
EMC 2: Extending Magny-Cours Coherence for Large-Scale Servers

Alberto Ros∗, Blas Cuesta∗, Ricardo Fernández-Pascual†, Marı́a E. Gómez∗,
Manuel E. Acacio†, Antonio Robles∗, José M. Garcı́a† and José Duato∗

∗Department of Computer Engineering
Universidad Polit́ecnica de Valencia, 46021 Valencia (Spain)
Email: {aros,blacuesa,megomez,arobles,jduato}@gap.upv.es
†Departamento de Ingenierı́a y Tecnoloǵıa de Computadores

Universidad de Murcia, 30100 Murcia (Spain)
Email: {rfernandez,meacacio,jmgarcia}@ditec.um.es

Abstract

The demand of larger and more powerful high-
performance shared-memory servers is growing over
the last few years. To meet this need, AMD has recently
launched the twelve-core Magny-Cours processors.
They include a directory cache (Probe Filter) that
increases the scalability of the coherence protocol ap-
plied by Opterons, based on coherent HyperTransport
interconnect (cHT). cHT limits up to 8 the number of
nodes that can be addressed. Recent High Node Count
HT specification overcomes this limitation. However,
the 3-bit pointer used by the Probe Filter prevents
Magny-Cours-based servers from being built beyond
8 nodes. In this paper, we propose and develop an
external logic to extend the coherence domain of
Magny-Cours processors beyond the 8-node limit while
maintaining the advantages provided by the Probe
Filter. Evaluation results for up to a 32-node system
show how the performance offered by our solution
scales with the increment in the number of nodes,
enhancing the Probe Filter effectiveness by filtering
additional messages. Particularly, we reduce runtime
by 47% in a 32-die system respect to the 8-die Magny-
Cours system.

1. Introduction and Motivation

Over the last years, the server market is experi-
encing a growing demand in the IT sector. This is
due to both the dramatic increase in the number of
electronic devices connected to the Internet and the
introduction of new services and applications into
the markets supported by the Internet servers. As a
consequence, the number of transactions per time unit
that must be processed by Internet servers is growing
exponentially, which creates demand for increasingly
larger and more powerful high-performance servers.

Additionally, there is a growing trend by large compa-
nies to outsource their IT services (web servers, large
enterprise databases, etc), contracting with Data Pro-
cessing Centers the services they need. They usually
offer their services to these companies by means of
the virtualization of large servers, which require huge
computational and storage capabilities.

Nowadays, most of these servers are based on clus-
ters of PCs, since their architecture offers an excel-
lent relation cost/performance. They usually rely on
message-passing communications for remote memory
accesses. However, message-passing increases not only
the communication latencies, but also the difficulties
to develop applications. This increasing programming
complexity is unreasonable in the server field.

On the other hand, leading processor-manufacturer
companies, such as AMD and Intel, have recently
begun to include advanced interconnect technologies
into their processors (Coherent HyperTransport [1]
in AMD Opterons and QuickPath Interconnect [2]
in Intel Nehalem processors). Unlike previous high-
performance interconnects for clusters (e.g., InfiniBand
[3]), these new network technologies are embedded
into the processor, which allows them to directly access
the memory controller. Moreover, including network
interfaces into the processor chip itself enables a glue-
less point-to-point connection between the processors
and memory controllers, providing low latency to
remote memory accesses. In addition, these technolo-
gies usually provide support for memory coherency.
In particular, AMD has recently launched the six-
and twelve-core versions of its Opteron processors,
codenamed Istanbul and Magny-Cours [4], respec-
tively. Besides increasing the number of cores per
processor package (actually, cores in Magny-Cours are
distributed in two dies), the main difference with the
previous generation of Opteron processors is the inclu-
sion of a directory cache, calledHT Assist Probe Filter



(HTA) [5], whose main aim is to reduce the number of
messages generated by the cache coherence protocol.
The Magny-Cours protocol, which is an adaptation of
the protocol defined by the coherent HyperTransport
(cHT) specification, allows to build a small cache-
coherent shared memory multiprocessor (up to eight
dies) in a single board.

The addition of the HTA reduces cache miss latency
and coherence traffic, thereby increasing the scalability
of the protocol. However, the HTA suffers the ad-
dressing limitations imposed by the cHT specification,
which limits the coherence domain for Istanbul and
Magny-Cours processors up to 8 dies (or nodes) [4].
This goes against the current commercial interest in
developing cluster-based HPC systems able to offer
large cache-coherent shared memory address spaces,
such as the SGI Ultraviolet (Altix UV) [6] machines
and the 3Leaf Systems DDC-server [7].

The addressing limitation of the cHT specification
is solved in the new High Node Count (HNC) Hy-
perTransport specification [8], which extends the cHT
specification by encapsulating standard cHT messages
into HNC packets. However, as current Opteron pro-
cessors do not implement natively this extension, the
coherence domain remains limited to 8 dies being
required an external logic to overcome this limitation.

In this work, we present a device, calledbridge chip
or EMC2 chip, that (1) provides a way to efficiently
extend the coherence domain provided by the new
generation of AMD Opteron processors beyond the
8-die limit, (2) maintains the advantages provided by
the HTA, and (3) filters additional coherence traffic to
enhance the HTA effectiveness.

The EMC2 chip is added to each board in the
system, replacing one of the existing dies. It manages
the communication between dies in different boards
by performing conversions between cHT and HNC
packets. In this way, and unlike other extensions (e.g.,
Horus [9], which was aimed to extend the coherence
domain for previous-generation AMD Opteron proces-
sors), our proposal agrees with the new HNC standard
specification.

We have proposed three different implementations
for the EMC2 chip that cover a wide set of trade-
offs between their area requirements and the amount
of traffic filtered by them. Additionally, to improve
the scalability of our design, we have proposed two
approaches that (1) reduce the number of replacements
in the HTA and (2) increase the number of remote
messages allowed simultaneously in a particular board.

Simulation results show that our proposal allows to
build large-scale shared-memory servers based on the
new-generation Opteron processors, able to exploit the
advantages of the HTA at the overall system level.
Particularly, the bridge chip named asEMC2-OXSX
reduces the average execution time of the evaluated

applications by 47% for a 32-die system respect to the
8-die system allowed by Magny-Cours, while obtain-
ing an excellent compromise between area and traffic
requirements.

Notice the two main advantages of extending the
coherence domain. First, data center servers supporting
virtualization solutions could use system resources in
a more flexible and efficient way, allowing to define
larger virtual domains and fitting better the application
requirements. Second, it would allow to support HPC
applications that currently can only be used in super-
computers and cluster-based computing platforms.

The remainder of this paper is organized as follows.
Section 2 outlines the Magny-Cours cache coherence
protocol. We present our proposals for extending AMD
Magny-Cours cache coherence capabilities in Sec-
tion 3. Section 4 discusses some scalability issues. We
describe our simulation environment in Section 5 and
present the evaluation results in Section 6. Finally, we
draw conclusions in Section 7.

2. AMD Magny-Cours Cache Coherence
Support

AMD Opteron processors use the cache coherence
protocol defined by the cHT specification [1]. This
protocol was designed to perform efficiently in a sys-
tem with a small number of processors connected with
tightly-coupled point-to-point HyperTransport links. It
can be described as a hybrid between a snoopy and a
directory protocol. It is similar to a snoopy protocol
in the sense that all the coherence nodes see all
transactions. However, like directory protocols, it does
not rely on a shared bus and can, in fact, be charac-
terized as a directory-based protocol without directory
information, also known as Dir0B [10]. This lack of
directory information reduces the memory overhead
and avoids the latency of accessing it.

Accesses to memory blocks are serialized by their
home node (memory controller), which will broadcast
messages known asBroadcast Probe(BP). Nodes reply
to BPs with Probe Response(PR) messages, which
are collected by the requester. Once the request is
satisfied, the requester sends aSource Done(SD) to
the home node, which is allowed to proceed with the
next request for the block. The required BPs do not
excessively increase bandwidth consumption in small
systems. However, as the number of nodes grows,
both the bandwidth consumed and the time required to
receive and process all the PRs increase dramatically.
Finally, writebacks of dirty blocks are sent to their
home node which will reply to the requester with a
Target Done(TD) message. Like in the previous case,
the transaction ends with a SD.

Recent Istanbul and Magny-Cours processors in-
clude a small on-chip directory cache [5] calledHT



L2
512kB

L2
512kB

L2
512kB

L2
512kB

Core 1 Core 2 Core 3 Core 4

XBAR

Controller
MCT/DCT

L3 data array
(6MB)

DRAM 4 HyperTransport Ports

L2
512kB

Core 0

L2
512kB

Core 5

System Request Interface (SRI)

L3 tag

DRAM

Filter

Memory HTA
Probe

Figure 1:Block diagram of Magny-Cours dies [4].

Assist Probe Filter(HTA). Figure 1 shows the block
diagram of a Magny-Cours die.

The HTA holds an entry for every block from the
home node cached in the system. Each entry has 4
bytes which are used to store atag, a state (EM, O,
S1 or S)1, and a pointer to the currentowner of the
block (3 bits). This information is used to (1) filter
unnecessary BPs when no copy of the data is cached
and (2) to replace some BPs with unicastDirected
Probe (DP) messages. In case of a DP, only one
response, calledDirected Response(DR), is generated.
Upon a miss on the HTA, a new entry must be
allocated, which may require to replace an existing
one. Before performing the replacement, all the cached
copies of the block identified by the replaced entry
must be invalidated either by a DP (if the replaced
entry is in EM or S1 state) or by a BP (if it is in O or
S state).

As Figure 1 depicts, a portion (1MB of 6MB avail-
able) of the L3 cache is dedicated to HTA entries to
avoid adding a large overhead in uniprocessor systems.
This provides enough space for 256K entries organized
in 64K 4-way sets, which are enough for tracking
16MB (256K entries× 64 bytes/block) of data cached
in the system.

Since the cHT packet format assumes 3-bit fields
to identify coherent nodes, Magny-Cours systems are
still limited to 8 dies. The HNC HyperTransport spec-
ification addresses this last problem by extending the
cHT specification. To this end, it defines the concept of
nestas any addressable entity (which can be anything
from a single processor up to a motherboard containing
several processors) and an extended packet format that
can encapsulate standard cHT messages and uses a
nest-based addressing scheme. However, it does not
establish how packets should be handled when they
move between local and remote domains. Besides,
the HTA imposes an additional limitation because the
pointer used to encode the current owner of a cached
block has only 3 bits, bounding the Magny-Cours

1. Blocks are stored in caches according to the MOESI states [11].

Switch Fabric

Node 2 Node 3

Node 1

EMC2 chip

. . .Node 2 Node 3

Node 1

EMC2 chip

Node 2 Node 3

Node 1

EMC2 chip

Nest 0 Nest 1 Nest N

Node 0 Node 0Node 0

Figure 2:Overview of the proposed system. Thick arrows
inside the boards represent x16 cHT links while the narrow
ones are x8 cHT links.

systems to a maximum of 8 dies. To overcome these
two problems we propose the EMC2 chip described in
the next section.

3. Extending AMD Magny-Cours Cache
Coherence Capabilities

We assume the system illustrated in Figure 2. As
shown, it comprises several processor boards (referred
to as nests). Each nest contains 4 processor dies
(referred to as nodes) and the EMC2 bridge chip which
acts as (1) a network interface controller for the entire
nest, (2) a translator between cHT and HNC packets,
and (3) an extension of the HTAs of the nodes. Each
board includes a consecutive fraction of the physical
memory addresses. A modified BIOS or operating
system can be in charge of configuring this mapping.
In this paper we assume that all the boards have the
same amount of memory.

3.1. Extending the Coherence Domain

To maintain coherence between nodes in different
nests, we propose the use of the EMC2 chip, whose
block diagram is shown in Figure 3. From the point
of view of nodes, the EMC2 chip is seen as another
node inside the nest. The EMC2 chip and all the
nodes in a nest are fully connected through a cHT
interconnect. The different nests are connected by an
InfiniBand switch fabric and they communicate using
HNC packets encapsulated into InfiniBand packets.

Every cHT packet conveys the information of the
transaction it belongs to: the node that initiated the
transaction (SrcNode), its unit (SrcUnit), and a tag
(SrcTag). When the EMC2 chip has to translate a cHT
packet into a HNC packet it must include the infor-
mation about the associated transaction. To this end,
it adds to the previous information the nest (SrcNest)
where the SrcNode is located. In this way, transactions
can also be unequivocally identified outside a nest.

On a HNC packet arrival belonging to an external
transaction (i.e., that initiated outside the nest), the
EMC2 chip has to forward it inside the nest as a cHT
packet. To avoid conflicts with the existing cHT pack-
ets belonging to internal transactions (initiated inside



In
te

rn
al

 P
or

ts

Pending

Queue
Command

EHTA

ETT

Unit

MST

Control

cH
T

 P
ac

ke
t A

da
pt

er

In
te

rn
al

 P
or

ts
E

xt
er

na
l P

or
ts

IB
A

/H
N

C
 A

da
pt

er
s

H
N

C
/IB

A
 A

da
pt

er
s

E
xt

er
na

l P
or

ts

Figure 3:Block diagram of the EMC2 chip.

the nest), the EMC2 chip associates the generated cHT
packet with a new internal transaction that will have
a new SrcTag local to its nest and a new SrcNode
(the EMC2 chip identifier itself). On the other hand,
when a cHT packet for that new transaction arrives to
the EMC2 chip, the HNC packet to which it is trans-
lated restores the original identifiers of the external
transaction. To support these operations, theMatching
Store Table(MST) included in the EMC2 chip (see
Figure 3) keeps the matching between the identifiers of
external transactions and those of the internal ones. The
number of MST entries, and consequently, the number
of external transactions simultaneously in progress in
the nest, is bounded by the maximum number of tags
that can be generated by the cHT specification (i.e., 32
tags). When the MST is full and a new entry cannot
be allocated, the incoming packets will have to be
temporally stored in thePending Command Queue.

The MST entries created by Broadcast/Directed
Probes are valid until the associated response goes
back to the EMC2 chip. However, the entries al-
located by requests remain until the arrival of the
corresponding Source Done. Due to the limited number
of MST entries, if every MST in the system was full of
the entries allocated by requests, a deadlock scenario
could occur. This is because probes would be unable
to allocate new entries, and therefore, the pending
requests would never complete. To avoid it, the MST
must reserve at least one entry for Broadcast/Directed
Probes.

Another function of the EMC2 chip is to collect all
the responses received as a consequence of a probe
and transforming them into just one response packet
(if needed). To accomplish this task, the EMC2 chip
uses the MST. However, given that MST entries are
only allocated on the arrival of messages belonging to
external transactions, we need another table that helps
the EMC2 chip to collect the responses associated to
internal transactions. This additional table is called
Extended Tag Table(ETT) and it has 512 entries (32
tags/node× 4 units/node× 4 nodes/nest). Unlike the
MST, it is able to store all the transactions requesting
an entry in it.

3.2. Extending the HTA Functionality
To maintain and extend the functionality of the

HTAs as well as to reduce the generated coherence
traffic, every EMC2 chip includes a directory cache
called Extended HTA(EHTA), as shown in Figure 3.
An EHTA tracks the memory blocks whose home is
located in its nest and that may also be cached in a
remote node (outside its nest). However, the EHTA is
not aware of the blocks only cached inside its nest.

Since a HTA only knows the existence of the nodes
inside its nest, when the owner is in a remote node,
the HTA will think that it is cached by the EMC2

chip. Therefore, the EHTA included in the EMC2 chip
will be in charge of tracking the actual location of
the owner, that is, its nest (ownerNestfield) and node
(ownerNodefield) identifiers. Given that there are four
HTAs per nest and each one holds 256K entries, we
will assume 1M entries for each EHTA (64K 16-way
sets). Doing so will prevent EHTA from limiting the
number of blocks that can be simultaneously cached
outside the home nest below the limit imposed by the
local HTAs themselves.

In addition to the information of the owner, the
EHTA also includes some information that helps it in
the traffic filtering task. In order to cover a wide set
of trade-offs between area requirements and amount
of filtered traffic, we propose three different EHTA
configurations.

• The EMC2 chip with the first configuration, called
EMC2-Base, includes an EHTA that implements
the same states as the HTA: EM, O, S1, S. These
states, that require just two bits per entry, are the
only information used to filter coherence traffic.

• The second configuration, assumed by theEMC2-
OXSXchip, adds two additional states, OX and
SX, which will require three bits for codifying
all the states. These new states are particularly
intended to turn Broadcast Probes into Directed
Probes when all the remote copies of a certain
block are located in the same nest. Notice that on
the arrival to the remote nest, the Directed Probe
will be turned again into a Broadcast Probe in
case of having to invalidate more than one copy.

• The EMC2-BitVector chip, which includes the
third EHTA configuration, adds a bit-vector for
each EHTA entry to the first configuration. The
bit-vector includes a bit for every remote nest
in the system, indicating if associated block is
cached or not in the corresponding nest. This
allows replace Broadcast Probes with multicast
probes. Although it is the configuration that filters
more traffic, it needs one extra bit per remote nest
for each EHTA entry what makes it the most area-
demanding approach.

Since the three EHTA configurations are quite sim-
ilar and in order to shorten their detailed explanation,



Table 2:Scenarios depending on the HTA state (rows) and the EHTA state (columns).in/out refers to inside/outside the home
nest, andld/st to load/store.DP* means that the BP turns into a DP, but only while the DP is transmitted between nests.
However, when the DP reaches a nest, the DP is turned into a BP (only inside that nest).

EM OX O S1 SX S I

EM
owner out

- - - - -
owner in

no copy in/out no copy out
ld / st:DP→DP ld / st: -

O

owner out owner out owner out owner in owner in owner in owner in
no copy out copies in owner nest copies out 1 copy out copies out (1 nest) copies out no copy out

copies in copies in copies in copies in copies in copies in copies in
ld:DP→DP ld:DP→DP ld:DP→DP ld: - ld: - ld: - ld: -
st:BP→DP st:BP→DP* st:BP→BP st:BP→DP st:BP→DP* st:BP→BP st:BP→Filtered

S1 - - -
owner in memory

- -
owner in memory

1 copy out no copy out
no copies in 1 copy in

ld: - / st:DP→DP ld / st: -

S - - -
owner in memory owner in memory owner in memory owner in memory

1 copy out copies out (1 nest) copies out no copy out
copies in copies in copies in copies in

ld: - / st:BP→DP ld:- / st:BP→DP* ld: - / st:BP→BP ld:- / st:BP→Filtered

I
owner in memory

- - - - - - no copy in/out
ld / st: -

Table 1:EHTA States of theEMC2-OXSXchip.
State Description
EM Only the owner’s copy is cached outside the home nest.

Other copies may be cached inside.
OX The owner’s copy is cached outside the home nest. Other

copies may be cached either in the home nest or in the
owner nest.

O The owner’s copy is cached outside the home nest. Other
copies may be cached in any nest.

S1 At most one shared copy is cached outside the home nest.
SX Only shared copies cached outside the home nest, all of

them located in the same nest.
S Only shared copies cached outside the home nest. They can

be located in any nest.
I No valid copy of the block cached outside the home nest.

from now on, we will just focus on the one included
in the EMC2-OXSX chip because it is the one that
achieves a better traffic-area trade-off, as we will
discuss in Section 6. In this sense, the possible block
states in the EHTA are shown in Table 1.

Table 2 depicts the different scenarios that can
appear depending on the block state in both the EHTA
and the HTA. For each combination, it shows a short
description of how the block is cached and the actions
performed (if any) under load and store transactions.
The three possible actions are: (1) no action, (2)
turning a Broadcast Probe into a Directed Probe, and
(3) filtering a Broadcast Probe. Notice that the bold
actions entail a reduction in coherence traffic.

The state and the content of the EHTA is updated
when the caching of the blocks changes. To do this
appropriately, the EMC2 chip uses the packets issued
by the nodes located inside its nest and belonging to
transactions for memory blocks mapped to that nest.

3.2.1. Broadcast Probes and Probe Responses.To
update the EHTA while avoiding races, the EMC2

chip uses the last received packet among the Broadcast
Probes and Probe Responses generated as a result of
a store transaction. Upon its receipt, the EMC2 chip
carries out the actions shown in Figure 4. As depicted,

requester

{state} = I

requesterEHT
Assist

{ownerNode} = Requester’s Node*
{ownerNest} = Requester’s Nest*

{state} = EM

* Retrieved from either the Broadcast Probe or the MST

Addr*

Local Node

Remote Node

Local Node

Remote Node

HitMiss

Figure 4: Updating the EHTA by BPs or PRs for store
transactions.

transactionstate requester
nest

{state} = I

{ownerNode} = Requester’s Node
{ownerNest} = Requester’s Nest

{state} = EM

{state} = OX{state} = O

requester
nest

Load Store

Home Nest
Other

O
EM
OX

Home Nest

Other
Owner Nest

Figure 5:Updating the EHTA by DPs.

if there is no valid entry for that block in the EHTA
(EHTA miss) and a copy is going to be sent outside
the home nest (the requester is a remote node), a
new entry is allocated, setting the state to EM and
the block’s owner (ownerNest and ownerNode) to the
requester node. If the EHTA already contains an entry
for the block, the EMC2 chip updates the existing
entry accordingly. Finally, when the requester is in the
home nest, the EHTA entry is set to invalid because
all external copies are invalidated.

3.2.2. Directed Probes. Figure 5 shows how the
EHTA is updated on a Directed Probe (DP) arrival.
If an EMC2 chip receives a DP (from inside the
nest) due to a load transaction, then it means that the
block’s owner is outside the home nest and, therefore,
the EHTA state can only be EM, OX, or O. In this



shared?
{ownerNode} = Requester’s Node
{ownerNest} = Requester’s Nest

{state} = EM
EHT
Assist

state

{state} = S

requester
nest

{ownerNode} = Requester’s Node
{ownerNest} = Requester’s Nest

{state} = S1

{state} = SX

Shared

Miss
Hit

Shared
No

S Other Owner Nest

S1
SX

Addr

Figure 6:Updating the EHTA by DRs.

situation, if the load requester is local to the home nest,
neither the state nor the owner fields will be modified
because the copies cached outside the home nest does
not change. If the requester is located in the owner nest
and the state field is either EM or OX, all the copies
outside the home nest will be located in the same nest
and, consequently, the state field is set to OX. In case
the requester is not located in neither the home nest nor
the owner nest, the state field transitions to O. When
the state field is set to O, DPs do not change the state.

In case of a store transaction, the EMC2 chip will
receive a DP only when there exists just a single
copy of the block outside the home nest which, in
addition, will be the owner (EM state). In such a
case, if the requester is remote to the home nest, the
state field transitions to EM and the owner field is
set to the requester node (onwerNest and ownerNode).
Otherwise, if the requester node is local to the home
nest, the EHTA entry is deallocated because the single
copy outside the home nest will be invalidated and
forwarded to the requester.

3.2.3. Directed Responses.Figure 6 shows how the
EHTA is updated on a Directed Response (DR) receipt.
Notice that if an EHTA is updated by using a DR,
it means that the owner is located inside the home
nest and that the request is located outside. If the DR
conveys an exclusive copy of a memory block (this can
be known by using the shared bit present in the header
of the DRs), the state field in the EHTA transitions to
EM and the owner field is set to the requester node.
In case the DR conveys a shared copy, the state for
that block is checked in the EHTA. If the state is I or
an EHTA miss occurs, a new entry is allocated setting
the state to S1 and keeping the node information in
the ownerNestandownerNodefields. If an EHTA hit
happens, the EHTA state is S1 or SX, and the requester
nest matches theownerNestfield, the state is set to SX.
If the state is S1 or SX and the requester nest does not
matches theownerNestfield, the state is updated to S.
If the state is S, it is kept.

3.2.4. Target Done Messages.A Target Done (TD)
packet can only cause the EHTA to be updated when
it has been generated as a result of a cache replacement
(VicBlk transaction). Notice that, only the block’s
owner can initiate a replacement because the shared
copies are replaced silently. Upon the arrival of a TD,
if the owner in the EHTA coincides with the requester

EHT
Assist

requester

state

{state} = S{state} = SX{state} = I

* Retrieved from the MST

MissHit

Owner

EM

Other

OX

O

Addr*

Figure 7:Updating the EHTA by local TDs.

of the VicBlk transaction, the state field is checked. If
the state is EM, it transitions to I because the single
copy outside the home nest has been invalidated. If the
state is OX, it transitions to SX because the copy held
by the owner is invalidated, but the remaining copies
may continue to be valid. Finally, if the state is O, it
transitions to S because the other copies in the system
may continue to be valid. On the contrary, if the owner
in the EHTA does not coincide with the requester,
the EHTA is not modified because a race condition
happened and the EHTA has already been correctly
updated. These operations are depicted in Figure 7.

4. Scalability Issues

This section addresses two potential scalability prob-
lems that could appear in the proposed extension of
the coherence protocol. They come as a consequence
of constraints imposed by Magny-Cours. The first
one is the limited size of the HTA structure and it
affects the HTA coverage ratio. The second one, is
the limited number of tags (32) available to translate
external transactions into internal transactions. In the
next sections, we describe these issues in more detail
and propose two mechanisms to prevent them from
being a bottle-neck in large-scale configurations.

4.1. HTA Coverage Ratio

As previously described in Section 2, each HTA
keeps coherence information of its local blocks. The
number of entries of each HTA (256K) is twice the
number of entries of the cache hierarchy of each die
(128K). Therefore, as stated in [4], the typical coverage
ratio of the HTA is×2.

This ratio assumes a uniform distribution of lines
among HTAs. However, considering that memory is
not interleaved among the different dies, it is quite
probable that some memory controllers will hold more
cached blocks than others. The worst case scenario
will appear when all the cached blocks belong to
the same memory controller. In Magny-Cours, having
up to 8 dies, the coverage ratio in that worst case
decreases down to×0.25, which could be reasonable.



Unfortunately, when we move to larger systems, this
worst-case coverage ratio can fall drastically (down to
×0.062 for 32 dies), which could result in a significant
number of cache invalidations due to HTA replace-
ments. These invalidations would increase the L3 cache
miss rate, which may lead to a significant performance
degradation.

A solution for this problem is to interleave mem-
ory blocks or memory pages inside each nest (i.e.,
among the dies belonging to the same nest), but not
to interleave among nests. The intra-nest interleaving
lessens the impact of the worst-case coverage ratio by
homogeneously distributing blocks among HTAs in the
same nest.

On the other hand, we do not perform an inter-
nest interleaving to avoid a performance degradation,
mainly for sequential applications. Notice that it would
be desirable for such applications to access as much
as possible the local memory bank. Otherwise, they
may significantly increase their average memory access
latency. Since accessing to a memory bank in a local
nest is much less expensive than the access to a
memory bank in a remote nest (inter-nest communica-
tion has larger latency than intra-nest communication),
this approach offers a very good trade-off between
coverage ratio and access latency.

4.2. Matching Store Table Tags Limitation

As previously commented, in Magny-Cours there
are only 32 tags per die available. Therefore, the
Matching Store Table (MST) only has 32 entries for the
incoming messages belonging to external transactions.
When all entries in the MST are occupied, subsequent
incoming messages must wait at the Pending Com-
mand Queue until an entry is deallocated. Again, as
the system size grows, this limitation may become a
bottle-neck and may degrade performance.

Since our system configuration has four dies per
nest and one bridge chip, there are three unused
die identifiers in the nest. Therefore, we propose to
increase the number of available tags for the incom-
ing messages belonging to external transactions. This
would allow us to assign up to 96 additional tags (128
tag in total). In this way, the number of in-progress
coherence messages belonging to external transactions
also increases.

5. Simulation Environment
We evaluate our proposals with full-system simu-

lation using Virtutech Simics [12] extended with the
Wisconsin GEMS toolset [13], which enables detailed
simulation of multiprocessor systems. For modeling
the interconnection network, we have used GARNET
[14], a detailed network simulator included in GEMS.
Finally, we have also used the CACTI 5.3 tool [15],

Table 3:System parameters.
Memory Parameters

Processor frequency 3.2 GHz
Cache block size 64 bytes
Aggregate L1+L2 caches 3MB, 4-way
L3 cache 5MB, 16-way
Average cache access latency (L1+L2+L3) 2ns
HT assist (probe filter) 1MB, 4-way
HT assist access latency 4ns
EMC2 chip processing latency 16ns
Memory access latency (local bank) 100ns

Network Parameters
Intra-nest topology Fully-connected
Inter-nest topology Hypercube
Data message size 68 or 72 bytes
Control message size 4 or 8 bytes
HyperTransport bandwidth (16 bits, 6.4GT/s)12.8GB/s
Inter-die link latency 2ns
Inter-socket link latency 20ns
InfiniBand bandwidth (12x, 10Gb/s) 12GB/s
Inter-nest communication (one way) 150ns
Flit size 4 bytes
Link bandwidth 1 flit/cycle

assuming a 45nm process technology, to measure the
area required by our proposals.

For the evaluation of our proposals, we have first
implemented the Magny-Cours cache coherence pro-
tocol. Then we have designed and implemented the
behavior and the architecture of three different EMC2

chips explained in Section 3. We have also provided
the simulator with the functionality of having several
cores per die sharing the same L3 cache. However, the
intra-die coherence has not been modeled since (1) it
is out of the scope of work and (2) the simulation time
would increase considerably. We have run simulations
from 8 to 32 dies and with 1 and 2 cores per die. For
the Magny-Cours (MC) system we only simulate one
nest with 8 dies. For the EMC2 system we simulate
4 dies per nest (plus the EMC2 chip). The parameters
assumed for the systems evaluated in this work are
shown in Table 3. Since we do not model the intra
die protocol or the cache hierarchy, we assume a fixed
access latency (representing the average access time)
for the whole hierarchy (L1, L2, and L3 caches).

We have evaluated our proposal with a wide variety
of scientific workloads from the SPLASH-2 bench-
mark suite [16]: Barnes (16K particles), Cholesky
(tk16),FMM (16K particles),Ocean(514×514 ocean)
Raytrace(teapot) andWater-Sp(512 molecules). All
the experimental results reported in this work corre-
spond to the parallel phase of these benchmarks. We
account for the variability in multithreaded workloads
[17] by doing multiple simulation runs for each bench-
mark in each configuration and injecting small random
perturbations in the timing of the memory system for
each run.

6. Evaluation Results
In this section, we show how our proposals support

more than 8 dies while scaling in terms of execution



0.0%

3.5% 0.8%

6.7%

2.4% 0.0%7.2%2.7% 0.1%2.4% 0.3%

0.0%0.0% 0.0%

0.0%

0.2%0.9%

2.3%

2.6% 1.2%0.2%0.0% 0.5%1.9% 0.2%

0.0%0.0%0.0% 0.0%

0.0%

11.2% 5.6%

5.9%

0.8% 0.2%14.7%1.2% 2.3%0.7% 0.5%

0.0%1.9%0.0% 0.0%

0.0%0.0%

1.4%5.9%

7.9%

0.5%0.3% 2.0%0.2%

0.3%

0.0%

EM OX O S1 SX S I

EM

O

S1

S

I

EM

O

S1

S

I

EM OX O S1 SX S I

Read: 63.7% Write: 36.3%
L
o
c
a
l:

2
8
.6

%
R

e
m

o
te

:
7
1
.4

%

0.0% 0.0%

0.0%

Figure 8: Characterization of cache misses according to
the HTA (vertical) and EHTA (horizontal) states, read/write
misses, and local/remote misses. Results show the average
of all the evaluated benchmarks. Crossed cells represent
impossible combinations of states. The darker the color of a
cell is, the higher the miss percentage is. Larger cells indicate
that the EHTA is not reached, and therefore, the state can be
any one of those covered by the cell.

time. Additionally, we compare the three bridge chips
proposed in this paper in terms of network traffic,
cache miss latency, execution time, and area require-
ments. Finally, we study the impact of the mechanism
proposed in Section 4.1 to increase the HTA coverage
ratio. Since the number of nodes of the evaluated
configurations is not enough to fill the MST, we do
not perform an evaluation of a system that employs
the unused die identifiers in the nest to increase the
number of available tags since it is not necessary.

6.1. Cache Miss Characterization

First of all, it is important to characterize the ap-
plications in order to get an idea of the percentage of
cache misses that can take advantage of the EHTA fil-
tering capabilities. Figure 8 shows this characterization
for a 32-die system with theEMC2-OXSXchip, as a
representative example (see Table 2).

Our EMC2 chips can reduce network traffic only
when a write miss happens for a block in O or S
states in the HTA (i.e., when a Broadcast Probe is
received). On average for the considered applications,
this happens for 21.7% of cache misses in a 32-die
configuration. Depending on the state in the EHTA,
the EMC2 chip can either filter the Broadcast Probe
or convert it into a Directed Probe. Note that for the
remaining misses, the HTA already filters the probes.

6.2. Network Traffic

For each Broadcast Probe issued by the home
node, we show in Figure 9 the average number of
Broadcast/Directed Probes that arrive to the dies. This
number is plotted for systems from 8 to 32 dies,

Barnes Cholesky FMM Ocean Radiosity Water-Sp Average
0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0
18.0
20.0
22.0
24.0
26.0

A
vg

. p
ro

be
s 

re
ce

iv
ed

 p
er

 B
P

MC_8
EMC2-Base_8

EMC2-OXSX_8
EMC2-BitVector_8

EMC2-Base_16
EMC2-OXSX_16

EMC2-BitVector_16
EMC2-Base_32

EMC2-OXSX_32
EMC2-BitVector_32

Figure 9: Number of probes received for each broadcast
probe sent by the home die.

Barnes Cholesky FMM Ocean Radiosity Water-Sp Average
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

N
or

m
al

iz
ed

 m
is

s 
la

te
nc

y

MC_8
EMC2-Base_8

EMC2-OXSX_8
EMC2-BitVector_8

EMC2-Base_16
EMC2-OXSX_16

EMC2-BitVector_16
EMC2-Base_32

EMC2-OXSX_32
EMC2-BitVector_32

Figure 10:Normalized miss latency for the evaluated con-
figurations.

with one core per die, and for the three EMC2 chips
proposed and the base Magny-Cours system with 8
dies. Without any filtering this number should be 8, 16,
and 32 for 8-, 16-, and 32-die systems, respectively.

Since Magny-Cours does not filter Broadcast Probes
(due to write misses), the average number of probes
arriving to a die is always 8. However, for the same
system size our protocols reduce this number by fil-
tering some probes. Obviously, when we consider 8
dies (i.e., 2 nests), there is only one remote nest, so all
EMC2 chips behave in the same way. For larger sys-
tems, we can see that the more coherence information
the HTA stores, the more traffic it filters. Particularly,
for a 32-die system we can see that the average number
of received probes is reduced by 23.6% (24.4/32),
49.7% (16.1/32), and 61.6% (12.3/32) forEMC2-Base,
EMC2-OXSX, andEMC2-BitVector, respectively.

This reduction in the number of probes received
by the dies has two consequences: (1) the number
of generated probe responses is also reduced, and (2)
the network congestion and the coherence controller
congestion decreases. They lead to less time waiting
for Probe Responses, and therefore, shorter cache
miss latency, which will results in improvements in
execution time.

6.3. Execution Time

As we can see in Figure 10, cache miss latency
increases when we move fromMC 8 to EMC2 8.
This is because the latency for transmitting messages
between nests is higher than between dies. Remember
that inMC 8 we have the 8 dies in the same nest, while
in EMC2 8 the 8 dies are distributed in two nests.

On the other hand, when we consider a larger
system, the cache miss latency increases. Neverthe-
less, we reduce the final execution time because the



Barnes Cholesky FMM Ocean Radiosity Water-Sp Average
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e
MC_8
EMC2-Base_8

EMC2-OXSX_8
EMC2-BitVector_8

EMC2-Base_16
EMC2-OXSX_16

EMC2-BitVector_16
EMC2-Base_32

EMC2-OXSX_32
EMC2-BitVector_32

Figure 11: Normalized execution time for the evaluated
configurations.

applications can be distributed among more dies which
considerably reduces the workload of each die. Finally,
we can observe the reduction in average cache miss
latency achieved for some EMC2 chips for the 32die
configuration. Compared toEMC2-Base, EMC2-OXSX
reduces the average miss latency by 3.7%, andEMC2-
BitVectorby 5.0%. As we can observe, this percentage
is expected to increase for larger scale configurations.
These reductions in cache miss latency finally translate
into improvements in execution time.

Figure 11 shows the normalized execution time
when we increase the number of dies. We can see
that, although for the 8-die configuration our pro-
posals behave worse thanMC 8 (due to the inter-
nest latency), when we extend the coherence domain
through the bridge chip and allow a higher number of
nodes, the execution time of the applications is sig-
nificantly reduced. Particularly,EMC2-OXSX 32 and
EMC2-BitVector 32 improveMC by 47% on average.

Comparing the three proposals in a 32-die system,
EMC2-OXSXandEMC2-BitVectorobtain similar exe-
cution time and slightly improveEMC2-Base(≈4%).

6.4. Area Requirements
The different EMC2 chips cover a wide trade-off

between memory requirements and filtered traffic. This
section studies the area of these chips and their trade-
offs for a 32-die configuration.

The three chips differ in the size of the EHTA. Its
sizes and those of the ETT and MST are described in
Table 4. The EHTA of theEMC2-Baseis the one that
less bits needs per entry (the tag plus 8 bits including
state, owner die, and owner nest). The EHTA of the
EMC2-OXSXneeds an extra bit for codifying the two
additional states. Finally, the EHTA of theEMC2-
BitVectorneeds seven extra bits for storing the vector
of remote nests.

Figure 12 plots the trade-off of these three chips
in terms of network traffic and area requirements.
The total area of each chip has been calculated by
adding the areas (inmm2) of the three data structures
presented in the chip (without considering control
logic). The normalized network traffic corresponds
to the average number of flits transmitted by each
switch in the whole system for the six benchmarks
evaluated in this work, and normalized toEMC2-Base.

Table 4:Size of the different bridge chips for systems up
to 32 dies (8 nests).

Structure Entries Assoc Entry size Area
ETT 128 1 540 bits 0.64mm

2

MST 32 1 607 bits 0.23mm
2

EMC2-Base EHTA 1M 16 tag + 8 bits 25.72mm
2

EMC2-OXSX EHTA 1M 16 tag + 9 bits 25.97mm
2

EMC2-BitVector EHTA 1M 16 tag + 15 bits 33.38mm
2

25 26 27 28 29 30 31 32 33 34 35

Area required (mm2)

0.8

0.85

0.9

0.95

1.0

N
or

m
al

iz
ed

 n
et

w
or

k 
tr

af
fic

EMC

EMC-OXSX

EMC-BitVector

Figure 12:Traffic-area trade-off for a 32-die system.

We can observe that,EMC2-OXSXreduces the traffic
by 10.6% compared toEMC2-Base, while EMC2-
BitVector reduces the traffic by 15%. Moreover, the
area ofEMC2-OXSXis very close to the area ofEMC2-
Base. Therefore, we can conclude thatEMC2-OXSX
achieves a good compromise between network traffic
and area requirements.

6.5. HTA Coverage Ratio

As discussed in Section 4, the HTA coverage ratio
can be a problem for large scale systems, when the
worst case scenario appears (i.e., most cached blocks
map to the same home). In order to show this problem
we have run simulations with two cores per die, four
dies per nest, and two nests. Additionally, since the
working set of the splash-2 benchmarks is very small
compared to the cache sizes, we have halved the size
of the caches (data and HTA) to be able to produce
a meaningful evaluation while keeping the simulation
time manageable. Note that halving both caches keeps
the HTA coverage ratio constant.

In order to see the effect of the coverage ratio, we
have split cache misses into a new 5C classification:
the traditional 3C classification (Cold misses,Capacity
misses andConflict misses),Coherencemisses, and
Coveragemisses. Coverage misses are caused by pre-
vious probe messages issued by the home node due to
replacements in the HTA, which entails to invalidate
all the copies of the block cached in the system. As
we can see in Figure 13, when we do not perform any
interleaving of memory addresses, the HTA can cause
up to 50% of cache misses (e.g., inOcean), and 25%
on average. However, by using the hybrid interleaving
policy described in Section 4, this percentage of misses
is reduced significantly (up to 3%). This reduction in
the number of cache misses (by 20%, on average)



Barnes

Cholesky
FMM

Ocean

Radiosity

Water-S
p

Average
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

iz
ed

 L
3 

ca
ch

e 
m

is
se

s

3C
Coherence
Coverage

1. NoInterleaving
2. HybridInterleaving

Figure 13: Classification of cache misses for the no-
interleaving policy and the hybrid interleaving policy.

Barnes

Cholesky
FMM

Ocean

Radiosity

Water-S
p

Average
0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e

NoInterleaving
HybridInterleaving

Figure 14: Normalized execution time for the no-
interleaving policy and the hybrid interleaving policy.

results in improvements in execution time. We can
observe in Figure 14 that execution time is reduced
with the proposed policy by 7.8% on average.

7. Conclusions
In this paper, we have extended by an external

logic (EMC2 chip) the coherence domain of the AMD
Magny-Cours processors beyond the 8-die limit im-
posed by both the cHT specification and the owner
field of the HTA. The proposed chip not only maintains
the HTA capability to filter the coherence traffic over
the entire system, but also filters additional traffic,
which provides the scalability required to build large-
scale servers. Evaluation results for up to a 32-node
system show how the runtime of the applications scales
with the number of nodes, reducing the application
runtime by 47% on average (compared to the 8-die
Magny-Cours system).

We have proposed and analyzed three EMC2 chip
configurations able to provide different tradeoffs be-
tween filtered network traffic and required silicon area.
Particularly in a 32-die system,EMC2-OXSXachieves
a good compromise between network traffic (10.6%
of traffic reduction compared toEMC2-Base) and
reducing area requirements (22.2% of area reduction
compared toEMC2-BitVector).

In addition, we have also addressed two potential
scalability problems that could degrade the perfor-
mance of (very) large systems. In particular, the HTA
coverage ratio problem can be palliated by a hybrid
interleaving policy, reducing execution time by 7.8%.

Acknowledgment

This work has been supported by Generalitat Valen-
ciana under Grant PROMETEO/2008/060, by Span-
ish Ministry of Ciencia e Innovación under grant
“TIN2006-15516-C04-03”, and by European Comis-
sion FEDER funds under grant “Consolider Ingenio-
2010 CSD2006-00046”. Antonio Robles is taking a
sabbatical granted by the Universidad Politcnica de Va-
lencia for updating his teaching and research activities.

References
[1] J. M. Owen, M. D. Hummel, D. R. Meyer, and J. B. Keller,

“System and method of maintaining coherency in a distributed
communication system,” U.S. Patent 7069361, Jun. 2006.

[2] Intel, “An introduction to the Intel QuickPath interconnect,”
whitepaper, Jan. 2009. [Online]. Available: http://www.intel.
com/technology/quickpath/introduction.pdf

[3] InfiniBand Architecture specification release 1.2, InfiniBand
Trade AssociationTM , Oct. 2004. [Online]. Available: http:
//www.InfiniBandta.com

[4] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and
B. Hughes, “Cache hierarchy and memory subsystem of the
AMD opteron processor,”IEEE Micro, vol. 30, no. 2, pp. 16–
29, Apr. 2010.

[5] P. Conway, “Computer system with integrated directory and
processor cache,” U.S. Patent 6868485, Mar. 2005.

[6] SGI, “Technical advances in the SGI Altix UV architecture,”
whitepaper, 2009. [Online]. Available: http://www.sgi.com/
pdfs/4192.pdf

[7] 3Leaf Systems, “Next generation hybrid systems
for HPC,” whitepaper, 2009. [Online]. Avail-
able: http://www.3leafsystems.com/download/3leafwt paper
Next Gen Hybrid Sys%temsfor HPC.pdf

[8] J. Duato, F. Silla, S. Yalamanchili, B. Holden, P. Miranda,
J. Underhill, M. Cavalli, and U. Brning, “Extending Hyper-
Transport protocol for improved scalability,” in1st Int’l Work-
shop on HyperTransport Research and Applications (WHTRA),
Feb. 2009, pp. 46–53.

[9] R. Kota and R. Oehler, “Horus: Large-scale symmetric multi-
processing for opteron systems,”IEEE Micro, vol. 25, no. 2,
pp. 30–40, Mar. 2005.

[10] A. Agarwal, R. Simoni, J. L. Hennessy, and M. A. Horowitz,
“An evaluation of directory schemes for cache coherence,” in
15th Int’l Symp. on Computer Architecture (ISCA), May 1988,
pp. 280–289.

[11] P. Sweazey and A. J. Smith, “A class of compatible cache
consistency protocols and their support by the IEEE futurebus,”
in 13th Int’l Symp. on Computer Architecture (ISCA), Jun.
1986, pp. 414–423.

[12] P. S. Magnusson, et al, “Simics: A full system simulation
platform,” IEEE Computer, vol. 35, no. 2, pp. 50–58, Feb.
2002.

[13] M. M. Martin, et al, “Multifacet’s general execution-driven
multiprocessor simulator (GEMS) toolset,”Computer Archi-
tecture News, vol. 33, no. 4, pp. 92–99, Sep. 2005.

[14] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “GARNET:
A detailed on-chip network model inside a full-system simula-
tor,” in IEEE Int’l Symp. on Performance Analysis of Systems
and Software (ISPASS), Apr. 2009, pp. 33–42.

[15] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi,
“Cacti 5.1,” HP Labs, Tech. Rep. HPL-2008-20, Apr. 2008.

[16] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: Characterization and methodological
considerations,” in22nd Int’l Symp. on Computer Architecture
(ISCA), Jun. 1995, pp. 24–36.

[17] A. R. Alameldeen and D. A. Wood, “Variability in architectural
simulations of multi-threaded workloads,” in9th Int’l Symp. on
High-Performance Computer Architecture (HPCA), Feb. 2003,
pp. 7–18.


