
Delegation in Distributed Systems: Challenges and Open
Issues

Óscar Cánovas†, Antonio F. Gómez‡
†Department of Computer Engineering

‡Department of Information and Communications Engineering
University of Murcia
30071 Murcia (Spain)

ocanovas@ditec.um.es, skarmeta@dif.um.es

Abstract
New certi�cate-oriented access control systems
are based on delegation of privileges. In these
scenarios, resource guards have an ACL which
delegates to some authorization or naming au-
thorities the right to manage the access to the
controlled resources. These authorities can is-
sue certi�cates delegating these permissions to
other subordinates authorities, or to speci�c
users. In this way, the generated structure re-
�ects the way the authorization is managed. In
this paper we present a survey of di�erent is-
sues related to certi�cate-based delegation, such
as management structures, authority and own-
ership, anonymity, certi�cate distribution, and
revocation.
Keywords: Delegation, authorization certi�-

cates, certi�cate management, anonymity

1 Introduction
Several authorization proposals have been intro-
duced in the past. The most well-known scheme
is the discretionary access control (DAC), where
permissions are speci�ed as access control lists
(ACLs) within each resource guard. However,
organizations change over time, and require a
better model of updating access control poli-
cies. New DAC mechanisms aim for a more
distributed model for management and enforce-
ment of privileges. This decentralized manage-
ment requires a mechanism for delegating the
privileges from the higher levels of an organiza-
tion to its lower levels. This task can be accom-
plished making use of digital certi�cates [5, 7, 8].
In a general sense, a certi�cate is a record stat-
ing some information about the entity the cer-

ti�cate was issued to, and this information may
be a role membership statement, or an autho-
rization. Authorization certi�cates bind a capa-
bility to a key, and this capability can be used
to determine what the entities are allowed to do.

The main idea behind delegation is that re-
source guards delegate the authorization-related
tasks to speci�c authorities. These authorities
can issue certi�cates delegating these permis-
sions to other subordinates authorities, or to
speci�c users. In this way, the structure gen-
erated re�ects the authorization process. Then,
the user together with his access request to an
object provides a subset of these certi�cates that
proves his permission for that access. Finally,
the guard validates the certi�cates and also
check whether they comply with its delegation-
based policy.

In this paper we present the di�erent opportu-
nities which can be o�ered by delegation, espe-
cially from a management point of view. More-
over, we try to identify the existing challenges
related to this access control model, and we
make reference to some related works in order to
analyze their contributions. We have structured
this analysis according to the topics of manage-
ment, support for delegation chains, di�erences
between authority and ownership, anonymity,
certi�cate distribution, and revocation. The
work is not based on any particular speci�ca-
tion for authorization or attribute certi�cates.
We provide our opinion about the open issues
to be addressed, and we also mention our con-
tributions to this �eld.

This paper is organized as follows. Section 2
introduces the management structures created
by delegation. Section 3 presents the main dif-
ferences between authority and ownership. Sec-

tion 4 explains the certi�cate reduction. Section
5 outlines the problems related to certi�cate dis-
tribution and retrieval. Section 6 contains some
ideas about revocation and delegation. Finally,
Section 7 makes some concluding remarks.

2 Delegation and manage-
ment structures

2.1 Privilege management
Authorization certi�cates provide a mechanism
for establishing organizational structures which
can be dynamically changed. The certi�cate
structure can re�ect the structure of an organi-
zation, but in contrast to classic access control
lists (ACL) the control of the permissions con-
tained in these certi�cates is widely distributed
[2]. Changes over the authorization policy do
not have to be propagated to all the ACLs con-
trolling the resources, and managing the cer-
ti�cates is a simple task since it is distributed
among di�erent entities controlling a small sub-
set of permissions. Here, we show an example
about how delegation can simplify ACLs, and
therefore the resource guards. In �1 we present
two ACLs for two di�erent resource guards. The
ACL of guard1 grants two permissions P 1 and
P 2 to the public keys KA and KB . Other per-
missions are assigned to KD and KE by the ACL
of guard2.

ACL(guard1) = (KA, P 1), (KB , P 2) (1)
ACL(guard2) = (KD, P 3), (KE , P 2)

Now, a new public key KC must be autho-
rized by both guard1 and guard2 to perform
P 2. Using this approach, both ACLs must be
modi�ed to include (KC , P 2). Although this
can be considered as simple, things get tricky if
we think that this update could involve several
distributed ACLs. Consistency, network band-
width, availability and denial of service attacks
are some issues involved in ACL-based solutions.
We can rede�ne the access control policy shown
by �1 using delegation. Delegation can be ex-
pressed by means of speci�c labels (prop) stating
that a particular key can issue new certi�cates
for certain privileges. In �2 the same conditions
stated by �1 are expressed using a delegation la-
bel and three authorization authorities Kauth1,
Kauth2 and Kauth3.

ACL(guard1) = (Kauth1, P 1, prop), (Kauth2, P 2, prop) (2)
ACL(guard2) = (Kauth3, P 3, prop), (Kauth2, P 2, prop)

In order to authorize the public keys to access
the resources, the authorities must issue certi�-
cates stating the permissions being granted. In
�3 we include the certi�cates necessaries to em-
ulate the authorization policy of �1. We decided
omitting validity dates for simplicity.

authorization(Kauth1, KA, P 1)

authorization(Kauth2, KB , P 2)

authorization(Kauth2, KC , P 2) (3)
authorization(Kauth2, KE , P 2)

authorization(Kauth3, KD, P 3)

In this way, providing to KC the permission to
perform P 2 only involves the generation of a new
authorization certi�cate (Kauth2,KC , P 2), and
it does not require to update any existing ACL.
Furthermore, this delegation scheme can be ex-
tended in order to truly create management hi-
erarchies re�ecting the organizational structure.
That is, Kauth2 could also delegate a subset of
permissions P 2′ to KB by means of an autho-
rization (Kauth2,KB , P 2′, prop). It makes sense
if we think that Kauth2 could be the public key
of a department manager, and KB the one be-
longing to a section manager.

2.2 Delegation chains
As we mentioned above, rights can be redele-
gated to another keys, and these keys can redel-
egate them to a third one and so on. Therefore,
delegation certi�cates constitute a chain where
permissions �ow from authorities to subjects (as
is commented in [2], in fact delegation does not
create chains but graphs).

However, managing certi�cate chains can be-
come a complex task. Authorization decisions
based on long chains are not trivial since, as
we will see in section 5, certi�cate distribution
and retrieval can be computationally expensive.
Moreover, from an attacker's point of view, del-
egation chains can reveal too much information
about organization structure (authorities, re-
sources, propagation conditions). Consequently,
in some scenarios the information contained in
these certi�cates can be considered as sensitive,
thus requiring the provision of mechanisms lim-
iting the disclosure.

2

A technique called certi�cate reduction [2] can
overcome some of those drawbacks. If we ob-
serve the certi�cate chain in �4, we can infer the
certi�cate reduction presented in �5.

authorization(Kauth1, Ki, P
1, prop) (4)

authorization(Ki, Kj , P 2)

authorization(Kauth1, Kj , (P 1 ∩ P 2)) (5)

The new certi�cate is not stating a new per-
mission, it is only a simpli�ed version of the
original chain, and it is issued for saving time
during the certi�cate retrieval and veri�cation.
Its validity interval will be the intersection of the
validity dates contained in the certi�cate chain.

However, it is worth noting that reduction is
not always possible, and sometimes it cannot
be performed without losing some features of
the original certi�cates. Certi�cate reduction
must be limited if the certi�cates forming the
chain must be veri�ed using on-line methods
(like OCSP). Otherwise, validation of intermedi-
ate certi�cates will not be performed according
to the on-line criteria.

2.3 Delegation control
For the sake of simplicity, in the examples that
we have shown, delegation control has been per-
formed using a boolean-based approach. There
are several alternatives in order to control prop-
agation. In [7], a boolean-based approach is pre-
ferred against other proposals based on limit-
ing the delegation depth. They argue that it
is unable to predict the proper depth of delega-
tion, and that there is no control on the pro-
liferation of permissions on the width of the
tree. Nevertheless, SPKI o�ers another way
to control the propagation by using threshold
certi�cates. For example, KA would like to
propagate a permission P to KB but retain-
ing the control over the further propagation
of P from KB . By using a boolean control
method, KA cannot enforce this requirement.
However, KA can issue a certi�cate to the sub-
ject (2 − of − 2)(KB)(KA), denying KB the
propagation of P without the intervention of
KA. This proposal, not only transforms KA in
a central authority, but also does not impede
a confabulation of principals which obtained a
certi�cate of the form (2 − of − 2)(Kany)(KA)
for the same permission.

In [4], a �ne-grained mechanism for con-
strained delegation is presented. Limitation is

based on regular expressions establishing the or-
ganizational subtree that can be included in the
delegation chain. Only the certi�cates issued
for those entities included in the subtree will be
considered as valid. Our opinion is that this
proposal is a valuable step toward a better con-
trol of delegation, although can be ine�cient in
some scenarios where the organization structure
is very dynamic. The main drawback is that
establishing a new leaf node in the subtree can
involve the modi�cation of all the delegation cer-
ti�cates from the root to the node in order to
re�ect the new propagation policy.

3 Authority and ownership

One of the topics that has raised a good deal of
controversy is: may a delegator also exercise the
permissions being managed by himself?.

There is no general agreement about this issue
and some authors believe that a delegator can
also issue a new certi�cate for his own tempo-
rary keys in order to delegate himself the rights
he cannot exercise. However, our belief is that a
security administrator may or may not be part
of the scope of his administration, and appro-
priate mechanisms should be provided in order
to limit his authority.

Some authors make a clear distinction be-
tween having a permission and being able to
manage a permission [13]. In general, the term
authority makes reference to the creation and
delegation or permissions, and the term privi-
lege is used to cover both authority and per-
mission. However, speci�cation of independent
policies for managing and using permissions is
an open research �eld.

On the other hand, it is worth noting that the
act of signing an authorization certi�cate does
not invalidate any existing certi�cates. In this
way, the issuer does not lose any of his permis-
sions. Transfer is far di�cult to implement than
delegation since it involves that the revocation
of previous privileges and the issuance of new
ones must be executed as an atomic operation.
Moreover, since authorization certi�cates only
support policies where access rights grow mono-
tonically, it is impossible to verify that an entity
does not have a particular permission since neg-
ative statements are not allowed.

3

4 Anonymity
Section 2.2 introduced the problems derived
from the disclosure of sensitive information con-
tained in the certi�cates forming a chain. In
fact, the certi�cate structure shows the relation-
ships among the keys, and the keys might be eas-
ily mapped to real users when names are used.

In [3] two proposals are presented for prevent-
ing the tracking of keys: temporary keys and re-
duction. In this section we are going to present
the basis of these proposals, we provide some
re�nements, and we explain their limitations.

4.1 Temporary keys
In order to impede tracking the keys, users can
redelegate their rights to self-generated tempo-
rary keys, which will be used every time the
user is requesting to perform an operation on
a resource. In this way, the original public key,
probably related to an identity certi�cate, can
be hidden. In �6 we show a certi�cate chain
where the user KU delegates a subset of permis-
sions to a self-generated temporary key KT .

authorization(Kauth1, KU , P 1, propagate)

authorization(KU , KT , P 1′) (6)
where P 1′ ⊆ P 1

It is worth noting that the certi�cation chain
will be valid only if KU has the privilege to fur-
ther delegate P 1 (or a subset). In some applica-
tion environments, such as e-commerce systems,
redelegation is not allowed since acquiring access
rights can involve some kind of charge.

Furthermore, the support for temporary keys
is hard to implement when techniques for con-
strained delegation are being used. As we men-
tioned in section 2, constraints are based on the
speci�cation of valid previously-known subtrees.
Temporary keys are dynamically generated, and
their values cannot be predicted.
We propose a solution to this problem in �7.

As we can see, delegation is allowed to members
of group G, which is de�ned by the entity KM .
In order to enable a temporary key, KM must
consider KT as a member of G.

authorization(Kauth1, KU , P 1, prop(KM$G))

authorization(KU , KT , P 1′) (7)
where KT ∈ KM$G

Although this solution is valid, avoiding fur-
ther modi�cation on the delegation constraints

and certi�cates, it involves the registration of
every temporary key generated by the users.
Therefore, a strong authentication of members
of G and a mechanism for unique traceable iden-
ti�ers must be provided. Consequently, using
temporary keys for preventing the track of pub-
lic keys must be subjected to strong authentica-
tion of those keys.

4.2 Reduction and trusted reduc-
ers

In the previous section we presented temporary
keys as a mechanism to hide the activity of the
users' private keys. However, sole use of tempo-
rary keys does not hide the intermediate keys
in a chain of certi�cates. In �6 and �7, KU

is still included in the chains. However, as we
presented in �5, the reduced certi�cate contains
only the �rst key in the chain (which veri�es the
certi�cate), and the last one.

Here we present a scheme which does not re-
quires the participation of the root key to per-
form the reduction. We introduce the concept
of trusted reducers as speci�c entities which are
authorized to generate certi�cate reductions on
behalf of a set of root authorities for a particu-
lar set of privileges. Trusted reducers can be set
up to manage small sets of permissions, and can
release the root keys from the task of reducing
long chains of certi�cates.

Trusted reducers can be introduced as valid
authorities using two approaches. In �8 we show
an ACL-based approach and in �9 we present an
authorization-based alternative.
ACL(guard1) = (Kroot, P

1, prop), (Kredcr, P 1′, prop) (8)
ACL(guard1) = (Kroot, P

1, prop)

authorization(Kroot, Kredcr, P 1′, prop) (9)
where P 1′ ⊆ P 1

The ACL-based approach requires adding the
public keys of the trusted reducers to the ACLs
involved. When the number of controllers and
reducers is high, this option is not suitable.
On the other hand, the authorization-based ap-
proach presented in �9 makes use of authoriza-
tion certi�cates to introduce the reducers as
trusted entities. The certi�cate issued by Kauth

to Kredcr authorizes the reducer to generate new
reductions for permissions contained in P 1′. In
contrast with the ACL-based approach, the re-
duced certi�cate generated by the trusted re-
ducer is not enough to gain access to the re-
sources controlled by the guards since it does

4

not constitutes a direct authorization from the
public key contained in the ACL. Consequently,
the delegation certi�cate for the trusted reducer
must be also presented. Certi�cate reduction
by means of trusted reducers is a mechanism of-
fered by our distributed credential management
system [6].

5 Certi�cate retrieval
Once the certi�cates have been generated, some
of them will be made available for the rest of
users, and a subset will be protected if they con-
tain sensitive information. Therefore, retrieving
the certi�cates necessaries to check whether an
access request must be granted is not a triv-
ial task. First, since certi�cates are widely
distributed among di�erent issuers, repositories
and users, we need to discover the location of
these entities (generally named suppliers). Sec-
ond, since some certi�cates can include sensitive
information, it is needed to provide access con-
trol methods to protect them [14]. As we will
see, there are several alternatives to query the
suppliers (user-directed, guard-directed and dis-
tributed among the suppliers).

We can �nd in the literature several proposals
for certi�cate retrieval [1, 9, 11]. In this section
we are going to identify the main issues to be
solved.

5.1 The hidden membership prob-
lem

In �10 we present what we called the hidden
membership problem, that is, the task of de-
termining whether a particular public key is a
member of an authorized group or role. The
ACL of guard1 speci�es that only members
of group staff can exercise the permission P ,
which is the one being requested by KU .

ACL(guard1) = (Kroot$”staff”, P) (10)

Kroot$”staff” = {Klevel1$”secA”, Klevel1$”secB”}
Klevel1$”secA” = {Klevel2$”dept1”, Klevel2$”dept2”}

Klevel2$”dept2” = {KT , KU , KV }

By means of this example, we can check that
KU is indeed a member of group staff since it
is a member of group dept2 de�ned by Klevel2.
However, determining membership can involve
an exhaustive analysis of the whole tree rep-
resenting the relationship among the existing

groups. The problem can even become more
complex if the relationship does not constitutes
a tree but a cyclic graph.

5.2 The hidden permission prob-
lem

The hidden permission problem is similar to
the one commented above. In �11 we present
an ACL where guard1 delegates the authority
about P to an entity Kroot. In this example,
KU is requesting the operation P 4, which is a
subset of P . Groups are de�ned in the same way
presented in the previous example.

ACL(guard1) = (Kroot, P, prop) (11)

auth(Kroot, Klevel1, P 1, prop) where P 1 ⊆ P

auth(Kroot, Klevel1$”secA”, P 2) where P 2 ⊆ P

auth(Klevel1, Klevel2$”dept1”, P 3) where P 4 ⊆ P 3 ⊆ P 1

auth(Klevel1, Klevel2$”dept2”, P 4) where P 4 ⊆ P 1

By means of this example, we can check that
KU is authorized since it is a member of group
dept2 de�ned by Klevel2, and that group has
been authorized to exercise the permission P 4.
As we commented in the previous section, dis-
covering this path can involve the analysis of
several certi�cation chains. In fact, in this ex-
ample we might �nd an alternative authoriza-
tion chain if P 4 was a subset of P 2. That is,
KU will be authorized since it is a member of
dept2 which is a subgroup of sectionA. In con-
clusion, an e�cient certi�cate chain discovery
method should manage both group membership
and an algebra for reasoning about privileges.

5.3 Approaches for certi�cate re-
trieval

Discovery of delegation chains can be performed
using di�erent approaches. Traditionally, the re-
questor was responsible for obtaining the needed
certi�cates from public repositories or smart-
cards. Nowadays, a client can get bene�t in
several ways from using a server to acquire cer-
ti�cates as input to the validation process [11].
In this context, the client is relying on the server
to interact with repositories to acquire the data
that the client would otherwise have to acquire
using repository access protocols.

As we showed in the previous section, discov-
ery can involve several authorities or reposito-
ries, which can be located in di�erent servers,

5

and can be accessed more than once for the
same query. This query can be directed by the
guard, or can be performed using a distributed-
approach where several suppliers are both re-
questors and suppliers, an architecture which
has been proposed by several authors [15]. Ac-
cording to �11, we might consider that the cer-
ti�cates issued by Kroot are stored in a server
(the supplier), which is di�erent from servers
containing the certi�cates issued by Klevel1 or
Klevel2. In this way, a certi�cate chain discovery
request sent by guard1 to the supplier of Kroot

can be partially forwarded to the other suppliers
in order to obtain some elements of the chain.
In our opinion, much research e�orts must be

focused on optimizing this type of distributed
resolution. One of the main problems is how to
provide some control for redundancy of queries,
since the delegation graph can contain repeated
references to the privileges or groups de�ned by
a particular supplier, and in absence of some
kind of coordination data, some queries can be
redundant. Additional issues that must be ad-
dressed are the disclosure of sensitive informa-
tion and the support for certi�cate caching and
management of revocations.

6 Revocation of delegation
certi�cates

Authorization certi�cates can be revoked be-
cause the privilege given in the certi�cate does
not hold any longer. Revocation is often consid-
ered regarding the simplest form of revocation,
which makes a certi�cate invalid from the time
the revocation is performed for all times in the
future (a classi�cation of revocation schemes is
provided in [10]). In order to support revocation
to have prospective and retrospective e�ects, it
is necessary to distinguish between the time a
certi�cate is revoked and the time for which the
associated privilege is created.

In [12], the authors propose some mechanisms
in order to reasoning about revocation according
to propagation and dominance. Those mecha-
nisms make use of certi�cates represented as:

authorization(Kauth, KU , P [I], time− stamp, id) (12)

The time-stamp makes reference to the time
the privilege is created, and I is the interval for
which the privilege P holds. Time-stamps are
used in order to avoid that subsequent certi�-

cates could be considered as valid once the is-
suer has lost the authority, which might be ac-
complished by forging the time interval I. On
the other hand, revocations are represented as:

revocation(Kauth, id, [I], time− stamp) (13)

They contain the id of the certi�cates which
are subject of the revocation, and an interval [I]
called the disabling interval. The main intention
behind the disabling interval is the ability to
revoke privileges that have been granted in the
past.

For example, a disabling interval with a not-
before date equal to the date contained in the
time-stamp is used to revoke a particular cer-
ti�cate, but it will not a�ect any other exist-
ing certi�cates. This can be useful when a sec-
tion chief is replaced by other person, since we
want to maintain the existing authorization cer-
ti�cates, despite that person will not be able
to manage further privileges. However, if we
think that this person has abused his authority
we need to delete not only his authority but also
all those privileges that were delegated by him.
This can be done using a disabling interval with
a not-before date placed in the past.

In our opinion, these mechanisms have several
drawbacks which can limit their deployment in a
typical distributed system. First, it requires the
use of trusted time stamps provided by a cen-
tralized service. Delegation by means of autho-
rization certi�cates is an inherently distributed
system which can be in con�ict with this type
of services. In fact, most of the authorization
certi�cates are supposed to be generated in an
o�-line manner. On the other hand, revoca-
tion a�ects the certi�cates being identi�ed by
id. When the same privilege has been stated
by di�erent certi�cates, revoking one certi�cate
does not disable the privilege itself. We believe
that revocations should make reference to the
privilege being revoked, not to a serial number.
Thus, not only the time interval I must be in-
cluded in the revocation but also the privilege
P (or a subset of P).

7 Conclusions
In this paper we have presented the di�erent
opportunities provided by a decentralized ap-
proach for access management. We have identi-
�ed the existing challenges related to this model,

6

especially about management, support for dele-
gation chains, di�erences between authority and
ownership, anonymity, certi�cate distribution,
and revocation. We have also outlined some in-
teresting future research activities to be done,
and we have also introduced our contributions
to this �eld.

References
[1] T. Aura. Fast access control decisions from

delegation certi�cate databases. In Proceedings
of 3rd Australasian Conference on Information
Security and Privacy ACISP'98, volume 1428
of Lecture Notes in Computer Science, pages
284�295. Springer, July 1998.

[2] T. Aura. On the structure of delegation net-
works. In Proc. 11th IEEE Computer Security
Foundations Workshop, pages 14�26, MA USA,
June 1998. IEEE Computer Society Press.

[3] T. Aura and C. Ellison. Privacy and Account-
ability in Certi�cate Systems. Technical report,
Helsinki University of Technology, April 2000.
Research Report A61.

[4] O. Bandmann, M. Dam, and B. Sadighi. Con-
strained Delegations. In Proceedings of 2002
IEEE Symposium on Security and Privacy,
2002. To be published.

[5] M. Blaze, J. Feigenbaum, J. Ioannidis, and
A. Keromytis. The KeyNote Trust Manage-
ment System Version 2, September 1999. Re-
quest For Comments (RFC) 2704.

[6] O. Cánovas and A. F. Gómez. A Dis-
tributed Credential Management System for
SPKI-Based Delegation Systems. In Proceed-
ings of 1st Annual PKI Research Workshop,
pages 65�76, 2002.

[7] C. Ellison, B. Frantz, B. Lampson, R. Rivest,
B. Thomas, and T. Ylonen. SPKI certi�cate
theory, September 1999. Request For Com-
ments (RFC) 2693.

[8] S. Farrel and R. Housley. An Internet Attribute
Certi�cate Pro�le for Authorization. Internet
Engineering Task Force, April 2002. Request
for Comments (RFC) 3281.

[9] C. A. Gunter and T. Jim. Policy-directed cer-
ti�cate retrieval. In Proceedings of Software
- Practice and Experience, pages 1609�1640,
2000.

[10] A. Hagstrom, S. Jajodia, F. Parisi, and D. Wi-
jesekera. Revocation: a classi�cation. In Pro-
ceedings of the 14th IEEE Computer Security
Foundation Workshop. IEEE Press, 2001.

[11] D. Pinkas and R. Housley. Delegated Path Val-
idation and Delegated Path Discovery Proto-
col Requirements. Internet Engineering Task
Force, May 2002. draft-ietf-pkix-dpv-dpd-req-
05.txt.

[12] B. Sadighi and M. Sergot. Revocation Schemes
for Delegated Authorities. In Proceedings of
IEEE 3rd International Workshop on Policies
for Distributed Systems and Networks, 2002. To
be published.

[13] B. Sadighi, M. Sergot, and O. Bandmann. Us-
ing Authority Certi�cates to Create Manage-
ment Structures. In Proceeding of Security Pro-
tocols, 9th International Workshop, April 2001.

[14] K. Seamons, M. Winslett, and T. Yu. Lim-
iting the Disclosure of Access Control Policies
during Automated Trust Negotiation. In Pro-
ceedings of Network and Distributed System Se-
curity Symposium, April 2001.

[15] J. Vollbrecht, P. Calhoun, S. Farrell, L Gom-
mans, G. Gross, B. de Bruijn, C. de Laat,
M. Holdrege, and D. Spence. AAA Autho-
rization Framework. Request For Comments
(RFC) 2904, August 2000.

7

