measurement
approach nowadays. The H-S sensor consists of an array of mi-
crolenses, which sample the aperture of the optical system, and an
image detector that records the spot pattern generated (commonly
called the H-S image). For an ideal system, each microlens focuses
the collected wavefront into its focal point and a regular spot pat-
tern is recorded (Fig. 1(a) and (c)). For a real system, the wavefront
irregularities cause local slopes over each microlens, resulting in
a distorted spot pattern (Fig. 1(b) and (d)). The displacement of
each spot with respect to its ideal location (i.e., the focal point
of each microlens) is related to the wavefront’s local tilt, which
in turn is related to the wavefront’s local derivative. The H-S
wavefront sensing operation, therefore, consists of recording the
spot pattern, calculating the position of each spot (i.e., its center of
mass or centroid), computing each centroid displacement in x and
y directions and, finally, integrating these set of local derivatives
to finally obtain the wavefront shape or aberration map (as that
depicted in Fig. 5).

In this paper, our main focus is on measuring the aberrations of
the human eye. Considering this special optical system is far from
perfect, which results in a limited visual quality, measurement of
the eye’s aberrations, also known as ocular aberrometry, is a very
important field of study. Over the last two decades, Ophthalmology
and Vision Science applications have been a catalyst for wavefront

sensor development [5]. There are several commercially available
aberrometers for clinical use, most of them based on the H-S
principle, and many other research apparatuses and prototypes,
recently including binocular and open-view configurations [6].
In many cases, ocular aberrations are used for diagnosis and/or
prescription of corrective optics but there are also Adaptive Optics
systems for ocular applications [7,8]. It is important to note that,
given the fact that the human eye is a living system - closed,
mobile, and fragile - ocular aberrometry is somewhat idiosyncratic
and not completely interchangeable with other optics areas that
deal with artificial systems (e.g., telescopes, microscopes, camera
lenses). For example, H-S images from living human eyes suffer
from corneal reflections (which severely degrade the spot images,
as displayed in Fig. 1, right) and brightness irregularities due to
crystalline lens reduced transparency as an effect of aging, in
addition to temporal fluctuations in spot intensity across the pupil
due to the tear film and other factors.

In this paper we present a parallel Hartmann-Shack wavefront
sensing algorithm for accurate yet high-speed ocular aberrometry.
The proposed core algorithm, called PAPYCS (Parallel Pyramidal
Centroid Search) parallelizes the centroid detection phase while
performing a very robust centroid search, to make the algorithm
immune to the aforementioned issues that degrade ocular H-S spot
images. PAPYCS has been parallelized and optimized for GPGPUs as
it will be detailed in Section 3. In addition to the spot detection
and centroid search phase, polynomial fitting of the aberration
and wavefront map calculation have been parallelized using the
GPU as well. The pupil tracking algorithm, which is another crucial
component in the process, as we will discuss later, has also been
parallelized in the GPU. Experimental results show that our full
approach achieves a speedup above 100x compared to its corre-
sponding sequential implementation. This enables a high speed
processing (up to 380 frames per second on 1280 x 1280 pixel
images), while not sacrificing detection accuracy (more than 98%
of the H-S images with aberrations up to 4 pm were measured
with RMS-Error lower than 0.05 pwm).

The key contributions of this paper are: developing a GPU-based
high-speed implementation capable of processing H-S wavefront
sensor images; creating a robust and accurate centroid detec-
tion algorithm based on dynamic pyramidal search; implementing
a highly-parallel pupil tracking algorithm for Hartmann-Shack
wavefront sensor images; and developing a parallel high-speed
wavefront map calculation.

The remainder of this paper is organized as follows. Section
2 provides some background on H-S wavefront sensing and fur-
ther motivates this work. In addition, Section 2 reviews the most
relevant literature on real-time H-S image processing. Section 3
describes our parallel GPU-based implementation. In Section 4 we
evaluate and report its performance and accuracy. Finally, Section
5 summarizes the main conclusions of the work.

2. Motivation and related work
2.1. Background and motivation

When measuring the wavefront and aberrations of a living op-
tical system such as the human eye, H-S images must be processed
to first detect the centroid of each spot of the microlens array, and
then the wavefront aberration can be reconstructed from the set
of spot displacements — similarly to other artificial optical systems
such as telescopes.

However, as mentioned in the previous section, H-S spot im-
ages from a living human eye suffer from an important number of
inherent problems that can seriously jeopardize the accuracy of the
measured aberration. For example, instead of the typical single-
pass arrangement, an ocular H-S always works in double-pass

J. Mompedn et al. / Future Generation Computer Systems 91 (2019) 177-190 179

(i.e.,alight beam is shined into the eye and its retinal reflection acts
as actual source for sensing), and as a consequence, corneal and
crystalline-lens reflections can fall into the H-S image, degrading
the spot image. Furthermore, transparency may be reduced, es-
pecially in older eyes, producing irregularities in spot brightness.
And retinal hazard severely limits light intensity for ocular uses,
posing a constraint to the signal-to-noise ratio of the spot image.
Even in modern sensors, noise is still a problem which degrades
the quality of the images [9]. The position of the pupil is also
critical for both processing the images and correctly presenting
a stimuli or correcting the aberrations. Finally, when measuring
the aberrations of living eyes along time, it is common to observe
temporal fluctuations in spot intensity across the pupil due to
inhomogeneities in the tear film and changes in the ocular media.

Furthermore, while highly distorted H-S images may be dis-
carded in other applications, this is not typically the case for highly
aberrated eyes, which must be dealt with, since they belong to real
patients. In fact, subjects with pathologically high levels of ocular
aberrations, seriously degrading their vision, are of a high interest
from the point of view of ocular aberrometry since they have the
largest room for improvement.

For all of the above reasons, it is crucial to rely on a very robust
centroid search algorithm, capable of dealing with the aforemen-
tioned effects to produce highly accurate aberration measure-
ments, yet able to perform at high speed in order to be effectively
used in closed-loop Adaptive Optics systems. To that end, in this
paper we propose PAPYCS, a very resilient spot search algorithm,
as we will describe in Section 3.2.1, derived from the time tested
algorithm that we proposed in the early 2000’s [10,11], capable of
yielding very high accuracy for living optical systems, and as we
will report in Section 4, achieving a high throughput as a result of
the highly efficient parallelization performed in this work.

2.2. Related work

The Hartmann-Shack wavefront sensor has been widely used
in optics for a relatively long time and there are a number of
published works aimed at speeding-up H-S image processing,
specifically targeting, however, artificial optical systems, such as
telescopes. To the best of our knowledge, no other previous work
has developed a GPGPU implementation of a Hartmann-Shack
processing system targeted at measuring the aberrations of living
human eyes, performing on the GPU all the necessary tasks from
H-S pupil tracking and spot centroid search, to extrapolating the
Zernike polynomials and computing the wavefront map.

Mocci et al. [12] achieved a very short processing time by simply
using the CPU. However, their implementation was intended for
calibrating lasers, so they could use lower resolution images and
a simpler (faster) spot search algorithm, than those needed for
dealing with images from the human eye. Furthermore, since the
laser beam position was fixed, no pupil tracking was needed. Yu
and Zhang [13,14] proposed another implementation in a CPU,
achieving 110 frames per second (although just the processing
could reach up to 166 FPS) on 512 x 512 pixels images with 193
microlenses (spots). Again, they did not perform any pupil tracking
and there was a limited precision due to the low resolution H-S
images.

An early GPGPU implementation for searching the Hartmann-
Shack centroids and calculating the Zernike polynomials was de-
veloped by Marichal-Hernandez et al. [15]. However, this imple-
mentation was developed for telescope optical systems, achieving
a 10x speedup for the centroid search stage and 2x speedup for
the wavefront map reconstruction stage.

One recent high-speed approach was proposed by Pichler et al.
[16] using an FPGA (Field Programmable Gate Array) and an ASIC
(Application Specific Integrated Circuit) implementation. They

achieved a high throughput (operating at 830 Hz) although the
resulting accuracy was limited because of the simple centroid
detection algorithm which was used, in addition to the limited
number of patterns available during the training of the neural
network. They compute the brightest spot inside the cell of each
lens (of the microlens array, see Fig. 1-(b)) to find its centroid
and calculate its displacement. Then, to reconstruct the wavefront
aberration they proposed to use a neural network trained to re-
late the vector of spots displacements with previously generated
displacement vectors whose wavefront aberration had been previ-
ously calculated. They developed an autonomous system capable
of estimating the wavefront aberration at a high speed. Again,
this approach was aimed at processing H-S images for artificial
lenses (telescopes) and, therefore, the achieved accuracy (due to
the simple spot search algorithm) is not appropriate for measuring
the aberrations of living optical systems, such as the human eye,
which is the target of our proposal.

Reichenbach et al. developed another approach using both FP-
GAs and GPUs to process Hartmann-Shack spot images [17]. This
implementation was also aimed at wavefront sensing for artificial
optical systems (telescopes in particular). Therefore, it does not
include a pupil tracking step. Nevertheless, an interesting approach
was used for spot centroiding. They proposed a two-stage algo-
rithm: in the first phase the potential spots are found by searching
for the brightest pixels within a given area; and in the second
phase, the rest of spots in the H-S image are correlated with those
in the list of potential spots, starting from a few selected ones
(further details of this algorithm are given in Section 3.2.2). They
use an FPGA for spot centroid search, while the CPU is used for
correlating the spots, and finally, the GPU is used for reconstructing
the wavefront aberration. They achieved a processing speed of 294
frames per second for an array lens producing 100 x 100 spots in a
one megapixel (1024 x 1024) image. This is the fastest implemen-
tation we have found in the literature, although it was intended for
artificial optical systems, we will compare our proposed PAPYCS
algorithm for processing H-S images against Reichenbach’s ap-
proach in terms of both performance and measurement accuracy.

On the other hand, when measuring the aberrations of the
human eye it is crucial to start by detecting the center and size
of the pupil of the patient, which, unlike that of artificial systems,
typically moves and changes. While it would be possible to use
a secondary camera for performing pupil tracking, it would in-
crease the complexity of both the optical setup and the processing
software. A more convenient approach is to track the pupil on
the Hartmann-Shack images themselves. Some specialized pupil
tracking methods have been developed to this end. The method
developed by Meimon et al. [18] consists on integrating the pixels
over each lenslet, thresholding them and fitting an ellipse to the
border detected. Although this method has been characterized for
its high accuracy, a high-performance version has not been devel-
oped. Another method was developed by Arines et al. consisting
on thresholding the H-S image and calculating the centroid of the
resulting image [19]. Although this method works for detecting the
center of the pupil when it is completely inside the image, it does
not work correctly with partially occluded pupils. Furthermore, it
does not measure the pupil radius. de Castro et al. [20] showed a
pupil tracking method in the H-S images using the detected spots
and a metric depending on their brightness to find the pupil. They
were able to build a close loop system showing the advantages of
performing pupil tracking in H-S images.

Additional developments have been carried out by Mauch and
Reger[21,22] using FPGAs. Their approach uses a tightly integrated
FPGA with a camera to achieve an impressive rate of 905 frames
per second (although the resolution of the camera is 224 x 224
pixels). A dynamic algorithm is used to be able to detect big aberra-
tions. First, the spots are detected using a Connected Components

180 J. Mompedn et al. / Future Generation Computer Systems 91 (2019) 177-190

Labeling algorithm. Later they are reordered to find their positions
relative to the reference system.

In this paper, in order to reduce the complexity of the whole
optical system, we detect and track the pupil directly on the H-S
images. Using a method based on a previous work of our own [23]
where a highly parallel pupil tracker was proposed to accurately
estimate the pupil size and center, but in that case dealing with
images of the eye illuminated with diffuse infrared light, producing
dark pupils surrounded by the lighter iris. Instead, in this paper we
modify that approach to live track the two pupils directly from the
binocular H-S spot images (such as those shown in Fig. 2), using
the diffuse component of retinal reflection that back-illuminates
the pupils, outlining them against the virtually black iris.

3. Parallelizing H-S image processing

This Section describes our full approach for accurately mea-
suring ocular aberrations in both eyes at a high speed from high-
resolution H-S spot images. All the stages involved in the pro-
cessing of the H-S images have been parallelized: pupil tracking,
centroid detection, wavefront calculation, and the aberration map
calculation.

Regarding the core algorithm -spot detection and centroid
calculation- the proposed PAPYCS (Parallel Pyramidal Centroid
Search) algorithm evolve from our own previous work in [10]
and [11], back in 2000, where it was first introduced the pyramidal
algorithm for spot centroid search, as a tool for (off-line) measure-
ment of monocular aberrations. This preliminary pyramidal algo-
rithm is now highly parallelized for enabling real-time processing
of both eyes simultaneously. Furthermore, our current approach
has been adapted to the characteristics of current H-S wavefront
sensors, with much higher microlens density and shorter focal
length, resulting in H-S images comprised of a large number of very
sharp and compact spots.

Section 3.1 details the pupil tracking phase. In Section 3.2 our
PAPYCS algorithm for searching the centroid of the spots is de-
scribed, together with Reichenbach’s algorithm [17] used for com-
parison purposes. In Section 3.3 the methods used for calculating
Zernike polynomial coefficients are discussed. Finally, Section 3.4
is devoted to the parallelization of the final algorithm responsible
for calculating the wavefront map.

3.1. Step 1: H-S pupil tracking

When the Hartmann-Shack sensor is used to characterize the
human eye’s aberrations the system’s pupil must be tracked so as
to analyze the correct area of the H-S image. While in other artifi-
cial setups (e.g., in telescopes) the H-S spots in the CCD sensor area
are static, when dealing with a human eye, the area of the sensor
covered by the spots is constantly moving. Therefore, knowing the
position of the eye’s pupil is important to analyze the correct area
of the image. Fig. 2 shows an example of spot image taken with a
binocular H-S sensor.

H-S images from living eyes show a high variability in bright-
ness. The pupils of the subjects can also have different sizes and, in
binocular systems, both pupils may partially overlap each other,
or they may fall outside of the bounds of the camera’s CCD. To
correctly track the pupil, a robust algorithm needs to be developed.
Our approach for H-S pupil tracking is able to operate at high-
speed while overcoming those issues.

Our setup has been designed to work with binocular H-S im-
ages. First, the global H-S image is divided in two sub-images
(Fig. 3(a) shows one of them). The image is then smoothed with
a Gaussian filter (radius 4, sigma 4) as shown in Fig. 3(b). This is an
important step since, given the nature of the H-S images, most of
the light is concentrated in the spots. However, in this first stage

Fig. 2. Binocular H-S sensor image.

we want to find the border of the pupil and for that we need to
have a smooth rounded area brighter than the background outside.
A Gaussian filter is appropriate since it reduces the difference
in brightness between the spots and the surrounding area while
maintaining the brightness of the background.

We have used a thresholding approach to select the pixels that
are inside each pupil (Fig. 3(c)). However, given the high variability
expected in the brightness of the images, a fixed threshold value
is not convenient. To overcome this issue, we have used the Otsu
algorithm [24] to calculate an appropriate threshold value in each
frame. Furthermore, large differences in brightness can be found
between both pupils, since they might not be equally illuminated.
Recall that two eyes are indeed two different optical systems. To
avoid the problem of the illumination difference, we process each
pupil independently, calculating a particular threshold for each
one.

After thresholding each pupil, its borders are still too rough,
and not as rounded as expected, to perform the ellipse fitting
step properly. Furthermore, it is common to have holes inside the
thresholded area, as shown in Fig. 3(c), that must be removed. To
alleviate this problem, a morphological close operation is applied
to smooth the borders around the thresholded area, as shown in
Fig. 3(d). The resulting image is more suitable for processing by the
ellipse fitting algorithm. The border is designated with a simple
method: an above-threshold pixel is classified as a border pixel if
any of its 8 neighbors is below the threshold, as shown in Fig. 3(e).
Finally, several ellipses are fitted using a RANSAC (Random Sample
Consensus) approach [25] to select the ellipse that best fits the
border pixels (Fig. 3(f)). The RANSAC technique is very appropriate
here since most but not necessarily all the points are correct border
pixels. Therefore, using the complete set of border points for the
ellipse fitting could easily lead to an incorrect result. The RANSAC
method! not only overcomes this issue but is also robust to missing
parts (e.g., if part of the pupil falls outside of the CCD, or if it
overlaps with the other pupil). Fig. 3(f) shows the final best ellipse
for this example.

GPU implementation of Pupil Tracking. The described pupil
tracking approach has been fully parallelized by using CUDA. Since
most of the operations are image processing functions, they can
be parallelized by assigning one thread per pixel. However, in
order to achieve a higher performance we have optimized the

1 For fitting one ellipse we use 5 points, and a total of 1024 ellipses are fitted for
each pupil.

J. Mompedn et al. / Future Generation Computer Systems 91 (2019) 177-190 181

(d) (e)

Fig. 3. (a) Original H-S image. (b) Smoothed image after the Gaussian filter. (c) Thresholded image. (d) Application of a morphological close to the thresholded image. (e)

Borders found on the closed image. (f) Final elliptical pupil found on the image.

implementation to take advantage of all the resources available
on the GPU. Several operations performed to find the pupil share
the same pattern: they load data from a squared area in the input
image and generate an output value for the output pixel. These
operations are the Gaussian filter and the morphological close (a
dilation filter followed by an erosion filter). Since they share the
same memory access pattern, we have applied the following CUDA
optimizations:

1. Separable kernels: Since the Gaussian, dilation and erosion
filters are applied as 2-dimensional square filters, they can
be separated into two 1-dimensional filters reducing the
amount of operations and also the memory pressure. Instead
of having one thread processing n? pixels, each thread pro-
cesses 2 * n pixels. There are two phases: first, a 1-d filter is
applied horizontally and its output is stored into a temporal
image; second, the 1-d filter is applied vertically producing
the final image. In the first phase all the pixels are processed,
therefore, the data from each row loaded in the second phase
is the result of applying the filter to n pixels horizontally.

2. Shared memory: Although the memory pressure is greatly
reduced with the previous optimization, there are still many
threads loading the same data, saturating and wasting the

memory bandwidth. This can be alleviated by using the
GPU’s shared memory, which has a much higher bandwidth
and lower latency than the global memory, resulting in
higher overall performance.

3. Template unrolling: Loops are a convenient tool for pro-

cessing data. However, the ending condition must be tested
in each iteration and the accessed addresses have to be re-
calculated for each iteration. By unrolling the loop inside
the 1-d filter, the ending condition does not need to be
tested anymore and the memory addresses are known at
compile time. However, in order to apply the loop unrolling
optimization, the size of the kernel input set must to be
known at compile time. Fortunately, we only use a reduced
range of radii and these can be provided at compile time.

. Reducing memory bandwidth usage: Our H-S images are

grayscale with values between 0 and 255. Consequently the
bandwidth consumption can be reduced by changing the
data type from 32-bit integers to 8-bit unsigned chars.

After pre-processing the H-S image, the ellipse fitting is per-
formed. First we select the points that will be used for each fitting.
We are using 5 points per fitting and we are doing a total of 1024
ellipse fittings. The 5 points for an ellipse are randomly selected

182 J. Mompedn et al. / Future Generation Computer Systems 91 (2019) 177-190

from the overall set of border points. Afterwards, the best fitting
is selected as the one with the most votes from the border points
(a vote is accounted if the ellipse is less than 2 pixels away from
the border point). Some of these operations are computationally
intensive, and to reduce the execution time in the GPU we have
applied the following optimizations:

1. Fast math: Some mathematical operations performed with
high precision such as pow or sqrt can be performed with a
lower precision but faster. We have used this lower precision
in the ellipse fitting calculations without any significant
difference in the results.

2. Pre-calculated random numbers: When the points for each
fitting are randomly selected, the random indices have to
be generated within a range (0 to number of border points-
1). Generating random numbers is an expensive operation
that impacts the overall performance. As a solution we have
decided to pre-calculate the random indices just once at the
beginning, in the range of [0..1]. When the number of border
points is known, these random indices are scaled to the final
range (0 to number of border points-1). This is much faster
than generating the random points every time, and the sets
of points are still randomly selected and changed from frame
to frame.

3. Reduction with ballot and popc: After fitting the ellipses
the votes for each one of them are counted. This task has
been optimized using the ballot and popc instructions. Ballot
sets the ith bit of a given integer to one when the ith thread
of a warp is active and provides a number bigger than zero
to the function. So after calling that function each warp has
an integer with as many ones as votes there are in that warp.
Finally, the popc instruction counts the number of bits set to
one in an integer, i.e., the number of votes in each warp. This
is faster than using either atomic operations or the shuffle
instruction.

4. Reducing device-to-host communications: The last task is
selecting the best ellipse fitting, i.e., the most voted one. In
the naive implementation the index of the best ellipse was
copied to the host and then the best ellipse was copied to
the host. However, it is possible to avoid one memory copy
(plus synchronization)if the best ellipse is copied to a known
address in the device memory where it can be accessed
directly from the host.

3.2. Step 2: Centroid search

Once the pupil is found, the second step is to detect all the spots
in the Hartmann-Shack image. This is the most critical phase in the
entire wavefront calculation since each spot’s centroid (or center of
mass) must be computed with the best possible accuracy in order
to achieve the most accurate wavefront reconstruction.

In this paper we propose PAPYCS, a Parallel Pyramidal Centroid
Search algorithm, explained in the following Section 3.2.1. We
also evaluate two other centroid search algorithms for comparison
purposes, explained in Sections 3.2.3 and 3.2.2. Note that the three
centroid search algorithms evaluated in this paper make use of
a sub-pixel precision to provide the best possible input for the
Zernike polynomials fitting step.

Finally, once the centroids for the H-S image are calculated
we can determine their displacement with respect to a reference
position. A reference H-S image, with no eye in place, is used for
calibration purposes. The spots on this image are searched and
their positions saved at the beginning of the process to be used
as reference centroids throughout. Using a reference image also
removes any pre-existing aberration that could be present in the
optical system.

3.2.1. PAPYCS: Parallel pyramidal centroid search

Our pyramidal algorithm divides the H-S image in sub-
apertures. Each image has as many sub-apertures as microlenses
in the lenslet array. As the size of the microlenses is known (it is
a design parameter given by the manufacturer), the image can be
divided in to small sub-windows each one theoretically containing
one spot. To determine the position for each sub-window, the
reference image is initially processed to find its centroids, as
mentioned before. These reference centroids are then used as the
center for each one of the search sub-windows. This way we create
a static search mesh where each sub-window of the static mesh
serves as the starting search area for each centroid in the actual
H-S image we want to evaluate (see Fig. 4(a)).

The pyramidal algorithm then starts an exhaustive search to
find the centroid of each spot. While other simpler algorithms just
search for the brightest pixel, the pyramidal approach iteratively
calculates the center of mass of the current sub-window, and for
the nextiteration it re-centers a smaller sub-window in the current
centroid, repeating the search. In each iteration, the minimum
value of the pixels within the scanned area is calculated. And
subtracted from each pixel while the center of mass is calculated,
which enables a faster convergence towards the centroid of the
spot. When the center of mass of the ith iteration is calculated,
the window side is reduced by 1 pixel, and the next iteration is
performed until a minimum scan window of 3 x 3 is reached.
This method has sub-pixel accuracy since the center of mass is
calculated using float values, and weighted values are considered
for the pixel borders to exclude the sub-pixel region that falls
outside the scanned area, as proposed in [10].

While this iterative approach is very robust against image noise
and helps to reduce the impact of corneal reflections, the use of
a static search mesh limits the area where each spot is expected
to be found. This might lead to wrong aberration measurements
for strong aberrations, if the spot falls outside its corresponding
microlens cell (see red points in Fig. 4(a)). To overcome this issue
we propose the use of a dynamic search mesh as follows.

Use of a dynamic search mesh. In order to increase the range of
measurable aberrations, a dynamic search mesh is proposed in
PAPYCS. In afirst stage, a small static mesh is used to search the cen-
troids just for a reduced central part of the pupil, and a preliminary
aberration is calculated for this central area. In a second stage, this
preliminary aberration for the current H-S image is extrapolated
to the overall pupil size, its derivatives are used to predict the
likely spot positions, and a new distorted mesh is created form
these positions. A second centroid search is performed for this
dynamically expanded mesh. This optimization allows us to process
H-S images with strong aberrations while still using a mesh for
finding the spots, as it can be seen in Fig. 4(b).

Discarding stage. As previously hinted, ocular Hartmann-Shack
images can suffer from important amounts of noise depending
on the optical setup and the subject. This noise can be just a
background, which is not a problem for the pyramidal approach,
it can be a corneal reflection, or it can be the result of dry eyes
where the tear film is broken. Noise and other factors can lead to
incorrect spot centroiding which can greatly distort the calculated
aberration. To mitigate the impact of these issues, three criteria
have been used to discard incorrect spots.

1. If a cell is empty or saturated, it should be discarded. To
test if this is the case, the value of the pixel in the centroid
point is compared with the values of the pixels around it. In
particular, it is compared with the mean value of the eight
neighbors around it.

2. Comparing the centroid of a spot with it neighboring spots.
While strong high-order aberrations can produce odd dis-
placements of spots, it is usually safe to assume that spots
are not either too close or too far from each other.

J. Mompedn et al. / Future Generation Computer Systems 91 (2019) 177-190 183

Fig. 4. (a) Static mesh for searching the spots. Blue rectangles show the search windows. Red points show spots outside of their search window while green points show
spots inside. (b) Dynamic mesh for searching the spots. Blue rectangles show the search windows. Green points show spots inside their search window; magenta points
show the center of the static (initial) search windows . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

3. Finally, any isolated spot is discarded because it is compli-
cated to test its centroid against its neighbors. Furthermore,
an isolated spot typically means that the spots around it are
incorrect as well.

GPU implementation of PAPYCS. In order to parallelize the pyra-
midal centroid search at a high level, the work is divided in spots.
Since the work to be performed within a spot is independent
from the rest, PAPYCS can be parallelized efficiently, contrarily
to Reichenbach algorithm, which is inherently sequential (as it is
described in Section 3.2.2). Therefore, each spot is searched by a
group of CUDA threads. The amount of threads working on each
spot is fixed to 32 because the shuffle instructions are used to
share data between the threads working on the same spot, and
also because the scope of the shuffle instructions is limited to
threads within the same warp. The pseudo-code for this high-level
parallelization is shown in Algorithm 1.

Algorithm 1: PAPYCS high-level pseudo-code.

1 Image: Hartmann-Shack image

2 Spots: Array with the coordinates of each spot

3 NumSpots: Number of spots

4 NumSteps: Number of steps for the search

5

6 block(32 * SPOTS_PER_BLOCK, 1, 1)

7 grid(NumSpots / SPOTS_PER_BLOCK, 1, 1)

8 SearchSpots<<<grid,block>>>(Image, Spots, NumSpots,
NumSteps)

At a lower level of parallelization, a group (warp) of 32 threads
calculates the centroid of one spot. Each thread processes one part
of the scanned window and calculates the centroid of that area
(lines 12-17 in Algorithm 2). To improve the effective memory
bandwidth, vectorized accesses are used (line 15 in Algorithm 2).
However, alignment of the accessed memory is not guaranteed,
therefore, the first and last part of the pixels loaded are treated
differently if they are not aligned (lines 14 and 16 in Algorithm
2). Finally, the threads of each group share their results with each
other, adding them using CUDA shuffle instructions (line 19 in
Algorithm 2). With the obtained result, each thread calculates the

Algorithm 2: Kernel of the PAPYCS algorithm.

Image: Hartmann-Shack image

Spots: Array with the coordinates of each spot
NumSpots: Number of spots

NumSteps: Number of steps for the search

currCenter <— GetCenter(Spots, threadld)

fori < 0to NumSteps-1 do

pyramidSize < LensSize — i

Each thread computes its partial center of mass
partCenter < (0, 0)

minimum < inf

for y < currCenter.y — %idsue + threadld to

currCenter.y + %ids”e by 32 do

© 0NV R W N -

[
-0

-
N

13
14 [partCenter, minimum] +=
PartialMassCenterMissalignedBeginning(Image,
currCenter, y, pyramidSize)

15 [partCenter, minimum] +=
PartialMassCenterVectorized(Image, currCenter, y,
pyramidSize)

16 [partCenter, minimum] +=
PartialMassCenterMissalignedEnd(Image, currCenter,
y, pyramidSize)

17 end

18 Threads computing the same spot share their partial results
19 currCenter < ShuffleMassCenter(partCenter, minimum)
20 end

21 StoreCenter(Spots, currCenter)

new centroid and the process is repeated until the final scanning
area is reached (loop in line 7 in Algorithm 2).

A couple of optimizations that have been applied in this paral-
lelization process are further described next:

1. Shuffle instructions: After each group of threads has pro-
cessed the pixels belonging to its spot, they have to share

184 J. Mompedn et al. / Future Generation Computer Systems 91 (2019) 177-190

their results with each other. By using shuffle instructions
data can be shared efficiently between the 32 threads of
the group. In particular, the shuffle instructions are used to
accumulate the results of each thread and, finally, thread 0
scatters the centroid position to the other 31 threads within
the warp. The centroid data is calculated by each thread us-
ing 4 parameters: the sum of the x coordinates weighted by
each pixel intensity; the sum of the y coordinates weighted
by each pixel intensity; the total sum of pixel intensities;
and the minimum intensity value within the area. These
four numbers are reduced using the shuffle instructions. As
a side note, the performance has been further improved by
interleaving the four shuffle instructions.

2. Vectorized memory accesses: In order to calculate the cen-
ter of mass of each spot, the corresponding pixels are loaded
from global memory one by one. It is possible to improve the
loading of this data by vectorizing the memory accesses. The
data type of a pixel is uint8_t, i.e., a size of 8 bits per pixel. So,
four pixels can be loaded simultaneously (32 bits) and later
separated into four independent pixels. Address alignment
is ensured and non-aligned pixels are treated separately. As
a result, memory operations are more efficient and the total
execution time is reduced.

To calculate the dynamic search mesh, a matrix with the deriva-
tives of the Zernike polynomials is calculated for the overall pupil
size. This matrix is multiplied by the value of the Zernike coef-
ficients to obtain the theoretical displacements of the centroids
for the given aberration. These displacements will be used to set
the starting search windows (the so-called dynamic mesh) for the
centroids. The multiplication of the two matrices is performed
using the CUBLAS library [26]. The calculation of the starting search
windows is parallelized by using as many threads as spots there are
in the pupil.

The discarding stage is implemented in several steps. First, one
thread per spot is used to calculate the difference between the
central pixel and the mean value of its eight closest neighbors. If
this difference is bigger than 15 the spot is copied to the list of valid
ones. Otherwise, the spot is discarded. To test the second criterion,
the spots are copied from the 1D vector where they are stored to
a 2D structure of the same size as the microlens array. Then each
spot is compared with its four neighboring spots and, if any of them
is either too close or too far, they are both discarded (again using
one thread per spot). Finally, all the spots are checked and any one
of them found isolated is discarded as well.

3.2.2. Reichenbach’s algorithm

The algorithm developed by Reichenbach et al. [17] follows a
very different approach from PAPYCS. It starts by processing the
whole image, pixel by pixel, searching for a local maximum, over a
threshold, within areas of 13 x 13 pixels. This first step is intended
to detect all the potential spots in the image (i.e., all the distinct
small areas with a maximum point). This step fits quite well the
SIMD architecture of a GPU, with different threads working on
different data but running the same instructions.

In a second phase, the rest of spots are correlated with those in
the list of potential spots, starting from a few selected ones. Given
an H-S image of a human eye, it is known that spot displacements
are bigger as we go away from the center of the pupil. Therefore,
central spots are typically close to their original reference position.
Unfortunately, corneal reflections are also typically located around
the center of the pupil and they can be easily mis-detected as
spots. In any case a group of 5 x 5 spots in the center of the
pupil are initially selected and assigned to their closest positions in
the reference H-S image. From them, other spots in the pupil are
correlated with those in the list of potential spots. In order to detect

a new spot, two previously calculated ones are used, and from
their respective distance and direction an approximated position is
extrapolated for a new spot. Then the closest spot, from the list of
potential spots found in the first step, to this extrapolated position
is selected. This process is repeated, iteratively, in all directions
until the border of the pupil is reached and no more spots can be
found.

One advantage of this algorithm, when compared with our
pyramidal PAPYCS, is its capability to detect spots that are outside
their reference sub-window, which only happens for very strong
aberrations. However, its major disadvantage is the lack of robust-
ness in the presence of corneal reflections or when the signal-to-
noise ratio is low. Both situations are very common when dealing
with H-S images from human eyes, although it is not the case for
artificial optical systems (such as telescopes) for which this ap-
proach was designed. Finally, it is worth noting that Reichenbach’s
algorithm is inherently sequential, since the position of each spot is
derived from some previously calculated ones, which makes it hard
to parallelize. Also note that because of its incremental spot search-
ing approach, any early error (e.g., a corneal reflection being mis-
detected as a legit spot) can be propagated to the rest of searched
spots, leading to higher errors in the calculated aberration, as it will
be seen in the results section.

GPU implementation of Reichenbach’s. In the first stage of the
algorithm, all the potential spots are searched. To do so the image
is divided in tiles and each CUDA block loads one tile to shared
memory. One thread per pixel is used to test if there is a potential
spot in that location, and if so, it is added to a 1D vector which
will contain the list of potential spots. When this list is finished, an
initial mesh of 5 x 5 spots is created and the centroid of each one is
determined to be the closest in the list of potential spots. A parallel
search is done to find the closest spot in the list, with 32 threads
working in parallel for each spot in the mesh. After completing the
initial 5 x 5 mesh, other spots are iteratively searched for in two
steps. First, one thread per potential spot tests whether its position
can be extrapolated from the previously found spots. If that is the
case, it is added to a list of temporary spots. In a second step, the
closest spot to each one of the temporary spots from the potential
spots is searched, and if any is found it is stored as a new found
spot. This procedure is repeated for as many steps as spots fit in
the chosen radius of the pupil. One specific CUDA optimization has
been applied:

1. Shared memory: Since many threads in the same block are
accessing the same memory addresses, the use of shared
memory reduces the amount of loads issued to global mem-
ory and greatly reduces the latency of the load operations.

3.2.3. Center of mass algorithm

The third and final centroid search algorithm we evaluate in
this paper is called the Center of Mass (CoM) algorithm. This is
a very straightforward and naive implementation, which is not
computationally intensive at the cost of a much lower accuracy.
Actually, it can be seen as a simplified version of the pyramidal Pa-
PyCS algorithm described in Section 3.2.1. The difference between
them is the way the centroid of each spot is calculated. While
the pyramidal approach performs an iterative converging search,
the center of mass performs only one iteration to calculate the
centroid, starting from the reference H-S image and using the static
search mesh. This reduces the execution time but also degrades its
accuracy.

J. Mompedn et al. / Future Generation Computer Systems 91 (2019) 177-190 185

Fig. 5. Example of wavefront map.

3.3. Step 3: Zernike polynomials fitting

Once the centroids of all the spots have been calculated, the next
step is fitting the Zernike polynomial derivatives to the displace-
ments of the spots to obtain the so-called Zernike coefficients [27-
30] by solving an overdetermined equation system.

In order to parallelize this step, we have tested two different
methods. The first one consists of using the gels function from the
CUBLAS library, in order to perform the least squares fitting. The
second method consists of calculating the inverse of the matrix
containing the derivatives of the Zernike polynomials and mul-
tiplying the result by the displacements of the spots. Although
both methods pursue the same purpose they achieve very different
accuracy and performance. The gels function is slower but more
accurate than calculating the inversion matrix. To speedup the
processing the inverse has been used in all the performance and
accuracy tests.

3.4. Step 4: Wavefront map calculation

While the values of the Zernike coefficients are the most im-
portant data for characterizing a wavefront, it is often convenient
to present the aberrations as an image, the so-called wavefront
map, in order to intuitively convey the magnitude and distribution
of the distortions. An example of a wavefront map is shown in
Fig. 5. Furthermore, if a closed-loop Adaptive Optics system is
running, the wavefront map might be used to update a spatial light
modulator to dynamically correct the measured aberration.

Calculating the wavefront map of an aberration is a
computationally-intensive operation, specially when many Zernike
polynomials are used and/or the size of the image is big. Therefore,
a high performance implementation is required for real-time (or
higher) performance. In this paper we have developed a parallel
GPU version of the wavefront map reconstruction step that will be
evaluated at the end of the results section, in 4.4.

To reconstruct the wavefront map of a given aberration, the
wavefront map of each Zernike polynomial is first calculated. These
calculations are done only once since the result, can be reused.
Afterwards, the map of each polynomial is added, weighted by the
value of its corresponding Zernike coefficient. The modulo 1 of the
value of each pixel is calculated and stored in the output image.
Finally, the values of the image are scaled to be between 0 and 255.

GPU implementation. Each step has been parallelized in our CUDA
implementation, using one thread per pixel processed with two
remarkable optimizations:

1. Shared memory: The values of the Zernike coefficients are
used by all the threads. Since these values are the same
for all of them, the use of shared memory results in a sig-
nificant improvement. The Zernike coefficients are loaded
once from global memory and subsequently are accessed
from the much faster shared memory. Moreover, the careful
use of CUDA pitched memory and pinned memory results in
additional performance improvements.

2. Half data type: Although calculations are performed with
floating point arithmetic, a high precision is not required
for visualization purposes. Instead of using float or double,
the half data type is used (with a size of 2 bytes), reducing
the bandwidth required to load data. Note that the main
bottleneck of the kernels is the huge bandwidth required to
load the wavefront map of each Zernike polynomial. Oper-
ations within the kernel are still performed using FP (float)
arithmetic.

4. Experimental results
4.1. Evaluation methodology

In order to measure the performance and accuracy of the im-
plemented algorithms, several configurations have been evaluated,
varying two main parameters. First, the number of spots inside
the pupil: we have evaluated four cases (250, 500, 1100 and 2000
spots) with a constant image size of 2560 x 2560 pixels. Since the
image size was fixed, the area for each spot became smaller as
their number increased. The second varied parameter was image
resolution: 640 x 640, 1280 x 1280 and 2560 x 2560 pixels. In
this case the number of spots was fixed at 250, hence the area
corresponding to a spot increased with image size. Real systems
may have a wide range of configurations regarding the number of
microlenses used and the number of pixels in the camera sensor.
Therefore, the tested configurations should be very useful to un-
derstand the performance of the implementations in real systems
used in very different situations.

To properly evaluate the accuracy of the centroid search al-
gorithms, our first set of H-S images was synthetically created
using MATLAB from a set of given aberrations, generating a video
with 100 H-S images. Although the aberrations were randomly
selected, the weight of each Zernike order was set to comply with
the statistics by Castejon-Mochoén et al. [31] for a population of
normal subjects. To make this first set of synthetic H-S images
more realistic, reflections and brightness maps were added. Reflec-
tions are quite common in a H-S system. Sometimes they can be
mitigated but this is not always possible. These brightness maps
were extracted from real H-S images and emulate local changes in
brightness as found in real images. Finally, random (white) noise
was also added to the whole H-S image.

Actual H-S images from a real H-S system (Fig. 6) have also been
used to evaluate both performance and accuracy of the centroid
search algorithms. Although, accuracy in this case is more difficult
to check since the original aberration is unknown and not readily
available for comparison as is the case for synthetic images. Still,
we took images from an artificial eye placed in front of the actual
H-S system. As this was a static (non-living) experiment, only the
image noise was expected to change from frame to frame. We used
the variability of the measured aberration as an indicator of the
robustness of our PAPYCS algorithm against noise and other exter-
nal artifacts that pollute actual H-S images (reflections, brightness
variations, system instability, etc.).

The graphic card for testing was a state-of-the art NVIDIA 980
GTX implementing 2048 cores. CUDA version 8.0 was used. The
sequential implementation was tested in an Intel i5-4690 (up to
3.9 GHz) processor which integrates four physical cores compiling

186 J. Mompedn et al. / Future Generation Computer Systems 91 (2019) 177-190

Fig. 6. Hartmann-Shack open-view setup for human eyes.

PaPyCS search s
Reich. search
CoM search I

PaPyCS total Ed
Reich. total C——
CoM total E—3

1000 ¢ T T T T E
= 100 ¢ 3
o £]
Q L]
8 E 4
%) 10 3 E

250 500

Number of spots

1100 2000

Fig. 7. Speedup over the sequential implementation of both the centroid search
step and the overall process, depending on the number of spots (image size fixed at
2560 x 2560 pixels).

PaPyCS search s
Reich. search
CoM search

PaPyCS total
Reich. total C—
CoM total —3

1000 ¢ ‘ \ \ 3
2 100 ¢ 3
° L |
Q F]
8_ r]
(%] 10 E E

640 1280

Image width (pixels)

2560

Fig. 8. Speedup over the sequential implementation of both the centroid search
step and the overall process, depending image size (the number of spots was fixed
at 250).

with gcc V7. The OpenCV library (v3.3.1) [32] was also used in
the sequential implementation for the computer vision functions
(Gaussian filter, threshold, and morphological close) that involved
in the pupil tracking step. OpenCV implements highly optimized
functions, making use of the AVX vector instructions whenever
possible.

Centroid Search ==
Fit coefficients C—1

Copy Immmm
Preprocessing I
Search Pupil s

12 I — T
10
(2]
° 8
o
o 6
0
.é 4
2
0
P R C P R C P R C P R C
250 500 1100 2000

Number of spots

Fig. 9. GPU time spent in each task for a varying number of spots (image size was
fixed at 2560 x 2560 pixels). P stands for PAPYCS, R for Reichenbach’s and C for
Center of Mass.

Centroid Search =@
Fit coefficients C—

Copy mmmm
Preprocessing I
Search Pupil

12 T T T T
10 —
wn
T 8
IS}
3 6
n
.E 4
2
0
P R C P R C P R C
640 2560

1280
Image width (pixels)

Fig. 10. GPU time spent in each task for a varying image size (the number of spots
was fixed at 250). P stands for PAPYCS, R for Reichenbach’s and C for Center of Mass.

4.2. Performance

It is important to note that all the performance results showed
in this Section include the copy time between CPU and GPU, or
vice versa, whenever a copy is performed (i.e., copying H-S images
from CPU to GPU, copying Zernike coefficients to CPU, or copying
wavefront map to CPU, in addition to any other intermediate copy
that the algorithms require).

4.2.1. Speedup

When analyzing the achieved speedup, the results have been
separated in two different categories: varying the number of spots
(Fig. 7) and varying image size (Fig. 8). Both figures show, for each
of the three evaluated search algorithms, the speedup achieved
(over its own sequential implementation) for just the centroid
search phase (Step 2), and also the overall speedup for the whole
process (i.e., including all the 4 processing steps explained in the
previous Section).

When varying the number of spots, the speedup of the centroid
search step (first three bars of each group) scales well with an
increasing number of spots, as it can be seen in Fig. 7. In particular,
the average speedup for the centroid search phase using the 2000-
spots configuration is 192x, 78 x and 66 x for PAPYCS, Reichen-
bach’s and the Center of Mass (CoM) algorithms respectively.

While it is interesting to analyze the speedup for just the cen-
troid search step, it is even more relevant to examine the speedup
obtained for the whole process, represented by the last three bars
(of each group) in Fig. 7. Again, the scalability for an increasing

J. Mompedn et al. / Future Generation Computer Systems 91 (2019) 177-190 187

number of spots is very good for the three algorithms, obtaining
average overall speedups of 103 x, 65x and 58 x (2000 spots con-
figuration) for PAPYCS, Reichenbach’s and the Center of Mass (CoM)
algorithms respectively.

When analyzing the scalability depending on the image size, the
results are more complicated, as shown in Fig. 8. Reichenbach’s
algorithm scales well, because the number of working threads is
increased as the image size is increased. However, in PAPYCS and
CoM algorithms each thread is doing more work because the size
of the search window is increased linearly the image size, going
from 32 x 32 pixels up to 128 x 128 pixels, while the number
of threads working on each window is the same, 32 threads, to
be able to use the shuffle instructions. Therefore, each thread is
processing a bigger area and the speedup does not increase with
image size. The average speedup obtained for the Centroid Search
phase (2560 x 2560 configuration) is 115x, 15x and 19x for
PAPYCS, Reichenbach’s and CoM algorithms respectively.

Finally, the last three bars (of each group) in Fig. 8 show the
speedup for the overall process. In this case, the weight of the cen-
troid search step is small in comparison with the rest of operations
for the biggest image size (we will discuss this point in Section 4.2.2
by showing a breakdown of the execution time). Summarizing,
the average overall speedup for the 2560 x 2560 image size was
47 x,13x and 14 x for PAPYCS, Reichenbach’s and CoM algorithms
respectively.

4.2.2. GPU time

The speedup is an interesting measurement to show how well
each method fits the GPU architecture, but to better understand
these results it is worth analyzing how much time is spent on each
step of the whole process for each configuration.

Fig. 9 shows the time in milliseconds that each algorithm spends
on each task for the GPU implementation, when considering an
increasing number of spots. Note that as they all share the same im-
plementation for copying, preprocessing, pupil searching and coef-
ficient fitting, the same time is reported for those tasks. Only the
centroid search phase changes. One interesting property exhibited
by PAPYCS is that its execution time is mostly independent of the
number of spots, unlike Reichenbach’s, whose latency increases
as the spot count progresses, making it less efficient for dense
H-S wavefront sensors. In general, most configurations achieve
a throughput of more than 100 frames per second (i.e., less than
10 ms per frame) for high-resolution images (2560 x 2560 pixels)
with up to 2000 spots.

Similarly, Fig. 10 shows the time in milliseconds that each
algorithm spends on each task for the GPU implementation as a
function of image size. Focusing on the centroid search step, the
time spent by PAPYCS increases with image size, especially for
the biggest (2560 x 2560) image, for the same reasons explained
above. Reichenbach’s algorithm also increases its search time but
less markedly.

4.3. Accuracy

In Optics the aberration of a wavefront is commonly summa-
rized by its RMS (Root Mean Square) since Zernike polynomials are
orthonormal to each other, wavefront RMS equals the square root
of the sum of squared Zernike coefficients. However, RMS is also
used for calculating the error of a particular measurement (w.r.t. a
reference point). The later case is also known as RMSE (Root-Mean-
Square Error). When used for calculating the error of a measured
aberration, the RMSE accumulates the squared difference between
the measured Zernike coefficients and their reference values.

As mentioned previously, in order to properly evaluate the
accuracy of the centroid search algorithms, a series of H-S images
containing 250 spots were synthetically generated with MATLAB.

PaPyCS + Reichenbach's
10 \ \ \ ™
i g
C
o 8 r B
E o o
= 8 9
0 6 - N
=
o ~)
- 4 + O .
o 6 ©
2 e
@ 2r g 8 -
[V}
=
o L L L L L L
0 1 2 3 4 5 6 7

Image aberration (RMS in microns)

Fig. 11. Measured vs theoretical RMS for PAPYCS (crosses) and Reichenbach’s (cir-
cles) algorithms. The gray line represents perfect 1:1 correlation. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

PaPyCS % s
Reichenbach's %

PaPyCS RMSE
Reichenbach's RMSE

. 100 0.5
6 m
o2 g0 404 £
EL S
53 60 4103 E
Q 8 [
()] o
o 40 + 4 0.2 =
25 i
o= %)
C e 20 -4 0.1 =
£ «
0 0

0 1 2 3 4 5 6

Image aberration (RMS in microns)

Fig. 12. Bars (left-side Y-axis) show the percentage of H-S images with an RMSE
smaller than 1. Lines (right-side Y-axis) show the average RMSE for the same
images.

We evaluated aberrations whose magnitude, or RMS, ranged from
0.5 to 6 wm, in 0.5 wm steps. The pupil diameter used for the
generated images was 5.12 mm. For each aberration we randomly
generated 100 H-S images with the features previously described
(added noise, brightness map and reflections). As previously stated,
the distribution of the aberrations followed the trend of a normal
population as reported in [31].

As a first accuracy analysis, after processing all the generated
images with both the PAPYCS and the Reichenbach’s algorithms
(we have skipped the Center of Mass algorithm due to its high inac-
curacy — it only works acceptably for low-aberrated and artifact-
free H-S images) we calculated the aberration RMS from each H-S
image. Fig. 11 shows the measured RMS values against the actual
(theoretical) ones for the PAPYCS (crosses) and the Reichenbach’s
(circles) algorithms. The aberrations measured by PAPYCS fall close
to the actual values, especially below 5-micron RMS (which would
correspond to a very strongly aberrated eye). Conversely, Reichen-
bach’s algorithm exhibits a much bigger dispersion for the whole
range of aberrations considered.

In a more detailed error analysis, Fig. 12 shows the average
RMSE (blue and orange lines) considering the 3rd, 4th and 5th
degrees of Zernike coefficients for those images whose RMSE is
smaller than 1 wm. This quality requirement avoids the few outlier
cases that highly distort the average. The graph also shows (with

188 J. Mompedn et al. / Future Generation Computer Systems 91 (2019) 177-190

PaPyCS # spots I PaPyCS error
Reich. # spots I Reich. error
200 T T

150

100

50

Number of spots
within the requirements
Mean error (pixels)

0 1 2 3 4 5 6
Image aberration (RMS in microns)

Fig. 13. Bars show the number of centroids detected with an error in pixels smaller
than 1 (left-side Y-axis). Lines show the mean error in pixels (right-side Y-axis).

10 coefs CPU --© -
30 coefs CPU —@—
50 coefs CPU —&—
70 coefs CPU —&—
90 coefs CPU —%—

10 coefs GPU —+—
30 coefs GPU --3¢--
50 coefs GPU =%
70 coefs GPU -- 3~ -
90 coefs GPU

10000
1000
100

Frames /s

10

400 600 800 100012001400 1600 1800 2000

Image width (pixels)

Fig. 14. Wavefront map calculation scalability. X-axis corresponds image size. Each
line plots a different number of coefficients for either the GPU or CPU.

50 coefs - Ko 90 coefs

70 coefs —-&--

10 coefs —+—
30 coefs --x--

100 \ \ \ \ \ E

o |
3

g 10¢ 3

[o} []

n []

1 | | | | S | S | S | S | S 1 S

O ©® & & QP8

SR SN NN S RN S

Image width (pixels)

Fig. 15. Speedup of the wavefront map calculation step, as a function of image size
for varying number of coefficients.

bars) the percentage of images that fall within the required [0..1]
RMSE range. PAPYCS achieves a significantly higher amount of
images (96% on average) detected within the [0..1] RMSE range
(vs. 71% for Reichenbach’s). Considering the RMSE values (blue
and orange lines), PAPYCS achieves an average RMSE smaller than
0.05 wm for aberrations ranging from 0.5 to 4. Reichenbach ap-
proach, however, discards 29% of the H-S images, and those not

PaPyCS + Reichenbach's
0 T T T T T
-0.02 - f
[
o -0.04 B
S RIS s gy
E o6l “ o
<
N
-0.08 f
0.1 | | | | |
0 10 20 30 40 50 60

Series of images

Fig. 16. Measured defocus (in microns) for a series of images from a real H-S
wavefront sensor system.

discarded are measured with an average RMSE of 0.20 wm. Overall,
Reichenbach’s incurs 4x more computational error than PAPYCS.
To give an idea of the magnitude of these errors, in [8] it was
reported an RMSE of 0.15 pm as satisfactory for an Adaptive-
Optics-corrected eye over a 4.8 mm pupil, similar to that used in
our simulations.

Alternatively, Fig. 13 shows the error spots detection expressed
in pixels. Only those centroids localized with an error smaller than
1 pixel were considered. The bars show the amount of centroids
detected within 1 pixel of their theoretical position. Besides, the
average error (in pixels) of the centroid search is also plotted, being
very stable through the set of images. PAPYCS shows an average
error around 0.18 pixels, whereas Reichenbach’s doubles this error,
which significantly affects the accuracy of the measured aberration
(as it was shown in Figs. 11 and 12). As expected, the amount of
correctly detected centroids (within 1 pixel of error) decreased as
the aberration increased: for PAPYCS it went from 200 detected
centroids, for small aberrations, to 165 centroids for a very strong
aberration of 6 pm.

Finally, we evaluated both algorithms with actual H-S images
obtained with a real Hartmann-Shack system (shown in Fig. 6).
For this experiment, as there was no reference image to compare
against, an artificial eye was used and a series of actual H-S images
were captured. Fig. 16 shows the temporal variation of the 4th
Zernike coefficient (which represents the defocus aberration) as
measured by both PAPYCS and Reichenbach’s algorithms. It can
be observed that PAPYCS aberration measurements are noticeably
more stable than those measured by Reichenbach’s. The mean
Z4 value obtained by PAPYCS is —0.0478 and by Reichenbach’s is
—0.0493, while their standard deviation are 0.0011 and 0.0037
respectively. This experiment illustrates the robustness of our pro-
posed PAPYCS algorithm against external artifacts and experimen-
tal variability typical in real systems.

4.4. Wavefront map calculation performance

Although the wavefront map calculation is a final step which
can be useful or even mandatory for certain applications, such as
those involving a closed-loop adaptive optics system as explained
in Section 3.4, it is typically an optional step, not needed for
measuring an aberration which is perfectly characterized by a set
of Zernike coefficients. For this reason we have separated this step
results from those of the previous phases.

Wavefront map calculation is a very computing intensive oper-
ation, but itis also a trade-off between performance and resolution.
In order to understand how this trade-off works, a wide variety of

J. Mompedn et al. / Future Generation Computer Systems 91 (2019) 177-190 189

configurations have been tested. The images generated have two
variable parameters: image size and number of Zernike coefficients
used. A combination of both has been evaluated in Fig. 14. The log-
arithmic scale was used to show the big difference in performance
obtained by the CPU version and the GPU implementation. It can
also been observed that performance rapidly decreases as either
image size or the number of coefficients are increased.

Finally the speedup obtained by the GPU depending on image
size and number of Zernike coefficients used, is shown in Fig. 15.
As it could be expected, the bigger the image or the more complex
the wavefront description, the higher the speedup.

5. Conclusions and future work

An accurate and high-speed GPGPU implementation has been
developed for processing Hartmann-Shack images from human
eyes in order to dynamically measure their wavefront aberra-
tion. All the necessary steps to automatically process H-S images
have been parallelized: pupil determination, centroid search and
Zernike coefficient fitting. Even the wavefront map calculation step
has been parallelized to be able to integrate our approach in a
closed-loop adaptive optics setup. While a sequential implemen-
tation is not capable of reaching a speed of 25 frames per second
for real-time processing, unless resolution is severely limited, our
setup and approach delivers 380 frames per second when pro-
cessing H-S images of 1280 x 1280 pixels containing 250 spots.
A comparison with two other state-of-the-art algorithms showed
that PAPYCS is better suited to process H-S images from human
eyes due to its higher resilience to system and image artifacts
(corneal reflections, broken tear film, white noise) since more
than 98% of the H-S images with an aberration smaller or equal
than 4 wum were measured with an individual RMSE below 1 um
producing a mean RMSE lower than 0.05 pm.

Improvements are still possible, new synchronization methods
between threads are now available in CUDA (Cooperative Groups),
which could be used to improve the parallelism of some operations
(e.g., thread group synchronization in the iterative expansion of the
border of the Reichenbach’s algorithm). In addition, some current
GPUs include dedicated hardware to perform calculations on halfs
which should speedup the wavefront map calculation. Since the
data is already stored and transferred using halfs to save both
memory and bandwidth, accuracy should not be a problem. Also,
regarding our pupil tracking algorithm, some adjustments might
be necessary with different optical configurations if the back-
ground light from the retina is very dim. Finally, our implemen-
tation is being integrated on a second system in the Laboratory of
Optics of the University of Murcia and new challenges will appear,
as they always do, when dealing with real-time systems used to
measure human eyes.

Acknowledgments

This research has been supported by the European Research
Council Advanced, Spain Grant ERC-2013-AdG-339228 (SEECAT),
“Fundacién Séneca”, Murcia, Spain (grant 19897 /GERM/15), and
the Spanish SEIDI, Spain under grants FIS2013-41237-R, and
TIN2015-66972-C5-3-R, as well as European Commission FEDER,
Spain funds. We would like to thank Dimitrios Christaras for
proofreading the article.

References

[1] M Carbillet, A Ferrari, C Aime, HI Campbell, AH Greenaway, Wavefront sens-
ing: from historical roots to the state-of-the-art, Eur. Astron. Soc. Publ. Ser. 22
(2006) 165-185.

[2] Robert Duffner, The Adaptive Optics Revolution: A History, University of New
Mexico Press, 20009.

[3] Roland V Shack, Ben C Platt, Production and use of a lenticular hartmann
screen, J. Opt. Soc. Amer. 61 (5) (1971) 656-660.

[4]] Hartmann, Bemerkungen iiber den Bau und die Justierung von Spectro-
graphen, Zf Intrumentenk 20 (4) (1900).

[5] V Molebny, Wavefront sensors, in: Pablo Artal (Ed.), Handbook of Visual

Optics, Vol. II: Instrumentation and Vision Correction, CRC Press, 2017, pp.

17-36.

Emmanuel Chirre, Pedro M Prieto, Pablo Artal, Binocular open-view instru-

ment to measure aberrations and pupillary dynamics, Opt. Lett. 39 (16) (2014)

4773-4775.

[7] Jason Porter, Hope Queener, Julianna Lin, Karen Thorn, Abdul AS Awwal,

Adaptive optics for vision science: principles, practices, design and applica-

tions, 171, 2006.

Carmen Canovas, Pedro M Prieto, Silvestre Manzanera, Alejandro Mira, Pablo

Artal, Hybrid adaptive-optics visual simulator, Opt. Lett. 35 (2) (2010) 196-

198.

Rastislav Lukac, Konstantinos N Plataniotis, Color Image Processing: Methods

and Applications, CRC press, 2006, pp. 434-469.

[10] Pedro M Prieto, Fernando Vargas-Martin, Stefan Goelz, Pablo Artal, Analysis
of the performance of the hartmann-shack sensor in the human eye, j. Opt.
Soc. Am. A 17 (8) (2000) 1388-1398.

[11] Heidi Hofer, Pablo Artal, Ben Singer, Juan Luis Aragén, David R Williams,
Dynamics of the eyes wave aberration, j. Opt. Soc. Am. A 18 (3) (2001) 497~
506.

[12] Jacopo Mocci, Martino Quintavalla, Cosmo Trestino, S Bonora, Riccardo Mu-
radore, A multi-platform cpu-based architecture for cost-effective adaptive
optics systems, IEEE Trans. Ind. Inf. (2018).

[13] Yongxin Yu, Yuhua Zhang, Dual-thread parallel control strategy for oph-
thalmic adaptive optics, Chinese Optics Letters 12 (12) (2014) 121202-
121202.

[14] Yongxin Yu, Tianjiao Zhang, Alexander Meadway, Xiaolin Wang, Yuhua
Zhang, High-speed adaptive optics for imaging of the living human eye, Opt.
Express 23 (18) (2015) 23035-23052.

[15] José G Marichal-Herndndez, Jose M Rodriguez-Ramos, Fernando Rosa, Recu-
peracion de fase de frente de onda atmosférico usando hardware grafico, in:
XI Congreso Nacional de TeledetecciON, 2005, Tenerife, Spain, pp. 569-572.

[16] Alexander Pichler, Pierre Raymond, Marc Eichhorn, Fast wavefront sensing
using a hardware parallel classifier chip, Appl. Phys. B 115 (3)(2014) 325-334.

[17] Marc Reichenbach, Ralf Seidler, Benjamin Pfundt, Dietmar Fey, Fast image
processing for optical metrology utilizing heterogeneous computer architec-
tures, Comput. Electr. Eng. 40 (4) (2014) 1158-1170.

[18] Serge Meimon, Jessica Jarosz, Cyril Petit, Elena Gofas Salas, Kate Grieve, Jean-
Marc Conan, Bruno Emica, Michel Paques, Kristina Irsch, Pupil motion anal-
ysis and tracking in ophthalmic systems equipped with wavefront sensing
technology, Appl. Opt. 56 (9) (2017) D66-D71.

[19] Justo Arines, Paula Prado, Salvador Bard, Pupil tracking with a hartmann-
shack wavefront sensor,]. Biomed. Opt. 15 (3) (2010) 036022-036022.

[20] Alberto de Castro, Lucie Sawides, Xiaofeng Qi, Stephen A. Burns, Adaptive
optics retinal imaging with automatic detection of the pupil and its boundary
in real time using shack-hartmann images, Appl. Opt. 56 (24) (2017) 6748-
6754, http://dx.doi.org/10.1364/A0.56.006748.

[21] Steffen Mauch, Johann Reger, Real-time spot detection and ordering for a
shack-hartmann wavefront sensor with a low-cost fpga, IEEE Trans. Instrum.
Meas. 63 (10) (2014) 2379-2386.

[22] Steffen Mauch, Johann Reger, Real-time implementation of the spiral al-
gorithm for shack-hartmann wavefront sensor pattern sorting on an fpga,
Measurement 92 (2016) 63-69.

[23] Juan Mompedn, Juan L. Aragbn, Pedro M. Prieto, Pablo Artal, Design of an
accurate and high-speed binocular pupil tracking system based on gpgpus,
J. Supercomput. (ISSN: 1573-0484) 74 (5) (2018) 1836-1862, http://dx.doi.
org/10.1007/s11227-017-2193-5.

[24] Nobuyuki Otsu, A threshold selection method from gray-level histograms,
IEEE Trans. Syst. Man Cybern. 9 (1) (1979) 62-66.

[25] Martin A Fischler, Robert C Bolles, Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography,
Commun. ACM 24 (6) (1981) 381-395.

[26] CUDA Nvidia, Cublas library, Accessed: 2017-06-05.

[27] Zernike von F, Beugungstheorie des schneidenver-fahrens und seiner
verbesserten form, der phasenkontrastmethode, Physica 1 (7-12) (1934)
689-704.

[28] BRA Nijboer, The diffraction theory of optical aberrations: part i: general
discussion of the geometrical aberrations, Physica 10 (8) (1943) 679-692.

[29] BRA Nijboer, The diffraction theory of optical aberrations: part ii: diffraction
pattern in the presence of small aberrations, Physica 13 (10) (1947) 605-620.

[30] K Nienhuis, BRA Nijboer, The diffraction theory of optical aberrations: part
iii: general formulae for small aberrations; experimental verification of the
theoretical results, Physica 14 (9) (1949) 590-608.

[31] José Francisco Castején-Mochén, Norberto Lopez-Gil, Antonio Benito, Pablo
Artal, Ocular wave-front aberration statistics in a normal young population,
Vis. Res. 42 (13) (2002) 1611-1617.

[32] G.Bradski, The OpenCV Library, Dr. Dobb’s J. Softw. Tools (2000).

[6

8

[9

http://refhub.elsevier.com/S0167-739X(18)31004-5/sb1
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb1
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb1
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb1
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb1
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb2
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb2
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb2
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb3
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb3
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb3
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb4
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb4
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb4
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb5
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb5
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb5
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb5
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb5
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb6
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb6
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb6
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb6
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb6
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb8
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb8
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb8
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb8
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb8
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb9
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb9
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb9
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb10
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb10
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb10
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb10
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb10
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb11
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb11
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb11
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb11
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb11
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb12
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb12
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb12
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb12
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb12
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb13
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb13
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb13
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb13
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb13
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb14
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb14
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb14
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb14
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb14
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb16
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb16
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb16
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb17
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb17
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb17
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb17
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb17
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb18
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb18
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb18
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb18
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb18
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb18
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb18
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb19
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb19
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb19
http://dx.doi.org/10.1364/AO.56.006748
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb21
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb21
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb21
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb21
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb21
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb22
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb22
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb22
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb22
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb22
http://dx.doi.org/10.1007/s11227-017-2193-5
http://dx.doi.org/10.1007/s11227-017-2193-5
http://dx.doi.org/10.1007/s11227-017-2193-5
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb24
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb24
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb24
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb25
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb25
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb25
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb25
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb25
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb27
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb27
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb27
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb27
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb27
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb28
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb28
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb28
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb29
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb29
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb29
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb30
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb30
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb30
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb30
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb30
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb31
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb31
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb31
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb31
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb31
http://refhub.elsevier.com/S0167-739X(18)31004-5/sb32

190 J. Mompedn et al. / Future Generation Computer Systems 91 (2019) 177-190

Juan Mompean is a Ph.D. candidate in computer
science at the Computer Engineering Department of the
University of Murcia. He received his B.Sc. and M.Sc. de-
grees from the University of Murciain 2013 and 2015. His
research interests include parallel algorithms and high
performance applications on GPUs, FPGAs and multicore
systems.

Juan L. Aragon is an Associate Professor in Computer
Architecture at the University of Murcia (Spain) since
2007. He received his PhD degree in Computer Engineer-
ing in 2003 from the University of Murcia. In 2003-2004
he did a 1-year post-doctoral stay as a Visiting Assistant
Professor and Researcher at the University of California,
Irvine. He has been a Visiting Researcher at EPFL (Switzer-
land) in 2013, and at Princeton University (USA) in 2015
and 2017. His research interests are focused on hetero-
geneous systems, accelerators and GPUs. Dr. Aragén has
co-authored 40 research papers in major conferences and journals on computer
architecture.

Pedro M. Prieto received his BSc (1990), MSc (1991),
and PhD (1994) from University of Cantabria (Spain).
He joined the Laboratory of Optics of the University of
Murcia (LO.UM) in 1996 and since 2001 he is an Associate
Professor of Optics. He is a member of the Optics and
Nanophysics Research Institute (IUIOyN) at the Univer-
sity of Murcia and his research interests include visual
optics, adaptive optics, and ophthalmological and opto-
metric instrumentation.

Pablo Artal is a full Professor of Optics at the Uni-
versity of Murcia, Spain. He spent several periods doing
collaborative research in laboratories in Europe, Australia
and USA. He is a fellow member of the Optical Society
of America, ARVO (gold), SPIE and EOS. He received the
prestigious 2013 Edwin H Land medal award, he is the
recipient of the exclusive “ERC advanced grant” in 2013.
He received the “Rey Jaime I award for applied research
in 2015. He has published more than 180 reviewed pa-
pers that received 7500 citations (h-index: 45). He has

pioneered highly innovative advances in the methods for studying the optics of the
eye and has contributed substantially to our understanding of the factors that limit
human visual resolution.

	GPU-based processing of Hartmann–Shack images for accurate and high-speed ocular wavefront sensing
	Introduction
	Motivation and Related work
	Background and Motivation
	Related Work

	Parallelizing H–S image processing
	Step 1: H–S pupil tracking
	Step 2: Centroid search
	PaPyCS: Parallel pyramidal centroid search
	Reichenbach's Algorithm
	Center of Mass Algorithm

	Step 3: Zernike polynomials fitting
	Step 4: Wavefront map calculation

	Experimental Results
	Evaluation Methodology
	Performance
	Speedup
	GPU Time

	Accuracy
	Wavefront Map Calculation Performance

	Conclusions and Future Work
	Acknowledgments
	References

